
 

Dynamical AdS/Yang-Mills model

Sean P. Bartz
Department of Physics and Astronomy, Macalester College, St. Paul, Minnesota 55105, USA

Aditya Dhumuntarao
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada and School of Physics

and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

Joseph I. Kapusta
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 20 January 2018; published 13 July 2018)

The AdS=CFT correspondence has provided new and useful insights into the nonperturbative regime of
strongly coupled gauge theories. We construct a class of models meant to mimic Yang-Mills theory using
the superpotential method. This method allows us to efficiently address the problem of solving all the
equations of motion. The conformal symmetry is broken in the infrared by a dilaton field. Using a five-
dimensional action, we calculate the mass spectrum of scalar glueballs. This spectrum contains a tachyon,
indicating an instability in the theory. We stabilize the theory by introducing a cosmological constant in the
bulk and a pair of 3-branes, as in the Randall-Sundrum model. The scalar glueball masses computed by
lattice gauge theory are then described very well by just a few parameters. Prospects for extending the
model to other spins and parities and to finite temperature are considered.
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I. INTRODUCTION

The AdS=CFT correspondence has proven to be a useful
mathematical tool for the analysis of certain strongly
coupled gauge theories. This correspondence establishes
a connection between a d-dimensional super–Yang Mills
(SYM) theory and a weakly coupled gravitational theory in
dþ 1 dimensions [1–3]. Perturbation theory can be used to
solve SYM at small coupling, but it fails at large coupling,
whereas the reverse is true in the gravity dual. QCD is a
strongly coupled gauge theory at hadronic scales, making it
a prime candidate for the application of the gauge/gravity
correspondence. However, it is still not known whether a
gravitational dual to QCD exists. The so-called bottom-up
approach assumes the existence of such a dual, modeling
features of QCD by an effective five-dimensional gravity
theory. Linear confinement in QCD provides a scale that is
embodied in an IR cutoff of the fifth dimension in the
AdS=QCD model [4,5]; these are referred to as hard-wall
models. Soft-wall models use a dilaton field as an effective
IR cutoff [6]. The simplest of these uses a dilaton quadratic

in the fifth-dimensional coordinate to provide linear radial
Regge trajectories. Others modify the UV behavior of the
dilaton to more accurately model the ground state masses as
well [7–10].
Typically, soft-wall models of QCD use parametrizations

for the background dilaton and chiral fields that are not
derived as the solution to any equations of motion. The
problem is that there is always one more equation than there
are independent fields, causing a severe self-consistency
condition on the potential. Previously, two of us expanded
upon previous work [11,12,15–20] to find a suitable poten-
tial for the background fields of a soft-wall AdS=QCD
model [21]. A glueball field was added, and a potential was
constructed, which led to a dynamical dilaton and a good
description of the mass spectra of vector, axial-vector, and
pseudoscalar mesons. A shortfall of that approach was that
there was a special term in the potential, dependent on the
dilaton field, that could only be determined numerically
a posteriori and that did not appear to have a natural
functional form. It remains an open problem to find a well-
defined, natural action that provides a set of background
equations from which these fields can be derived. A
solution to that problem may suggest how it can be derived
from a top-down approach. A well-defined action with
good phenomenology is necessary to provide access to the
thermal properties of the model through perturbation of the
geometry [11,22,23].
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Our goal is to find a relatively simple analytic potential for
Yang-Mills theory which is self-consistent, which satisfies
the basic requirements of the gauge/gravity correspondence,
and which reproduces the scalar glueball mass spectrum as
computed in lattice gauge theory. This would be useful not
only for hadron phenomenology but might point toward a
ten-dimensional string model from which it arises. In
addition, an analytic potential would greatly simplify the
task of applying the model at finite temperature, such as the
equation of state and the transport coefficients. This task
suggests using the tools of supersymmetry. Wewill therefore
follow Ref. [12], which used two fields and a superpotential
method. In what follows, one of the fields is the dilaton, and
the other is a scalar glueball.
We can illustrate the enduring interest in the relationship

between Yang-Mills theory and the gauge/gravity corre-
spondence with two papers separated by two decades.
Csáki et al. [13] calculated the scalar glueball masses by
solving supergravity wave equations in a black hole
geometry and compared the results to the then-available
lattice calculations. Ballon-Bayona et al. [14] investigated
effective holographic models for QCD and proposed semi-
analytic interpolations between the UVand the IR to obtain
a spectrum for scalar and tensor glueballs consistent with
current lattice QCD calculations. In that approach, the
dilaton was identified as the glueball. A UV cutoff has
been a persistent issue, which we will address directly in
our paper.
The outline of our paper is as follows. In Sec. II, we

review the results for scalar glueball masses computed in
lattice gauge theory. In Sec. III, we give the basic setup for
the five-dimensional action. Some possible potentials
which incorporate the proper behavior are given in
Sec. IV. A specific example is worked out in detail in
Sec. V. We solve a Schrödinger equation for the glueball
mass spectrum in Sec. VI, where it is found that the lowest
state is a tachyon, which seems to be a generic result. In
order to stabilize the theory, we consider the Randall-
Sundrum model, which is briefly reviewed in Sec. VII. The
dilaton and glueball fields are added to the Randall-
Sundrum model in Sec. VIII, and the glueball mass
spectrum is recalculated in Sec. IX with excellent results.
Our summary and conclusion are presented in Sec. X.

