PHYSICAL REVIEW D 98, 025009 (2018)

Renormalization of generalized vector field models in curved spacetime
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We calculate the one-loop divergences for different vector field models in curved spacetime. We
introduce a classification scheme based on their degeneracy structure, which encompasses the well-known
models of the nondegenerate vector field, the Abelian gauge field, and the Proca field. The renormalization
of the generalized Proca model, which has important applications in cosmology, is more complicated.
By extending standard heat-kernel techniques, we derive a closed form expression for the one-loop

divergences of the generalized Proca model.
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I. INTRODUCTION

Most models of inflation and dynamical dark energy are
based on scalar-tensor theories and f(R) gravity, which
have an additional propagating scalar degree of freedom
(d.o.f.). The one-loop quantum corrections to these models
on an arbitrary background manifold have been derived for
a general scalar-tensor theory in [1,2] and recently for f(R)
gravity in [3].

Aside from models based on an additional scalar field,
vector fields have been studied in cosmology [4—11]. Most
of these models are characterized by a nonminimal cou-
pling of the vector field to gravity and are particular cases of
the generalized Proca model.

The quantum corrections for the generalized Proca
model are difficult to calculate and have been studied
recently in [12,13] by different approaches. In this article,
we use another approach, which allows us to derive the
one-loop divergences for the generalized Proca model in a
closed form.

We use a combination of the manifest covariant back-
ground field formalism and the heat kernel technique
[14-22]. This general approach can be applied to any type
of field. The central object in this approach is the differential
operator, which propagates the fluctuations of the fields. For
most physical theories, this fluctuation operator acquires the
form of a second order minimal (Laplace-type) operator. For
this simple class of operators, a closed algorithm for the
calculation of the one-loop divergences exists [14]. For
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nonminimal and higher order operators, a generalization of
the Schwinger-DeWitt algorithm, which allows us to reduce
the calculation to the known case of the minimal second
order operator, has been introduced in [20]. The direct
application of the generalized Schwinger-DeWitt algorithm
requires the non-degeneracy of the principal part—the
highest-derivative term of the fluctuation operator.

However, there are important cases, where the fluc-
tuation operator has a degenerate principal part—notably
f(R) gravity [3] and the generalized Proca model consid-
ered in this article. Therefore, we make use of the
Stiickelberg formalism [23] to reformulate the generalized
Proca model as a gauge theory such that standard heat-
kernel techniques become applicable again. The price to
pay is the introduction of a second metric tensor.

This article is organized as follows: In Sec. II, we discuss
different vector field models in curved spacetime. In
particular, we introduce a classification based on their
degeneracy structure. In Sec. I1I, we calculate the one-loop
divergences for the nondegenerate vector field with an
arbitrary potential. In Sec. IV, we consider the case of the
Abelian gauge field and calculate the one-loop divergences.
In Sec. V, we derive the one-loop divergences for the Proca
model of the massive vector field. In Sec. VI, we introduce
the generalized Proca model, calculate the one-loop diver-
gences in a closed form and present our main result. In
Sec. VII, we perform several reductions of our general result
for the generalized Proca model to specific cases. These
reductions provide strong cross checks of our general result
and entail applications to cosmological models. In Sec. VIII,
we compare our result and our method to previous calcu-
lations of the one-loop divergences for the generalized Proca
model. Finally, in Sec. IX, we summarize our main results
and give a brief outlook on their implications.

Technical details are provided in several Appendices.
In Appendix A, we introduce the general formalism and
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provide a collection of tabulated coincidence limits, which
arise in the calculation. In Appendix B, we present the
details of the calculation for the one-loop divergences of the
nondegenerate vector field considered in Sec. III. In
Appendix C, we provide a detailed calculation of the most
complex functional traces, which contribute to the one-loop
divergences of the generalized Proca model considered in
Sec. VL. In Appendix D, we collect several important
integral identities.

II. VECTOR FIELD MODELS IN CURVED
SPACETIME: GENERAL STRUCTURE

In this article we calculate the one-loop divergences for
generalized vector field models in a curved spacetime. The
divergent part of the one-loop contribution to the effective
action is defined by

. 1 .
¥ = S TrinF(V) [, (1)

where F(V) is the differential operator that controls the
propagation of the fluctuations. For the vector field models
discussed in this work, this fluctuation operator has the
particular form

F(V) =F,(V) + P, (2)

where P is a potential with components P,* and F,(V) is a
differential operator with components

[F3]," = [Anl,” + (1 =)V, V" (3)
Here, the Hodge operator on vector fields Ay is defined in
terms of the positive definite Laplacian A by

[Ay),” = A6, + R, A=—-g*V,V,. (4
In the terminology of [20], the operator (2) is called
nonminimal for 4 # 1 and minimal for A = 1. Note that

if not indicated otherwise, derivative operators act on
everything to their right. The Hodge operator satisfies

[Ay),V, = V,A. (5)

An important property of the general second order vector
field operator (2) is its degeneracy structure, which is
controlled by the parameter A and the potential P. The
conditions 4 > 0 and P > 0O ensure that the operator F is
positive semidefinite. Therefore, there are three different
degeneracy classes:

(1) The nondegenerate vector field: A > 0, P >0

(2) The Abelian gauge field: A =0, P =0

(3) The (generalized) Proca field: A =0, P > 0
The relation among the classes is depicted graphically in
Fig. 1. Physically, the different classes correspond to
inequivalent theories with a different number of propagat-
ing d.o.f. Mathematically, this is reflected by the degen-
eracy structure of the operator (2), which is discussed in the
following sections in detail. In particular, there is no
smooth transition between the classes in the limits 4 — 0

General vector field
F(V) = Fo(V) + P

4

[Non—degenerate vector ﬁeld}

[Degenerate vector ﬁeld}

A>0 A=0
|
o auge fxing - - Abelian gauge field Generalized Proca field
satige ne P=0 P >0

! |

Trivial index structure
P,V = X?(x)d,

Self-interacting vector field
P,Y =a(A,ArSY + 24, A%)

Perturbative expansion (Y < m?)
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Y

Proca field
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FIG. 1.

Overview of the different degeneracy classes and reductions of the generalized Proca model.
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and P — 0. Therefore, the different classes have to be
treated separately.

A. Degeneracy of the principal symbol

An important structure in the theory of differential
operators F(V) is the leading derivative term—the princi-
pal part D(V). Separating the principal part from the lower
derivative terms II(V), the operator F(V) takes the form

F(V) = D(V) + (V). (6)

Physically, the principal part D(V) contains the informa-
tion about the dominant ultraviolet behavior of the under-
lying theory. Therefore, it is the natural starting point for
the generalized Schwinger-DeWitt method [14,20], which
relies on the expansion D > II of the associated propa-
gator, schematically

1 1 1 1_1

F pyn p pipt T ™
where 1/F denotes the inverse of the linear operator F.
Essential for this perturbative treatment is the notion of
background dimension i, which is understood as the mass
dimension of the background tensorial coefficients of the
differential operator. We write F = O(I¥) for any oper-
ator F, which has at least background dimension 9t*. The
expansion (7) critically relies on the invertibility of D,
which can be discussed at the level of the principal symbol
D(n), formally obtained by replacing derivatives V, by a
constant vector field in,. For the vector field operator (2)
the components of the principal symbol read

n,n

D, (n) = n? {5;— (1-2) ”zy], (8)

n

with n? := n,n”. The parameter A controls the degeneracy
of the principal symbol, as can be seen easily from the
determinant

det D(n) = A(n?)*. 9)

For 1 = 0, the determinant vanishes and therefore D(n) is
not invertible. The origin of this degeneracy can be traced
back to the fact that for 4 = 0, the principal symbol has the
structure of a projector on transversal vector fields. This
motivates the distinction between the two classes 4 > 0 and
A = 0. For 2 = 0, the further distinction between the cases
P =0 and P > O is connected with a degeneracy at the
level of the full operator F, discussed in the next subsection.

B. Gauge degeneracy

The degeneracy at the level of the full operator F is a
general feature of any gauge theory. In the context of the

vector field operator (2), the relevant gauge theory is
defined by the Euclidean action for the Abelian gauge
field A, (x),

1
SlAl = / d*xg' /2 F,, FH. (10)
The Abelian field strength tensor F, is defined as

Fu=V,A -V,A, (11)

The action (10) is invariant under infinitesimal gauge
transformations

(12)

where e(x) is the infinitesimal local gauge parameter.
Gauge invariance of (10) implies the Noether identity

_v, @—1/2%) —o0. (13)

The components of the fluctuation operator F are obtained
from the Hessian

5% S[A]
v(\Jx N = g1/2 SA ()VSA (/)
F (V)3 ) = 07 Py s o

(14)
where the delta function is defined with zero density weight
at x and unit density weight at x’. The fluctuation operator
for the Abelian gauge field is given by F = F,, which
corresponds to the vector field operator (2) with A = 0 and
P = 0. The explicit components read

F' = [Aul, + V, V. (15)

Taking the functional derivative of (13) with respect to
A, (x") yields the operator equation

VAF,Y = 0. (16)

This implies that for P = 0 the total fluctuation operator (2)
is degenerate—not only its principle symbol. Therefore, in
case of a gauge degeneracy, in addition to the breakdown of
the perturbative expansion (7) associated to the degeneracy
of D, the inverse operator 1/F does not even exist. In order
to remove the gauge degeneracy we choose a gauge
condition linear in A,

Z(4)=o. (17)

The total gauge-fixed action Sy, = S + Sy, is obtained by
adding the gauge breaking action
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1
Sep = 2/d4xg1/ Vo (18)

This leads to a modification of the associated Hessian,
such that the resulting gauge-fixed operator F,, is non-
degenerate

&SolA
Fd(V)3(x. ) = g-1/2g,, 2 Sl

" 6A,(x)8A,(x') (19)

The inclusion of the gauge breaking action must be
compensated by the corresponding ghost action

