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We calculate the one-loop divergences for different vector field models in curved spacetime. We
introduce a classification scheme based on their degeneracy structure, which encompasses the well-known
models of the nondegenerate vector field, the Abelian gauge field, and the Proca field. The renormalization
of the generalized Proca model, which has important applications in cosmology, is more complicated.
By extending standard heat-kernel techniques, we derive a closed form expression for the one-loop
divergences of the generalized Proca model.
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I. INTRODUCTION

Most models of inflation and dynamical dark energy are
based on scalar-tensor theories and fðRÞ gravity, which
have an additional propagating scalar degree of freedom
(d.o.f.). The one-loop quantum corrections to these models
on an arbitrary background manifold have been derived for
a general scalar-tensor theory in [1,2] and recently for fðRÞ
gravity in [3].
Aside from models based on an additional scalar field,

vector fields have been studied in cosmology [4–11]. Most
of these models are characterized by a nonminimal cou-
pling of the vector field to gravity and are particular cases of
the generalized Proca model.
The quantum corrections for the generalized Proca

model are difficult to calculate and have been studied
recently in [12,13] by different approaches. In this article,
we use another approach, which allows us to derive the
one-loop divergences for the generalized Proca model in a
closed form.
We use a combination of the manifest covariant back-

ground field formalism and the heat kernel technique
[14–22]. This general approach can be applied to any type
of field. The central object in this approach is the differential
operator, which propagates the fluctuations of the fields. For
most physical theories, this fluctuation operator acquires the
form of a second order minimal (Laplace-type) operator. For
this simple class of operators, a closed algorithm for the
calculation of the one-loop divergences exists [14]. For

nonminimal and higher order operators, a generalization of
the Schwinger-DeWitt algorithm, which allows us to reduce
the calculation to the known case of the minimal second
order operator, has been introduced in [20]. The direct
application of the generalized Schwinger-DeWitt algorithm
requires the non-degeneracy of the principal part—the
highest-derivative term of the fluctuation operator.
However, there are important cases, where the fluc-

tuation operator has a degenerate principal part—notably
fðRÞ gravity [3] and the generalized Proca model consid-
ered in this article. Therefore, we make use of the
Stückelberg formalism [23] to reformulate the generalized
Proca model as a gauge theory such that standard heat-
kernel techniques become applicable again. The price to
pay is the introduction of a second metric tensor.
This article is organized as follows: In Sec. II, we discuss

different vector field models in curved spacetime. In
particular, we introduce a classification based on their
degeneracy structure. In Sec. III, we calculate the one-loop
divergences for the nondegenerate vector field with an
arbitrary potential. In Sec. IV, we consider the case of the
Abelian gauge field and calculate the one-loop divergences.
In Sec. V, we derive the one-loop divergences for the Proca
model of the massive vector field. In Sec. VI, we introduce
the generalized Proca model, calculate the one-loop diver-
gences in a closed form and present our main result. In
Sec. VII, we perform several reductions of our general result
for the generalized Proca model to specific cases. These
reductions provide strong cross checks of our general result
and entail applications to cosmological models. In Sec. VIII,
we compare our result and our method to previous calcu-
lations of the one-loop divergences for the generalized Proca
model. Finally, in Sec. IX, we summarize our main results
and give a brief outlook on their implications.
Technical details are provided in several Appendices.

In Appendix A, we introduce the general formalism and
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provide a collection of tabulated coincidence limits, which
arise in the calculation. In Appendix B, we present the
details of the calculation for the one-loop divergences of the
nondegenerate vector field considered in Sec. III. In
Appendix C, we provide a detailed calculation of the most
complex functional traces, which contribute to the one-loop
divergences of the generalized Proca model considered in
Sec. VI. In Appendix D, we collect several important
integral identities.

II. VECTOR FIELD MODELS IN CURVED
SPACETIME: GENERAL STRUCTURE

In this article we calculate the one-loop divergences for
generalized vector field models in a curved spacetime. The
divergent part of the one-loop contribution to the effective
action is defined by

Γdiv
1 ¼ 1

2
Tr lnFð∇Þjdiv; ð1Þ

where Fð∇Þ is the differential operator that controls the
propagation of the fluctuations. For the vector field models
discussed in this work, this fluctuation operator has the
particular form

Fð∇Þ ¼ Fλð∇Þ þ P; ð2Þ

where P is a potential with components Pμ
ν and Fλð∇Þ is a

differential operator with components

½Fλ�μν ¼ ½ΔH�μν þ ð1 − λÞ∇μ∇ν: ð3Þ

Here, the Hodge operator on vector fields ΔH is defined in
terms of the positive definite Laplacian Δ by

½ΔH�μν ≔ Δδμν þ Rμ
ν; Δ ≔ −gμν∇μ∇ν: ð4Þ

In the terminology of [20], the operator (2) is called
nonminimal for λ ≠ 1 and minimal for λ ¼ 1. Note that
if not indicated otherwise, derivative operators act on
everything to their right. The Hodge operator satisfies

½ΔH�μν∇ν ¼ ∇μΔ: ð5Þ

An important property of the general second order vector
field operator (2) is its degeneracy structure, which is
controlled by the parameter λ and the potential P. The
conditions λ ≥ 0 and P ≥ 0 ensure that the operator F is
positive semidefinite. Therefore, there are three different
degeneracy classes:
(1) The nondegenerate vector field: λ > 0, P ≥ 0
(2) The Abelian gauge field: λ ¼ 0, P ¼ 0
(3) The (generalized) Proca field: λ ¼ 0, P > 0

The relation among the classes is depicted graphically in
Fig. 1. Physically, the different classes correspond to
inequivalent theories with a different number of propagat-
ing d.o.f. Mathematically, this is reflected by the degen-
eracy structure of the operator (2), which is discussed in the
following sections in detail. In particular, there is no
smooth transition between the classes in the limits λ → 0

FIG. 1. Overview of the different degeneracy classes and reductions of the generalized Proca model.
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and P → 0. Therefore, the different classes have to be
treated separately.

A. Degeneracy of the principal symbol

An important structure in the theory of differential
operators Fð∇Þ is the leading derivative term—the princi-
pal part Dð∇Þ. Separating the principal part from the lower
derivative terms Πð∇Þ, the operator Fð∇Þ takes the form

Fð∇Þ ¼ Dð∇Þ þΠð∇Þ: ð6Þ

Physically, the principal part Dð∇Þ contains the informa-
tion about the dominant ultraviolet behavior of the under-
lying theory. Therefore, it is the natural starting point for
the generalized Schwinger-DeWitt method [14,20], which
relies on the expansion D ≫ Π of the associated propa-
gator, schematically

1
F
¼ 1

Dþ Π
¼ 1

D
−

1
D
Π

1
D
þ � � � ; ð7Þ

where 1=F denotes the inverse of the linear operator F.
Essential for this perturbative treatment is the notion of
background dimensionM, which is understood as the mass
dimension of the background tensorial coefficients of the
differential operator. We write F ¼ OðMkÞ for any oper-
ator F, which has at least background dimension Mk. The
expansion (7) critically relies on the invertibility of D,
which can be discussed at the level of the principal symbol
DðnÞ, formally obtained by replacing derivatives ∇μ by a
constant vector field inμ. For the vector field operator (2)
the components of the principal symbol read

Dμ
νðnÞ ¼ n2

�
δνμ − ð1 − λÞ nμn

ν

n2

�
; ð8Þ

with n2 ≔ nρnρ. The parameter λ controls the degeneracy
of the principal symbol, as can be seen easily from the
determinant

detDðnÞ ¼ λðn2Þ4: ð9Þ

For λ ¼ 0, the determinant vanishes and therefore DðnÞ is
not invertible. The origin of this degeneracy can be traced
back to the fact that for λ ¼ 0, the principal symbol has the
structure of a projector on transversal vector fields. This
motivates the distinction between the two classes λ > 0 and
λ ¼ 0. For λ ¼ 0, the further distinction between the cases
P ¼ 0 and P > 0 is connected with a degeneracy at the
level of the full operator F, discussed in the next subsection.

B. Gauge degeneracy

The degeneracy at the level of the full operator F is a
general feature of any gauge theory. In the context of the

vector field operator (2), the relevant gauge theory is
defined by the Euclidean action for the Abelian gauge
field AμðxÞ,

S½A� ¼ 1

4

Z
d4xg1=2F μνF μν: ð10Þ

The Abelian field strength tensor F μν is defined as

F μν ≔ ∇μAν −∇νAμ: ð11Þ

The action (10) is invariant under infinitesimal gauge
transformations

δεAμ ¼ ∂με; ð12Þ

where εðxÞ is the infinitesimal local gauge parameter.
Gauge invariance of (10) implies the Noether identity

∂μ
δS½A�
δAμðxÞ

¼ ∇μ

�
g−1=2

δS½A�
δAμðxÞ

�
¼ 0: ð13Þ

The components of the fluctuation operator F are obtained
from the Hessian

Fμ
νð∇xÞδðx; x0Þ ≔ g−1=2gμρ

δ2S½A�
δAρðxÞδAνðx0Þ

; ð14Þ

where the delta function is defined with zero density weight
at x and unit density weight at x0. The fluctuation operator
for the Abelian gauge field is given by F ¼ F0, which
corresponds to the vector field operator (2) with λ ¼ 0 and
P ¼ 0. The explicit components read

Fμ
ν ¼ ½ΔH�μν þ∇μ∇ν: ð15Þ

Taking the functional derivative of (13) with respect to
Aνðx0Þ yields the operator equation

∇μFμ
ν ¼ 0: ð16Þ

This implies that for P ¼ 0 the total fluctuation operator (2)
is degenerate—not only its principle symbol. Therefore, in
case of a gauge degeneracy, in addition to the breakdown of
the perturbative expansion (7) associated to the degeneracy
of D, the inverse operator 1=F does not even exist. In order
to remove the gauge degeneracy we choose a gauge
condition linear in Aμ,

χðAÞ ¼ 0: ð17Þ

The total gauge-fixed action Stot ≔ Sþ Sgb is obtained by
adding the gauge breaking action
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Sgb ¼
1

2

Z
d4xg1=2χ2: ð18Þ

This leads to a modification of the associated Hessian,
such that the resulting gauge-fixed operator Ftot is non-
degenerate

½Ftot�μνð∇xÞδðx; x0Þ ¼ g−1=2gμρ
δ2Stot½A�

δAρðxÞδAνðx0Þ
: ð19Þ

The inclusion of the gauge breaking action must be
compensated by the corresponding ghost action

Sgh½ω;ω�� ¼
Z

d4xg1=2ω�Qω; ð20Þ

where ω�ðxÞ and ωðxÞ are anticommuting scalar ghost
fields. The ghost operator is defined as

Qð∇xÞδðx; x0Þ ≔ δ

δεðx0Þ χðAðxÞ þ δεAðxÞÞ: ð21Þ

The divergent part of the one-loop contributions to the
effective action is given by

Γdiv
1 ¼ 1

2
Tr1 lnFtotjdiv − Tr0 lnQjdiv: ð22Þ

III. THE NONDEGENERATE VECTOR FIELD

We first consider the vector field operator (2) with a
nondegenerate principal symbol and arbitrary potential

Fμ
ν ¼ ½ΔH�μν þ ð1 − λÞ∇μ∇ν þ Pμ

ν; λ > 0; ð23Þ

Since for λ ≠ 0 the principal symbol of (23) is invertible,
the generalized Schwinger-DeWitt algorithm can be used
directly [20]. The power of this algorithm lies in its
generality, as it is applicable to any type of field.
However, instead of using the general algorithm, here
the calculation can be essentially simplified by directly
making use of an operator identity for Fλ,

δνμ
Fλ

¼ δνμ
ΔH

− γ∇μ
1

Δ2
∇ν; ð24Þ

where we have defined γ ≔ ð1 − λÞ=λ. Since P ¼ OðM2Þ
and 1=Fλ ¼ OðM0Þ, we can make efficient use of (24). For
the calculation of the one-loop divergences, it is sufficient
to expand the logarithm up to OðM4Þ,

Tr1 lnFjdiv ¼ Tr1 ln ðFλ þ PÞjdiv

¼ Tr1 lnFλjdiv þ Tr1

�
P

1
Fλ

�����
div

−
1

2
Tr1

�
P

1
Fλ

P
1
Fλ

�����
div
: ð25Þ

Inserting the operator identity (24), the divergent contri-
butions of the individual terms in (25) can be reduced to the
evaluation of universal functional traces. The details of this
calculation are provided in Appendix B. In this way, we
find for the one-loop divergences of the nondegenerate
vector field

Γdiv
1 ¼ 1

32π2ε

Z
d4xg1=2

�
11

180
G −

7

30
RμνRμν þ 1

20
R2

þ
�
1

6
þ γ

12

�
RP −

�
1þ γ

6

�
RμνPμν

−
�
1

2
þ γ

4
þ γ2

24

�
PμνPμν −

γ2

48
P2

�
: ð26Þ

Here, we have defined the Gauss-Bonnet term

G ≔ RμνρσRμνρσ − 4RμνRμν þ R2: ð27Þ

The result (26) is in agreement with [20,24].1 Note that
for P ¼ 0, (26) is independent of the parameter γ. This
calculation, as well as the calculation via the generalized
Schwinger-DeWitt algorithm in [20], both critically rely on
the nondegeneracy of the principal symbol (9).