II. LATTICE RESULTS

The 0þþ glueball mass spectrum, as calculated by lattice
gauge theory [24,25], is shown in Fig. 1. The radial
quantum number is n, and the masses are expressed in
terms of the string tension σ ¼ ð440 MeVÞ2. The error bars
include statistical uncertainties only. It is apparent that the
spectrum is linear at large n. A linear fit to the states n ¼ 2,
3, 4 of the form m2

n=σ ¼ anþ b results in a ¼ 20.37�
1.142 and b ¼ −1.666� 2.713. For later use, we express
this as

m2
n ¼ 8λðn − 0.082� 0.133Þ ð1Þ

with
ffiffiffi
λ

p ¼ 702 MeV. Here, we are not interested in the
small uncertainty in the slope, only the intercept which is
consistent with zero.
We can also make a linear fit to all states including n ¼ 1

as shown in Fig. 2. The form m2
n=σ ¼ anþ b results in

a ¼ 25.178� 1.483 and b ¼ −13.859� 1.703. Then,

m2
n ¼ 8λðn − 0.550� 0.075Þ ð2Þ

with
ffiffiffi
λ

p ¼ 781 MeV. In this fit, the intercept is clearly
negative, and the fit is not nearly as good.

III. SETUP

We assume that the four-dimensional strongly coupled
field theory can be modeled by the following five-dimen-
sional action, written in the string frame:
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FIG. 1. The scalar glueball mass spectrum as computed on the
lattice in pure SU(3) gauge theory. The linear fit includes n ≥ 2.
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FIG. 2. The scalar glueball mass spectrum as computed on the
lattice in pure SU(3) gauge theory. The linear fit includes n ≥ 1.
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S ¼ 1

16πG5

Z
d5x

ffiffiffi
g

p
e−2Φ

�
Rþ 4gMN∂MΦ∂NΦ

−
1

2
gMN∂MG∂NG − VðΦ; GÞ

�
: ð3Þ

Here, Φ is the dilaton, and G is the glueball field; these
fields are dimensionless. The metric is pure anti-de Sitter
(AdS), gMN ¼ ðl=zÞ2ηMN with AdS curvature R ¼ −30=l2
and g ¼ − det gMN .
It is easier to search for the background fields in the

Einstein frame, which is obtained from the string frame via
the conformal transformation

gMN ¼ e4Φ=3g̃MN; ð4Þ
where the tilde distinguishes the two frames. Rescaling the
dilaton by ϕ ¼ ffiffiffiffiffiffiffiffi

8=3
p

Φ puts the vacuum action in canoni-
cal form,

SE ¼ 1

16πG5

Z
d5x

ffiffiffĩ
g

p �
R̃ −

1

2
g̃MN∂Mϕ∂Nϕ

−
1

2
g̃MN∂MG∂NG − Ṽðϕ; GÞ

�
; ð5Þ

with Ṽ ¼ e4Φ=3V ¼ e2ϕ=
ffiffi
6

p
V.

To apply the superpotential method [26,27] requires
switching from ðxμ; zÞ to ðxμ; yÞ coordinates such that

ds2 ¼ e−2AðyÞdx2 þ dy2: ð6Þ
We look for a background solution with ϕ ¼ ϕðyÞ and
G ¼ GðyÞ. The equations of motion are

3A00 − 6A02 ¼ 1

4
ϕ02 þ 1

4
G02 þ 1

2
Ṽ; ð7Þ

6A02 ¼ 1

4
ϕ02 þ 1

4
G02 −

1

2
Ṽ; ð8Þ

ϕ00 − 4A0ϕ0 ¼ ∂Ṽ
∂ϕ ; ð9Þ

G00 − 4A0G0 ¼ ∂Ṽ
∂G : ð10Þ

Here, a prime means differentiation with respect to y. Since
there is one more equation than there are independent
fields, these equations would not have a solution for an
arbitrarily chosen potential Ṽðϕ; GÞ. To solve these equa-
tions, we convert them to a set of first order differential
equations by use of a “superpotential” Wðϕ; GÞ such that

A0 ¼ W; ð11Þ

ϕ0 ¼ 6
∂W
∂ϕ ; ð12Þ

G0 ¼ 6
∂W
∂G : ð13Þ

Then, the original set of equations is satisfied when

Ṽ ¼ 18

��∂W
∂ϕ

�
2

þ
�∂W
∂G

�
2
�
− 12W2: ð14Þ

The challenge is to find a functionWðϕ; GÞwhich gives the
desired behavior of the fields. But it must be emphasized
that any appropriately smooth functionW will allow for all
the original differential equations to be satisfied, which is
our goal.
As discussed above, good hadron phenomenology sug-

gests that A, ϕ, y, and z are related in the following ways:

e−A ¼ l
z
e−aϕ ð15Þ

dy ¼ l
z
e−aϕdz: ð16Þ

Here, a is an arbitrary constant. From the first of these
equations, we clearly have A ¼ lnðz=lÞ þ aϕ. Now, the
differential equation for A becomes

