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We consider the static domain wall braneworld scenario constructed from the Palatini formalism fðRÞ
theory. We check the self-consistency under scalar perturbations. By using the scalar-tensor formalism we
avoid dealing with the higher-order equations. We develop the techniques to deal with the coupled system.
We show that under some conditions, the scalar perturbation simply oscillates with time, which guarantees
the stability. We also discuss the localization condition of the scalar mode by analyzing the effective
potential and the fifth-dimensional profile of the scalar mode. We apply these results to an explicit example,
and show that only some of the solutions allow for stable scalar perturbations. These stable solutions also
give nonlocalizable massless mode. This is important for reproducing a viable four-dimensional gravity.
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I. INTRODUCTION AND MOTIVATIONS

The idea that extra spatial dimensions may exist [1–3]
has opened up a new gate towards new physics beyond the
standard model of particle physics and of cosmology. It
provides the possibility for solving some open problems
such as the hierarchy problem [4,5], the neutrino mass
problem [6], the fermion mass hierarchy problem [7], etc. It
also provides some new explanation for dark matter [8] and
dark energy [9]. These features make the extra dimension
theories attractive.
As is well known, gravity propagates differently in higher

dimensions. In the large extra dimension theory [4,10],
gravity violates Newton’s inverse-square law at a short
distance below the extra dimension radius and recovers its
four-dimensional feature at a large distance. Hence, experi-
ments for testing Newton’s law at a short distance are
important for probing the extra dimensions [11–13]. In the
Randall-Sundrum model [5], however, the situation is
completely different: it is the massless Kaluza-Klein mode
of graviton that accounts for the inverse-square law. It was
found that the four-dimensional gravity can be recovered
when the massless Kaluza-Klein mode is localized near the

hidden brane. However, in the original proposal of the
Randall-Sundrum model, the size of the fifth dimension is
not dynamically determined. In otherwords, the perturbation
of the radius, the radion, is not stabilized. So the size of extra
dimension which accounts for the hierarchy problem is fixed
artificially, which is not natural and not stable. The absence
of stabilization also makes the radion massless. This is
evidently unacceptable since it leads to a long-range fifth
forcewhich has never been observed. These problems can be
solved by the Goldberger-Wise mechanism [14]. The radion
is stabilized by introducing a bulk scalar field,whosevacuum
expectation value is related to the extra dimension coordi-
nate. Thus, the radius can be dynamically fixed. Once this
stabilization mechanism is introduced, the radion then
becomes massive if backreaction is considered [15], and
themodular can be dynamically fixed such that the hierarchy
problem is naturally addressed.
In the smooth version of warped braneworld models

[16–22], the warping along the fifth dimension is caused by
the background scalar field, and the extra dimension is
infinitely large. So there is no need for stabilization. But
the infinite range of the extra dimension also implies the
existence of massless radion-like mode, in spite of the
existence of the bulk scalar field. The behavior of this
massless mode is background dependent. If the massless
mode is localized, then it couples to the trace of the energy-
momentum tensor of standard model particles. This is
unviable since it leads to a long-range interaction. It is
really a problem for domain wall braneworld models. This
is one of our motivations of this work.
In addition to the localization problem, there is another

problem. As a kind of toy model that allows for infinitely
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large extra dimensions, the domain wall braneworld models
are usually assumed to be static and have four-dimensional
Poincaré symmetry, so that the background fields and the
spacetime metric depend only on the fifth dimension.
However, this kind of static model may not be consistent
with time evolution. The model would be unstable if the
perturbation grows with time. This is the stability problem
of static braneworld models. It is usually referred to as the
tachyon instability problem since the instability can be
described by the four-dimensional mass of the Kaluza-
Klein modes. Clearly, physically viable models should be
free of tachyon. Thus, it is necessary to investigate the
stability of the perturbations.
The Palatini fðRÞ domain wall braneworld model has