IV. THE ABELIAN GAUGE FIELD

The fluctuation operator F for the Abelian gauge field
theory (10) is given by

Fμ
ν ¼ ½ΔH�μν þ∇μ∇ν: ð28Þ

In view of the general operator (2), this corresponds to the
case λ ¼ 0 and P ¼ 0. As discussed in Sec. II B, the
operator (28) is degenerate due to the gauge symmetry of
the action (10). We choose a relativistic gauge condition
with arbitrary gauge parameter η to break the gauge
degeneracy of the operator (28),

χðAÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p ∇μAμ: ð29Þ

According to (19) and (21), the components of the gauge-
fixed fluctuation operator Ftot and the corresponding ghost
operator Q read

1Apart from an overall minus sign, the transition to Lorentzian
signature corresponds to the replacement P → −P.
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½Ftot�μν ¼ ½ΔH�μν þ
η

1þ η
∇μ∇ν; ð30Þ

Q ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p Δ: ð31Þ

Thus, the gauge-fixed fluctuation operator (30) falls into
the class of nondegenerate vector fields (23) with P ¼ 0
and λ ¼ 1=ð1þ ηÞ. Therefore, the divergent part of the
one-loop effective action can be calculated with the
methods presented in Sec. III,

Γdiv
1 ¼ 1

2
Tr1 lnFtotjdiv − Tr0 lnQjdiv: ð32Þ

The first trace follows from (26) for P ¼ 0, while the ghost
trace is evaluated directly with the standard result for a
minimal second order operator (A16) and (A17),

Γdiv
1 ¼ 1

32π2ε

Z
d4xg1=2

�
13

180
G −

1

5
RμνRμν þ 1

15
R2

�
:

ð33Þ

The result (33) is in agreement with [20]. Since the
action for the Abelian vector field corresponds to a
free theory, there are no contributions to the renormaliza-
tion of the square of the field strength tensor (11). Note
also that the result (33) is independent of the gauge
parameter η.

V. THE PROCA FIELD

The Proca action for the massive vector field in curved
spacetime is given by the action of the Abelian gauge field
(10) supplemented by a mass term [25],

S½A� ¼
Z

d4xg1=2
�
1

4
F μνF μν þ 1

2
m2AμAμ

�
: ð34Þ

The mass term breaks the gauge symmetry. The Hessian of
(34) leads to the fluctuation operator

Fμ
ν ≔ ½ΔH�μν þ∇μ∇ν þm2δνμ; ð35Þ

which corresponds to the case λ ¼ 0 and P ¼ m21 of the
general vector field operator (2), that is F ¼ F0 þm21. The
mass term in the Proca operator (35) breaks the gauge
degeneracy of the gauge field operator F0. Nevertheless, the
principal part of the Proca operator (35) is still degenerate.
This degeneracy cannot be removed by a gauge fixing—in
contrast to the Abelian gauge field. Similar to (24), there is
an operator identity for the Proca field

δνμ
F0 þm2

¼
�
δρμ −

∇μ∇ρ

m2

�
δνρ

ΔH þm2
: ð36Þ

Taking the trace of the logarithm on both sides of (36) and
using that the divergent part of the vector trace can be
converted into a contribution from a scalar trace

Tr1 ln

�
δνμ −

∇μ∇ν

m2

�����
div

¼ Tr0 ln ðΔþm2Þjdiv; ð37Þ

the divergent part of the one-loop effective action is
reduced to the vector and scalar traces of two minimal
second order operators,

Γdiv
1 ¼ 1

2
Tr1 ln ðF0 þm21Þjdiv

¼ 1

2
Tr1 ln ðΔH þm21Þjdiv

−
1

2
Tr0 ln ðΔþm2Þjdiv: ð38Þ

The vector and scalar traces in (38) can be calculated
directly with the closed form algorithm (A16) and (A17).
The final result for the one-loop divergences of the Proca
model (34) reads

Γdiv
1 ¼ 1

32π2ε

Z
d4xg1=2

�
1

15
G −

13

60
RμνRμν

þ 7

120
R2 −

1

2
m2R −

3

2
m4

�
: ð39Þ

The result (39) is in agreement with [20,26]. It has a clear
physical interpretation. The effective action of the massive
vector field in four dimensions is that of a four component
vector field minus one scalar mode, since the Proca field
has 4 − 1 ¼ 3 propagating d.o.f. Therefore, it is clear that
(39) does not reproduce the result for the Abelian gauge
field (33) in the limitm → 0, as the Abelian gauge field has
only 4 − 2 ¼ 2 propagating d.o.f. At the level of the
functional traces, this can formally be seen as follows:
while the scalar operator for the longitudinal mode of the
Proca field in (38) indeed reduces to the ghost operator of
the Abelian gauge field in (32) in the limitm → 0, the ghost
trace in (32) is subtracted twice compared to the trace of the
longitudinal mode in (38).

VI. THE GENERALIZED PROCA FIELD

The generalized Proca model is defined by the action

S½A� ¼
Z

d4xg1=2
�
1

4
F μνF μν þ 1

2
MμνAμAν

�
: ð40Þ

The action is that of the Proca field (34), but with the scalar
mass term m2 generalized to an arbitrary positive definite
and symmetric background mass tensor Mμν. The back-
ground mass tensorMμν is completely general and might be
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constructed from external background fields. Of particular
interest are curvature terms

Mμν ¼ ζ1Rμν þ ζ2Rgμν; ð41Þ

which arise in cosmological models [4–11]. The fluctuation
operator for the generalized Proca theory (40) reads

Fμ
ν ¼ ½ΔH�μν þ∇μ∇ν þMμ

ν ð42Þ

The operator (42) corresponds to the general operator (2)
for λ ¼ 0 and Pμ

ν ¼ gμρMρν > 0. The standard techniques
for the calculation of the one-loop divergences are not
directly applicable to the degenerate operator of the
generalized Proca theory (42). In particular, for the gen-
eralized Proca operator, there is no simple analogue of the
operator identity (36) for the Proca operator. Therefore, we
adopt a different strategy and first reformulate the gener-
alized Proca theory as a gauge theory by making use of the
Stückelberg formalism. In this formulation, the generalized
background mass tensor Mμν plays a double role as
potential in the vector sector and as metric in the scalar
Stückelberg sector. For this effective “bimetric” formu-
lation, the standard heat-kernel techniques are applicable
and the one-loop divergences of the generalized Proca
action (40) are obtained in a closed form.

A. Weyl transformation and bimetric formalism

The calculations are simplified by performing a Weyl
transformation of the background metric

ĝμν ≔
1

μ2
½det ðMμνgνρÞ�1=4gμν: ð43Þ

Here, μ is an auxiliary mass parameter, introduced for
dimensional reasons. Note that in what follows indices
are raised and lowered only with the metric ĝμν. Since
the kinetic term is invariant under a Weyl transformation,
we find

S ¼
Z

d4xĝ1=2
�
1

4
ĝμαĝνβF μνF αβ þ

μ2

2
ðg̃−1ÞμνAμAν

�
: ð44Þ

In the second term, we have defined

ðg̃−1Þμν ≔ μ2½det ðMμνgνρÞ�−1=2Mμν; ð45Þ

which is the inverse of the new metric g̃ρν. In this way,
formally the dependency on the original general mass
tensor Mμν has been replaced by a standard mass term.
By construction, we have the important relations

det g̃μν ¼ det ĝμν; ∇̂ρ det g̃μν ¼ 0: ð46Þ

We define the Christoffel connection associated with g̃μν,

Γ̃ρ
μν ¼

1

2
ðg̃−1Þραð∂μg̃αν þ ∂νg̃μα − ∂αg̃μνÞ: ð47Þ

A natural structure is the difference tensor

δΓλ
μν ≔ Γ̃λ

μν − Γ̂λ
μν

¼ 1

2
ðg̃−1Þλαð∇̂μg̃να þ ∇̂νg̃μα − ∇̂αg̃μνÞ: ð48Þ

By construction, the difference tensor satisfies

δΓα
μα ¼

1

2
ðg̃−1Þαβ∇̂μg̃αβ

¼ ðdet g̃ρσÞ−1=2∇̂μðdet g̃ρσÞ1=2 ¼ 0: ð49Þ

The Ricci curvatures of the new metric g̃μν are given by

R̃ ¼ ðg̃−1ÞμνR̃μν; ð50Þ

R̃μν ¼ R̂μν − δΓα
βμδΓβ

αν þ ∇̂αδΓα
μν: ð51Þ

In the following, when we work with the two metrics ĝμν
and g̃μν, indices are raised and lowered exclusively with the
metric ĝμν.

B. Stückelberg formalism

As we have discussed in the context of the Abelian gauge
field, the gauge symmetry is responsible for the degeneracy
of the total fluctuation operator. Therefore, a gauge fixing is
required to remove this degeneracy. At the same time, the
gauge fixing can be used to also remove the degeneracy of
the principal symbol. A similar mechanism works in the
case of the generalized Proca model, when artificially
rewritten as a gauge theory, which is realized by the
Stückelberg formalism. The Stückelberg scalar field φ is
introduced by the shift

Aμ → Aμ þ
1

μ
∂μφ: ð52Þ

In terms of the vector field Aμ and the Stückelberg scalar φ,
the action (44) is given by

S½A;φ� ¼
Z

d4xĝ1=2
�
1

4
ĝμαĝνβF μνF αβ

þ μ2

2
ðg̃−1ÞμνAμAν þ μðg̃−1ÞμνAμ∂νφ

þ 1

2
ðg̃−1Þμν∂νφ∂νφ

�
: ð53Þ

This action has a gauge symmetry as it is invariant under
the simultaneous infinitesimal gauge transformations
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δεAμ ¼ ∂με; δεφ ¼ −με: ð54Þ

We choose a one-parameter family of gauge conditions

χ½A;φ� ¼ −
1ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p ð∇̂μAμ þ ημφÞ: ð55Þ

In particular, (55) interpolates between the original vector
field theory (44) with φ ¼ 0 (η → ∞) and the Lorentz
gauge (η ¼ 0). The corresponding gauge breaking action
reads

Sgb½A;φ� ¼
1

2

Z
d4xĝ1=2χ2: ð56Þ

The ghost operator is obtained from (55),

Qð∇̂Þ ¼ Δ̂þ ημ2: ð57Þ

For simplicity, we choose the Lorentz gauge, η ¼ 0.2 In
terms of the generalized two-component field

ϕA ¼
�
Aμ

φ

�
; ð58Þ

the gauge-fixed action acquires the block form

S½A;φ� þ Sgb½A;φ� ¼
Z

d4xg1=2ϕAFABϕ
B; ð59Þ

where the block matrix fluctuation operator F has compo-
nents FA

B ¼ γACFCB. The components of the (dedensi-
tized) inverse configuration space metric γAB are given by

γAB ¼
�
ĝμν

1

�
: ð60Þ

Splitting the fluctuation operator according to the number
of derivatives, it can be represented as

F ¼ DþΠ; ð61Þ

with the block matrix structure

D ¼
�
D1

D0

�
; Π ¼

� Π†

Π

�
: ð62Þ

The components of the operators in (62) are given by

½D1�μν ≔ ½∇̂H�μν þ μ2ðg̃−1Þνμ;
D0 ≔ −∇̂μðg̃−1Þμν∇̂ν;

Πν ≔ −μ∇̂μðg̃−1Þμν; ð63Þ

where Π†
μ ¼ μðg̃−1Þνμ∇̂ν, denotes the formal adjoint of Πν

with respect to the inner product on the space of vectors.
The component D0 can be simplified by using (49) and
defines the scalar Laplace operator with respect to the
metric g̃μν,

D0 ¼ −ðg̃−1Þμν∇̃μ∇̃ν ≕ Δ̃: ð64Þ

Let us briefly discuss what we have achieved by the
Stückelberg formalism. The 4 − 1 ¼ 3 propagating d.o.f.
of the original generalized Proca field have been converted
into the 4þ 1 − 2 ¼ 3 propagating d.o.f., corresponding to
those of a vector field, a scalar, and two scalar ghosts fields.
In contrast to the principal part of the original generalized
Proca operator (42), the additional gauge freedom present
in the Stückelberg formalism has been used to render the
principal part D of the scalar-vector block operator (61)
nondegenerate and, in particular, minimal—the price to pay
is the introduction of the second metric g̃μν.