A0 ¼ 1

z
dz
dy

þ aϕ0 ¼ W: ð17Þ

Using the relationship between y and z and the differential
equation for ϕ, we get a differential equation for W:

∂W
∂ϕ ¼ 1

6a

�
W −

1

l
eaϕ

�
: ð18Þ

As we know from previous studies [15], the constant a ¼
1=

ffiffiffi
6

p
in order to have linear radial Regge trajectories; we

shall henceforth fix it at that value. Then, the most general
solution to the differential equation for W is

Wðϕ; GÞ ¼ 1

l

�
UðGÞ þ 1 −

ϕffiffiffi
6

p
�
eϕ=

ffiffi
6

p
: ð19Þ

Here, U is any function of G; the þ1 is added for future
convenience. The resulting differential equations can be
written simply as

z
dG
dz

¼ 6
dU
dG

; ð20Þ

d
dz

ðzϕÞ ¼
ffiffiffi
6

p
U: ð21Þ

Alternatively, the first equation can be inserted in the
second to obtain
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6
dU
dG

dϕ
dG

þ ϕ ¼
ffiffiffi
6

p
U: ð22Þ

This is a remarkable simplification from previous studies of
phenomenologically relevant AdS-inspired approaches.
The potential resulting from this analysis is

l2Vðϕ; GÞ ¼ −12þ 4
ffiffiffi
6

p
ϕ −

3

2
ϕ2 þ 3

ffiffiffi
6

p
ϕU − 24U

− 9U2 þ 18

�
dU
dG

�
2

: ð23Þ

One might wonder about the term linear in ϕ, but really it
should be viewed in the Einstein frame. Assuming that U
has no constant terms,

l2Ṽ ¼ −12þ 5

2
ϕ2 þ � � � : ð24Þ

The first term is just the usual negative cosmological
constant, while the second term suggests that the mass
of the dilaton is m2

ϕl
2 ¼ 5. If one wants to relate this to an

operator, it would have dimension 5. However, as pointed
out in Ref. [15], the AdS=CFT correspondence between the
dimension of the operator and mass of the field does not
generally apply to the dilaton field for the reasons pre-
sented there.

IV. POSSIBLE POTENTIALS

The AdS=CFT dictionary sets the mass for the fields
according to the dimension Δ of the dual operator,

m2l2 ¼ ΔðΔ − 4Þ; ð25Þ

where l is related to the AdS curvature. The glueball mass
is 0 since the dimension of the gluon condensate is 4.
The dilaton mass is undetermined and is not connected to
the dimension of the corresponding operator, as discussed
in Ref. [15].
In the UV limit, z → 0, the glueball field is proportional

to z4. In the IR limit, z → ∞, the glueball field must be
proportional to z in order that the dilaton field be propor-
tional to z2 so that the mesons have linear radial Regge
trajectories. As a consequence, U → 1

12
G2 in the IR limit.

In the UV limit, U → 1
3
G2.

One possible potential which yields the correct UV and
IR behavior is

U ¼ 1

12
G2½1þ 3e−γG

2 �: ð26Þ

Here, the only free parameter is γ, which controls the
transitional behavior of G between the IR and the UV.

A second possible potential is

U ¼ 1

12
G2½4 − 3 tanh γG2�: ð27Þ

The free parameter γ controls the transitional behavior.
A third possible potential is

U ¼ 1

12
G2 þ 1

4γ
ln ð1þ γG2Þ: ð28Þ

Again, the transitional behavior is fixed by the numerical
value of γ.

V. LOG POTENTIAL

Let us focus on the logarithmic potential because we can
find some analytical results straightaway. The differential
equation for G,

z
dG
dz

¼ 6
dU
dG

¼ γG2 þ 4

γG2 þ 1
G; ð29Þ

has the solution

G2ðγG2 þ 4Þ3 ¼
�
z
z0

�
8

: ð30Þ

Here, z0 is a constant of integration. In the large z limit, the
solution is

γG2 ¼ γ1=4
�
z
z0

�
2

− 3þ � � � : ð31Þ

In the small z limit, the solution is

G ¼ 1

8

�
z
z0

�
4

− 3γ

�
z
2z0

�
12

þ · · ·: ð32Þ

The field is plotted as a function of z in Fig. 3 [see Eq. (38)
for the relationship among z0, γ, and λ]. The power-law
behavior in the UV and IR limits is evident.
We have not found a solution ϕðGÞ in terms of

elementary functions. The solution can be expressed in
terms of an integral with the proper boundary conditions as