Senlw, 0*] = /d4xg1/2a)*Qa), (20)

where ®*(x) and w(x) are anticommuting scalar ghost
fields. The ghost operator is defined as

Jim O AR £ 8AW).  (21)

0(V)ax.¥) = 50

The divergent part of the one-loop contributions to the
effective action is given by

rdv = ETrl In Fyo |4 — Try In Q4. (22)

III. THE NONDEGENERATE VECTOR FIELD

We first consider the vector field operator (2) with a
nondegenerate principal symbol and arbitrary potential

FY=[Ayl, +(1=-2)V, V" + P}, A>0, (23)

Since for A # 0 the principal symbol of (23) is invertible,
the generalized Schwinger-DeWitt algorithm can be used
directly [20]. The power of this algorithm lies in its
generality, as it is applicable to any type of field.
However, instead of using the general algorithm, here
the calculation can be essentially simplified by directly
making use of an operator identity for F,,

& 1
/AT v v 24
F, Ay [ rAZ (24)

where we have defined y := (1 — 1)/4. Since P = O(M?)
and 1/F; = O(IMP), we can make efficient use of (24). For
the calculation of the one-loop divergences, it is sufficient
to expand the logarithm up to O(IM*),

Tr; In F|% = Tr, In (F, + P) |4V
. 1 div
= Tr1 ln Fﬁldlv + Trl <P—>
F;

1 1.1
— T (P—P—
2 F, F,

Inserting the operator identity (24), the divergent contri-
butions of the individual terms in (25) can be reduced to the
evaluation of universal functional traces. The details of this
calculation are provided in Appendix B. In this way, we
find for the one-loop divergences of the nondegenerate

vector field
rdiv — ! / d*xg! g R RW 4 — ! R?
! 3272 180 30 7 20

1y Y
RP—(1+%)|R, P
+<6+12> ( +6> w
1 2 72
P —_p2| 2
<2+4+24> i 48 ] (26)

Here, we have defined the Gauss-Bonnet term

div
(25)

G = R,,,cR""° — 4R, R" + R*. (27)
The result (26) is in agreement with [20,24].1 Note that
for P =0, (26) is independent of the parameter y. This
calculation, as well as the calculation via the generalized
Schwinger-DeWitt algorithm in [20], both critically rely on
the nondegeneracy of the principal symbol (9).

IV. THE ABELIAN GAUGE FIELD

The fluctuation operator F for the Abelian gauge field
theory (10) is given by

F,' = Ay,

In view of the general operator (2), this corresponds to the
case A=0 and P =0. As discussed in Sec. II B, the
operator (28) is degenerate due to the gauge symmetry of
the action (10). We choose a relativistic gauge condition
with arbitrary gauge parameter 5 to break the gauge
degeneracy of the operator (28),

A (28)

VA, (29)

According to (19) and (21), the components of the gauge-
fixed fluctuation operator F,,; and the corresponding ghost
operator Q read

lApart from an overall minus sign, the transition to Lorentzian
signature corresponds to the replacement P — —P.
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| Z— 12 ;7 14
Ful = B + 79,0 (30)
1
0= A G31)

Thus, the gauge-fixed fluctuation operator (30) falls into
the class of nondegenerate vector fields (23) with P =0
and 1 = 1/(1 +n). Therefore, the divergent part of the
one-loop effective action can be calculated with the
methods presented in Sec. III,

. 1 . .
I =2 Try InFig ™ = Trg In Q[ (32)

The first trace follows from (26) for P = 0, while the ghost
trace is evaluated directly with the standard result for a
minimal second order operator (A16) and (A17),

o 13 1 1
div _ 4. 12 -7 o _ _ uv P2
F 32”28/dxg (1sog 5 Rk +15R>‘

(33)

The result (33) is in agreement with [20]. Since the
action for the Abelian vector field corresponds to a
free theory, there are no contributions to the renormaliza-
tion of the square of the field strength tensor (11). Note
also that the result (33) is independent of the gauge
parameter 7.

V. THE PROCA FIELD

The Proca action for the massive vector field in curved
spacetime is given by the action of the Abelian gauge field
(10) supplemented by a mass term [25],

1 1
S|A] = / d*xg'/? <Z_l FuF" + szAﬂA"> . (34)
The mass term breaks the gauge symmetry. The Hessian of
(34) leads to the fluctuation operator

FY = [Apl? + Y,V + m?8, (35)

which corresponds to the case 1 = 0 and P = m?1 of the
general vector field operator (2), thatis F = F, + m?1. The
mass term in the Proca operator (35) breaks the gauge
degeneracy of the gauge field operator F,,. Nevertheless, the
principal part of the Proca operator (35) is still degenerate.
This degeneracy cannot be removed by a gauge fixing—in
contrast to the Abelian gauge field. Similar to (24), there is
an operator identity for the Proca field

5 AL
G Tt I ST
F0+m m AH+m

Taking the trace of the logarithm on both sides of (36) and
using that the divergent part of the vector trace can be
converted into a contribution from a scalar trace

A%
Tryln (6, ———
m

the divergent part of the one-loop effective action is
reduced to the vector and scalar traces of two minimal
second order operators,

div
=Tryln (A + m?)|4v,  (37)

. 1 .
F(ljlv = ETI'I In (FO + m21)|d“’
1 i
= ETrl In (AH + m21)|dw
1 A
—5Troln (A + m?)|dv, (38)

The vector and scalar traces in (38) can be calculated
directly with the closed form algorithm (A16) and (A17).
The final result for the one-loop divergences of the Proca
model (34) reads

) 1 1 13
l"dlv — d4 12 - o _ —~ R, Rw
U T 30n% / 9159~ 6o R

7 1 3
—R*——m?’R--m* . 39
20" 72" 2m> (39)

The result (39) is in agreement with [20,26]. It has a clear
physical interpretation. The effective action of the massive
vector field in four dimensions is that of a four component
vector field minus one scalar mode, since the Proca field
has 4 — 1 = 3 propagating d.o.f. Therefore, it is clear that
(39) does not reproduce the result for the Abelian gauge
field (33) in the limit m — 0, as the Abelian gauge field has
only 4 —2 =2 propagating d.o.f. At the level of the
functional traces, this can formally be seen as follows:
while the scalar operator for the longitudinal mode of the
Proca field in (38) indeed reduces to the ghost operator of
the Abelian gauge field in (32) in the limit m — 0, the ghost
trace in (32) is subtracted twice compared to the trace of the
longitudinal mode in (38).

VI. THE GENERALIZED PROCA FIELD

The generalized Proca model is defined by the action
A= [ ag2(Lr,mm i Lapaa 40
N [ ] - X9 Z )% + 5 Yok 78 I ( )

The action is that of the Proca field (34), but with the scalar
mass term m? generalized to an arbitrary positive definite
and symmetric background mass tensor M**. The back-
ground mass tensor M** is completely general and might be
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constructed from external background fields. Of particular
interest are curvature terms

M = £\ R™ + (R, (41)

which arise in cosmological models [4—11]. The fluctuation
operator for the generalized Proca theory (40) reads

F}=[Ay), +V,V+ M} (42)

The operator (42) corresponds to the general operator (2)
forA=0and P,” = g,,M" > 0. The standard techniques
for the calculation of the one-loop divergences are not
directly applicable to the degenerate operator of the
generalized Proca theory (42). In particular, for the gen-
eralized Proca operator, there is no simple analogue of the
operator identity (36) for the Proca operator. Therefore, we
adopt a different strategy and first reformulate the gener-
alized Proca theory as a gauge theory by making use of the
Stiickelberg formalism. In this formulation, the generalized
background mass tensor M* plays a double role as
potential in the vector sector and as metric in the scalar
Stiickelberg sector. For this effective “bimetric” formu-
lation, the standard heat-kernel techniques are applicable
and the one-loop divergences of the generalized Proca
action (40) are obtained in a closed form.

A. Weyl transformation and bimetric formalism

The calculations are simplified by performing a Weyl
transformation of the background metric

. 1
Guv = /7 [det (Mm/gup)] l/4g;w' (43)

Here, p is an auxiliary mass parameter, introduced for
dimensional reasons. Note that in what follows indices
are raised and lowered only with the metric g,,. Since
the kinetic term is invariant under a Weyl transformation,
we find

A lA ANy, MZ ~— 1
S—/d4xg1/2[zg” gﬂ}—m,faﬁ—f-?(g 1)” AﬂAy . (44)

In the second term, we have defined
@'y = p*[det (MM g,, )]~/ 2MH, (45)

which is the inverse of the new metric g, . In this way,
formally the dependency on the original general mass
tensor M* has been replaced by a standard mass term.
By construction, we have the important relations

detg,, = dety,,,  V,detg,, =0. (46)

We define the Christoffel connection associated with f]w,,

(g_l)/m(aﬂg(w + aygya - aagﬂu)' (47)

A natural structure is the difference tensor

By construction, the difference tensor satisfies

L oo »
5Fa;m = E (g l)aﬁvygaﬁ
= (detg,,) "2V, (det§,,)/> =0.  (49)
The Ricci curvatures of the new metric g, are given by

R=(7"V"Ry. (50)

R, =R, —&T,07,, + V0%, (51)

In the following, when we work with the two metrics g,
and g,,, indices are raised and lowered exclusively with the
metric g, .