C. One-loop effective action

In order to calculate the one-loop effective action

Γ1 ¼
1

2
Tr lnF − Tr0 lnQ; ð65Þ

we expand F aroundD. Perturbation theory inΠ is efficient
as Π ¼ OðM1Þ. Expanding Tr lnF up to OðM4Þ, we
obtain

Tr lnF ¼ Tr1 lnD1 þ Tr0 lnD0 − T2 −
1

2
T4; ð66Þ

where Ti ¼ OðMiÞ, i ¼ 2, 4 denote the following traces

T2 ≔
1

2
Tr

��
Π

1
D

�
2
�
¼ Tr0

�
Πα δβα

D1

Π†
β

1

D0

�
; ð67Þ

T4 ≔
1

2
Tr

��
Π

1
D

�
4
�
¼ Tr0

��
Πα δβα

D1

Π†
β

1

D0

�2�
: ð68Þ

Note that odd powers in the expansion are zero, because the
block matrix Π1=D has only zeros on the diagonal and that
we have used the cyclicity of the trace to convert vector
traces into scalar traces, for example:

Tr1

�
Π†

μ
1

D0

Πα δνα
D1

�
¼ Tr0

�
Πα δβα

D1

Π†
β

1

D0

�
: ð69Þ

2The calculation can be performed for the general η-family of
gauges (55). By using (24), it can be seen already at the level of
the functional traces that all η-dependent terms cancel and the
one-loop divergences are independent of the gauge parameter η.
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The first two traces in (66), together with the contribution
of the ghost operator (57), are evaluated directly with (A16)
and (A17). Their sum reads

Tr1 lnD1 þ Tr0 lnD0 − 2Tr0 lnQ

¼ 1

16π2ε

Z
d4xĝ1=2

�
1

15
Ĝ −

1

60
ðg̃−1Þμνðg̃−1ÞρσR̃μρR̃νσ

−
1

120
R̃2 −

1

2
μ4trðg̃−2Þ − μ2ðg̃−1ÞμνR̂μν

þ 1

6
μ2trðg̃−1ÞR̂ −

1

5
R̂μνR̂

μν þ 1

15
R̂2

�
; ð70Þ

where we have introduced the abbreviation

ðg̃−nÞμν ≔ ðg̃−1Þμα1ðg̃−1Þα1α2 � � � ðg̃−1Þαn−1ν: ð71Þ

In (70), we used that the Euler characteristic

χðMÞ ≔ 1

32π2

Z
d4xĝ1=2Ĝ ¼ 1

32π2

Z
d4xg̃1=2G̃; ð72Þ

defined in terms of the Gauss-Bonnet term (27), is a
topological invariant and therefore independent of the
metric. This allows to combine both contributions from
ĝμν and g̃μν in (70). The evaluation of the divergent
contributions from the remaining traces (67) and (68)
constitutes the most complex part of the calculation.
Here, we only sketch the major steps. The details are
provided in Appendix C. There are two main complications
associated with the evaluation of the divergent parts of the
traces (67) and (68). First, the traces (67) and (68) involve
propagators δνμ=D1 and 1=D0 with different spin. Second,
the propagators are defined with respect to different
metrics. Therefore, we have to explicitly perform the
convolution of the corresponding kernels

T2¼
Z

d2ωxd2ωx0
�
Πν δ

μ0
ν

D1

δ̂ðx;x0Þ
��

Π†
μ0

1

D0

δ̃ðx0;xÞ
�
; ð73Þ

where we have defined ω ≔ d=2. Inserting the Schwinger-
DeWitt representation for the kernels of 1=D1 and 1=D0,
provided in Appendix C, the traces T2 and T4 are ultimately
reduced to Gaussian integrals. In case of a single metric this
procedure has been outlined in [20]. In the case of two
metric structures, the problem becomes more complicated
and has been discussed in [27]. The resulting Gaussian
integral is

T2 ¼
1

ð4πÞ2ω
Z

d2ωxĝ1=2
Z

∞

0

duuω−2
Z

∞

0

ds
sω−1

×
Z �Y2ω

μ¼1

dσ̂μ
�
Ψðσ̂μÞ exp

�
−
1

4
Gαβσ̂

ασ̂β
�
: ð74Þ

Here, we have introduced the “interpolation metric”

GμνðuÞ ≔ ĝμν þ ug̃μν: ð75Þ

The functionΨðu; sjσ̂μÞ in the integrand of (74) is the result
of the covariant Taylor expansion in σ̂μ

Ψðu; sjσ̂μÞ ≔ ĝ1=2
X∞
k¼0

ΨðkÞ
ðμ1…μkÞðu; sÞσ̂μ1…σ̂μk ; ð76Þ

where σ̂μðx; x0Þ is tangent to the geodesic connecting x with
x0 at the point x. Note that the background field dependent

coefficients ΨðkÞ
ðμ1…μkÞðu; sÞ only involve positive powers of

the parameters u and s. In d ¼ 2ω ¼ 4 dimensions, only
terms of the integrand with total s-dependency 1=s con-
tribute to the logarithmically divergent part.3 Therefore, in
view of (74), the divergent contributions originate from the
s-independent parts of Ψ. Finally, the Gaussian integrals in
(74) are evaluated

1

ð4πÞ2
Z �Y4

μ¼1

dσ̂μ
�
σ̂μ1 � � � σ̂μ2k exp

�
−
1

4
Gαβσ̂

ασ̂β
�

¼ 1

G1=2 ½symkðG−1Þ�μ1…μ2k : ð77Þ

Here, we have introduced the kth totally symmetrized
power of a general rank two tensor Tμν, defined by

½symkðTÞ�μ1…μ2k ≔
ð2kÞ!
2kk!

Tðμ1μ2 � � �Tμ2k−1μ2kÞ: ð78Þ

After evaluation of the Gaussians (77), the parameter
integral over u remains and the final result is expressed
in terms of basic elliptic integrals, defined for 0 ≤ l ≤ 2k,

Iμ1…μ2k
ð2k;lÞ ≔

Z
∞

0

du
ĝ1=2

G1=2 u
l½symkðG−1Þ�μ1…μ2k : ð79Þ

Integrals of the form (79) occur unavoidably in the multi-
metric case and are characteristic to the problem. They
constitute irreducible structures and can in general not be
trivially integrated as for the case of a single metric
g̃μν ¼ ĝμν.

4 The evaluation of the trace T4 proceeds in an
analogue way. The individual results for T2 and T4 are
provided explicitly in Appendix C.

3The choice of the parametrization in terms of s and u
guarantees that the divergent contribution is isolated in the
s-integration, whereas the u-integration is finite.

4An interesting observation is that even for general g̃μν—in
principle—the integrals (79) can be evaluated explicitly in d ¼ 4
dimensions. We comment on this in more detail in Appendix D.
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D. Final result: One-loop divergences for the
generalized Proca model

The final result for the divergences of the generalized
Proca model in curved spacetime (40) are obtained by
adding the standard minimal second order traces (70) and

the results for the divergent part of the traces T2 and T4,
which are explicitly provided in (C35) and (C45). Using the
integral identities presented in Appendix D, the number of
different integrals (79) can be reduced. This allows us to
represent the final result in the compact form

Γdiv
1 ¼ 1

32π2ε

Z
d4xĝ1=2

�
Ĝ
15

−
1

60
ðg̃−1Þμρðg̃−1ÞνσR̃μνR̃ρσ −

1

120
R̃2 −

1

5
R̂μνR̂

μν þ 1

15
R̂2 þ 1

3
μ2R̃þ 1

6
μ2trðg̃−1ÞR̂

−
1

6
μ2ðg̃−1Þμνð∇̂αδΓα

μν þ 7R̂μνÞ −
1

4
μ4trðg̃−2Þ þ Cð0;0ÞIð0;0Þ þ Cð2;1Þ

μν Iμνð2;1Þ þ Cð4;1Þ
μνρσI

μνρσ
ð4;1Þ þ Cð4;2Þ

μνρσI
μνρσ
ð4;2Þ

�
; ð80Þ

Cð0;0Þ ¼ 1

6
μ2ðg̃−2ÞμνR̃μν −

1

12
μ2trðg̃−1ÞR̃; ð81Þ

Cð2;1Þ
μν ¼ 1

4
μ4ðg̃−2Þμν −

1

4
μ2ðg̃−1Þμν

�
1

2
μ2trðg̃−1Þ þ 1

3
R̂

�
þ μ2ðg̃−1Þαβ

�
−
1

2
R̂αμβν −

1

6
∇̂αδΓβμν þ

1

3
∇̂βδΓναμ −

1

3
∇̂μδΓναβ

þ 5

12
∇̂μδΓαβν −

1

4
δΓαλβδΓλ

μν þ
1

4
δΓλ

μαδΓλνβ −
1

12
δΓαλμδΓλ

νβ þ
1

3
δΓμλαδΓλ

νβ −
1

2
δΓμλνδΓλ

αβ

�

−
1

6
μ2ðg̃−1Þαμð2R̃αν − 5R̂αν − ∇̂λδΓλ

ανÞ þ
1

12
μ2trðg̃−1ÞðδΓα

μβδΓβ
ανÞ; ð82Þ

Cð4;1Þ
μνρσ ¼ −

1

24
μ2trðg̃−1Þ∇̂μδΓνρσ; ð83Þ

Cð4;2Þ
μνρσ ¼ −

1

6
μ2∇̂μδΓνρσ þ

1

2
μ2δΓμλνΓλ

ρσ −
1

4
μ2δΓλμνΓλ

ρσ:

ð84Þ

This constitutes our main result. For compactness, we
present the one-loop divergences in terms of the two
metrics ĝμν and g̃μν. The result in terms of the original
metric gμν and the background mass tensor Mμν can easily
be recovered by making use of (43) and (45).
As expected on general grounds, the result (80) is a local

expression, which contains up to four derivatives. The fact
that (80) is not a polynomial of the invariants of Mμν, is
related to the role ofMμν as metric in the scalar Stückelberg
sector. We emphasize that this result holds for an arbitrary
positive definite symmetric background tensor Mμν. The
original assumption of a strictly positiveMμν is reflected in
the result (80), as there is no smooth limit Mμν → 0. Note
that the result (80) is independent of the auxiliary mass
scale μ, which can be seen by the invariance of (80) under
rescaling of μ → αμ, with arbitrary constant α.
The result has been derived in curved spacetime without

considering graviton loops. Nevertheless, the consistency
of the renormalization procedure would require to include
the induced kinetic terms for ĝμν an g̃μν (for gμν and Mμν

respectively) in the bare action. The result (80) shows that
the essential complexity is not reduced considerably in the

limit of a flat spacetime, as the integrals (79), associated
with the presence of the second metric g̃μν (the background
mass tensor Mμν) remain. The result (80) is considerably
more complicated than the one-loop result for the non-
degenerate vector field. In particular, the result cannot
simply be obtained in the limit λ → 0 from (26).
For special choices of Mμν, the general result (80)

simplifies and the integrals (79) can be evaluated explicitly.

VII. CHECKS AND APPLICATIONS OF THE
GENERALIZED PROCA MODEL

In this section we reduce our general result (80) to
several special cases. This provides important cross checks
and interesting applications.

A. Trivial index structure

The simplest case for the general background mass
tensor Mμν, which goes beyond the constant Proca mass
term Mμν ¼ m2gμν, is the reduction to a spacetime depen-
dent scalar function X2ðxÞ, such that Mμν acquires trivial
index structure

Mμν ¼ X2gμν: ð85Þ

In particular, this includes the case where X2 is proportional
to the curvature scalar R, which is relevant in cosmological
vector field models [4–11]. In view of (85), it is easy to
see that
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ĝμν ¼
X2

μ2
gμν; ð86Þ

ðg̃−1Þμν ¼ ĝμν; ð87Þ

δΓλ
μν ¼ 0; ð88Þ

ðG−1Þμν ¼ ð1þ uÞ−1ĝμν; ð89Þ

detðGμνÞ ¼ ð1þ uÞ4 detðĝμνÞ: ð90Þ

In this case, the integrals (79) are trivially evaluated

Iμ1���μ2kð2k;lÞ jg̃¼ĝ ¼ ½symkðĝÞ�μ1…μ2k

Z
∞

0

du
ul

ð1þ uÞkþ2

¼ ðk − lÞ!l!
ðkþ 1Þ! ½symkðĝÞ�μ1…μ2k : ð91Þ

Inserting (86)–(90) and the explicit results (91) for the
integrals into the general result (80), we obtain the one-loop
result in terms of the original metric gμν,

Γdiv
1 ¼ 1

32π2ε

Z
d4xg1=2

�
1

15
G −

13

60
RμνRμν

þ 7

120
R2 −

1

2
RX2 −

3

2
X4

−
1

6
R
ΔX
X

− 3XΔX −
1

2

�
ΔX
X

�
2
�
: ð92Þ

As an additional (trivial) cross check of this result, we set
X ¼ m in (92) and recover the one-loop divergences for the
Proca model (39).
An independent way to derive the result (92) is to insert

(85) directly into the generalized Proca action (40). This
leads to the ordinary Proca action (34), but with the
constant mass m promoted to a spacetime dependent
function X,

S½A� ¼
Z

d4xg1=2
�
1

4
F μνF μν þ X2

2
AμAμ

�
: ð93Þ

By performing the Weyl transformation (86), the reduced
action (93) is identical to the Proca action (44), but with
gμν → ĝμν and m → μ,

S½A� ¼
Z

d4xĝ1=2
�
1

4
ĝμαĝνβF μνF αβ þ

μ2

2
ĝμνAμAν

�
: ð94Þ

The one-loop divergences for (94) are obtained from (39)
by performing the inverse Weyl transformation ĝμν → gμν
and agree with those obtained from the reduction (92) of the
general result.