been considered in previous literature [23,24]. The exact
domain wall solutions were obtained, and it was shown that
the tensor perturbations are stable [24]. The scalar pertur-
bation remains unclear mostly because of the special
structure of Palatini fðRÞ theory. The theory is assumed
to have two independent variables, the spacetime metric
and the independent connection. The connection can be
eliminated thus one gets a metric theory, but with a
modified source part. The complexity of the scalar pertur-
bation mainly comes from this modified source. Such a
theory has some special features on cosmology [25–35]. In
the braneworld scenario, it also has some interesting
properties. In the previous braneworld models considered
in other gravity theories [36–40], the warp factor decays
exponentially at the boundaries of the fifth dimension. This
is because the warp factor is related to the localization
condition of the massless graviton. Usually, growing warp
factor solutions are not allowed since this would give the
nonlocalizable massless graviton and localizable massless
scalar mode. However, the warp factor in Palatini fðRÞ
theory allows for both of the decaying and growing
solutions, and they all give the localizable massless
graviton [24]. This may provide some new mechanisms
to localize standard model particle fields. In this work, we
will deal with the scalar perturbations by using scalar-
tensor theory since it is widely accepted that fðRÞ theory
(both of metric formalism and Palatini formalism) has a
mathematical equivalence with scalar-tensor theory.
It is interesting to note that the domain wall brane in

general relativity with a scalar field always gives a non-
localizable scalar mode, as long as the background geom-
etry is asymptotically AdS5, which is a very weak
restriction. Such a theory allows for a wide class of models
and there are few constraints on the theory. For modified
gravity theory, the way to construct the domain wall and the
dynamics of the perturbations are completely different,
which could give rise to violations from viable phenom-
enology. In this work we analyze the tachyon stability
problem and the localization problem of the scalar modes.
We give the constraints under which the Palatini fðRÞ
theory is phenomenologically consistent, from the point

view of braneworld. We show that the formalism of fðRÞ
should be restricted to ensure the stability and the non-
localization of the massless scalar mode. Besides, the
background solution should be restricted if the gradient
instability is considered. We apply this analysis to a specific
example. To our knowledge, this is the first work on scalar
perturbations in the braneworld scenario in Palatini fðRÞ
theory. This work, combining with the work on the back-
ground solutions and tensor perturbations inRefs. [23,24,41],
gives the full set of the study of the braneworld in Palatini
fðRÞ theory.
The paper is organized as follows. In Sec. II we give a

model setup of the Palatini fðRÞ theory, and show how to
remove the connection dependence. In Sec. III we give the
scalar-tensor formalism of the Palatini fðRÞ theory, and
develop the techniques to deal with the perturbations of
nonminimally coupled theory. The equations of perturba-
tions are obtained for both of the single field theory and
two-field theory. In Sec. IV we analyze the localization
problem and the stability against time evolution. At last, we
give the conclusions in Sec. V.

II. MODEL SETUP

We start from the general Palatini formalism fðRÞ theory
with a background scalar field χ,

S ¼ 1

2κD

Z
dDx

ffiffiffiffiffiffi
−g

p
fðRðg;ΓÞÞ

þ
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

2
∂Mχ∂Mχ − VðχÞ

�
; ð1Þ

where R ¼ gMNRMNðΓÞ, and the Ricci tensor RMNðΓÞ is
defined by

RMNðΓÞ≡ ∂PΓP
MN − ∂NΓP

MP þ ΓP
PQΓ

Q
MN − ΓP

MQΓ
Q
PN: ð2Þ

The connection Γ is not the Christoffel symbol constructed
from the spacetime metric, but an independent variable.
Note that the source field only couples to the spacetime
metric. One can immediately get the field equations for the
metric,

fRRMN −
1

2
fðRÞgMN ¼ κDTMN; ð3Þ

and for the connection,

∇̃Pð
ffiffiffiffiffiffi
−g

p
fRgMNÞ ¼ 0: ð4Þ

The covariant derivative ∇̃ is compatible with the con-
nection Γ. This formula has an analogy to that of general
relativity, in which ∇PgMN ¼ 0 [and ∇Pð ffiffiffiffiffiffi−gp

gMNÞ ¼ 0].
Indeed, the condition (4) allows one to define an auxiliary
metric qMN such that
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∇̃Pð
ffiffiffiffiffiffi
−q