B. Stiickelberg formalism

As we have discussed in the context of the Abelian gauge
field, the gauge symmetry is responsible for the degeneracy
of the total fluctuation operator. Therefore, a gauge fixing is
required to remove this degeneracy. At the same time, the
gauge fixing can be used to also remove the degeneracy of
the principal symbol. A similar mechanism works in the
case of the generalized Proca model, when artificially
rewritten as a gauge theory, which is realized by the
Stiickelberg formalism. The Stiickelberg scalar field ¢ is
introduced by the shift

1
A, = A, —|—/:3ﬂ(p. (52)

In terms of the vector field A, and the Stiickelberg scalar ¢,
the action (44) is given by

a2 1 s
S[A, ¢] = /d4xg‘/2 [Zg" TP FuFop

[\S]

+5 @A+ G VA0
o v
#3000, (53)

This action has a gauge symmetry as it is invariant under
the simultaneous infinitesimal gauge transformations
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Sep = —pe. (54)

We choose a one-parameter family of gauge conditions

XA 9] = - (VA" + nug). (55)

1
VI
In particular, (55) interpolates between the original vector
field theory (44) with ¢ =0 (7 — o) and the Lorentz

gauge (7 = 0). The corresponding gauge breaking action
reads

1 .
Salto] = [ a2 (56)
The ghost operator is obtained from (55),

(V) = A +m2. (57)

For simplicity, we choose the Lorentz gauge, n = 0.% In
terms of the generalized two-component field

v= "] (58)

the gauge-fixed action acquires the block form

STA. @] + SolA. ] = / Erg AP, (59)

where the block matrix fluctuation operator F has compo-
nents F4y = yACF 5. The components of the (dedensi-
tized) inverse configuration space metric y48 are given by

P {g 1} (60)

Splitting the fluctuation operator according to the number
of derivatives, it can be represented as

F=D+II, (61)

with the block matrix structure

D:[Dl DJ, n:{n HT]. (62)

The components of the operators in (62) are given by

*The calculation can be performed for the general ;-family of
gauges (55). By using (24), it can be seen already at the level of
the functional traces that all #-dependent terms cancel and the
one-loop divergences are independent of the gauge parameter 7.

[y ] = [Vul,” + 123
=-V,(7 ‘1)"”V
I = —uV, (5™, (63)

where IT}, = ,u(g_l);@y, denotes the formal adjoint of IT¥
with respect to the inner product on the space of vectors.
The component D, can be simplified by using (49) and
defines the scalar Laplace operator with respect to the
metric g,,,

Dy =—(57"y*V,V,=A. (64)
Let us briefly discuss what we have achieved by the
Stiickelberg formalism. The 4 — 1 = 3 propagating d.o.f.
of the original generalized Proca field have been converted
into the 4 + 1 — 2 = 3 propagating d.o.f., corresponding to
those of a vector field, a scalar, and two scalar ghosts fields.
In contrast to the principal part of the original generalized
Proca operator (42), the additional gauge freedom present
in the Stiickelberg formalism has been used to render the
principal part D of the scalar-vector block operator (61)
nondegenerate and, in particular, minimal—the price to pay
is the introduction of the second metric gy, .

C. One-loop effective action

In order to calculate the one-loop effective action
1
F] :ETrlnF—Tro an, (65)

we expand F around D. Perturbation theory in IT is efficient
as I = O(M'). Expanding TrinF up to O(M*), we
obtain

1
TrinF = Tr1 In D1 + TI'O lnDO - T2 - §T4, (66)

O(M), i = 2, 4 denote the following traces

1 1\2 s .1
T,=-Tr| (=) | = Try I* =211 67
o=y () =T i) @)

ool (o) |- iz o

Note that odd powers in the expansion are zero, because the
block matrix I11/D has only zeros on the diagonal and that
we have used the cyclicity of the trace to convert vector
traces into scalar traces, for example:

Tr (HT L e 5") = Tr, <na§§n‘ 1> (69)

Dy, D, Dy

where T; =
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The first two traces in (66), together with the contribution
of the ghost operator (57), are evaluated directly with (A16)
and (A17). Their sum reads

TryInDy + TryIn Dy — 2Trg In Q

1 1, 1 -
/ d4x§l/2 1z g ~ N (g_] )/w (g—l )pﬂRupRuO'

~ 167% 157 60
1o, 1 .
__R2 _ 4t ~=2\ _ ,,2(%—1 uv fo
50 SH 1(57) =1 (T )Ry
—i—l,uztr(g‘l)f?—lf? Ryl (70)
6 5m 150 |

where we have introduced the abbreviation

@y =G G e (G e, (71

In (70), we used that the Euler characteristic

X(M) = 3022

~ 1 -

d4xgl/2g — W/d4xgl/2g’ (72)
defined in terms of the Gauss-Bonnet term (27), is a
topological invariant and therefore independent of the
metric. This allows to combine both contributions from
9w and g, in (70). The evaluation of the divergent
contributions from the remaining traces (67) and (68)
constitutes the most complex part of the calculation.
Here, we only sketch the major steps. The details are
provided in Appendix C. There are two main complications
associated with the evaluation of the divergent parts of the
traces (67) and (68). First, the traces (67) and (68) involve
propagators &,/D, and 1/D, with different spin. Second,
the propagators are defined with respect to different
metrics. Therefore, we have to explicitly perform the
convolution of the corresponding kernels

5. 1
TZZ/dZa)derux/ H”—é(x,x’) l'[j,—é(x’,x) , (73)
D, " Dy

where we have defined w := d/2. Inserting the Schwinger-
DeWitt representation for the kernels of 1/D; and 1/D,,
provided in Appendix C, the traces T, and T4 are ultimately
reduced to Gaussian integrals. In case of a single metric this
procedure has been outlined in [20]. In the case of two
metric structures, the problem becomes more complicated
and has been discussed in [27]. The resulting Gaussian
integral is

Here, we have introduced the “interpolation metric”

Guv(u) = gﬂl/ + Mglw' (75)

The function ¥ (u, s|6*) in the integrand of (74) is the result
of the covariant Taylor expansion in 6*

W, s|ot) = g2 W (us)en e, (T6)
k=0

where 6#(x, x') is tangent to the geodesic connecting x with
x' at the point x. Note that the background field dependent

coefficients ‘PEIIZMW(M, s) only involve positive powers of

the parameters u# and s. In d = 2w = 4 dimensions, only
terms of the integrand with total s-dependency 1/s con-
tribute to the logarithmically divergent part.3 Therefore, in
view of (74), the divergent contributions originate from the
s-independent parts of W. Finally, the Gaussian integrals in
(74) are evaluated

1 = 1
W/ <H d&#) &*1 - - - 6% exp (_1G0ﬂ6a8ﬂ>
T
p=1

1
= Gz Symi(GTHpe. -

Here, we have introduced the kth totally symmetrized
power of a general rank two tensor 7**, defined by

[symk(T)]”l---lﬂk = (22](]2'! Tpa . THa-1#k) (78)

After evaluation of the Gaussians (77), the parameter
integral over u remains and the final result is expressed
in terms of basic elliptic integrals, defined for 0 < 7 < 2k,

o 1/2
Pt = A du s fsyme (G (79)

Integrals of the form (79) occur unavoidably in the multi-
metric case and are characteristic to the problem. They
constitute irreducible structures and can in general not be
trivially integrated as for the case of a single metric
I = f},w.4 The evaluation of the trace T, proceeds in an
analogue way. The individual results for 7, and T, are
provided explicitly in Appendix C.

The choice of the parametrization in terms of s and u
guarantees that the divergent contribution is isolated in the
s-integration, whereas the u-integration is finite.

An interesting observation is that even for general g,,—in
principle—the integrals (79) can be evaluated explicitly in d = 4
dimensions. We comment on this in more detail in Appendix D.
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D. Final result: One-loop divergences for the
generalized Proca model

The final result for the divergences of the generalized
Proca model in curved spacetime (40) are obtained by
adding the standard minimal second order traces (70) and
|

the results for the divergent part of the traces T, and T}y,
which are explicitly provided in (C35) and (C45). Using the
integral identities presented in Appendix D, the number of
different integrals (79) can be reduced. This allows us to
represent the final result in the compact form

. 1 G 1 - 1o, 1. o 1o, 1, 1 R
Fle: d4 A2 7 T (= \up (-1 vop R __R2__R R _R2 - 2R - 2t ~—1 R
1 32;;25/ 15 o0 T RuR e = g RS = S RWRE S R 3R A g5
1 ~—1\uv (\ a > 1 ~ 2.1) yuv 4,1) yuvpo 4.2) yuvpo
- g/’l2 (g 1)’” (VG5F 2% + 7R/u/) - Zﬂ4tr(g 2) + C<070)I(0,0) + C/al/ )Il{zl) + C/al/pozll(t"/l) + C;(tl/ptzll(i"/z) ’ (80)
(0,0) 1 2 (%=2\puv 3 1 24 ==1\ P
Y = gﬂ (g ) Rﬂl/ - E/’l tI'(g )R’ (81)
ey _ 1 4 |y L 1, 2ayap [ _ L& le l & l &
CIW - Zlu (g )/,w - Zﬂ (g );u/ <§/’t tr(g ) + §R +u (g ) / _ERau/}u - gvaérﬁuy + gvﬁérl/a[l - gvﬂéryaﬂ
5 & 1 A 1 Lo o1 ,
+ Evy5raﬁu - Z‘Sr‘aiﬂér uv + 161—‘/41151_‘/111/5 - E‘sra/lyér 7 + géryﬂaér up Eérﬂﬂyér ap
| . 1o
- _ﬂz(g ]>;4 (2Rau - SRav - vﬂariau) + _ﬂztr(g ])(5F ﬂ/iérﬁm/)? (82)

6 12

1 ~
4,1 ~
C,Ewp0) = _*qutr(g l)vﬂarupw

24 (83)

42 l e 1 1
C/(u/p(l = - gﬂzvﬂérv/m + 5/'4261—‘/4/11/1—%/)0 - Zﬂzérﬂuvr%pa-

(84)

This constitutes our main result. For compactness, we
present the one-loop divergences in terms of the two
metrics g,, and g,,. The result in terms of the original
metric g, and the background mass tensor M** can easily
be recovered by making use of (43) and (45).