B. Vector field with quartic self interaction

The generalized Proca action for a vector field Aμ with
quartic self-interaction is considered in [27],

S½A� ¼
Z

d4xg1=2
�
1

4
F μνF μν þ α

4
ðAμAμÞ2

�
: ð95Þ

The part quadratic in the quantum fluctuation reads

S2½Ā; δA� ¼
Z

d4xg1=2
�
1

4
F μνðδAÞF μνðδAÞ

þ α

2
ðĀρĀρgμν þ 2ĀμĀνÞδAμδAν

�
; ð96Þ

where the vector field Aμ has been split into background Āμ

and perturbation δAμ,

Aμ ¼ Āμ þ δAμ; ð97Þ

F ðδAÞ ¼ ∇μδAν −∇νδAμ: ð98Þ

In order to establish the connection to the generalized Proca
model (40), we identify the background mass tensorMμν as

MμνðĀÞ ¼ αðĀρĀρgμν þ 2ĀμĀνÞ: ð99Þ

According to (43) and (45), we have

ĝμν ¼ ðgρσξρξσÞgμν; ð100Þ

ðg̃−1Þμν ¼ 3−1=4ðĝμν þ 2ξμξνÞ; ð101Þ

g̃μν ¼ 31=4
�
ĝμν −

2

3
ξμξν

�
; ð102Þ

δΓλ
μν ¼

2

3
ðξðμ∇̂λξνÞ − ξðμ∇̂νÞξλ − 3ξλ∇̂ðμξνÞ

þ2ξλξαξðμj∇̂αξjνÞÞ: ð103Þ

We have defined the normalized vector field

ξμ ≔ 31=8α1=2
Āμ

μ
; ξμ ≔ ĝμνξν; ð104Þ

such that ξμξμ ¼ 1. For (100) and (101), the integrals (79)
reduce to expressions of the form

Iμ1…μ2k
ð2k;lÞ ¼

Xk
n¼0

dnð2k;lÞĝ
ðμ1μ2 � � � ĝμ2n−1μ2nξμ2nþ1 � � � ξμ2kÞ: ð105Þ

We provide a closed form expression for the coefficients
dnð2k;lÞ in Appendix D. We obtain the divergent part of the
one-loop effective action for (95) from the general result by
inserting (101)–(103) as well as (105) with (D11) into (80),
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Γdiv
1 ¼ 1

32π2ε

Z
d4xĝ1=2

�
1

15
Ĝ −

1

5
R̂μνR̂

μν þ 1

15
R̂2 −

1

60
ðg̃−1Þμαðg̃−1ÞνβR̃μνR̃αβ −

1

120
R̃2 −

1

6
ð9þ 2

ffiffiffi
3

p
Þμ4

þ
ffiffiffi
3

4
p

μ2
�
2

45
ð−31þ 8

ffiffiffi
3

p
ÞR̂μνξ

μξν þ 1

18
ð3 − 4

ffiffiffi
3

p
ÞR̂þ 1

45
ð−31þ 8

ffiffiffi
3

p
Þð∇̂μξ

μÞ2

þ 1

45
ð−274þ 136

ffiffiffi
3

p
Þð∇̂μξρÞð∇̂νξ

ρÞξμξν þ 1

45
ð67 − 36

ffiffiffi
3

p
Þð∇̂μξνÞð∇̂μξνÞ

�	
: ð106Þ

Instead of ξμ and g̃μν, the authors in [27] use a different
parametrization. The conversion between our result (106)
and their result is easily accomplished by (100) and (104).
We find that the reduction of our general result to the case
of the self-interacting vector field (106) is in agreement
with the result obtained in [27]. This provides a powerful
check of our general result (80).

C. Perturbative treatment of the
generalized Proca model

Finally, we test our method by a perturbative calculation,
which only relies on the well-established generalized
Schwinger-DeWitt technique [20]. For this purpose, we
assume that the background mass tensor has the form

Mμν ¼ m2gμν þ Yμν; ð107Þ

with Yμν ≪ m2gμν and perform an expansion in Yμν.

1. Expansion of the general result

The expansion of the general result (80) up to second
order reads

Γdiv
1 ¼ Γdiv

1;ð0Þ þ Γdiv
1;ð1Þ þ Γdiv

1;ð2Þ þOðY3Þ; ð108Þ

where Γdiv
1;ðiÞ is the divergent part of the one-loop effective

action, which contains terms of ith order in the perturbation
Y. The zeroth order Γdiv

1;ð0Þ is simply given by the one-loop
divergences (39) for the Proca field. Before we proceed, let
us discuss the structure of the invariants used to represent

the result for the higher orders of the perturbative expan-
sion. In d ¼ 4, the result of any total antisymmetrization
among five or more indices is necessarily zero

δα½μδ
β
νδ

γ
ρδδσδ

ω
λ� ≡ 0; ð109Þ

where the total antisymmetrization is performed with unit
weight. By contracting (109) with the background tensors
Rμνρσ and ∇μ1 � � �∇μnY

ρσ , we can systematically construct
dimensional dependent invariants, which vanish in d ¼ 4
dimensions. At linear order of the expansion in Y, there is
one such invariant

I1 ¼ δα½μδ
β
νδ

γ
ρδδσδ

ω
λ�R

μ
α
ν
βRρ

γ
σ
δY

λ
ω

¼ YμνðGgμν − 4Rμ
γδαRνγδα þ 8RμγνδRγδ

þ 8Rμ
γRνγ − 4RμνRÞ: ð110Þ

At quadratic order of the expansion there are two inde-
pendent dimensional dependent invariants

I2 ¼ δα½μδ
β
νδ

γ
ρδδσδ

ω
λ�R

μ
α
ν
β∇γYρ

δ∇σYλ
ω; ð111Þ

I3 ¼ δα½μδ
β
νδ

γ
ρδδσδ

ω
λ�R

μ
α
ν
βYρ

γ∇δ∇σYλ
ω: ð112Þ

Since use of (111) and (112) does not lead to any
simplification of our result, we refrain from presenting
the explicit expressions. For the first order of the expansion
Γdiv
1;ð1Þ, linear in Y, we obtain

Γdiv
1;ð1Þ ¼

1

32π2ε

Z
d4xg1=2

�
1

12
RY −

5

6
RμνYμν −

3

4
m2Y þ 1

240m2
½−8RμρνσRμνYρσ þ 2RμνRμνY

− 4RRμνYμν þ R2Y − 4ðΔRÞY þ 8ð∇μ∇νRÞYμν þ 4ðΔRμνÞYμν�
	
; ð113Þ

where we have defined the trace Y ≔ gμνYμν. For the second order Γdiv
1;ð2Þ, quadratic in Y, we make use of the tensor algebra

bundle XACT [28–30] and find
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Γdiv
1;ð2Þ ¼

1

32π2ε

Z
d4xg1=2

�
−
1

8
YμνYμν −

1

16
Y2 þ 1

48m2
½−2RYμνYμν þ 12RμνYμ

ρYνρ þ RY2

−4RμνYμνY − 4RμρνσYμνYρσ þ 12Yμν∇ν∇ρYμ
ρ þ 4Y∇ρ∇νYνρ þ 2YμνΔYμν − YΔY�

þ 1

960m4
½−2RμνRμνY2 − R2Y2 þ 8RμνRYYμν − 2R2YμνYμν − 16Rα

νRνμρσYαρYμσ − 16RμρRμ
νYYνρ

þ8RμνRYμ
ρYνρ þ 32RμνRμρνσYYρσ þ 24RμρRνσYμνYρσ − 8RμνRρσYμνYρσ − 8RRμρνσYμνYρσ

−16Rμ
α
ν
βRρασβYμνYρσ − 8RμρRμ

νYν
σYρσ − 4RμνRμνYρσYρσ þ 16RμρνσYμνΔYρσ

þ32RμσναYμν∇α∇ρYρσ þ 32RνρσαYμν∇μ∇αYρσ − 8RνρYνρΔY − 16RνσYνρΔYσ
ρ þ 16RμρνσY∇σ∇ρYμν

þ16RσνYρμ∇μ∇νYσ
ρ − 32RνσYρμ∇μ∇ρYνσ þ 2Rð∇μYÞ∇μY þ 16Rνρð∇μYνρÞ∇μY þ 24Rð∇μYÞ∇νYμν

−16Rσ
νð∇μYσρÞ∇νYρ

μ − 4RYμν∇ν∇μY − 12RY∇ν∇μYμν − 16Rσ
νYσρ∇ν∇μYρ

μ þ 16Rμνρσð∇μYÞ∇σYνρ

−8RμρYνρ∇ν∇μY þ 16RYμν∇ν∇ρYμ
ρ − 40Rμ

νY∇ν∇ρYμρ þ 32Rμρνσð∇αYμνÞ∇σYαρ

−80Rσ
νYρμ∇ν∇σYρμ þ 4Rμνð∇μYÞ∇νY þ 8Rð∇νYμ

ρÞ∇ρYμν þ 24Rσμð∇νYσρÞ∇ρYμν

þ40RνσYνρ∇ρ∇μYσμ − 24RYμνΔYμν − 16RμνYΔYμν − 16Rνρð∇μYσμÞ∇σYνρ þ 16Rμνð∇μYÞ∇ρYνρ

þ16YΔ∇ν∇μYμν − 4YμνΔ2Yμν − 16Yμν∇ν∇μ∇σ∇ρYρσ − 8Yμν∇νΔ∇ρYμ
ρ − 2YΔ2Y�

	
: ð114Þ

2. Perturbative calculation via the generalized
Schwinger-DeWitt technique

The second order expansion (108) of the general result (80)
canbe checkedbyadirect perturbative calculation,whichonly
relies on the well-established generalized Schwinger-DeWitt
technique, introduced in [20]. Although conceptually straight-
forward, the complexity grows rapidly with growing powers
of Y and is already quite involved for the expansion up to
second order in Y. Moreover, we are mainly interested in a
check of the structures involving derivatives ofY not tested by
the previous checks—apart from the three structures involving
powers of ΔX that remain in (92) after the reduction ofM to
the trivial index structure (85). Therefore, we restrict the direct
perturbative calculation to flat spacetime gμν ¼ δμν,∇μ ¼ ∂μ.
Starting point is the action (40) for the generalized Proca

field, but with the background mass tensor M treated
perturbatively as in (107). The one-loop divergences up to
second order in Y are obtained by expanding (42) around
the Proca operator defined in (35),

F ¼ ðF0 þm21Þ þ Y: ð115Þ

Using the split (115) in the expansion of the logarithm up to
second order in Y, we find

Tr1 lnF ¼ Tr1 ln ðF0 þm21þ YÞ

¼ Tr1 ln ðF0 þm21Þ þ Tr1

�
Y

1
F0 þm2

�

−
1

2
Tr1

�
Y

1
F0 þm2

Y
1

F0 þm2

�
: ð116Þ

Similar to the calculation for the nondegenerated vector
field, we use the exact operator identity (36) for the Proca
operator F0 þm21, which in flat spacetime reads

δνμ
F0 þm2

¼
�
δμ

ν −
∂μ∂ν

m2

�
1

−∂2 þm2
: ð117Þ

Note that the similarity to the expansion (25) for the
nondegenerate vector field might be misleading here, as
(116) is an expansion in Y, not an expansion in background
dimension. This is seen by comparing the counting of
background dimension for the two cases. While
Y ¼ OðM2Þ, expansion in Y in (116) is not efficient as
1=ðF0 þm2Þ ¼ OðM−2Þ, such that the combination
Y1=F0 ¼ OðM0Þ. Therefore the perturbative series
(116) continues up to arbitrary order in Y. The counting
of background dimension 1=ðF0 þm2Þ ¼ OðM−2Þ can be
understood from (117), as