p
qMNÞ ¼ 0: ð5Þ

The comparison with (4) gives the solution qMN ¼ f
2

D−2
R gMN ,

which is just a conformal transformation of the spacetime
metric. Now it can be easily checked that this auxiliarymetric
is the one that defines the connection Γ and the covariant
derivative ∇̃. Once again, as we mentioned in previous
context, the source field couples to gMN other than qMN . This
is somewhat an assumption, however, which implies that the
independent connection ΓðqMNÞ does not define the space-
time parallel transport since the covariant derivatives in the
source part are defined by the Christoffel symbol. In this
sense, Palatini fðRÞ theory is also ametric theory [42]. To be
specific, expressing the Ricci scalarR in terms of qMN , one
gets the transformation

R¼R−
2ðD−1Þ
ðD−2ÞfR

∇M∇MfRþ D−1

ðD−2Þf2R
∇MfR∇MfR;

ð6Þ

where R is the usual curvature scalar defined by the
spacetime metric. Thus the field equations (3) and (4) can
be combined to get

GMN ¼ κDTMN

fR
−
1

2
gMN

�
R−

f
fR

�

þ 1

fR
ð∇M∇N − gMN∇A∇AÞfR

−
D− 1

ðD− 2Þf2R

�
∇MfR∇NfR −

1

2
gMN∇AfR∇AfR

�
:

ð7Þ

It seems that the field equation still depends on the con-
nection.However, there is a subtlety here. The trace ofEq. (3)
gives an algebraic relation between R and the trace of the
energy-momentum tensor. This implies that R is fully
determined once we know the energy-momentum tensor
(the source). Thus we see that the right-hand side of (7) is
nothing but a modified source. This is actually a general
feature of Palatini theories. The well-known Eddington-
inspired Born-Infeld theory [39,43–45] has a similar struc-
ture, but the formalism is much more complicated after the
connection dependence is removed.
Since the energy-momentum tensor contains first-order

derivatives, the modified source then contains third-order
derivatives through R, fR, and fðRÞ. For example, for the
scalar field we have T ∼ ð∂ϕÞ2; thus, ∇2fR gives ∂3ϕ∂ϕ.
Note that the term like ð∂ϕÞ2∂2g also appears. From this
observation we see that the theory may give some special
physics.

III. SCALAR PERTURBATIONS IN THICK
BRANEWORLD

A. Scalar-tensor formalism

Now let us turn to the braneworld perturbations of this
theory. The tensor perturbations have been considered in
Ref. [24]. The tensor modes satisfy a second-order equa-
tion, with a tiny modification from that of general relativity.
This can be expected from Eq. (7), in which all of the
covariant derivatives on the right-hand side act on scalars.
For scalar modes, as we have mentioned in the previous
section, there are third-order derivatives.
We start from Eq. (7), which can be derived from the

action

S ¼ 1

2κD

Z
dDx

ffiffiffiffiffiffi
−g

p �
fRRþ D − 1

ðD − 2ÞfR
∂MfR∂MfR

− ðRfR − fðRÞÞ
�
þ
Z

dDx
ffiffiffiffiffiffi
−g

p
Lðg; χÞ: ð8Þ

Note that we dropped the total derivative terms. Recall that
there is an equivalence between fðRÞ theory (both of the
metric formalism and the Palatini formalism) and the
scalar-tensor theory, which casts the higher-order theory
into an ordinary second-order theory by introducing an
extra scalar field. This scalar field actually describes the
extra degree of freedom (d.o.f.) in theory with higher-order
derivatives. For our model (8), it is still a theory with
higher-order derivatives if we regard the R [thus fðRÞ and
fR] terms as functions of the metric and the source T. Now
we define ϕ≡ fR, then we have

S ¼ 1

2κD

Z
dDx

ffiffiffiffiffiffi
−g

p �
ϕRþ D − 1

ðD − 2Þϕ ∂Mϕ∂Mϕ − VðϕÞ
�

þ
Z

dDx
ffiffiffiffiffiffi
−g

p
Lðg; χÞ; ð9Þ

where VðϕÞ ¼ ϕRðϕÞ − fðRðϕÞÞ. This is a theory without
higher-order derivatives, but with one more d.o.f. The field
equation is then Eq. (7) with fR replaced by ϕ. The exact
background solutions and the tensor perturbations were
discussed in [24]. It was shown that the tensor modes are
stable under time evolution. The profile along the fifth
dimension depends on the background, and there exists a
localizable massless graviton. However, the scalar modes
remain unclear. We mainly deal with this problem in
this work.