As expected on general grounds, the result (80) is a local
expression, which contains up to four derivatives. The fact
that (80) is not a polynomial of the invariants of M**, is
related to the role of M* as metric in the scalar Stiickelberg
sector. We emphasize that this result holds for an arbitrary
positive definite symmetric background tensor M**. The
original assumption of a strictly positive M** is reflected in
the result (80), as there is no smooth limit M** — (. Note
that the result (80) is independent of the auxiliary mass
scale ¢, which can be seen by the invariance of (80) under
rescaling of 4 — au, with arbitrary constant a.

The result has been derived in curved spacetime without
considering graviton loops. Nevertheless, the consistency
of the renormalization procedure would require to include
the induced kinetic terms for g,, an g,, (for g,, and M*”
respectively) in the bare action. The result (80) shows that
the essential complexity is not reduced considerably in the

|
limit of a flat spacetime, as the integrals (79), associated
with the presence of the second metric g, (the background
mass tensor M*) remain. The result (80) is considerably
more complicated than the one-loop result for the non-
degenerate vector field. In particular, the result cannot
simply be obtained in the limit A — 0 from (26).

For special choices of M*, the general result (80)
simplifies and the integrals (79) can be evaluated explicitly.

VII. CHECKS AND APPLICATIONS OF THE
GENERALIZED PROCA MODEL

In this section we reduce our general result (80) to
several special cases. This provides important cross checks
and interesting applications.

A. Trivial index structure

The simplest case for the general background mass
tensor M*, which goes beyond the constant Proca mass
term M = m?g", is the reduction to a spacetime depen-
dent scalar function X?(x), such that M* acquires trivial
index structure

M* = X2 g (85)
In particular, this includes the case where X? is proportional
to the curvature scalar R, which is relevant in cosmological

vector field models [4—11]. In view of (85), it is easy to
see that
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I = (36)
Gy = . (87)

8T, =0, (88)

(G = (1 -+ a1, (59)
det(G,,) = (1 + u)* det(3,). (90)

In this case, the integrals (79) are trivially evaluated

o i
Iyt g = Isyme(g)]- ”“A d“m
o s, o1)

Inserting (86)—(90) and the explicit results (91) for the
integrals into the general result (80), we obtain the one-loop
result in terms of the original metric g,,,

. 1
r‘le —_ /d 1/2 _ R RHY
b 327% g 60

7 1 3
— R?>— _RX*>--Xx*
120 2 2

1 _AX 1 [AX)?

As an additional (trivial) cross check of this result, we set
X = min (92) and recover the one-loop divergences for the
Proca model (39).

An independent way to derive the result (92) is to insert
(85) directly into the generalized Proca action (40). This
leads to the ordinary Proca action (34), but with the
constant mass m promoted to a spacetime dependent
function X,

1 X?
S[A] = / d4xg'/2<4.77”,,.7:"”+2AﬂA”>. (93)

By performing the Weyl transformation (86), the reduced
action (93) is identical to the Proca action (44), but with
G = G and m = p,

1 2
S[A] = / dhx 1/2< gﬂagvﬂfwfaﬂJr%wA,,Ay). (94)

The one-loop divergences for (94) are obtained from (39)
by performing the inverse Weyl transformation g,, — g,,
and agree with those obtained from the reduction (92) of the
general result.

B. Vector field with quartic self interaction

The generalized Proca action for a vector field A, with
quartic self-interaction is considered in [27],

1 a
S[A] = /d“xgl/2 L]:W}"”” +4(A,,A”)2]. (95)
The part quadratic in the quantum fluctuation reads
- 1
S,[A, 8A] = / d*xg'/? [Zf,,y((SA)}'””(éA)
a - - - -
+ > (A AP " + 2A”A”)5Aﬂ5A,,] , (96)

where the vector field A, has been split into background A,
and perturbation 64,

A, =A,+68A,, (97)
F(8A) = V,84, — V,0A,. (98)

In order to establish the connection to the generalized Proca
model (40), we identify the background mass tensor M** as
M (A) = a(A,AP g™ + 2A1AY). (99)

According to (43) and (45), we have

.a/w = (gpa‘gpéa)gﬂw (100)
(G =314 (g + 2818), (101)
_al/4 A 2
9w = 3 9w — ggygu ’ (102)
6T, = 26, V8 385
177 g (5(# é:u) - 5(/4 y)é: - 5 (Mé:u)
H2EEE LV E ). (103)
We have defined the normalized vector field

A
Go=3talPt, =g, (104)

7

such that £,&* = 1. For (100) and (101), the integrals (79)
reduce to expressions of the form

Iﬂl -Hak

ﬂﬂz.
(2k,2) E :def :

We provide a closed form expression for the coefficients
d@k, f) in Appendix D. We obtain the divergent part of the

.gﬂZn—l”ZH §M2n+l e fﬂzk).

(105)

one-loop effective action for (95) from the general result by
inserting (101)—(103) as well as (105) with (D11) into (80),
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A 1 P LU T LUV R
i :%/d4x91/2{g—5RyuR” + =R = — (T (77")’R R

1 4
15" 60 50t 2V3)u

- R?
120

2
VR | (314 VAR

+ 5 (22744 136V3)(9,8)(0,2)8¢ +

Instead of £, and g,,, the authors in [27] use a different
parametrization. The conversion between our result (106)
and their result is easily accomplished by (100) and (104).
We find that the reduction of our general result to the case
of the self-interacting vector field (106) is in agreement
with the result obtained in [27]. This provides a powerful
check of our general result (80).

C. Perturbative treatment of the
generalized Proca model

Finally, we test our method by a perturbative calculation,
which only relies on the well-established generalized
Schwinger-DeWitt technique [20]. For this purpose, we
assume that the background mass tensor has the form

MW = m2g® + Y™, (107)

with Y < m?¢" and perform an expansion in Y**.

1. Expansion of the general result

The expansion of the general result (80) up to second
order reads
l"(liiv — l—*clliv

o T F‘ffz’l) + F?fz’z) +O(Y?),  (108)

where F‘fi‘(’i) is the divergent part of the one-loop effective
action, which contains terms of ith order in the perturbation

Y. The zeroth order F’liifo) is simply given by the one-loop

divergences (39) for the Proca field. Before we proceed, let
us discuss the structure of the invariants used to represent
|

. 1 1 5
div - _ 1/2 _ = pu —
o _—32ﬂ2£/d xg {lzRY CR"Y,,

—4RR,, Y* + R*Y — 4(AR)Y + 8(V,V,R)Y* + 4(AR,,) V"] }

(3 4f)R+45

45 (67-36V3)9,8)(972) }

3, 1
2 m2y
PR Tl

(=31 +8V3)(V,&)?

(106)

|
the result for the higher orders of the perturbative expan-
sion. In d = 4, the result of any total antisymmetrization
among five or more indices is necessarily zero

(¢4 ﬁ W —
51 8/8,6368 = 0,

(109)
where the total antisymmetrization is performed with unit
weight By contracting (109) with the background tensors

Ry, and V, ---V, YP?, we can systematically construct
dimensional dependent invariants, which vanish in d =4
dimensions. At linear order of the expansion in Y, there is
one such invariant

I _5(15ﬁ5}’556mR;4 v R/) 4 Y

u9v0r9%)
= Ylw(gg/u/ - 4'R,uy(s Ruyﬁa + 8Rﬂyb(5Ry6
+8R,/R,, —4R,,R). (110)

At quadratic order of the expansion there are two inde-
pendent dimensional dependent invariants

= 80 S,y R gV, Y2V, (111)
Iy = 82008, 8504 R4 Y7, VsVoYE, . (112)

Since use of (111) and (112) does not lead to any
simplification of our result, we refrain from presenting
the explicit expressions. For the first order of the expansion
F‘%), linear in Y, we obtain

8R o RM Y7 + 2R, R™Y

(113)

where we have defined the trace Y := g, Y**. For the second order I" ?12’2), quadratic in Y, we make use of the tensor algebra

bundle XAcTt [28-30] and find
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) 1 1 1 1
l"dIV — d4 1/2) _ Y YW — Y2
1) = 3% / A R TR T

~4R™Y Y — 4R

Hpvo

* 960m*

+8R, RYH Y + 32R™R,,, Y Y’ + 24R

Hpvo Hp

—16R,* PR ey Y Y?" — 8R,, R, Y* ,YP° — 4R, R™Y ,,Y*° + 16R
+32R, g YV, YP7 + 32R, 0 YV, VOYP — 8R, Y AY — 16R,, Y AY, + 16R

[~2R,,R*Y? — R*Y* + 8R,, RYY" — 2RY,, Y™ — 16R,*R

R, YY" — 8R,,R,,Y*Y?° — 8RR

0 2
[~2RY,, Y* 4+ 12R*Y /Y, + RY

Y#YPo + 12V, V,Y 2 +4YV,V, Y + 2Y*AY,, — YAY]

yupaYYH — 16R,,, R¥, YY"

yryr

Hpve

upve VIV AYP?

YVeveyw

Hpvo

+16R, YV, V¥Y?, — 32R,, YV, NV, Y*° + 2R(V,Y)VFY + 16R,,(V,Y**)VFY + 24R(V,Y)V, Y™

~16R,*(V,Y?)V,Y # —4RY*V,V,Y — 12RYV,V,Y* — 16R,*Y*V,V, Y /* + 16R

wwpo(VHY)VOYP

~8R,, YV, V Y + 16RY*V,V,Y,» — 40R,*YV,V,Y* + 32R,,,,,(V, ")V Y%
—80R,* Y7V, V°Y,, + 4R, (V*Y)V*Y + 8R(V,Y,/)V,Y* + 24R,,(V,Y)V, ¥
+40R,,Y*’V VY — 24RY*AY,, — 16R,, YAY* — 16R,,(V,Y*)V,Y* + 16R,, (V*Y)V,Y*

+16YAV,V, Y* — 4Y®A?Y,, — 16Y*V,V,V,V YP* — 8Y"V,AV,Y,7 — 2Y A?Y] }

2. Perturbative calculation via the generalized
Schwinger-DeWitt technique

The second order expansion (108) of the general result (80)
can be checked by a direct perturbative calculation, which only
relies on the well-established generalized Schwinger-DeWitt
technique, introduced in [20]. Although conceptually straight-
forward, the complexity grows rapidly with growing powers
of Y and is already quite involved for the expansion up to
second order in Y. Moreover, we are mainly interested in a
check of the structures involving derivatives of Y not tested by
the previous checks—apart from the three structures involving
powers of AX that remain in (92) after the reduction of M to
the trivial index structure (85). Therefore, we restrict the direct
perturbative calculation to flat spacetime g, = d,,,V, = 0.