1

−∂2 þm2
¼ OðM0Þ; ð118Þ

1

m2
ð−∂μ∂ν þm2δνμÞ ¼ OðM−2Þ: ð119Þ

In contrast, in case of the non-degenerate vector field, the
analogue expansion (25) in P ¼ OðM2Þ is efficient in
background dimension as 1=Fλ ¼ OðM0Þ, such that the
combination P1=Fλ ¼ OðM2Þ and terms OðP3Þ are
already finite. The difference between the background
counting of 1=Fλ and 1=ðF0 þm2Þ can be traced back
to the fact that DetFλ ≠ 0 while DetF0 ¼ 0.
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Inserting the identity (117) into the expansion (116), we
obtain the following sum of traces up to OðY2Þ:
Tr1 lnF ¼ Tr1 ln ðF0 þm21Þ

þ Tr0

�
B

1

−∂2 þm2

�
þ Tr1

�
Yμ

ρ
δνρ

−∂2 þm2

�

−
1

2
Tr1

�
Yμ

ρ
δσρ

−∂2 þm2
Yσ

λ δνλ
−∂2 þm2

�

þ Tr1

�
Yμ

ρ
δσρ

−∂2 þm2
Yσ

λ ∂λ∂ν

m2

1

−∂2 þm2

�

−
1

2
Tr0

�
B

1

−∂2 þm2
B

1

−∂2 þm2

�
: ð120Þ

Here, we have defined the scalar operator

Bð∂Þ ≔ 1

m2
∂μYμν∂ν ¼ OðM0Þ; ð121Þ

and used the cyclicity of the trace to convert two vector
traces in (120) into scalar traces. Next we evaluate the
divergent contributions of the individual traces in (120)
separately. The first trace is just that of the Proca operator
(35). The remaining traces can be further reduced by
iterative commutation of all powers of 1=ð−∂2 þm2Þ to
the right, using the identity�

1

−∂2 þm2
;Y

�
¼ −

1

−∂2 þm2
½−∂2;Y� 1

−∂2 þm2
:

ð122Þ
Each iteration of (122) generates one additional commu-
tator, which increases the number of derivatives acting on
the background tensor Y by at least one,

½−∂2;Y� ¼ ð−∂2YÞ − 2ð∂ρYÞ∂ρ: ð123Þ
In this way the calculation of the divergent part of the trace
(120) is reduced to the evaluation of a few universal
functional traces [20],

Uðn;pÞ
μ1…μpðm2Þ ¼ ∂μ1…∂μp

1

−∂2 þm2

����
div

x0¼x
: ð124Þ

In d ¼ 4 dimensions, the Uðn;pÞ
μ1…μp’s are divergent for a

degree of divergence

χdiv ¼ p − 2nþ 4 ≤ 0: ð125Þ
Each commutator reduces the number of derivatives p in
(124) and therefore decreases the degree of divergence
(125) by one. This shows that the iterative procedure (122)
is efficient for the calculation of the divergent contribu-
tions. In flat spacetime, divergences only arise for
χdiv ¼ k ¼ 0, 2, 4,

Uðn;2nþ2kÞ
μ1…μ2nþ2k ¼

ð−1Þn
16π2ε

22−n−km2k

k!ðn − 1Þ! ½symnþkðδÞ�μ1…μ2nþ2k
: ð126Þ

Following the strategy outlined above, we first calculate the
trivial traces which do not involve the evaluation of any
commutator:

Tr1 ln ðF0 þm21Þjdiv ¼ 1

16π2ε

�
−
3

2
m4

�
;

Tr0

�
B

1

−∂2 þm2

�
div

¼ 1

16π2ε
ð−m2YÞ;

Tr1

�
Yμ

ρ
δνρ

−∂2 þm2

�
div

¼ 1

16π2ε

�
1

4
m2Y

�
;

Tr1

�
Yμ

ρ
δσρ

−∂2 þm2
Yσ

λ δνλ
−∂2 þm2

�
div

¼ 1

16π2ε
YμνYμν:

ð127Þ
The remaining two traces require the evaluation of nested
commutators. For the first trace we find

Tr1

�
Yμ

ρ
δσρ

−∂2 þm2
Yσ

λ ∂λ∂ν

m2

1

−∂2 þm2

�
div

¼ 1

16π2ε

�
1

2
YμνYμν þ 1

3
Yμρ

∂ρ∂ν

m2
Yμ

ν

þ 1

12
Yμν ð−∂2Þ

m2
Yμν

�
: ð128Þ

For the second trace we find

Tr0

�
B

1

−∂2þm2
B

1

−∂2þm2

�
div

¼ 1

16π2ε

�
1

4
YμνYμνþ1

8
Y2þ 1

12
Yμν ð−∂2Þ

m2
Yμνþ

1

6
Yμν

∂ν∂ρ

m2
Yμ

ρþ 1

24
Y
ð−∂2Þ
m2

Y−
1

6
Y
∂μ∂ν

m2
Yμν

þ 1

30
Yμν

∂μ∂ν∂ρ∂σ

m4
Yρσþ 1

60
Yμν

∂νð−∂2Þ∂ρ

m4
Yμ

ρ−
1

30
Y
ð−∂2Þ∂μ∂ν

m4
Yμνþ 1

120
Yμν ð−∂2Þ2

m4
Yμν

þ 1

240
Y
ð−∂2Þ2
m4

Y

�
: ð129Þ

Adding the contributions (127)–(129) according to (120), we obtain the final result for the one-loop divergences on a flat
background up to second order in Yμν,
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Γdiv
1 ¼ 1

32π2ε

Z
d4x

�
−
3

2
m4 −

3

4
m2Y −

1

8
YμνYμν −

1

16
Y2 þ 1

24
Yμν ð−∂2Þ

m2
Yμν þ

1

4
Yμν

∂ν∂ρ

m2
Yμ

ρ −
1

48
Y
ð−∂2Þ
m2

Y

þ 1

12
Y
∂μ∂ν

m2
Yμν −

1

60
Yμν

∂μ∂ν∂ρ∂σ

m4
Yρσ −

1

120
Yμν

∂νð−∂2Þ∂ρ

m4
Yμ

ρ þ 1

60
Y
ð−∂2Þ∂μ∂ν

m4
Yμν

−
1

240
Yμν ð−∂2Þ2

m4
Yμν −

1

480
Y
ð−∂2Þ2
m4

Y

�
: ð130Þ

The result (130) is in perfect agreement with the result
for second order expansion (114) of the general result (80)
reduced to a flat background gμν ¼ δμν. This provides a
powerful check of our general result. In particular, it probes
tensorial derivative structures, not captured by the check for
the trivial index structure, discussed in Sec. VII A. It also
provides an important independent check of our method, as
it has been obtained in a complementary way by a direct
application of the generalized Schwinger-DeWitt method.
In particular, it neither relies on the Stückelberg formalism
nor on the bimetric formulation.

VIII. COMPARISON WITH RESULTS
IN THE LITERATURE

In this section, we compare our results with the one-loop
divergences of the generalized Proca model (40) obtained
previously by different methods and techniques [12,13].

A. Comparison: Local momentum space method

In [12], based on the local momentum space method
[31], an expression for the one-loop divergences of the
generalized Proca model (40) has been obtained. The result
[Eq. (2.24)] in [12], includes terms of order OðR2; RY; Y2Þ
and, in our conventions, reads

Γdiv
1 ¼ 1

32π2ε

Z
d4xg1=2

�
1

15
G −

13

60
RμνRμν þ 7

120
R2

−
1

2
m2R −

3

2
m4 −

5

6
RμνYμν þ 1

12
RY −

3

4
m2Y

−
1

8
YμνYμν −

1

16
Y2

�
: ð131Þ

The result (131) agrees with the second order expansion
(108) of our general result (80) under the assumption

Y ≪ m2; R ≪ m2; ∇ ≪ m: ð132Þ
In particular, this means that no terms proportional to
inverse powers of m appear in the result of [12] (and
therefore, apart from total derivatives, no structures involv-
ing derivatives of Y). In contrast, our second order
expansion (108) was derived only under the assumption
Y ≪ m2. The coincidence with the terms in (131) therefore
provides an independent check of several structures linear
and quadratic in Y.

B. Comparison: Method of nonlocal field redefinition

The authors of [13] have obtained a result for the one-
loop divergences of the generalized Proca model (40),
without relying on any perturbative expansion in Y
(denoted X in [13]). They use the Stückelberg formulation
to rewrite the generalized Proca theory as a gauge theory for
the original Proca field and the Stückelberg scalar field.
They derive the corresponding block matrix fluctuation
operator similar to (52). As the authors discuss, with
respect to the metric gμν, this operator is both, nonminimal
as well as not block-diagonal. The authors perform a
“shiftlike” transformation of the quantum vector field Aμ

[Eq. (22)],

Aμ ¼ Bμ þ αμρ∂ρφ: ð133Þ
Here, αμν is an a priori undetermined background tensor.
Next, they derive a condition for which the fluctuation
operator is diagonalized [Eq. (25)]. However, in contrast to
the statement of the authors, we believe αμν has to be an
operator instead of a background tensor in order to
diagonalize the fluctuation operator. This is critical for
the algorithm used in [13]. Consequently, our general result
(80) does not coincide with the one given in [Eq. (45)] of
[13]. In particular, the result of [13] contains nonlocal
structures.
Nevertheless, whether αμν is an operator or a background

tensor is not relevant for the contribution to the one-loop
divergences at linear order in Y, as according to [Eq. (25)],
αμν is first order in Y and therefore the nontrivial con-
tribution in [Eq. (26)] only affects higher orders in Y,
starting at OðY2Þ. This explains why the authors reproduce
their result with the generalized Schwinger-DeWitt tech-
nique [20] at linear order in Y. The result at linear order in
[Eq. (53)] of [13] is in agreement with our result (113) for
the approximation linear in Y. Note that this comparison is
nontrivial in the sense that their result involves additional
terms proportional to the invariant (110), which vanishes in
d ¼ 4 dimensions.

IX. CONCLUSIONS

We have investigated the renormalization of generalized
vector field models in curved spacetime. We have intro-
duced a classification scheme for different vector field
models based on the degeneracy structure of their
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associated fluctuation operator. The distinction between
different degeneracy classes is partially connected to the
nonminimal structures present in the principal symbol of
the fluctuation operator. The simplest theories, where such
nonminimal structures can appear, are vector field theories,
but these terms are also important for rank two tensor fields,
as has been recently discussed for the degenerate fluc-
tuation operator in the context of fðRÞ gravity [3].
The nondegenerate vector field and the Abelian gauge

field are both representatives of two different degeneracy
classes, for which the calculation of the one-loop divergen-
ces can be performed with standard methods, based on the
generalized Schwinger-DeWitt technique [20]. We have
briefly reviewed these cases and have discussed the tech-
nical details associatedwith the underlying algorithm for the
one-loop calculation. The Proca theory of themassive vector
field is the simplest representative in the class of non-
degenerate fluctuation operators with a degenerate principal
symbol. Only for this special case, standard methods are
directly applicable. In particular, none of these models in the
different degeneracy classes can be obtained from one
another in a smooth limit—a fact which is related to the
discontinuity in the number of propagating d.o.f. Therefore,
the different classes have to be studied separately.
The generalized Procamodel, which results from the Proca

model by generalizing the constantmass termm2gμν to a local
background mass tensor Mμν, is considerably more compli-
cated and can no longer be treated directly by standard
methods. Therefore, we have applied the Stückelberg for-
malism in order to reformulate the generalizedProcamodel as
a gauge theory, where the background mass tensor plays a
double role as potential in the vector sector and additional
metric in the scalar sector of the Stückelberg field.At the price
of dealing simultaneously with two metrics, the standard
methods are applicable in this case.
Our main result is the derivation of the one-loop

divergences for the generalized Proca model (80). A
characteristic feature of this new result is the appearance
of the tensorial parameter integrals (79). The vector
field loops induce curvature and M-dependent structures.
Unless these structures are present in the original action,
the generalized Proca model is not perturbatively
renormalizable—not even in flat space. It is interesting
that the main complication of the generalized Proca model
is not connected to the curved background but originates
from the presence of the second metric structure.
We have checked our general result (80) by reducing it to

simpler models. The one-loop divergences for the trivial
index case Mμν ¼ X2gμν can be obtained in two ways: by
the reduction of the general result (80) and independently
from the Proca model by a Weyl transformation. We find
perfect agreement. Moreover, to the best of our knowledge,
the trivial index case is by itself a genuinely new result. In
addition, we have performed the reduction of our result (80)
to the case of a vector field with a ðAμAμÞ2 self-interaction.