ϕðGÞ ¼
ffiffiffi
6

p �
UðGÞ − z0

zðGÞ
Z

G

0

zðG0Þ
z0

dU
dG0 dG

0
�
; ð33Þ

where

dU
dG

¼ G
6

4þ γG2

1þ γG2
ð34Þ

and z=z0 is given by Eq. (30). It is straightforward to find
the limits as G → ∞,
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ϕ ¼
ffiffiffi
6

p �
1

36
G2 þ 1

4γ
ln γG2 −

2

3γ
þ � � �

�

¼
ffiffiffi
6

p �
1

36γ3=4

�
z
z0

�
2

þ 1

4γ
ln

�
z
z0

�
2

þ 1

16γ
ln γ −

3

4γ
þ � � �

�
; ð35Þ

and as G → 0,

ϕ ¼
ffiffiffi
6

p

9

�
1

3
G2 þ 7

136
γG4 þ � � �

�

¼ 2
ffiffiffi
6

p

9

�
2

3

�
z
2z0

�
8

−
27γ

17

�
z
2z0

�
16

� � �
�
: ð36Þ

The requirement of linear confinement requires a solution
in the large z limit of the form

ϕ ¼
ffiffiffi
8

3

r
λz2: ð37Þ

Using the above limiting forms, we find that the constant of
integration in the differential equation for GðzÞ is

1

z20
¼ 24γ3=4λ: ð38Þ

This also determines the magnitude of the gluon conden-
sate, defined by G ¼ G4z4, to be

G4 ¼ 72γ3=2λ2: ð39Þ

Only γ remains as an undetermined parameter. The field is
plotted as a function of z in Fig. 4. The power-law behavior
in the UV and IR limits is evident.

VI. GLUEBALL MASS SPECTRUM

Suppose that the metric has the form

ds2 ¼ b2ðzÞð−dt2 þ dx2 þ dz2Þ ð40Þ

and that the action has the canonical form of Eq. (5). The
equation of motion which determines the mass spectrum for
the field G ¼ GðzÞ þ ΔGðz; xÞ is

−b3ημν∂μ∂νΔG − ∂zðb3∂zΔGÞ þ b5
∂2Ṽ
∂G2

ΔG ¼ 0: ð41Þ

Here, ΔGðz; xÞ ¼ ΔGnðzÞeip·x so that ημν∂μ∂ν → m2. This
leads to the eigenvalue equation

− ∂2
zΔGnðzÞ − b−3ð∂zb3Þ∂zΔGnðzÞ þ b2

∂2Ṽ
∂G2

ΔGnðzÞ
¼ m2

nΔGnðzÞ: ð42Þ

It can be put in the form of the Schrödinger equation by the
transformation ΔGn ¼ eωs=2Hn with ωs ¼ −3 ln b. Hence,

−Ḧn þ
�
1

4
_ωs
2 −

1

2
ω̈s þ

l2

z2
∂2V
∂G2

�
Hn ¼ m2

nHn; ð43Þ

where a dot means differentiation with respect to z.

In the present case, ωs ¼
ffiffi
3
2

q
ϕþ 3 ln z. From the equa-

tions of motion, one can write

z _ϕ ¼
ffiffiffi
6

p
U − ϕ

z2ϕ̈ ¼ 2ϕ − 2
ffiffiffi
6

p
U þ 6

ffiffiffi
6

p �∂U
∂G

�
2

: ð44Þ

FIG. 4. The dilaton field as a function of the dimensionless
variable

ffiffiffi
λ

p
z. Plotted this way, it only depends on the parameter

γ, which here is chosen to be 1=2.

FIG. 3. The glueball field as a function of the dimensionless
variable

ffiffiffi
λ

p
z. Plotted this way, it only depends on the parameter

γ, which here is chosen to be 1=2.
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These can be used in

_ωs ¼
1

z

�
3þ

ffiffiffi
3

2

r
z _ϕ

�
ð45Þ

and in

ω̈s ¼
1

z2

�
−3þ

ffiffiffi
3

2

r
z2ϕ̈

�
ð46Þ

without having to numerically calculate the first or second
derivatives of ϕ with respect to z. This combines to give

1

4
_ωs
2 −

1

2
ω̈s ¼

1

z2

�
15

4
−
5

4

ffiffiffi
6

p
ϕþ 15

2
U þ 9

4
U2 −

3

4

ffiffiffi
6

p
ϕU

þ 3

8
ϕ2 − 9

�
dU
dG

�
2
�
: ð47Þ

The potential in Eq. (23) gives

l2
∂2V
∂G2

¼ 3
ffiffiffi
6

p
ϕ
d2U
dG2

− 24
d2U
dG2

− 18U
d2U
dG2

− 18

�
dU
dG

�
2

þ 36

�
d2U
dG2

�
2

þ 36
dU
dG

d3U
dG3

; ð48Þ

which does not specify the function UðGÞ.
For the specific example of the logarithmic form of U,

we find

dU
dG

¼ G
6

�
γG2 þ 4

γG2 þ 1

�
ð49Þ

d2U
dG2

¼ 1

6

�ðγG2Þ2 − γG2 þ 4

ðγG2 þ 1Þ2
�

ð50Þ

d3U
dG3

¼ γGðγG2 − 3Þ
ðγG2 þ 1Þ3 : ð51Þ

The Schrödinger equation can be put in dimensionless form
by changing to the dimensionless variable x ¼ ffiffiffiffiffi

2λ
p

z. Then,

−
d2Hn

dx2
þ VHðϕðxÞ; GðxÞÞHn ¼

m2
n

2λ
Hn; ð52Þ

where

VH ¼ 1

x2

�
15

4
−
5

4

ffiffiffi
6

p
ϕþ 15

2
U þ 9

4
U2 −

3

4

ffiffiffi
6

p
ϕU þ 3

8
ϕ2

− 9

�
dU
dG

�
2

þ l2
∂2V
∂G2

�
: ð53Þ

It is straightforward to compute the limits of VH in the UV
and IR limits. In the IR, VH → x2, and in the UV,
VH → 15=4x2. These are independent of the parameter γ.