Starting point is the action (40) for the generalized Proca
field, but with the background mass tensor M treated
perturbatively as in (107). The one-loop divergences up to
second order in Y are obtained by expanding (42) around
the Proca operator defined in (35),

F = (Fy+m’1) + Y. (115)
Using the split (115) in the expansion of the logarithm up to
second order in Y, we find

Tr;InF = Tr, In (Fy + m*1+Y)

1
= Tr, In (F 1 Tr | Y———
ryIn (Fy + m*1) + r,< F0+m2>

1 1 1
—~Tr (Y SY 5 ).
2 F0+m F0+m

(116)

(114)

|

Similar to the calculation for the nondegenerated vector
field, we use the exact operator identity (36) for the Proca
operator F; + m?1, which in flat spacetime reads

3 9,0\ 1
—_— 5 v — —_—.
Fo+m? # m? ) =0%* + m?

Note that the similarity to the expansion (25) for the
nondegenerate vector field might be misleading here, as
(116) is an expansion in Y, not an expansion in background
dimension. This is seen by comparing the counting of
background dimension for the two cases. While
Y = O(IM?), expansion in Y in (116) is not efficient as
1/(Fo+m?) = O(MM~2), such that the combination
Y1/Fy, = O(M°). Therefore the perturbative series
(116) continues up to arbitrary order in Y. The counting
of background dimension 1/(F, + m?) = O(IM~2) can be
understood from (117), as

(117)

1
e - O (115)
1
W (_8”81/ + m25;;) = O(m_z) (1 19)

In contrast, in case of the non-degenerate vector field, the
analogue expansion (25) in P = O(IM?) is efficient in
background dimension as 1/F, = O(9M°), such that the
combination P1/F, = O(I?*) and terms O(P?) are
already finite. The difference between the background
counting of 1/F, and 1/(F;+ m?) can be traced back
to the fact that DetF; # 0 while DetF, = 0.
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Inserting the identity (117) into the expansion (116), we
obtain the following sum of traces up to O(Y?):

Tr; InF = Tr, In (Fy + m*1)

+ Try [ T ] + Tr, [Y 825—:- " ]
- %Trl :Yﬂﬂ —afi il —0261 mZ]
+ Try [Y ’ —525:— P o 8/1(? P 1+ mz}
-3 :B—821+m2B—821+m2} (120)
Here, we have defined the scalar operator
B(0) = #B”Y””GD = O(M"), (121)

and used the cyclicity of the trace to convert two vector
traces in (120) into scalar traces. Next we evaluate the
divergent contributions of the individual traces in (120)
separately. The first trace is just that of the Proca operator
(35). The remaining traces can be further reduced by
iterative commutation of all powers of 1/(—9* + m?) to
the right, using the identity

1 1 1
—— Y| =———— -0 Y] ———.
{—82 + m? } 0% + m? ! } —-0% + m?

(122)
Each iteration of (122) generates one additional commu-

tator, which increases the number of derivatives acting on
the background tensor Y by at least one,

In d =4 dimensions, the Z/{,(ffp LP’S are divergent for a
degree of divergence

Yoy =P —2n+4<0. (125)

Each commutator reduces the number of derivatives p in
(124) and therefore decreases the degree of divergence
(125) by one. This shows that the iterative procedure (122)
is efficient for the calculation of the divergent contribu-
tions. In flat spacetime, divergences only arise for
Xav =k =0,2,4,

2—n—k .2k
(n,2n+2k) (_1>’12 "m

Up "o = 1 6ﬂ28m[Symn+k(5)]m...ﬂ2n+2k-

(126)

Following the strategy outlined above, we first calculate the
trivial traces which do not involve the evaluation of any

commutator:
Tr; In (Fy + m?1)|4 = ! —ém4
167°e \ 2 '
1 7 div 1
Tro|B———| =—— (-m?Y),
O[ —0% + m?] 1671'2{:‘( mY)
& 7 div 1 1
T |V, —t—| =— (-m?Y
g { H—0% + m? 167°e <4m )’
&5 &y |dv 1
Try |V, — Y, —— =——7Y, V"
& [ =P+ m? ° =0+ m? 167%e "

(127)

The remaining two traces require the evaluation of nested
commutators. For the first trace we find
o5 0,0" 1 div
Tr, [Y,/ LY
—-0°+m

[0, Y] = (-0%Y) — 2(0°Y)0,. (123) 2 0% +m?
In this way the calculation of the divergent part of the trace 1 [1 O G 1 yHo 2PV aﬂav Y,
(120) is reduced to the evaluation of a few universal 16” €2 3 m?
functional traces [20], (- 82)
Y"” 5 YW} (128)
) = 9y By | (128) B
U (m*)=0,,...0, —5—
e ”p e P |, For the second trace we find
|
1 1 dv. ] 1 1 (-0%) 1., 9,0 (=0*) , 1_0,0,
Try | B B = =Y Y Y YW P (e ”Y ’ Y Y —— Y-y
0 -0*+m? —82—|—m2} 167%¢ [4 e +8 * m? ”D+6 +24 m? 6 m?
1 9,0,0,0, 1 9,(-0%)0 1 ( 8)88 1 (=0%)?
Yﬂ”i" Y yre —Y"”—" Ly r——y~——Flymwy __ymw Y
30 m* +60 “o30 m* +120 m* M
1 _(-0%)?
—Y Y|. 12
AT (129)

Adding the contributions (127)—(129) according to (120), we obtain the final result for the one-loop divergences on a flat

background up to second order in Y*,
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. 1 3 3 1 1 (-0%) 1. 9,0 1 _(-9%)
div — d*x|—Zm* —==m?Y =Y, YW — — Y2+ YW Yo +-YW2Lyr——y Y
1 327128/ x{ R L TR L TS =,
1 0,0 1 9,0,0,0 1 d,(=0%)0 1 (-6%)9,0
e e e R e e (i e e S e e
12 m? 60 m* 120 m* # +60 m*
1 _A92)\2 1 _a2\2
Ll g EFy 1 (0 (130)

240 m* " 480" m*

The result (130) is in perfect agreement with the result
for second order expansion (114) of the general result (80)
reduced to a flat background g,, = J,,. This provides a
powerful check of our general result. In particular, it probes
tensorial derivative structures, not captured by the check for
the trivial index structure, discussed in Sec. VII A. It also
provides an important independent check of our method, as
it has been obtained in a complementary way by a direct
application of the generalized Schwinger-DeWitt method.
In particular, it neither relies on the Stiickelberg formalism
nor on the bimetric formulation.

VIII. COMPARISON WITH RESULTS
IN THE LITERATURE

In this section, we compare our results with the one-loop
divergences of the generalized Proca model (40) obtained
previously by different methods and techniques [12,13].

A. Comparison: Local momentum space method

In [12], based on the local momentum space method
[31], an expression for the one-loop divergences of the
generalized Proca model (40) has been obtained. The result
[Eq. (2.24)] in [12], includes terms of order O(R?, RY, Y?)
and, in our conventions, reads

) 1 1 13 7
l"dlv — d4 12 - o _ R Rw _R2
U 30n% / 157 "6 N T 2o

l 2R g 4 §R YIU/_|_LRY i 2y

MR T T 12 4™

1 1
——Y, YW - —Y? 131
ROCEE (131)

The result (131) agrees with the second order expansion
(108) of our general result (80) under the assumption

Y < m?, R < m?, V<m. (132)

In particular, this means that no terms proportional to
inverse powers of m appear in the result of [12] (and
therefore, apart from total derivatives, no structures involv-
ing derivatives of Y). In contrast, our second order
expansion (108) was derived only under the assumption
Y < m?. The coincidence with the terms in (131) therefore
provides an independent check of several structures linear
and quadratic in Y.

|
B. Comparison: Method of nonlocal field redefinition

The authors of [13] have obtained a result for the one-
loop divergences of the generalized Proca model (40),
without relying on any perturbative expansion in Y
(denoted X in [13]). They use the Stiickelberg formulation
to rewrite the generalized Proca theory as a gauge theory for
the original Proca field and the Stiickelberg scalar field.
They derive the corresponding block matrix fluctuation
operator similar to (52). As the authors discuss, with
respect to the metric g, this operator is both, nonminimal
as well as not block-diagonal. The authors perform a
“shiftlike” transformation of the quantum vector field A*
[Eq. (22)],

A =B a?d) . (133)

Here, o is an a priori undetermined background tensor.
Next, they derive a condition for which the fluctuation
operator is diagonalized [Eq. (25)]. However, in contrast to
the statement of the authors, we believe a#¥ has to be an
operator instead of a background tensor in order to
diagonalize the fluctuation operator. This is critical for
the algorithm used in [13]. Consequently, our general result
(80) does not coincide with the one given in [Eq. (45)] of
[13]. In particular, the result of [13] contains nonlocal
structures.

Nevertheless, whether o is an operator or a background
tensor is not relevant for the contribution to the one-loop
divergences at linear order in Y, as according to [Eq. (25)],
o' is first order in Y and therefore the nontrivial con-
tribution in [Eq. (26)] only affects higher orders in Y,
starting at O(Y?). This explains why the authors reproduce
their result with the generalized Schwinger-DeWitt tech-
nique [20] at linear order in Y. The result at linear order in
[Eqg. (53)] of [13] is in agreement with our result (113) for
the approximation linear in Y. Note that this comparison is
nontrivial in the sense that their result involves additional
terms proportional to the invariant (110), which vanishes in
d = 4 dimensions.