B. Scalar perturbations

Since we are considering the thick braneworld model, we
require the five-dimensional background fields to have onlyy
dependence so that the four-dimensional Poincaré symmetry
is conserved, i.e., ϕ0 ≡ ϕ0ðyÞ, χ0 ≡ χ0ðyÞ. For the scalar
perturbations, we will work in the longitudinal gauge,
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ds2 ¼ e2AðyÞ½1þΦðxσ; yÞ�ημνdxμdxν þ ½1þΨðxσ; yÞ�dy2:
ð10Þ

It describes a static background with linear perturbations.
We are interested in the phenomenology of gravity with
an warped extra dimension. The time evolution can be
neglected at short time scales, hence it is consistent to use a
static background. For cosmological interest, the evolution
of the background is important for large time scales, and
one should consider a time-dependent background. Note
that this metric ansatz only supports static solutions for
the scalar fields ϕ and χ. The perturbations of the scalar
fields are defined as

δϕðxμ; yÞ≡ ϕ − ϕ0ðyÞ; δχðxμ; yÞ≡ χ − χ0ðyÞ; ð11Þ

where the lower index 0 implies the background quantities.
The 5μ part and the off-diagonal part of the μν components
of the perturbed equation (7) simply give two constraints
on the scalar modes,

Ψ ¼ −
δϕ

ϕ0

− 2Φ; ð12Þ

2κ5χ
0
0δχ ¼ 2ð3ϕ0A0 þ ϕ0

0ÞΨþ
�
2A0 þ 8ϕ0

0

3ϕ0

�
δϕ − 2δϕ0

− 6ϕ0Φ0: ð13Þ

Note that the constraint (12) has the anisotropic contribu-
tion coming from the effective energy momentum tensor,
which is absent in general relativity. The scalar modes Φ
and δϕ couple to each other, hence one can only chose to
eliminate the scalar modes Ψ and δχ. However, this would
lead to coupled perturbation equations. There is a novel
technique that can largely simplify these constraints. Let us
consider the new variables

Ψ̃ ¼ Ψþ a
δϕ

ϕ0

; Φ̃ ¼ Φþ 1 − a
2

δϕ

ϕ0

; ð14Þ

such that the constraint (12) becomes

Ψ̃þ 2Φ̃ ¼ 0: ð15Þ

Here a is a dimensionless parameter. In terms of the new
variables, the constraint (13) can be expressed as

2κ5χ0
0

ϕ0

δχ ¼ 2

�
3A0 þ ϕ0

0

ϕ0

�
Ψ̃ − 6Φ̃0

þ
�
2ð1 − 3aÞA0 −

�
1

3
− a

�
ϕ0
0

ϕ0

�
δϕ

ϕ0

− ð3a − 1Þ δϕ
0

ϕ0

: ð16Þ

Now we set a ¼ 1=3, then the constraint becomes

2κ5χ0
0

ϕ0

δχ ¼ 2

�
3A0 þ ϕ0

0

ϕ0

�
Ψ̃ − 6Φ̃0: ð17Þ

Clearly, the constraints (15) and (17) have the same
formalism as those obtained in general relativity.

1. Single field

We first consider the single field case, namely,
Lðg; χÞ ¼ 0. The constraint (17) is simply

2

�
3A0 þ ϕ0

0

ϕ0

�
Ψ̃ − 6Φ̃0 ¼ 0: ð18Þ

It can be used to solve the mode Φ̃ and the solution is

Φ̃ðxσ; yÞ ¼ e−2Aϕ−2=3
0 ϵðxσÞ: ð19Þ

An intuitive idea is to solve the other one scalar mode δϕ
with the perturbation equations. However, it can be easily
checked that the perturbation equations reduce to be
0 × δϕ ¼ m2ϕ0ðyÞ. This means that it is impossible to
solve δϕ. Instead, we get a constraint, m2ϕ0ðyÞ ¼ 0 with
m2 ¼ □ϵðxσÞ=ϵðxσÞ. The solution is m2 ¼ 0 or ϕ0ðyÞ ¼ 0.
Using the constraint (14) we show that the solution
ϕ0ðyÞ ¼ 0 leads to δϕ ¼ 0 and the divergence of Φ, which
is unviable, hence we have m2 ¼ 0 and ϕ0ðyÞ ≠ 0. This
implies that there exists only a massless Kaluza-Klein
mode. By considering the background equations we show
that the only solution is