Now, the parameter γ should be used to obtain the best fit
to the glueball mass spectrum. Some results are plotted in
Fig. 5 for a representative range of γ. It shows the existence
of a tachyon when n ¼ 1. Very similar results are obtained
with the other forms of U discussed in Sec. IV.
In fact, this can be anticipated analytically by consid-

eration of the limit γ ≫ 1. Then, the mass spectrum is
obtained from

−
d2Hn0

dx2
þ
�
x2 − 6þ 3

4x2

�
Hn0 ¼

m2
n0

2λ
Hn0 : ð54Þ

This may be compared to the radial equation for the
harmonic oscillator in the form

−
d2Hn0

dx2
þ
�
x2 þ l2 − 1=4

x2

�
Hn0 ¼

2En0

ℏω
Hn0 ð55Þ

with radial quantum number n0 ¼ 0; 1; 2…, l ¼ 1
2
; 3
2
;…

and energy eigenvalue

En0 ¼ ℏω½2n0 þ lþ 1�: ð56Þ

Switching to the radial quantum number n ¼ n0 þ 1 to be
consistent with the notation used earlier results in

m2
n ¼ 8λ

�
n −

3

2

�
: ð57Þ

This has exactly one tachyonic state.

VII. RANDALL-SUNDRUM MODEL

There is a tachyon in the versions of the AdS model
considered above which indicates an instability. In an
attempt at stabilization, we turn to the Randall-Sundrum
model [28]. The goal of [28] was to obtain a more natural

0 1 2 3 4 5
-50

0

50

100

Lattice Data
 = 0.1
 = 0.5
 = 0.9

FIG. 5. The mass spectra with
ffiffiffi
λ

p ¼ 700 MeV for several
values of the parameter γ.

BARTZ, DHUMUNTARAO, and KAPUSTA PHYS. REV. D 98, 026019 (2018)

026019-6



explanation of the hierarchy between the weak scale and the
fundamental scale of gravity. Here, we have more mundane
considerations.
The Randall-Sundrum model introduces a cosmological

constant Λ in the bulk and two 3-branes, one located at
y ¼ 0 and the other at y ¼ L. The 3-branes have constant
energy densities V0 and VL, respectively. There is an
assumed symmetry y → −y so that only positive values
of y are needed. The action is

S ¼ 2M3

Z
d4xdy

ffiffiffi
g

p �
Rþ Λ

2M3

�
−
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy ¼ 0Þ

p
V0

−
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy ¼ LÞ

p
VL: ð58Þ

Here, M is the five-dimensional gravity scale (M3 ¼ 1=
32πG5). The metric has the form

ds2 ¼ e−2AðyÞð−dt2 þ dx2Þ þ dy2; ð59Þ

with indices running from 0 through 4, 4 representing the
fifth dimension y. Note that we have dropped the tildes in
this section even though we are working in the Einstein
frame. The sign in front of Λ in the action is chosen so that
in this model it turns out positive. The formulas for the
components of the Ricci tensor are given in the Appendix.
For this metric, they are

R00 ¼ −ðA00 − 4A02Þe−2A ¼ −Rii ð60Þ

with no sum on i ¼ 1, 2, 3 and

Ryy ¼ 4A00 − 4A02: ð61Þ

The scalar curvature is

R ¼ 8A00 − 20A02: ð62Þ

Einstein’s equations give the following pair of scalar
equations:

A02 ¼ Λ
24M3

≡ k2 ð63Þ

A00 − 2A02 ¼ −
Λ

12M3
þ V0

12M3
δðyÞ þ VL

12M3
δðy − LÞ:

ð64Þ

The solution to Eq. (63) is simply

AðyÞ ¼ kjyjθðL − jyjÞ ð65Þ

when making using of the symmetry y → −y. Also, from
Eq. (63), we have

A0 ¼ k½θðyÞθðL − yÞ − θð−yÞθðLþ yÞ�: ð66Þ

Differentiating this expression, using the symmetry, and
comparing to Eq. (64), we find the requirements that
V0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24M3Λ

p
and VL ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24M3Λ

p
. These requirements

are equivalent to demanding that the four-dimensional
cosmological constant be zero. For this, we need

Z
L

−L
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
¼ 1

2k
ð1 − e−4kLÞ;

Z
L

−L
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy ¼ 0Þ

p
¼ 1

2k
;

Z
L

−L
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðy ¼ LÞ

p
¼ 1

2k
e−4kL;

Z
L

−L
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
RðyÞ ¼ −6kð1 − e−4kLÞ: ð67Þ

Then, the four-dimensional action is

Z
d4x

�
12M3kð1 − e−4kLÞ þ Λ

2k
ð1 − e−4kLÞ

− ðV0 þ VLe−4kLÞ
�
; ð68Þ

which is zero if V0 and VL take on the values men-
tioned above.