IX. CONCLUSIONS

We have investigated the renormalization of generalized
vector field models in curved spacetime. We have intro-
duced a classification scheme for different vector field
models based on the degeneracy structure of their
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associated fluctuation operator. The distinction between
different degeneracy classes is partially connected to the
nonminimal structures present in the principal symbol of
the fluctuation operator. The simplest theories, where such
nonminimal structures can appear, are vector field theories,
but these terms are also important for rank two tensor fields,
as has been recently discussed for the degenerate fluc-
tuation operator in the context of f(R) gravity [3].

The nondegenerate vector field and the Abelian gauge
field are both representatives of two different degeneracy
classes, for which the calculation of the one-loop divergen-
ces can be performed with standard methods, based on the
generalized Schwinger-DeWitt technique [20]. We have
briefly reviewed these cases and have discussed the tech-
nical details associated with the underlying algorithm for the
one-loop calculation. The Proca theory of the massive vector
field is the simplest representative in the class of non-
degenerate fluctuation operators with a degenerate principal
symbol. Only for this special case, standard methods are
directly applicable. In particular, none of these models in the
different degeneracy classes can be obtained from one
another in a smooth limit—a fact which is related to the
discontinuity in the number of propagating d.o.f. Therefore,
the different classes have to be studied separately.

The generalized Proca model, which results from the Proca
model by generalizing the constant mass term m?g* to alocal
background mass tensor M**, is considerably more compli-
cated and can no longer be treated directly by standard
methods. Therefore, we have applied the Stiickelberg for-
malism in order to reformulate the generalized Proca model as
a gauge theory, where the background mass tensor plays a
double role as potential in the vector sector and additional
metric in the scalar sector of the Stiickelberg field. At the price
of dealing simultaneously with two metrics, the standard
methods are applicable in this case.

Our main result is the derivation of the one-loop
divergences for the generalized Proca model (80). A
characteristic feature of this new result is the appearance
of the tensorial parameter integrals (79). The vector
field loops induce curvature and M-dependent structures.
Unless these structures are present in the original action,
the generalized Proca model is not perturbatively
renormalizable—not even in flat space. It is interesting
that the main complication of the generalized Proca model
is not connected to the curved background but originates
from the presence of the second metric structure.

We have checked our general result (80) by reducing it to
simpler models. The one-loop divergences for the trivial
index case M* = X?¢" can be obtained in two ways: by
the reduction of the general result (80) and independently
from the Proca model by a Weyl transformation. We find
perfect agreement. Moreover, to the best of our knowledge,
the trivial index case is by itself a genuinely new result. In
addition, we have performed the reduction of our result (80)
to the case of a vector field with a (A,A*)? self-interaction.

This model has been studied earlier in [27]. We find perfect
agreement. Furthermore, we have expanded our general
result (80) up to second order in the deviation from the
Proca model and compared it to a direct perturbative
calculation. We find perfect agreement. As the direct
calculation only relies on standard techniques, the agree-
ment does not only provide a powerful check of our general
result (80), but also of the method we used to derive it.
Finally, we have compared our results as well as our
approach to previous work on the generalized Proca model.
In [12], part of our full result for the one-loop divergences
(80) has been obtained by a different method. In the
corresponding limit, we find that our result reduces to
the one derived in [12]. In [13], yet another method, based
on a combination of the Stiickelberg formalism and a
nonlocal field redefinition, has been proposed. However,
the result for the one-loop divergences, obtained in [13],
does not agree with our result (80). In general, it is quite
remarkably that the simple extension from the Proca model
to the generalized Proca model leads to such a drastic
increase of complexity—already in flat space.

Our result for the one-loop divergences of the general-
ized Proca model (80) with a background mass tensors of
the form M* = {{R* + {,R¢" is important for cosmo-
logical models, which, at the classical level, have been
studied extensively [4—11]. It would also be interesting to
apply the method presented in this paper in the context of
massive gravity [32,33], more general vector field models
[34-36] and scalar-vector-tensor models [37,38].
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APPENDIX A: GENERAL FORMALISM

1. Heat kernel and one-loop divergences

For an action functional S[¢] of a general field ¢ with
components ¢*, the fluctuation operator F(V*), obtained
from the second functional derivative has components
FAR(VY) = yACF 5 (V*), where y,5 is a symmetric, non-
degenerate and ultralocal bilinear form. The Schwinger
integral representation of 1/F reads,

1 )
— = / dse™sF,
F 0

where s is the “proper time” parameter and where we
have indicated the bundle structure of inverse operators
by the identity matrix 1, which has components §4. The
Schwinger representation of higher inverse powers 1/F”
with n € N and the logarithm of F are found to be

(A1)
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1 o ds 1 —sF
— = nle=s A2
Fn /; (l’l _ 1)| s e ’ ( )

o d
lnF:—/ —Se“F.
0 N

The integrand of the proper time integral (A1) defines the
heat kernel

(A3)

K(s|x,x') = e=F5(x, x'). (A4)

With the boundary condition K(0]x,x") = 8(x, x), it for-
mally satisfies the heat equation

(0, + F)K(s|x,x') = 0. (A5)
For a minimal second order operator
F=A+P, (A06)

a Schwinger-DeWitt representation for the corresponding
kernel exists

1/2( 4 !
x,x') = wﬁl/z(x, x’)e_%ﬂ(s

K(s (4rs)®

x,x'), (A7)
with @ = d/2. The biscalar o(x,x’) is Synge’s world
function [39,40], which is defined by

o"c, = 2o,

0,:=V,0, o' =g*“V,0. (A8)

The biscalar D(x,x’) is the dedensitized Van-Vleck
determinant

P?o(x,x)

, N — 4~1/2 —1/2(,/ det , A9
D5 ) = 2007 () der (G50 ) (a9
which is defined by the equation

D'V, (Do) = 2w. (A10)

All nontrivial physical information is encoded in the
matrix-valued bitensor Q(s|x, x’),

[oe]

Q(s|x,x') = Z s"a,(x,x),

n=0

(Al1)

where the dependence on the proper time parameter s has
been explicitly separated by making a power series ansatz
with the matrix-valued Schwinger-DeWitt coefficients
a,(x,x'). Inserting the ansatz (A7) together with (A11)
and the minimal second order operator (A6) into the heat
equation (AS5), gives a recurrence relation for the
Schwinger-DeWitt coefficients

[(n+1)+0'V,]a,, +DF(D/%,) =0, (Al2)

where a, = 0 for n < 0 implies that ay(x, x’) satisfies the
parallel propagator equation

o'V, ay(x,x') =0, ag(x,x) =1. (Al3)
Therefore, the parallel propagator matrix
PAp(x,x) = [ag)* 5 (x, x1) (A14)

parallel transports a field ¢* (x) at x to a field [P (x') at
x" along the unique geodesic connecting x with x’. It only
agrees with @A’ (x') if oﬂvﬂd)A (x) = 0. It satisfies

PAgPE =8¢ (A15)
Since for a general bitensor, the primed and unprimed
indices indicate the corresponding tensorial structure at a
given point, the arguments are omitted whenever there is no
possibility for confusion. The coincidence limits x" — x of
the Schwinger-DeWitt coefficients a, and their derivatives
can be obtained recursively. Using dimensional regulari-
zation, the Schwinger-DeWitt algorithm gives a closed
result for the divergent part of the one-loop effective action
of a minimal second order operator (A6) for a generic
field ¢. In d = 4 dimensions, the result is given in terms of
the coincidence limit of the second Schwinger-DeWitt
coefficient

. 1 .
IY* = 2 Trin (A + P) [

1
= —32”2€/d4xgl/2traz(x,x), (A16)

1
(1) = Jo (RupoRY = Ry R~ 6AR)1

1 1.\2 1 1
—(P-—R1] +—R 4R¥+_AP. (Al7
+2< 6 ) T Ra Ry (A17)

Here, 1/¢ is a pole in dimension ¢ = d/2 —2 and the
bundle curvature R,; with components [R,4]"; is defined
by the commutator

[vw vu]¢A = [R/w]AB(.bB‘
In particular, for a scalar and vector field, we have

Vi Vil =0,

(A18)

V,.V,JA, = R,,,°A

pvp “ro- (Alg)
2. Covariant Taylor expansion and Synge’s rule

The covariant Taylor expansion of a scalar function f(x)
around x’ = x is given by [20],

=3,

k=0

vﬂ;cf(xl)] , O—ﬂl “e O-Mk.