AðyÞ ∝ y; ϕ0ðyÞ ¼ constant; VðϕÞ ¼ 0: ð20Þ

This is the model of general relativity with a cosmological
constant, which is exactly the Randall-Sundrum model [46]
if we insert a thin brane at the origin. The scalar perturba-
tion Φ̃ is sort of a radion-like mode. There is no need to
stabilize this mode since the extra dimension is infinitely
large. One can easily show that this massless mode cannot
be localized. So there is no extra long-range force con-
tributing to the four-dimensional gravity. Recall that the
single field case corresponds to the Palatini fðRÞ theory
without source. Hence, we conclude that it is impossible to
get a thick braneworld model in pure geometric Palatini
fðRÞ theory, and there are only thin brane solutions in this
case.

2. Two fields

For general theory (8), the scalar χ plays the role of
source. As can be seen from the constraints (15) and (17),
we are not able to solve δϕ in terms of Φ̃ and δχ in this case.
So the only choice of variables to be eliminated is (Ψ̃; δχ).
Varying the quadratic order of the action (9) with respect to
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Ψ and δϕ, and replacing the scalar modes Φ and Ψ with Φ̃
and Ψ̃, we get the perturbation equations

e2AΦ̃00 þ□Φ̃þ P2ðyÞΦ̃0 þQ2ðyÞΦ̃ ¼ S2ðyÞδϕ; ð21Þ
4e2AΦ̃00 þ□Φ̃þ P3ðyÞΦ̃0 þQ3ðyÞΦ̃ ¼ S3ðyÞδϕ: ð22Þ
The coefficients Pi, Qi, and Si are listed in the Appendix.
We find that there is only one independent scalar mode in
this theory. Clearly, δϕ has the same mass spectrum with Φ̃,
so we only need to discuss Φ̃. It satisfies

e2A
S3 − 4S2
S3 − S2

Φ̃00 þ□Φ̃þ S3P2 − S2P3

S3 − S2
Φ̃0

þ S3Q2 − S2Q3

S3 − S2
Φ̃ ¼ 0: ð23Þ

It has a Shrödinger-like formalism of the equation in
coordinate r,

ð−∂2
r þ VeffðrÞÞη ¼ m2η: ð24Þ

The coordinate r is defined by dy ¼ ζdr. The variable η is
defined by the decomposition Φ̃ðxσ; rÞ ¼ ϵðxσÞγðrÞηðrÞ in
such a way that the first-order derivative term can be
eliminated. Note that we used the relation □ϵðxσÞ ¼
m2ϵðxσÞ. There are two reasons why we write this formal-
ism equation. First, we want to know how does the
background affect the mass spectrum, and the
Shrödinger-like equation helps. Second, this formalism
implies that the quantity υ ¼ ϵðxσÞηðrÞ is the canonically
normalized scalar mode. In other words, the quadratic order
perturbation of action (9) is simply

Sð2Þ ¼ 1

2

Z
d4xdrðυ∂2

rυþ υ□υ − Veffυ
2Þ: ð25Þ

The expressions of γðrÞ and ζðrÞ are

ζðrÞ ¼ eA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S3 − 4S2
S3 − S2

s
;

γðrÞ ¼ ζðrÞ × exp

�
−
Z

dr
S3P2 − S2P3

2eA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðS3 − S2ÞðS3 − 4S2Þ

p �
:

ð26Þ
Here we have a constraint for the background solutions,
ðS3 − S2ÞðS3 − 4S2Þ > 0. If it is negative then the coor-
dinate transformation from y to r does not hold. In fact,
there would be a gradient instability if ζðrÞ is imaginary, so
this is not viable. Now we can write the effective potential
in Eq. (24) as