VIII. RANDALL-SUNDRUM MODEL
WITH SCALAR FIELDS

Now, we add the scalar fields ϕ and G as in Sec. III. We
assume that VL ¼ −V0 but V0, Λ, andM are unrelated; k is
still defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ=24M3

p
. The equations of motion are

3A00 − 6A02 þ Λ
4M3

¼ 1

4
ϕ02 þ 1

4
G02 þ 1

2
Ṽ

þ V0

4M3
½δðyÞ − δðy − LÞ�; ð69Þ

6A02 −
Λ

4M3
¼ 1

4
ϕ02 þ 1

4
G02 −

1

2
Ṽ; ð70Þ

ϕ00 − 4A0ϕ0 ¼ ∂Ṽ
∂ϕ ; ð71Þ

G00 − 4A0G0 ¼ ∂Ṽ
∂G : ð72Þ

Based on previous results, we look for a solution of the
following form:

A0 ¼ W þ k½θðyÞθðL − yÞ − θð−yÞθðLþ yÞ�; ð73Þ

ϕ0 ¼ 6
∂W
∂ϕ ; ð74Þ
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G0 ¼ 6
∂W
∂G : ð75Þ

Then, the original set of equations is satisfied when

Ṽ ¼ 18

��∂W
∂ϕ

�
2

þ
�∂W
∂G

�
2
�
− 12W2

− 24k½θðyÞθðL − yÞ − θð−yÞθðLþ yÞ�W; ð76Þ

and V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24M3Λ

p
, as before.

A. Change of coordinate

Reference [29] studied tensor fluctuations in the absence
of scalar fields. The authors found it convenient to make the
change of variables from y to z via

z ¼ signðyÞ½ekjyj − 1�=k: ð77Þ

With the inclusion of scalar fields, it suggests that we
choose

AðyÞ ¼ ln ðkjzj þ 1Þ þ aϕðjzjÞ; ð78Þ

valid for both positive and negative values of z including
z ¼ 0. Then, y ¼ 0 corresponds to z ¼ 0. Along with this,
we assume that

dy ¼ e−aϕðjzjÞ

kjzj þ 1
dz: ð79Þ

This gives the metric

ds2 ¼ e−2aϕðjzjÞ

ðkjzj þ 1Þ2 ð−dt
2 þ dx2 þ dz2Þ: ð80Þ

The equation for A is now

A0 ¼ signðzÞ
jzj þ l

dz
dy

þ aϕ0 ¼ W þ ksignðzÞ: ð81Þ

Unless otherwise stated, we shall assume that L becomes
arbitrarily large so that we may ignore any singularities at
y ¼ �L in the equations of motion.
Using the equations above, we can readily find a

differential equation which determines the ϕ dependence
of W,

6a
∂W
∂ϕ ¼ W þ ksignðzÞð1 − eaϕÞ: ð82Þ

The solution is

W ¼ ksignðzÞf½UðGÞ þ 1 − aϕ�eaϕ − 1g: ð83Þ

Compare this to Eq. (19). Therefore, we can write the
potential Ṽ as

Ṽ ¼ 18

��∂W
∂ϕ

�
2

þ
�∂W
∂G

�
2
�
− 12W2 − 24kjWj: ð84Þ

The potential V for non-negative values of z is nearly the
same as before,

Vðϕ; GÞ=k2 ¼ −12ð1 − e−2aϕÞ þ 4
ffiffiffi
6

p
ϕ −

3

2
ϕ2 þ 3

ffiffiffi
6

p
ϕU

− 24U − 9U2 þ 18

�
dU
dG

�
2

: ð85Þ

The only difference is the term proportional to e−2aϕ, which
arises on account of the brane at z ¼ 0.
In terms of the z coordinate, the equations for the fields

are now (z ≥ 0)

ðzþ lÞ dG
dz

¼ 6
dU
dG

ð86Þ

ðzþ lÞ dϕ
dz

þ ϕ ¼
ffiffiffi
6

p
U: ð87Þ

The l acts as a UV cutoff. Compare these to Eqs. (20) and
(21). The solutions with the 3-brane, Gðz; lÞ and ϕðz; lÞ,
can be obtained from the solutions without the 3-brane,
Gðz; 0Þ and ϕðz; 0Þ, simply by shifting the coordinate,
specifically Gðz;lÞ¼Gðzþ l;0Þ and ϕðz; lÞ ¼ ϕðzþ l; 0Þ.