X =X

(A20)

The generalization of this expansion for fields ¢*(x)
requires use of the parallel propagator P,
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[P =P pop”. (A21)
The right-hand side of (A21) transforms as scalar at x'.
Therefore, we can consider the right-hand side as a scalar
function of x’ and apply the covariant Taylor expansion
(A20) around x' = x,

VRPTEE o Cad te
PVt = (Vi -

!
k!

n /
VMLP B ¢B ]x’:x

X 0/41 e G'Mk. <A22)

Using that the coincide limits of the totally symmetrized
covariant derivatives acting on the parallel propagator are
zero,

ViV Phl,_ =0,

W k>0,

(A23)

the parallel propagator can be freely commuted though the
derivatives in (A22). Further setting x” to x" and making use
of (A13), we find

’ - _1 k /
o =P4, Z( k') \Z "'VﬂiﬁbB |, oot
=0

(A24)

Applying this expansion to a general bitensor 74 around
coincidence x = x’, shows that all the information of 74,
is contained in the coincidence limits of its derivatives

/ i = _1 k /
TA 5= PA c Z ( k!) [vﬂ/l ... Vﬂ,kTC B]x’:xaﬂl .otk
k=0 :
(A25)

3. Coincidence limits

The coincidence limits for o, D2, a, as well as
derivatives thereof can be obtained recursively by repeat-
edly taking derivatives of the defining equations (AS8),
(A10), (A12), and (A13). Commutation of covariant
derivatives to a canonical order induces curvature terms.
Inserting the coincidence limits from lower orders of the
recursion, higher coincidence limits are obtained system-
atically [14]. In case a bitensor involves derivatives at
different points, we can recursively reduce the coincidence
limits of primed derivatives to coincidence limits involving
only unprimed derivatives by Synge’s rule [39,40],

[v// T]x’:x = v/l [T]x’zx - {VMT]XI=X' (A26)
Here, T represents an arbitrary bitensor. The first
few coincidence limits of &, D'? and a, are easily
obtained. In this article, apart from the coincidence limit
for a, = O(IM*), provided already in (A17), we only need
coincidence limits up to O(9?). Note that, when perform-
ing the covariant Taylor expansion (A20), we have to

specify the metric with respect to which we perform the
covariant Taylor expansion, as the metric enters the world
function ¢ and the definition of the covariant derivative V,,.
For a metric §,,, not necessarily compatible with the
connection Vﬂ, it is natural to introduce the tensor which
measures the difference between the connection V,, and the
Levi-Civita connection associated with §,,,

5"Fp’w = (f]_l)pa(vﬂ.&av =+ vuéﬂa - v(zf}yu)' (A27)

| =

We provide the coincidence limits for the world function &

and Van-Vleck biscalar ©'/? as well as derivatives thereof
up to O(M?),

6o = 0. (A28)
V,6],_, =0, (A29)
\AZ I (A30)

V8], = 0%y + 6T T
=3V, 00p) (A31)

vV,V,V, V],

=X

2. ° °
o o a B
= =3 Ruplvlo) + 39ap0L 00T
o S o
+ 2ga(p|(v;45Fv\rr) + 5Fﬂﬁ5Fu\¢7))
+ 2.&&(}!(v1/)5i_120 + 50 Z)ﬂ5T£a)’

(A32)
v, ._ =0, (A33)
. 1,
v,V 7, = R (A34)

The corresponding coincidence limits of the Schwinger-
DeWitt coefficients read

[flo]x/:)c — 1, (ASS)
Vbl =0, (A36)
. 1
[vav[)’a()]x’:x = ERaﬂ! (A37)
. L
[al] I—y = ERI -P (A38)

In case the metric §,, is compatible with the connection
V# 9up = 0, the coincidence limits (A28)—~(A38) reduce to
the well-known results [20].
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APPENDIX B: DETAILS OF THE CALCULATION
FOR THE NONDEGENERATE VECTOR FIELD

The traces in (25) can be systematically reduced to the
evaluation of tabulated universal functional traces

Trl In Fildiv = Trl In AH|diV’ (Bl)
1 div S div 1 div
Tr1 P— = P”U_ﬂ - }/Pﬂvv”vu N2 ’ (BZ)
F,1 AH xX'=x A X' =x
1 1
Tr, (P—P—) div
F, F,
y 1 |div ) 1 [div
=PRSS PTRIVYL |
2puprey, 9,9, " B3
+7/ uvYuvVp GF B ( )

In (B1), we have used the definition of the Hodge operator
(4) along with the identity (24) and the fact that

1 div
Trl ln |:1 + Avﬂ ZV”] = 0, <B4)

which is formally seen by expanding the logarithm, making
use of the cyclicity of the trace and resumming the terms.

The traces in (B3) are already O(I*), which allows to
freely commute all operators and use

% s liom).

2 =% (BS)

The logarithmic trace (B1) is evaluated directly with (A16),
while for the remaining traces we use the following
universal functional traces

1

div g1/2 1 6

S/ - “R&—R,) ). B
Ayly_, l6r% (6 ook ) (B6)

vy, " el ! B7

— =2 (=R, -—R
PN T 167% <6 w12 g"”)’ (B7)
v ... idiv _ 91/2 (_1)71
Hi Hon-4 A" Yex 1671’26‘ 2n—2(n _ 1)|

X [symy 29y, s, (BY)

Inserting (B6)—(B8) into (B1)—(B3), we find

_1 (4rs)

5’1/ A o0 d s(xa) A Al
D” o(x,x') = A ° -~ e'%‘é)l/z(x, X (s

A 1. 7 1
Tr, InF div _ d4 121 -~ —— R Rmw _RZ,
nink| 16;:23/ 9 [1809 ERCANET }
(B9)
Tr, (L) 2! /d4xg'/2 L7 \rp
"W F, 1672 6 12
4 v
- (1 +8>RWP” ] (B10)
1 1 div 1
Tr (P—P— = d*xg'/?
rl( Fﬁ Fﬂ) 167[28/ 9
2 2
Y., 7 )
1+2+2\p, Pyl p2|.
X[( +2+12> w0y }
(B11)

Adding all traces according to (25), we obtain the final
result (26).

APPENDIX C: MULTIPROPAGATOR
BIMETRIC TRACES OF THE GENERALIZED
PROCA MODEL

1. Divergent part of the second order trace

The evaluation of the second order trace 7', constitutes
the most complex part of the calculation. The functional
trace T, is divergent and needs to be regularized. We use
regularization in the dimension d = 2w. Explicitly, the
functional trace of the convoluted integral kernels is
given by

& 1
Ty = Try (1% 2411, —
D, "D,

_ / Poxdox [ (x, /)2 (¥, %), (C1)

where the kernels Z/f/ (x,x") and 2/2}, (x/, x) are defined as

, P 1.
(6, x) = Haiﬁ(x,x/), 2 (', x) =11, D—O(S(x’,x).

(C2)

First, we insert the integral representations (A1), (A4), and
(A7) for the kernels of the inverse propagators

x,x)g' 2 (), (C3)
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1 o0 (X x) ~ ~
530 = [T e A (il 17 ). ()

together with the explicit expressions (63) for [1* and HZ, into (C2). Then, we expand the derivatives in each factor in (C2)
according to the Leibniz rule and collect terms up to O(M?),

S (5.2) = 9,577 2 3 )
1

© ds —Z& 7 (=—1\oa ~—1\oad\— 7 & 1 ca 4
=u/0 ~9'%e 25@”2{[%(9 Noa 4 (g=1yoed 1/2(v,,®1/2)—£a,,(g Voo | p

(4zs)
A / 1 y
@O~ + o), (cs)
(¥ x) = —pu(G")p” Vr Do 5(x', x)
=TH Ow( dt) ~1/2151/26_%{(‘ZJ_I)ﬂ’Gva’ao_%(?fl)ﬂ’a/&a’&o‘|'( )7 DV, D4,
~(7 ")y 801} + O(MY). (Co)

Next, we apply the covariant Taylor expansion (A25)

separately to the terms in the curly brackets in (C5) and D214 ! R, amli (C10)
(C6) up to terms with background dimension O(9?). This 12

requires knowledge of the covariant Taylor expansion of

the basic geometrical bitensors up to O(IN32), 1 -
g p ( ) ( _1) Gv Q / - _gpﬂ/p(g_l)paRaﬂ(fﬂ, (Cll)

o sanp Lo nanfiA
6= aﬁoﬂaﬂ ~3 (JasOT*5, )66 87
1

I V, D2 =R, 6%, C12
+55 24 (490:1/ ﬂ/lér%y& + 3gy/15F aﬂér‘ﬂyé a@ 6 a[}o- ( )
+ 49,1,1©/;5F’1 5)6%6P676%, (C7) !
1 1 (ﬁopaﬂ,) = _E’P/lﬂ,ieayaia-y? (C13)
(‘"g'fl)ﬂ/p’gp/ = Pﬁ,ﬂ |:_6-p - E(‘)‘F a[}o- G - 6 (5F M5Flﬁ},
. ’ R 1. ,
- 2vy5r,,a,;)aw/’a?} : (C8) il = |R =R+ 425" | P/ (Cl4)
A | PSP For the derivation of (C7)—(C14), we made use of (A28)—
@1/2 — 1 _R a ﬂ’ C9 or N
Tl (©9) (A38). Inserting (C7)(C14) into (C5) and (C6) yields

’ o ds - 1 N 1 N
bt _ Vi Al/2 éN1/2 ap _ ~ (75—1\a way 1~ (==1\ap Ay
S (on) =P, [ et 0, = L Ry (TR
1 ~Y 1 17 0 vp - ~
=gy T 3[R = R s |0+ O, c15)

o df D7 _N\[s, 1 1
2 (x,x) = — g'/2%? e 8T y5676° + —— (1100 — 2V 8T ,,5)676%6
(x )C) ﬂA g1/2 2 + 41 756 G 12[( prA Se )6 6 o

1

1 ~ i
~5 (@) R,56° + T 8,)1?] Py + O(M?), (C16)
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where we have artificially separated a factor of ©'/2 in (C16). This procedure of dealing with multiple propagators in a
y sep

functional trace was proposed in [20]. Here, an additional complication is due to the presence of the two metrics g, and g, ,
which in addition requires to expand the world function & in the exponent of the second product as well as the ratio
D2 /B2,

&1/2 G 3,6/ 6" 1 1 ) ) o

172 P <‘Z> _e"p<‘ T M” 00T}, 6608 = 1 (45,0 0T} + 30,2008} + 450,V 8T })6°6 6767
1 .

+ 37 Juap T8, 660 676966 + —(R,w - RMD)”‘&"] + O(M3). (C17)

Finally, combining (C15), (C16), and the expansion (C17), we collect all terms up to order O(9?) in a function ¥(s, t|c*),
which allows us to write the trace (C1) as

o dsdt 0 0 A . 1 o n
T2 = —ﬂz/o W/dz xd2 x'@gl/Z‘I’(s, t|0'ﬂ) exp (-gGaﬂ(S/t)G Uﬁ> (CIS)

The main complexity related to the presence of the two metrics manifests in the “interpolation metric” G, appearing in the
exponential of (C18). The interpolation metric relates the two metrics g, and g,, via the parameter z,