VeffðrÞ ¼ 2

�∂rγ

γ

�
2

−
∂2
rγ

γ
−
S3Q2 − S2Q3

S3 − S2
: ð27Þ

IV. STABILITY PROBLEM AND
LOCALIZATION PROBLEM

We have mentioned the stability problem in the
Introduction. Now let us explain this problem in detail.
Recall that we used the relation □ϵðxσÞ ¼ m2ϵðxσÞ in
Eq. (24). It was obtained by considering the Fourier
expansion in momentum space and using pμpμ ¼ −m2.
Clearly, m plays the role of the four-dimensional mass of
the scalar perturbation mode ϵðxσÞ, and the spectrum is
determined by the background spacetime through (27).
This is actually an assumption of plane wave nature for the
scalar mode ϵðxσÞ. However, it is really a problem of
whether it is consistent to assume that the scalar mode
oscillates with time. The background system would be
unstable if the scalar mode has nontrivial time evolution
like growing solutions. This instability can be described by
the sign of m2. If there exist perturbation modes with
m2 < 0, then we would have an imaginary frequency
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗2

p
, which gives rise to instability and

destroys the static background. Therefore, to get a con-
sistent model it is necessary to have nonnegative m2. We
see that this is actually a tachyon instability problem.
For tensor modes, it is straightforward to know that the

effective potential supports a non-negative m2, since the
perturbation equation can be factorized as Q†Qhμν ¼
m2hμν [24] for the theory with fR > 0. In some other
models considered in the previous literature [18,19,47], the
effective potential for the scalar mode can also be factor-
ized. However, for our case (27), it is not clear whether it
can be factorized for general Palatini fðRÞ theory. If it can
be factorized, then we have

VeffðrÞ ¼ ∂r

�
λ −

∂rγ

γ

�
þ
�
λ −

∂rγ

γ

�
2

: ð28Þ

Comparing this with Eq. (27), we get

S3Q2 − S2Q3

S3 − S2
¼ 2λ

∂rγ

γ
− ∂rλ − λ2: ð29Þ

If this equation has regular solution for λðrÞ, then we can
factorize the Shrödinger-like equation to be�

∂r þ λ −
∂rγ

γ

��
−∂r þ λ −

∂rγ

γ

�
η ¼ m2η; ð30Þ

which obviously has the formalism Q†Qη ¼ m2η and
implies m2 ≥ 0. It also gives the solution for the massless
scalar mode by �

−∂r þ λ −
∂rγ

γ

�
η0 ¼ 0: ð31Þ

The localization condition of the massless scalar
mode is
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Z
jη0j2dr ¼

Z
jη0=

ffiffiffi
ζ

p
j2dy < ∞: ð32Þ

We see that it is the mode η0=
ffiffiffi
ζ

p
that describes the

localization condition in the y coordinate.
There is another possibility which also gives non-

negative m2. Note that Eq. (27) can be written as

��
∂r −

∂rγ

γ

��
−∂r −

∂rγ

γ

�
−
S3Q2 − S2Q3

S3 − S2

�
η ¼ m2η:

ð33Þ

If

−
S3Q2 − S2Q3

S3 − S2
> 0; ð34Þ

then the operator on the left-hand side gives a positive
definite eigenvalue, i.e., m2 > 0. This is also a possibility
that avoids the tachyon instability problem. Note that there
is no massless scalar mode in this case.
Now let us apply the above discussion to the exact

solution for the Palatini fðRÞ braneworld model given by
Ref. [24]. The model is fðRÞ ¼ Rþ αR2, which is a
simple modification to general relativity, and the modifi-
cation is described by the parameter α. The solutions for the
background quantities are

AðyÞ ¼ 2

3ðn − 1Þ ln½sechðkyÞ�; ð35Þ

ϕðyÞ ¼
�
6n − 1

3nþ 2

�
1=3

sech
2n

3ðn−1ÞðkyÞ; ð36Þ

χðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nð6n − 1Þ
3ð3nþ 2Þðn − 1Þκ5

s

×
Z

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sech4ðkyÞ þ 2sech2ðkyÞ

q
: ð37Þ

To make the background solutions consistent, the
parameter n is restricted to be n < −2=3 or 0 < n < 1=6
or n > 1. With these solutions, we can compute the
background quantities Pi, Qi, and Si in Eq. (23). The
explicit expression for the coordinate transformation factor
in (26) is