B. Vacuum energy density in four dimensions
with scalar fields

Let us calculate the vacuum energy density in four
dimensions with the inclusion of the fields ϕ and G. The
action is now a combination of Eqs. (5) and (58) with

L̃ ¼ −
1

2
g̃MN∂Mϕ∂Nϕ −

1

2
g̃MN∂MG∂NG − Ṽðϕ; GÞ ð88Þ

and

R̃ ¼ 8A00 − 20A02: ð89Þ
From Eqs. (69) and (70), we may infer that

L̃ ¼ −6A00 þ 12A02 −
Λ

2M3
þ V0

2M3
½δðyÞ − δðy − LÞ� ð90Þ

when the solutions are plugged back into the Lagrangian.
Then, the action is

SE ¼ 4M3

Z
d4x

Z
dye−4AðA00 − 4A02Þ: ð91Þ

Again using the same equations, we have

A00 − 4A02 ¼ 1

3
Ṽ − 4k2 þ V0

12M3
½δðyÞ − δðy − LÞ�: ð92Þ

BARTZ, DHUMUNTARAO, and KAPUSTA PHYS. REV. D 98, 026019 (2018)

026019-8



The last pair of terms integrates to zero, leaving

SE ¼ 4

3
M3

Z
d4x

Z
dye−4AṼ: ð93Þ

Is this action finite? Switching from y to z involves the
change

dye−4A ¼ dz
e−5aϕ

ðkjzj þ 1Þ5 : ð94Þ

The action is thus proportional to

Z
∞

0

dz
ðkzþ 1Þ5 e

−3aϕV: ð95Þ

In the IR, V → −6ϕ2ðzÞ, while in the UV, V → constant.
Hence, the action is finite, and so is the four-dimensional
vacuum energy density. This is due to the UV cutoff k in the
Randall-Sundrum model.

IX. GLUEBALL MASS SPECTRUM REVISITED

In this section, we calculate the glueball mass spectrum
with the Randall-Sundrum modified action described
above. From Eqs. (40)–(42), we find the Schrödinger
equation

−Ḧn þ
�
1

4
_ωs
2 −

1

2
ω̈s þ

1

ðkjzj þ 1Þ2
∂2V
∂G2

�
Hn ¼ m2

nHn;

ð96Þ
where

ωs ¼ 3 ln ðkjzj þ 1Þ þ
ffiffiffi
3

2

r
ϕðjzjÞ

_ωs ¼
�

3k
kjzj þ 1

þ
ffiffiffi
3

2

r
d
djzjϕðjzjÞ

�
signðzÞ

ω̈s ¼ −
3k2

ðkjzj þ 1Þ2 þ
ffiffiffi
3

2

r
ϕ̈þ 6kδðzÞ: ð97Þ

Restricting z to positive values only results in the following
equation:

−Ḧn þ
�
15

4

k2

ðkzþ 1Þ2 þ
3

2

ffiffiffi
3

2

r
k _ϕ

kzþ 1
þ 3

8
_ϕ2 −

1

2

ffiffiffi
3

2

r
ϕ̈ −

3

2
kδðzÞ þ 1

ðkzþ 1Þ2
∂2V
∂G2

�
Hn ¼ m2

nHn: ð98Þ

Note the appearance of an attractive δ-function potential. Its coefficient is 3=2 instead of 3 because we are restricting the
space to non-negative values of z. We can express _ϕ and ϕ̈ in terms of the background fields and z as before using Eq. (44),

−Ḧn þ VHHn ¼ m2
nHn; ð99Þ

where now

VH ¼ k2

ðkzþ 1Þ2
�
15

4
þ 15

2
ðU − aϕÞ þ 9

4
ðU − aϕÞ2 − 9

�
dU
dG

�
2

þ 1

k2
∂2V
∂G2

�
−
3

2
kδðzÞ: ð100Þ

The Schrödinger equation may be solved for positive
values of z by neglecting the Dirac δ-function but
imposing the boundary condition _HnðϵÞ ¼ − 3

2
kHnð0Þ

with ϵ → 0þ. This condition follows in the usual way;
see the Appendix.
The original AdS/Yang-Mills (YM) model contained

three parameters: l, a physically irrelevant parameter
representing the AdS curvature; λ, representing the slope
of the mass spectrum; and γ, representing the transition
from the UV to the IR behavior. None of the results
depended upon l. The lack of a UV cutoff in that model
resulted in an instability manifested by an infinite action
and a tachyon. The AdS=YM model which includes the
Randall-Sundrum 3-branes replaces the parameter l with
the parameter l ¼ 1=k, which is relevant: it shifts the
variable z by an amount l; and it enters into the
Schrödinger equation for the glueball mass spectrum.
It is related to the tension on the 3-branes. It also

0 1 2 3 4 5
0

20

40

60

80

100

FIG. 6. Glueball mass spectrum calculated with the AdS=YM
model including the Randall-Sundrum 3-brane. The best-fit
parameters are given in the text.
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renders the action finite, and hence we do not expect a
tachyon.
Figure 6 shows a best fit to the glueball mass spectrum as

calculated on the lattice. The best-fit parameters areffiffiffi
λ

p ¼ 581.8 MeV, k ¼ 0.951
ffiffiffi
λ

p
, and γ ¼ 0.2725. These

results match the expected linearity at large n as well as the
characteristic bend in the spectrum for n ¼ 1. The potential
entering the Schrödinger equation with these parameters is
shown in Fig. 7. Note that it does not have the 1=x2

behavior exhibited in Eqs. (53) and (54) as x → 0 because
of the UV cutoff l ¼ 1=k.