G/w(z) = g;w + Zg;w‘ (C19)

By construction, ¥(s, #|6*) is a polynomial in 6* (x,x’),

8
W(s.t]6t) = 9123 PR L (s 0080 - 6, (C20)

The coefficients ‘P,(,]f?,,,,k(s, t) are local tensors parametrically depending on s and ¢. The nonzero even coefficients are

) _ 1 7! S 1y P S o~ o\ nF Is 1
lIla/} (S’ t) - 41( )aﬂ - E (g )AnR a”ﬂ + E (g )anRﬁn + 5 (g )a/lR B
1 s . s &
=35 T (TR R) 4 202+ 5,070,007 + OO, (ca1)
(4) _ 5. (5 S (i s ") 5(Rs— R 3
W 5(5.0) = S BTV = 5 (57 )aadTh, 0T + o (57000 = 2 (57 g (R = Ryg) + O(Y), - (€22)
s
lPSi)yém(s 1) = 192t< _l)aﬁ(4gy/15rsn5rzv + 39/1;75F;'}55FZV +4gy/1v65r V)~ 32; ( ) Agﬁn5ry55FZv +O(M?),  (C23)
8 R T
lP((l/})yﬁyU/m(s’ t) =~ 128¢ (g ])aﬁgélgynarﬁuérza + O(m3) (C24)

Changing integration variables from x* — (x,x’) leads to the Jacobian

Ox* 0?6 (x, x')\ ! | .
_ _ o ’ A2\ A 1/2 (N (o
J = det(@&”) = det <g" Ve ) =92 (x)g7"*(x)D (x,x), (C25)

which cancels the factor ‘i)(x, x)§'"2(x') in (C18). Thus, we write (C18) as Gaussian integral over 6,

2
u o dsdz 1
T, = —(4ﬂ)2w/d2 xgl/2/0 ‘”t‘”/ (Hdo”) s, t|6*) exp <—4—Gaﬁ(s/t)6 aﬁ> (C26)

We further perform a reparametrization (s, ) — (s, u), which allows to easily extract the divergent structure
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s s ANs.t)\ _ s
M—;, t—;, det(a(s’u)>— 3. (C27)

u

All ultraviolet divergences are captured by the lower bound s — 0 of the s-integral and (C26) acquires the form

o ds o R 1 e n
T, :_(4;;) /dzw 1/2/ duu®- 2/ = 1/ (HdaO‘P(u,sb”)exp (—RGaﬁ(u)o“aﬂ) (C28)

In order to extract the divergent part, we reparametrize the world function by absorbing a factor of s~!/2

2w 2w
& — 652, (H d&”) — 5© (H d&”) . (C29)
pu=1 u=1

Finally, inserting the covariant Taylor expansion for ¥, (C28) reads

2
/’l 1) w— ds u o 1 Yo
ro= =g f 0 w2 [ et | ([aw)or oo on (-Gt

(C30)

Dimensional regularization annihilates all power law divergences and turns the logarithmically divergent s-integrals for
@ — 2 into poles 1/¢ in dimension. Thus, we extract the divergent part of (C30) in d = 2w = 4 dimensions by collecting all
terms in the integrand with total s-dependency 1/s. For @ = 2, the prefactor is already of this form. Therefore, only the parts

‘P,(,zlk)ﬂZk(u) = ,,1 ﬂzk (O u), which are independent of s, contribute to the divergent part

4
1
duZ[ o ) / (Hd&")&“l--ﬁ”ﬂ exp (—ZGaﬂ(u)&aaﬂ)]. (C31)
p=1

d1v —

d*xg'/?

Performing the Gaussian integrals yields

4
1 1
(H d&”) M1 - 512k exp <— 1 G,,ﬁff“&/’) = — [sym(G~)]fr--kax (C32)
p=1

with the kth totally symmetrized power of the inverse interpolation metric (G~')*,

(2k)!

B (G—l)(ﬂlﬂz o (G_l)/‘2k—lﬂ2k). (C33)

symy(G)vs =

The fact that the Gaussian averages vanish for an odd number of 6*’s, a posteriori justifies that we have neglected these
terms in the covariant Taylor expansion (C20). Note that the resulting expressions are background tensors parametrically
depending on u. The divergent part of the trace (67) is given by

div _
5 =

2
/1 R [
T 16n% / d'xg'? A d“z [GI/Z symy (G-t () [ (C34)

Finally, the result for T‘gi" can be expressed as linear combination

iv (2k.2)
s = —1 xg ZZCm N (C35)
with u-integrals
00 91/2 ’ .
Hi--Hok -
I(2k f)k = /O du—Gl/2 u [symk(G )]#1 Kok (C36)
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and u-independent coefficient tensors C,(,zllf_’i,)w
(2.0) L L BT
CI“/ =~ ﬁ (g )/wR + 6 (g ),u Rl//f’ (C37)
o 1o, 2 ap | NP T | _
C;(w ) = 5/"2(9 2)/41/ + 5 (g l)yRav - E (g 1);41/R - E(g 1) ﬁR/wwﬂ += 5F vﬂ( l)rla (C38)
(4.1) 1 a sTP (-1 1 ~—1 o o 1 a
C/ll/po' = gérﬂyal—‘pa(g )0'/3 + E (g )yy(R[)(f - R/)rr) + g( )yavpérvm (C39)
42 I
waptz = 5 ug(mv/}( )/” (C40)
1
6.2 .
C;(wpiaﬁ 85F or’ igpn( ) aff + 85F 5F0ﬂgﬂn( 1)(1/3 4(SF 5rﬂﬂgai(g )/3;7 + 69;11( ) vﬂé pas (C41)
[
83) 1 it is possible to derive a sequence of useful integral
Cﬂ,/pgaﬂyg 8 6F 5F agaﬂg/in (g_l)yﬁ' (C42) identities

2. Divergent part of the fourth order trace

Since the trace (68) is T, = O(IN*), the operators in the
trace T, can be freely commuted and we can use

&

1
=G+ O(M).
p, ~Gag T OM)

(C43)

Explicitly, the divergent part of T acquires the form

. AN A A A 1 1 div
R R A AR

(C44)

The trace T4 is evaluated in the same way as T9". We only
state the final result

iv 1 //t — a-
Ty :m/d4 g2 = , [tr(g~ )t (57) 0.0

- tr(g_l ) (g_z)pal(Z,O)pa -
+ (g_z)ﬂvl(él,l);waa]'

tr@_z)l(z,l)aa
(C45)

APPENDIX D: FUNDAMENTAL INTEGRALS

1. Integral identities

Starting from the fundamental integral identities

0

Iaﬁﬂlm:“zk E——) Iﬂl'nﬂzk
4 agaﬁ -1
0
- zagﬁzﬂl s (D1)
a

a} 1Mok 1---Hok
(vwaﬂ é:u; = 2Vi[ﬂ2k; 1)’ (D2)
2k = £)IH o k> ¢
Gapl (k132 :{ B . (D3)
’ 20symy (g7t k=¢
(G ) = 2k(g g o) — p
(D4)
(11 2%kl 2 2+|) VY - Hokey
Gal ;/muzﬂfA 2k Iﬂzk; kl) =1 (gk+2ﬂ.;—1)’ (Ds)
apuy ... o Lo o, A
ST gl s 13 = VIl 1o 4 2keT, W 113420 (D6)

2. Evaluation of the integrals for the general case

An interesting observation is that in d = 4 dimensions
the integrals (79) can be evaluated in terms of invariants of
the metric g,,. The evaluation of all tensor integrals (79)
can be reduced to the evaluation of the fundamental scalar
integral /(g ). In d = 4 dimensions, the Cayley-Hamilton
theorem guarantees that the eigenvalues 4, ..., 44 of g,”
can be expressed in terms of the invariants e; = tr(§7¥)
with k = 1, ..., 4. Therefore, the fundamental integral / g )
can be expressed in terms of the eigenvalues 4;(e;),

=, 412
I =
(0,0) / 1 2 /
0 G / /H4 +u /1k

The integral (D7) can be evaluated explicitly and expressed
in terms of the incomplete elliptic function of the first kind.
The general integrals (79) can then be obtained by differ-
entiating the result with respect to g,, and g, and by
making use of (D1). We refrain from performing these
operations, as the resulting expressions are horrendously
complicated, impractical and not very illuminating. Instead,
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we choose to present the final result in terms of the much

more compact integrals (79).

3. Evaluation of the integrals for special cases

In the case of the self-interacting vector field considered

in Sec. VII B, the integrals have the form

- Mok
I (2k,2)

. é—’ﬂzz() .

Z an ()9 ﬂlllz s gHne i En (DS)

The general coefficients d’. ( are given in a closed form in

2%.0)
terms of the hypergeometric function ,F',

(2k)! [k o0 . ke _
d(Zkf) 3= (£-1)/4 S i duu?tk (3+u) k 1/2(1+u) (k+3/2)
o (2k)! Tk—¢+ 1) +1/2)
n 3/ Filk—=¢+1,k=n+1/2,—¢+1/2,3
nl(k—n)! T(k+3/2) U nt1/2,-2+1/23)
(=¢-1/2)I(k+¢—-n+1)
12 Fi(k+3/2,k+¢-n+1,¢+3/23)|. D
+3 Tk=n+1/2) ZJF i (k+3/2,k+ n+1,6+43/2,3) (D9)
The hypergeometric function ,F is defined as
= I(c) T(a+kI(b+k)
,Fi(a,b,c.z) = —. (D10)
;F I'(c+k) k!
For the one-loop divergences, we only need the following coefficients
4% = V3(-1+V3 £ =24y =3
00) = V3(=1+V3). 21 =3 TV @y =31V
4 4
&) :5(73—42\/5), diy ) =54 +243), & =50 3V3),
8
&y, = 5\/"(72 41V3),  dl,, :5\“/§(—27+ 16v3), i, = 5\/—(2 V3). (D11)
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