ζ ¼ sech
2

3ðn−1ÞðkyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð5 coshð2kyÞ þ 3nþ 7Þ
ð9nþ 11Þ coshð2kyÞ þ 30nþ 10

s
:

ð38Þ

This transformation gives the coordinate r ¼ R
dyζðyÞ. We

give the plot of rðyÞ in Fig. 1. Note that if ζ is imaginary
then we would have negative coefficient for Φ̃ and υ, which
leads to gradient instability.
To make the transformation regular, and to avoid

gradient instability, we require ζ to be real. This require-
ment rules out the solution with n < −2=3. Further more,
we have

−
S3Q2 − S2Q3

S3 − S2
¼ 32k2nð5 coshð2kyÞ þ 3nþ 7Þsech 4

3ðn−1ÞðkyÞ
ðn − 1Þðcoshð2kyÞ þ 2Þðð9nþ 11Þ coshð2kyÞ þ 30nþ 10Þ : ð39Þ

For 0 < n < 1=6, the quantity (39) is negative and it may give negativem2. Let us check this by considering the effective
potential Veff directly. The lengthy expression of Veff is given in the Appendix. Note that we write it in the y coordinate,
which does not affect our analyses. Clearly, for 0 < n < 1=6, the potential blows up. We have Veff < 0 at the origin y ¼ 0

10 5 0 5 10
1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

r
10 5 0 5 10

10000

5000

0

5000

10000

y

r

FIG. 1. The plot of the coordinate transformation rðyÞ determined by the transformation function ζ, with n ¼ 1=7 for the left and
n ¼ 5=3 for the right. For 0 < n < 1=6 the coordinate r has a finite range, while for n > 1 the coordinate r has an infinite range.
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(r ¼ 0). In fact, since the transformation function defined
in (26) diverges, the new coordinate r has a finite range.
It implies that VeffðrÞ is actually an infinitely high
potential well. That means all of the scalar modes,
including the massless mode, are localized. This would
contribute a long-range force to the gravity, and cause a
violation to the observed four-dimensional Newtonian
gravity, which is unacceptable. Hence, the solution with
0 < n < 1=6 should also be ruled out. We give a typical
plot of VeffðrÞ and the numerical solution of η0=

ffiffiffi
ζ

p
corresponding to the massless mode in Fig. 2.
Obviously, such a profile is localizable. The nodes
reveal the existence of lower states, the tachyon
modes. So the solutions with 0 < n < 1=6 should also
be ruled out. This result also implies that the effective
potential may not be able to be factorized into the form
(30), since if it can be factorized then there are no
tachyon states.
For n > 1, the effective potential is positive definite.

There is no scalar mode with m2 < 0 in this case.
Therefore, the model is stable under scalar perturbations.
About the massless mode, we failed to get the analytic
solution. But it is straightforward to conclude that it cannot
be localized since the potential is positive definite. Hence
there is no violation to the four-dimensional gravity. The
plot of the potential and the numerical solution of η0=

ffiffiffi
ζ

p
corresponding to the massless mode are given in Fig. 2. As
can be seen, the massless mode diverges at infinity so it
cannot be localized.

The above analysis shows that the model should be
constrained if scalar perturbations are considered. This is
one of our goal of this work. The previous work is not
enough to constrain the model. For the solutions given in
[24], the constraints are n > 1 and ζ2 > 0.