X. CONCLUSION

Our goal in this paper was to construct a fully
dynamical AdS-type model that could reproduce the
scalar glueball mass spectrum as calculated by lattice
gauge theory. The model should respect the gauge/gravity
duality correspondence. The first hurdle in doing so is the
fact that there is always one more equation of motion for
the background fields than there are independent fields.
This hurdle was overcome by using the superpotential
method, whereby one function UðGÞ determines the full
potential Vðϕ; GÞ in the Lagrangian. Then, it is straight-
forward to parametrize UðGÞ such that the correspon-
dence is satisfied and that the scalar glueball spectrum
has a linear trajectory for the radial excitations. The
theory has two parameters: λ, which arises as a constant
of integration in the differential equations determining the
background fields and which introduces an overall energy
scale (there is no such scale in the Lagrangian), and a
dimensionless parameter γ, which determines the scale at
which the theory switches from the IR to the UV
behavior. Unfortunately, any such theory has a tachyon,
which indicates an instability.

The model is stabilized by merging the AdS approach
with the Randall-Sundrum model. In that model, a cos-
mological constant is introduced in the bulk, and 3-branes
are introduced at y ¼ 0 and y ¼ L. The length L can be
taken as large as desired and hence is an irrelevant
parameter. It introduces one new parameter, k, with
dimensions of energy which provides a UV cutoff and
renders the action finite. This eliminates the tachyon. An
excellent fit to the four scalar glueball states calculated by
lattice gauge theory is obtained.
The next step in our program is to study the theory at

finite temperature. Nonzero temperature will modify the
background fields ϕðzÞ and GðzÞ. The outcome would be
the equation of state and the transport coefficients, such
as the shear and bulk viscosities and various relaxation
times that appear in higher order viscous fluid dynamics.
One can also study the spectra of the JPC ¼ 0−þ; 1þ− and
1−− states. Finally, one may consider applying this
approach to the full bottom-up AdS=QCD phenomenol-
ogy. There is much work yet to be done.
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APPENDIX A: CURVATURE TENSORS

The Riemann-Christoffel tensor Rαβμν for the back-
ground metric has the following independent components.
All the rest are either related to these by the algebraic
properties of Rαβμν or are zero. These results apply when
the metric is diagonal and depends only on the fifth-
dimensional coordinate, here labeled r. These results are
taken from Ref. [30]. The formulas from Ref. [30] use
Weinberg’s [31] definition of the Riemann-Christoffel
tensor, whereas the formulas in the text use Carroll’s
[32] definition. They differ by an overall sign. The formulas
below use Carroll’s definition:

Rr0r0 ¼ −
1

4

dg00
dr

d
dr

ln

�
grrg00

�
dg00
dr

�
2
�

Rrxrx ¼ Rryry ¼ Rrzrz ¼ −
1

4

dgxx
dr

d
dr

ln

�
grrgxx

�
dgxx
dr

�
2
�

R0x0x ¼ R0y0y ¼ R0z0z ¼ −
1

4
grr

dg00
dr

dgxx
dr

Rxyxy ¼ Rxzxz ¼ Ryzyz ¼ −
1

4
grr

�
dgxx
dr

�
2

: ðA1Þ

The diagonal elements of the Ricci tensor Rμν ¼ gαβRαμβν

are nonzero, while the off-diagonal ones are zero:

FIG. 7. The Schrödinger potential for the AdS=YM model
including the Randall-Sundrum 3-brane.
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R00 ¼ −
1

2
grr

dg00
dr

d
dr

ln

� ffiffiffiffiffiffi
−g

p
grrg00

dg00
dr

�
≡ g00F0

Rxx ¼ Ryy ¼ Rzz ¼ −
1

2
grr

dgxx
dr

d
dr

ln

� ffiffiffiffiffiffi
−g

p
grrgxx

dgxx
dr

�

≡ gxxFx

Rrr ¼ −
3

4
gxx

dgxx
dr

d
dr

ln

�
grrgxx

�
dgxx
dr

�
2
�

−
1

4
g00

dg00
dr

d
dr

ln
�
grrg00

�
dg00
dr

�
2
�
≡ grrFr: ðA2Þ

The curvature R ¼ Rλ
λ is given as follows:

R ¼ F0 þ 3Fx þ Fr: ðA3Þ

APPENDIX B: BOUNDARY CONDITION

Consider the differential equation

−Ḧ þ ½vðzÞ − λδðzÞ�H ¼ m2H; ðB1Þ

where vðzÞ is a smooth, even function of z and −∞ <
z < ∞. Integrate this equation once from −ϵ to ϵ. In the
limit ϵ → 0, it gives−½ _HðϵÞ − _Hð−ϵÞ� ¼ λHð0Þ. SinceH is
continuous at 0 and is an even function, it follows that
_Hð−ϵÞ ¼ − _HðϵÞ, and hence _HðϵÞ ¼ − 1

2
λHð0Þ.

This can be thought of as a differential equation to be
solved for z ≥ 0 due to the symmetry. It may be useful to
represent the δ-function as either a square well from−a to a
or as a Gaussian of width σ centered at 0. Now, it is clear
that _Hð0Þ ¼ 0, so that integration from 0 to ϵ yields
_HðϵÞ ¼ − 1

2
λHð0Þ, the same as before, as it must be.
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