This model has been studied earlier in [27]. We find perfect
agreement. Furthermore, we have expanded our general
result (80) up to second order in the deviation from the
Proca model and compared it to a direct perturbative
calculation. We find perfect agreement. As the direct
calculation only relies on standard techniques, the agree-
ment does not only provide a powerful check of our general
result (80), but also of the method we used to derive it.
Finally, we have compared our results as well as our
approach to previous work on the generalized Proca model.
In [12], part of our full result for the one-loop divergences
(80) has been obtained by a different method. In the
corresponding limit, we find that our result reduces to
the one derived in [12]. In [13], yet another method, based
on a combination of the Stückelberg formalism and a
nonlocal field redefinition, has been proposed. However,
the result for the one-loop divergences, obtained in [13],
does not agree with our result (80). In general, it is quite
remarkably that the simple extension from the Proca model
to the generalized Proca model leads to such a drastic
increase of complexity—already in flat space.
Our result for the one-loop divergences of the general-

ized Proca model (80) with a background mass tensors of
the form Mμν ¼ ζ1Rμν þ ζ2Rgμν is important for cosmo-
logical models, which, at the classical level, have been
studied extensively [4–11]. It would also be interesting to
apply the method presented in this paper in the context of
massive gravity [32,33], more general vector field models
[34–36] and scalar-vector-tensor models [37,38].
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APPENDIX A: GENERAL FORMALISM

1. Heat kernel and one-loop divergences

For an action functional S½ϕ� of a general field ϕ with
components ϕA, the fluctuation operator Fð∇xÞ, obtained
from the second functional derivative has components
FA

Bð∇xÞ ¼ γACFCBð∇xÞ, where γAB is a symmetric, non-
degenerate and ultralocal bilinear form. The Schwinger
integral representation of 1=F reads,

1
F
¼

Z
∞

0

dse−sF; ðA1Þ

where s is the “proper time” parameter and where we
have indicated the bundle structure of inverse operators
by the identity matrix 1, which has components δAB. The
Schwinger representation of higher inverse powers 1=Fn

with n ∈ N and the logarithm of F are found to be
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1
Fn ¼

Z
∞

0

ds
ðn − 1Þ! s

n−1e−sF; ðA2Þ

lnF ¼ −
Z

∞

0

ds
s
e−sF: ðA3Þ

The integrand of the proper time integral (A1) defines the
heat kernel

Kðsjx; x0Þ ≔ e−sFδðx; x0Þ: ðA4Þ
With the boundary condition Kð0jx; x0Þ ¼ δðx; x0Þ, it for-
mally satisfies the heat equation

ð∂s þ FÞKðsjx; x0Þ ¼ 0: ðA5Þ
For a minimal second order operator

F ¼ Δþ P; ðA6Þ
a Schwinger-DeWitt representation for the corresponding
kernel exists

Kðsjx; x0Þ ¼ g1=2ðx0Þ
ð4πsÞω D1=2ðx; x0Þe−σðx;x0Þ

2s Ωðsjx; x0Þ; ðA7Þ

with ω ¼ d=2. The biscalar σðx; x0Þ is Synge’s world
function [39,40], which is defined by

σμσμ ¼ 2σ; σμ ≔ ∇μσ; σμ ¼ gμν∇νσ: ðA8Þ
The biscalar Dðx; x0Þ is the dedensitized Van-Vleck
determinant

Dðx; x0Þ ¼ g−1=2ðxÞg−1=2ðx0Þ det
�∂2σðx; x0Þ

∂xμ∂x0ν
�
; ðA9Þ

which is defined by the equation

D−1∇μðDσμÞ ¼ 2ω: ðA10Þ
All nontrivial physical information is encoded in the
matrix-valued bitensor Ωðsjx; x0Þ,

Ωðsjx; x0Þ ¼
X∞
n¼0

snanðx; x0Þ; ðA11Þ

where the dependence on the proper time parameter s has
been explicitly separated by making a power series ansatz
with the matrix-valued Schwinger-DeWitt coefficients
anðx; x0Þ. Inserting the ansatz (A7) together with (A11)
and the minimal second order operator (A6) into the heat
equation (A5), gives a recurrence relation for the
Schwinger-DeWitt coefficients

½ðnþ 1Þ þ σμ∇μ�anþ1 þD−1=2FðD1=2anÞ ¼ 0; ðA12Þ
where an ≡ 0 for n < 0 implies that a0ðx; x0Þ satisfies the
parallel propagator equation

σμ∇μa0ðx; x0Þ ¼ 0; a0ðx; xÞ ¼ 1: ðA13Þ
Therefore, the parallel propagator matrix

PA
B0 ðx; x0Þ ≔ ½a0�AB0 ðx; x0Þ ðA14Þ

parallel transports a field ϕAðxÞ at x to a field ½Pϕ�A0 ðx0Þ at
x0 along the unique geodesic connecting x with x0. It only
agrees with ϕA0ðx0Þ if σμ∇μϕ

AðxÞ ¼ 0. It satisfies

PA
B0PB0

C ¼ δAC: ðA15Þ

Since for a general bitensor, the primed and unprimed
indices indicate the corresponding tensorial structure at a
given point, the arguments are omitted whenever there is no
possibility for confusion. The coincidence limits x0 → x of
the Schwinger-DeWitt coefficients an and their derivatives
can be obtained recursively. Using dimensional regulari-
zation, the Schwinger-DeWitt algorithm gives a closed
result for the divergent part of the one-loop effective action
of a minimal second order operator (A6) for a generic
field ϕ. In d ¼ 4 dimensions, the result is given in terms of
the coincidence limit of the second Schwinger-DeWitt
coefficient

Γdiv
1 ¼ 1

2
Tr ln ðΔþ PÞjdiv

¼ −
1

32π2ε

Z
d4xg1=2tra2ðx; xÞ; ðA16Þ

a2ðx;xÞ¼
1

180
ðRαβγδRαβγδ−RαβRαβ−6ΔRÞ1

þ1

2

�
P−

1

6
R1

�
2

þ 1

12
RαβRαβþ1

6
ΔP: ðA17Þ

Here, 1=ε is a pole in dimension ε ¼ d=2 − 2 and the
bundle curvature Rαβ with components ½Rαβ�AB is defined
by the commutator

½∇μ;∇ν�ϕA ¼ ½Rμν�ABϕB: ðA18Þ
In particular, for a scalar and vector field, we have

½∇μ;∇ν�φ ¼ 0; ½∇μ;∇ν�Aρ ¼ Rμνρ
σAσ: ðA19Þ

2. Covariant Taylor expansion and Synge’s rule

The covariant Taylor expansion of a scalar function fðxÞ
around x0 ¼ x is given by [20],

fðx0Þ ¼
X∞
k¼0

ð−1Þk
k!

½∇μ0
1
� � �∇μ0k

fðx0Þ�
x0¼x

σμ1 � � � σμk : ðA20Þ

The generalization of this expansion for fields ϕAðxÞ
requires use of the parallel propagator PA

B0,
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½Pϕ�A00 ¼ PA00
B0ϕB0

: ðA21Þ

The right-hand side of (A21) transforms as scalar at x0.
Therefore, we can consider the right-hand side as a scalar
function of x0 and apply the covariant Taylor expansion
(A20) around x0 ¼ x,

PA00
B0ϕB0 ¼

X∞
k¼0

ð−1Þk
k!

½∇μ0
1
� � �∇μ0k

PA00
B0ϕB0 �x0¼x

× σμ1 � � � σμk . ðA22Þ
Using that the coincide limits of the totally symmetrized
covariant derivatives acting on the parallel propagator are
zero,

½∇ðμ0
1
…∇μ0kÞP

A
B0 �x0¼x

¼ 0; k > 0; ðA23Þ
the parallel propagator can be freely commuted though the
derivatives in (A22). Further setting x00 to x0 and making use
of (A13), we find

ϕA0 ¼ PA
B0
X∞
k¼0

ð−1Þk
k!

½∇μ0
1
� � �∇μ0k

ϕB0 �
x0¼x

σμ1 � � � σμk :

ðA24Þ
Applying this expansion to a general bitensor TA

B0 around
coincidence x ¼ x0, shows that all the information of TA0

B
is contained in the coincidence limits of its derivatives

TA0
B ¼ PA0

C

X∞
k¼0

ð−1Þk
k!

½∇μ0
1
� � �∇μ0k

TC0
B�x0¼xσ

μ1 � � � σμk :

ðA25Þ

3. Coincidence limits

The coincidence limits for σ, D1=2, an as well as
derivatives thereof can be obtained recursively by repeat-
edly taking derivatives of the defining equations (A8),
(A10), (A12), and (A13). Commutation of covariant
derivatives to a canonical order induces curvature terms.
Inserting the coincidence limits from lower orders of the
recursion, higher coincidence limits are obtained system-
atically [14]. In case a bitensor involves derivatives at
different points, we can recursively reduce the coincidence
limits of primed derivatives to coincidence limits involving
only unprimed derivatives by Synge’s rule [39,40],

½∇μ0T�x0¼x ¼ ∇μ½T�x0¼x − ½∇μT�x0¼x: ðA26Þ

Here, T represents an arbitrary bitensor. The first
few coincidence limits of σ, D1=2 and an are easily
obtained. In this article, apart from the coincidence limit
for a2 ¼ OðM4Þ, provided already in (A17), we only need
coincidence limits up to OðM2Þ. Note that, when perform-
ing the covariant Taylor expansion (A20), we have to

specify the metric with respect to which we perform the
covariant Taylor expansion, as the metric enters the world
function σ and the definition of the covariant derivative ∇μ.
For a metric g̊μν, not necessarily compatible with the
connection ∇μ, it is natural to introduce the tensor which
measures the difference between the connection ∇μ and the
Levi-Civita connection associated with g̊μν,

δ̊Γρ
μν ¼

1

2
ðg̊−1Þραð∇μg̊αν þ∇νg̊μα −∇αg̊μνÞ: ðA27Þ

We provide the coincidence limits for the world function σ̊

and Van-Vleck biscalar D̊1=2 as well as derivatives thereof
up to OðM2Þ,

½σ̊�x0¼x ¼ 0; ðA28Þ

½∇μσ̊�x0¼x ¼ 0; ðA29Þ

½∇μ∇νσ̊�x0¼x ¼ g̊μν; ðA30Þ

½∇μ∇ν∇ρσ̊�x0¼x ¼ δ̊Γα
μνg̊αρ þ δ̊Γα

μρg̊να þ δ̊Γα
νρg̊μα

¼ 3∇ðμg̊νρÞ; ðA31Þ

½∇μ∇ν∇ρ∇σσ̊�x0¼x ¼ −
2

3
R̊μðρjνjσÞ þ 3g̊αβδ̊Γ

α
μðσδ̊Γ

β
νρÞ

þ 2g̊αðρjð∇μδ̊Γ
α
νjσÞ þ δ̊Γα

μβδ̊Γ
β
νjσÞÞ

þ 2g̊αðμð∇νÞδ̊Γ
α
ρσ þ δ̊Γα

νÞβδ̊Γ
β
ρσÞ;

ðA32Þ

½∇μD̊
1=2�x0¼x ¼ 0; ðA33Þ

½∇μ∇νD̊
1=2�x0¼x ¼

1

6
R̊μν: ðA34Þ

The corresponding coincidence limits of the Schwinger-
DeWitt coefficients read

½å0�x0¼x ¼ 1; ðA35Þ

½∇αå0�x0¼x ¼ 0; ðA36Þ

½∇α∇βå0�x0¼x ¼
1

2
Rαβ; ðA37Þ

½å1�x0¼x ¼
1

6
R̊1 − P: ðA38Þ

In case the metric g̊μν is compatible with the connection
∇μg̊νρ ¼ 0, the coincidence limits (A28)–(A38) reduce to
the well-known results [20].
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APPENDIX B: DETAILS OF THE CALCULATION
FOR THE NONDEGENERATE VECTOR FIELD

The traces in (25) can be systematically reduced to the
evaluation of tabulated universal functional traces

Tr1 lnFλjdiv ¼ Tr1 lnΔHjdiv; ðB1Þ

Tr1

�
P

1
Fλ

�����
div

¼ Pμ
ν
δνμ
ΔH

����
div

x0¼x
− γPμν∇μ∇ν

1

Δ2

����
div

x0¼x
; ðB2Þ

Tr1

�
P

1
Fλ

P
1
Fλ

�����div
¼ Pμ

νPμ
ν 1

Δ2

����
div

x0¼x
− 2γPνρPρ

μ∇μ∇ν
1

Δ3

����
div

x0¼x

þ γ2PμνPρσ∇μ∇ν∇ρ∇σ
1

Δ4

����
div

x0¼x
: ðB3Þ

In (B1), we have used the definition of the Hodge operator
(4) along with the identity (24) and the fact that

Tr1 ln
�
1þ λ∇μ

1

Δ
∇ν

�
div

¼ 0; ðB4Þ

which is formally seen by expanding the logarithm, making
use of the cyclicity of the trace and resumming the terms.
The traces in (B3) are already OðM4Þ, which allows to
freely commute all operators and use

δμν
ΔH

¼ δμν
1

Δ
þOðMÞ: ðB5Þ

The logarithmic trace (B1) is evaluated directly with (A16),
while for the remaining traces we use the following
universal functional traces

δνμ
ΔH

����
div

x0¼x
¼ g1=2

16π2ε

�
1

6
Rδνμ − Rμ

ν

�
; ðB6Þ

∇μ∇ν
1

Δ2

����
div

x0¼x
¼ g1=2

16π2ε

�
1

6
Rμν −

1

12
Rgμν

�
; ðB7Þ

∇μ1 � � �∇μ2n−4

1

Δn

����
div

x0¼x
¼ g1=2

16π2ε

ð−1Þn
2n−2ðn − 1Þ!

× ½symn−2ðgÞ�μ1…μ2n−4
: ðB8Þ

Inserting (B6)–(B8) into (B1)–(B3), we find

Tr1 lnFλjdiv¼
1

16π2ε

Z
d4xg1=2

�
11

180
G−

7

30
RμνRμνþ 1

20
R2

�
;

ðB9Þ

Tr1

�
P

1
Fλ

�����
div

¼ 1

16π2ε

Z
d4xg1=2

��
1

6
þ γ

12

�
RP

−
�
1þ γ

6

�
RμνPμν

�
; ðB10Þ

Tr1

�
P

1
Fλ

P
1
Fλ

�����
div

¼ 1

16π2ε

Z
d4xg1=2

×

��
1þ γ

2
þ γ2

12

�
PμνPμν þ γ2

24
P2

�
:

ðB11Þ

Adding all traces according to (25), we obtain the final
result (26).

APPENDIX C: MULTIPROPAGATOR
BIMETRIC TRACES OF THE GENERALIZED

PROCA MODEL

1. Divergent part of the second order trace

The evaluation of the second order trace T2 constitutes
the most complex part of the calculation. The functional
trace T2 is divergent and needs to be regularized. We use
regularization in the dimension d ¼ 2ω. Explicitly, the
functional trace of the convoluted integral kernels is
given by

T2 ¼ Tr0

�
Πα δβα

D1

Π†
β

1

D0

�

¼
Z

d2ωxd2ωx0½Σβ0
1 ðx; x0ÞΣ2

β0 ðx0; xÞ�; ðC1Þ

where the kernels Σβ0
1 ðx; x0Þ and Σ2

β0 ðx0; xÞ are defined as

Σβ0
1 ðx; x0Þ≔ Πα δ

β0
α

D1

δ̂ðx; x0Þ; Σ2
β0 ðx0; xÞ≔ Π†

β0
1

D0

δ̃ðx0; xÞ:

ðC2Þ

First, we insert the integral representations (A1), (A4), and
(A7) for the kernels of the inverse propagators

δμ
0

ν

D1

δ̂ðx; x0Þ ¼
Z

∞

0

ds
ð4πsÞω e

−σ̂ðx;x0Þ
2s D̂1=2ðx; x0ÞΩ̂ν

μ0 ðsjx; x0Þĝ1=2ðx0Þ; ðC3Þ
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1

D0

δ̃ðx0; xÞ ¼
Z

∞

0

dt
ð4πtÞω e

−σ̃ðx0 ;xÞ
2t D̃1=2ðx0; xÞΩ̃0ðtjx0; xÞg̃1=2ðxÞ; ðC4Þ

together with the explicit expressions (63) for Πα and Π†
μ0 into (C2). Then, we expand the derivatives in each factor in (C2)

according to the Leibniz rule and collect terms up to OðM3Þ,
Σβ0
1 ðx; x0Þ ¼ μ∇̂σðg̃−1Þσα

δβ
0

α

D1

δ̂ðx; x0Þ

¼ μ

Z
∞

0

ds
ð4πsÞω ĝ

1=2e−
σ̂
2sD̂1=2

��
∇̂σðg̃−1Þσα þ ðg̃−1ÞσαD̂−1=2ð∇̂σD̂

1=2Þ − 1

2s
σ̂σðg̃−1Þσα

�
Pα

β0

þ ðg̃−1Þσαð∇̂σP
β0
α Þ − 1

2
σ̂σðg̃−1Þσα½a1�αβ0

	
þOðM4Þ; ðC5Þ

Σ2
β0 ðx0; xÞ ¼ −μðg̃−1Þβ0σ0∇̂σ0

1

D0

δ̃ðx0; xÞ

¼ −μ
Z

∞

0

dt
ð4πtÞω g̃

1=2D̃1=2e−
σ̃
2t

�
ðg̃−1Þβ0σ0∇̂σ0 ã0 −

1

2t
ðg̃−1Þβ0σ0 σ̃σ0 ã0 þ ðg̃−1Þβ0σ0D̃−1=2∇̂σ0D̃

1=2ã0

−ðg̃−1Þβ0σ0 σ̃σ0 ã1g þOðM4Þ: ðC6Þ

Next, we apply the covariant Taylor expansion (A25)
separately to the terms in the curly brackets in (C5) and
(C6) up to terms with background dimension OðM2Þ. This
requires knowledge of the covariant Taylor expansion of
the basic geometrical bitensors up to OðM2Þ,

σ̃ ¼ g̃αβσ̂ασ̂β −
1

2
ðg̃αλδΓλ

βγÞσ̂ασ̂βσ̂γ

þ 1

24
ð4g̃ανδΓν

βλδΓλ
γδ þ 3g̃νλδΓν

αβδΓλ
γδ

þ 4g̃αλ∇̂βδΓλ
γδÞσ̂ασ̂βσ̂γσ̂δ; ðC7Þ

ðg̃−1Þβ0ρ0 σ̃ρ0 ¼ Pβ0
ρ

�
−σ̂ρ −

1

2
δΓραβσ̂

ασ̂β −
1

6
ðδΓραλδΓλ

βγ

− 2∇̂γδΓραβÞσ̂ασ̂βσ̂γ
�
; ðC8Þ

D̂1=2 ¼ 1þ 1

12
R̂αβσ̂

ασ̂β; ðC9Þ

D̃1=2 ¼ 1þ 1

12
R̃αβσ̂

ασ̂β; ðC10Þ

ðg̃−1Þβ0σ0∇̃ρ0D̃
1=2 ¼ −

1

6
Pβ0

ρðg̃−1ÞραR̃αβσ
β; ðC11Þ

∇̂αD̂
1=2 ¼ 1

6
R̂αβσ̂

β; ðC12Þ

ð∇̂σPα
β0 Þ ¼ −

1

2
Pλ

β0R̂σγα
λσ̂γ; ðC13Þ

½a1�αβ0 ¼
�
R̂α

ρ −
1

6
R̂δρα þ μ2ðg̃−1Þαρ

�
Pρ

β0 : ðC14Þ

For the derivation of (C7)–(C14), we made use of (A28)–
(A38). Inserting (C7)–(C14) into (C5) and (C6) yields

Σβ0
1 ðx0; xÞ ¼ μPβ0

ρ

Z
∞

0

ds
ð4πsÞω ĝ

1=2e−
σ̂
2sD̂1=2

�
∇̂αðg̃−1Þαρ −

1

2
ðg̃−1Þαν R̂αγ

νρσ̂γ þ 1

6
ðg̃−1ÞαρR̂αγσ̂

γ

−
1

2s
ðg̃−1Þγρσ̂γ þ

1

2

�
R̂νρ −

1

6
R̂ĝνρ þ μ2ðg̃−1Þνρ

�
ðg̃−1Þνγσ̂γ

	
þOðM4Þ; ðC15Þ

Σ2
β0 ðx; x0Þ ¼ −μ

Z
∞

0

dt
ð4πtÞω g̃

1=2D̂1=2
�
D̃1=2

D̂1=2 e
− σ̃
2t

��
σ̂ρ
2t

þ 1

4t
δΓργδσ̂

γσ̂δ þ 1

12t
ðδΓργλδΓλ

δϵ − 2∇̂ϵδΓργδÞσ̂γσ̂δσ̂ϵ

−
1

6
ðg̃−1ÞργR̃γδσ̂

δ þ 1

12
σ̂ρR̃

�
Pρ

β0 þOðM4Þ; ðC16Þ
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where we have artificially separated a factor of D̂1=2 in (C16). This procedure of dealing with multiple propagators in a
functional trace was proposed in [20]. Here, an additional complication is due to the presence of the two metrics gμν and g̃μν,
which in addition requires to expand the world function σ̃ in the exponent of the second product as well as the ratio
D̃1=2=D̂1=2,

D̃1=2

D̂1=2 exp

�
−
σ̃

2t

�
¼ exp

�
−
g̃μνσ̂μσ̂ν

2t

��
1þ 1

4t
g̃αλδΓλ

βγσ̂
ασ̂βσ̂γ −

1

48t
ð4g̃ανδΓν

βλδΓλ
γδ þ 3g̃νλδΓν

αβδΓλ
γδ þ 4g̃αλ∇̂βδΓλ

γδÞσ̂ασ̂βσ̂γσ̂δ

þ 1

32t2
g̃αλg̃βνδΓλ

γδδΓν
ϵησ̂

ασ̂βσ̂γσ̂δσ̂ϵσ̂η þ 1

12
ðR̃μν − R̂μνÞσ̂μσ̂ν

�
þOðM3Þ: ðC17Þ

Finally, combining (C15), (C16), and the expansion (C17), we collect all terms up to orderOðM2Þ in a function Ψðs; tjσμÞ,
which allows us to write the trace (C1) as

T2 ¼ −μ2
Z

∞

0

dsdt
ð4πÞ2ωsωtω

Z
d2ωxd2ωx0D̂ĝ1=2Ψðs; tjσ̂μÞ exp

�
−

1

4s
Gαβðs=tÞσ̂ασ̂β

�
: ðC18Þ

The main complexity related to the presence of the two metrics manifests in the “interpolation metric” Gμν appearing in the
exponential of (C18). The interpolation metric relates the two metrics ĝμν and g̃μν via the parameter z,

GμνðzÞ ≔ ĝμν þ zg̃μν: ðC19Þ

By construction, Ψðs; tjσ̂μÞ is a polynomial in σ̂μðx; x0Þ,

Ψðs; tjσ̂μÞ ≔ ĝ1=2
X8
k¼2

s−k=2ΨðkÞ
μ1…μkðs; tÞσ̂μ1 � � � σ̂μk : ðC20Þ

The coefficients ΨðkÞ
μ1…μkðs; tÞ are local tensors parametrically depending on s and t. The nonzero even coefficients are

Ψð2Þ
αβ ðs; tÞ ¼ −

1

4t
ðg̃−1Þαβ −

s
4t
ðg̃−1ÞληR̂λ

α
η
β þ

s
12t

ðg̃−2ÞαηR̃βη þ
1s
3t

ðg̃−1ÞαλR̂λ
β

−
1

24
ðg̃−1Þαβ

�
s
t
R̂þ R̃

�
þ s
4t
μ2ðg̃−2Þαβ þ

s
4t
δΓη

αβ∇̂λðg̃−1Þλη þOðM3Þ; ðC21Þ

Ψð4Þ
αβγδðs; tÞ ¼

s
8t
g̃βηδΓ

η
γδ∇̂λðg̃−1Þλα −

s
24t

ðg̃−1ÞαλδΓλ
βηδΓ

η
γδ þ

s
12t

ðg̃−1Þαλ∇̂βδΓλ
γδ −

s
48t

ðg̃−1ÞαβðR̃γδ − R̂γδÞ þOðM3Þ; ðC22Þ

Ψð6Þ
αβγδμνðs; tÞ ¼

s
192t

ðg̃−1Þαβð4g̃γλδΓλ
δηδΓ

η
μν þ 3g̃ληδΓλ

γδδΓ
η
μν þ 4g̃γλ∇̂δδΓλ

μνÞ −
s
32t

ðg̃−1Þαλg̃βηδΓλ
γδδΓ

η
μν þOðM3Þ; ðC23Þ

Ψð8Þ
αβγδμνρσðs; tÞ ¼ −

s
128t

ðg̃−1Þαβg̃δλg̃γηδΓλ
μνδΓ

η
ρσ þOðM3Þ: ðC24Þ

Changing integration variables from xμ
0
→ σ̂μðx; x0Þ leads to the Jacobian

J ¼ det

�∂xμ0
∂σ̂ν

�
¼ det

�
ĝρν

∂2σ̂ðx; x0Þ
∂xμ0∂xρ

�−1
¼ ĝ1=2ðxÞĝ−1=2ðx0ÞD̂−1ðx; x0Þ; ðC25Þ

which cancels the factor D̂ðx; x0Þĝ1=2ðx0Þ in (C18). Thus, we write (C18) as Gaussian integral over σ̂μ,

T2 ¼ −
μ2

ð4πÞ2ω
Z

d2ωxĝ1=2
Z

∞

0

dsdt
sωtω

Z �Y2ω
μ¼1

dσ̂μ
�
Ψðs; tjσ̂μÞ exp

�
−

1

4s
Gαβðs=tÞσ̂ασ̂β

�
: ðC26Þ

We further perform a reparametrization ðs; tÞ → ðs; uÞ, which allows to easily extract the divergent structure
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u ¼ s
t
; t ¼ s

u
; det

�∂ðs; tÞ
∂ðs; uÞ

�
¼ s

u2
: ðC27Þ

All ultraviolet divergences are captured by the lower bound s → 0 of the s-integral and (C26) acquires the form

T2 ¼ −
μ2

ð4πÞ2ω
Z

d2ωxĝ1=2
Z

∞

0

duuω−2
Z

∞

0

ds
s2ω−1

Z �Y2ω
μ¼1

dσ̂μ
�
Ψðu; sjσ̂μÞ exp

�
−

1

4s
GαβðuÞσ̂ασ̂β

�
: ðC28Þ

In order to extract the divergent part, we reparametrize the world function by absorbing a factor of s−1=2,

σ̂ → σ̂s1=2;

�Y2ω
μ¼1

dσ̂μ
�

→ sω
�Y2ω

μ¼1

dσ̂μ
�
: ðC29Þ

Finally, inserting the covariant Taylor expansion for Ψ, (C28) reads

T2 ¼ −
μ2

ð4πÞ2ω
Z

d2ωxĝ1=2
Z

∞

0

duuω−2
X4
k¼0

�Z
∞

0

ds
sω−1

Ψð2kÞ
μ1���μ2kðu; sÞ

Z �Y2ω
μ¼1

dσ̂μ
�
σ̂u1 � � � σ̂μ2k exp

�
−
1

4
GαβðuÞσ̂ασ̂β

��
:

ðC30Þ
Dimensional regularization annihilates all power law divergences and turns the logarithmically divergent s-integrals for
ω → 2 into poles 1=ε in dimension. Thus, we extract the divergent part of (C30) in d ¼ 2ω ¼ 4 dimensions by collecting all
terms in the integrand with total s-dependency 1=s. For ω ¼ 2, the prefactor is already of this form. Therefore, only the parts

Ψð2kÞ
μ1…μ2kðuÞ ≔ Ψð2kÞ

μ1…μ2kð0; uÞ, which are independent of s, contribute to the divergent part

Tdiv
2 ¼ −

μ2

ð4πÞ4ε
Z

d4xĝ1=2
Z

∞

0

du
X4
k¼0

�
Ψð2kÞ

μ1…μ2k
ðuÞ

Z �Y4
μ¼1

dσ̂μ
�
σ̂u1 � � � σ̂μ2k exp

�
−
1

4
GαβðuÞσ̂ασ̂β

��
: ðC31Þ

Performing the Gaussian integrals yields

1

ð4πÞ2
Z �Y4

μ¼1

dσ̂μ
�
σ̂μ1 � � � σ̂μ2k exp

�
−
1

4
Gαβσ̂

ασ̂β
�

¼ 1

G1=2 ½symkðG−1Þ�μ1…μ2k ; ðC32Þ

with the kth totally symmetrized power of the inverse interpolation metric ðG−1Þμν,

½symkðG−1Þ�μ1…μ2k ¼ ð2kÞ!
2kk!

ðG−1Þðμ1μ2 � � � ðG−1Þμ2k−1μ2kÞ: ðC33Þ

The fact that the Gaussian averages vanish for an odd number of σ̂μ ’s, a posteriori justifies that we have neglected these
terms in the covariant Taylor expansion (C20). Note that the resulting expressions are background tensors parametrically
depending on u. The divergent part of the trace (67) is given by

Tdiv
2 ¼ −

μ2

16π2ε

Z
d4xĝ1=2

Z
∞

0

du
X4
k¼0

�
1

G1=2 ½symkðG−1Þ�μ1…μ2kΨð2kÞ
μ1…μ2kðuÞ

�
: ðC34Þ

Finally, the result for Tdiv
2 can be expressed as linear combination

Tdiv
2 ¼ −

μ2

16π2ε

Z
d4xĝ1=2

X
k;l

Cð2k;lÞ
μ1…μ2kI

μ1…μ2k
ð2k;lÞ ; ðC35Þ

with u-integrals

Iμ1…μ2k
ð2k;lÞ ≔

Z
∞

0

du
ĝ1=2

G1=2 u
l½symkðG−1Þ�μ1…μ2k ; ðC36Þ
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and u-independent coefficient tensors Cð2k;lÞ
μ1…μ2k ,

Cð2;0Þ
μν ¼ −

1

12
ðg̃−1ÞμνR̃þ 1

6
ðg̃−2ÞμβR̃νβ; ðC37Þ

Cð2;1Þ
μν ¼ 1

2
μ2ðg̃−2Þμν þ

2

3
ðg̃−1ÞαμR̂αν −

1

12
ðg̃−1ÞμνR̂ −

1

2
ðg̃−1ÞαβR̂μανβ þ

1

2
δΓα

μν∇̂βðg̃−1Þβα; ðC38Þ

Cð4;1Þ
μνρσ ¼ −

1

6
δΓα

μνδΓ
β
ραðg̃−1Þσβ þ

1

12
ðg̃−1ÞμνðR̂ρσ − R̃ρσÞ þ

1

3
ðg̃−1Þμα∇̂ρδΓα

νσ; ðC39Þ

Cð4;2Þ
μνρσ ¼ 1

2
δΓα

μνg̃ασ∇̂βðg̃−1Þβρ; ðC40Þ

Cð6;2Þ
μνρσαβ ¼

1

6
δΓλ

μνδΓ
η
σλg̃ρηðg̃−1Þαβ þ

1

8
δΓλ

μνδΓ
η
σρg̃ληðg̃−1Þαβ −

1

4
δΓλ

μνδΓ
η
σρg̃αλðg̃−1Þβη þ

1

6
g̃μλðg̃−1Þνσ∇̂βδΓλ

ρα; ðC41Þ

Cð8;3Þ
μνρσαβγδ ¼ −

1

8
δΓλ

μνδΓ
η
ρσ g̃αλg̃βηðg̃−1Þγδ: ðC42Þ

2. Divergent part of the fourth order trace

Since the trace (68) is T4 ¼ OðM4Þ, the operators in the
trace T4 can be freely commuted and we can use

δβα
D1

¼ δβα
1

Δ̂
þOðMÞ: ðC43Þ

Explicitly, the divergent part of T4 acquires the form

Tdiv
4 ¼ μ4

Z
d4xðg̃−2Þαβðg̃−2Þγδ∇̂α∇̂β∇̂γ∇̂δ

1

Δ̂2

1

Δ̃2

����
div

x0¼x
:

ðC44Þ

The trace Tdiv
4 is evaluated in the same way as Tdiv

2 . We only
state the final result

Tdiv
4 ¼ 1

16π2ε

Z
d4xĝ1=2

μ4

4
½trðg̃−1Þtrðg̃−2ÞIð0;0Þ

− trðg̃−1Þðg̃−2ÞρσIð2;0Þρσ − trðg̃−2ÞIð2;1Þαα
þ ðg̃−2ÞμνIð4;1Þμναα�: ðC45Þ

APPENDIX D: FUNDAMENTAL INTEGRALS

1. Integral identities

Starting from the fundamental integral identities

Iαβμ1…μ2k
l ¼ −2

∂
∂g̃αβ I

μ1…μ2k
l−1

¼ −2
∂

∂ĝαβ I
μ1…μ2k
l ; ðD1Þ

it is possible to derive a sequence of useful integral
identities

ð∇̂λg̃αβÞIαβμ1…μ2k
ð2kþ2;lÞ ¼ −2∇̂λI

μ1…μ2k
ð2k;l−1Þ; ðD2Þ

ĝαβI
αβμ1…μ2k
ð2kþ2;lÞ ¼

�
2ðk − lÞIμ1…μ2k

ð2k;lÞ k > l

2½symkðg̃−1Þ�μ1…μ2k k ¼ l
; ðD3Þ

ðg̃−1ÞναIαμ1…μ2kþ1

ð2kþ2;lÞ ¼ 2kðg̃−1Þνðμ1Iμ2…μ2kþ1Þ
ð2k;lÞ − Iνμ1…μ2kþ1

ð2kþ2;lþ1Þ;

ðD4Þ
g̃ναI

αμ1…μ2kþ1

ð2kþ2;lÞ ¼ 2kĝνðμ1Iμ2…μ2kþ1Þ
ð2k;l−1Þ − Iνμ1…μ2kþ1

ð2kþ2;l−1Þ; ðD5Þ
δΓανβI

αβμ1…μ2k
ð2kþ2;lÞ ¼ ∇̂λI

μ1…μ2k
ð2k;lÞ þ 2kδΓμν

ðμ1Iμ1…μ2kÞλ
ð2k;lÞ : ðD6Þ

2. Evaluation of the integrals for the general case

An interesting observation is that in d ¼ 4 dimensions
the integrals (79) can be evaluated in terms of invariants of
the metric g̃μν. The evaluation of all tensor integrals (79)
can be reduced to the evaluation of the fundamental scalar
integral Ið0;0Þ. In d ¼ 4 dimensions, the Cayley-Hamilton
theorem guarantees that the eigenvalues λ1;…; λ4 of g̃μν

can be expressed in terms of the invariants ek ≔ trðg̃−kÞ
with k ¼ 1;…; 4. Therefore, the fundamental integral Ið0;0Þ
can be expressed in terms of the eigenvalues λkðejÞ,

Ið0;0Þ ¼
Z

∞

0

du
ĝ1=2

G1=2ðuÞ ¼
Z

∞

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
4
k¼1 ð1þ uλkÞ

q : ðD7Þ

The integral (D7) can be evaluated explicitly and expressed
in terms of the incomplete elliptic function of the first kind.
The general integrals (79) can then be obtained by differ-
entiating the result with respect to g̃μν and ĝμν and by
making use of (D1). We refrain from performing these
operations, as the resulting expressions are horrendously
complicated, impractical and not very illuminating. Instead,
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we choose to present the final result in terms of the much
more compact integrals (79).

3. Evaluation of the integrals for special cases

In the case of the self-interacting vector field considered
in Sec. VII B, the integrals have the form

Iμ1…μ2k
ð2k;lÞ ¼

Xk
n¼0

dnð2k;lÞĝ
ðμ1μ2 � � � ĝμ2n−1μ2nξμ2nþ1 � � � ξμ2kÞ: ðD8Þ

The general coefficients dnð2k;lÞ are given in a closed form in

terms of the hypergeometric function 2F1,

dnð2k;lÞ ¼ 3−ðl−1Þ=4
ð2kÞ!
2nk!

�
k

n

�Z
∞

0

duulþk−nð3þ uÞn−k−1=2ð1þ uÞ−ðkþ3=2Þ

¼ 2−n
ð2kÞ!

n!ðk − nÞ! 3
ðlþ1Þ=4

�
Γðk − lþ 1ÞΓðlþ 1=2Þ

Γðkþ 3=2Þ 2F1ðk − lþ 1; k − nþ 1=2;−lþ 1=2; 3Þ

þ 3lþ1=2 Γð−l − 1=2ÞΓðkþ l − nþ 1Þ
Γðk − nþ 1=2Þ 2F1ðkþ 3=2; kþ l − nþ 1;lþ 3=2; 3Þ

�
: ðD9Þ

The hypergeometric function 2F1 is defined as

2F1ða; b; c; zÞ ¼
X∞
k¼0

ΓðcÞ
ΓðaÞΓðbÞ

Γðaþ kÞΓðbþ kÞ
Γðcþ kÞ

zk

k!
: ðD10Þ

For the one-loop divergences, we only need the following coefficients

d0ð0;0Þ ¼
ffiffiffi
3

4
p

ð−1þ
ffiffiffi
3

p
Þ; d0ð2;1Þ ¼

22

3
− 4

ffiffiffi
3

p
; d1ð2;1Þ ¼ −

4

3
þ

ffiffiffi
3

p
;

d0ð4;1Þ ¼
4

5
ð73 − 42

ffiffiffi
3

p
Þ; d1ð4;1Þ ¼

4

5
ð−41þ 24

ffiffiffi
3

p
Þ; d2ð4;1Þ ¼

1

5
ð7 − 3

ffiffiffi
3

p
Þ;

d0ð4;2Þ ¼
4

5

ffiffiffi
3

4
p

ð72 − 41
ffiffiffi
3

p
Þ; d1ð4;2Þ ¼

8

5

ffiffiffi
3

4
p

ð−27þ 16
ffiffiffi
3

p
Þ; d2ð4;2Þ ¼

9

5

ffiffiffi
3

4
p

ð2 −
ffiffiffi
3

p
Þ: ðD11Þ
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