V. CONCLUSIONS

To summarize, we studied the scalar perturbations of
thick braneworld model in Palatini fðRÞ theory. By taking
the advantages of scalar-tensor theory, we avoided dealing
with the perturbations with third-order derivatives. For a
pure geometric theory, we showed that it is impossible to
get a smooth version of braneworld model. This is contrary
to the metric fðRÞ theory [48–52]. For the theory with a
source field, we used some techniques for the constraints,
which can largely simplify the perturbation equations. In
this case, there is only one independent scalar perturbation
mode, although we have a nonminimally coupled scalar
field ϕ and a source scalar field χ. Essentially, this is
because the extra scalar d.o.f. is just an auxiliary field
which is not dynamically independent. This can also be
understood from the fact that the Palatini fðRÞ theory
corresponds to the Brans-Dicke theory with the Brans-
Dicke parameter ωBD ¼ 4=3 in five dimensions, in which
the nonminimally coupled scalar does not have its own
dynamics [42]. So there is only one independent scalar
d.o.f. in this system.
We also analyzed the stability problem and the locali-

zation problem. For a general theory, we failed to get a

FIG. 2. The effective potential VeffðrÞ and the corresponding η0=
ffiffiffi
ζ

p
in y coordinate, with n ¼ 1=7 (up) n ¼ 5=3 (bottom) respectively.

For n ¼ 1=7, VeffðrÞ is an infinitely high potential well, and it has boundary since r has finite range. The plot of η0=
ffiffiffi
ζ

p
reveals that the

massless mode η0 has nodes, so it is not the lowest state, which implies the existence of tachyon. For n ¼ 5=3, the potential is positive
definite. The mode η0=

ffiffiffi
ζ

p
cannot be normalized.
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factorized formalism of the perturbation equation. If it can
be factorized into a formalism like Q†Qη ¼ m2η, then we
can conclude that there are no tachyon states; thus, the
scalar perturbation would be stable under time evolution,
which makes the static system consistent. As an explicit
example, we analyzed some exact background solutions
given in the previous literature. We showed that only the
solutions with n > 1 are stable and the other solutions
should be ruled out if scalar perturbation is considered. The
corresponding massless mode cannot be localized, which
guarantees the recovering of four-dimensional gravity. This
gives some further constraints on the original Palatini fðRÞ
theory.
It is interesting to consider general scalar-tensor theory.

There are more d.o.f., so there are more independent
perturbation equations. Obviously, the scalar modes couple
to each other. The braneworld models with multiple scalar
fields has been considered in Refs. [53–56]. It is interesting
to consider the theory with a nonminimally coupled scalar
field, and find out the conditions under which the theory is
viable, and that will be our future work.
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APPENDIX: THE EXPRESSIONS
OF Pi, Qi, Si, AND VeffðyÞ

In the example of the two-field theory, the coefficients in
Eqs. (21) and (22) are listed below:

P2 ¼ e2A
�
2A0 þ 3ϕ0

0

ϕ0

−
2χ000
χ00

�
; ðA1Þ

Q2 ¼ 4e2A
�
A0 ϕ

0
0

ϕ0

þ A00 þ ϕ00
0

3ϕ0

−
�
A0 þ ϕ0

0

3ϕ0

�
χ000
χ00

�
; ðA2Þ

S2 ¼ −
e2A

9ϕ0

�
4
ϕ02
0

ϕ2
0

− 9A00 þ 3A0 ϕ
0
0

ϕ0

− 3
ϕ00
0

ϕ0

�
; ðA3Þ

P3 ¼ 4e2A
�
7A0 þ 2

ϕ0
0

ϕ0

�
; ðA4Þ

Q3 ¼ 8e2A
�
5A02 þ 2A00 −

ϕ0
02

3ϕ2
0

þ 8

3

ϕ0
0

ϕ0

A0 þ 2

3

ϕ0
00

ϕ0

�
; ðA5Þ

S3 ¼ −4e2A
�
5A0 þ 2

χ000
χ00

��
A0

3ϕ0

þ 4ϕ0
0

9ϕ2
0

−
A00

ϕ0
0

−
ϕ00
0

3ϕ0ϕ0
0

�
:

ðA6Þ

The explicit expression for the effective potential is

VeffðyÞ ¼ fk2ð2ð3nð9nðnð3888n2 þ 70305nþ 449950Þ þ 679790Þ þ 3147190Þ þ 1752239Þ coshð6kyÞ
þ 25ð3n − 1Þð9nþ 11Þ2 coshð12kyÞ − 30ðnð3nð9n − 293Þ − 313Þ − 235Þð9nþ 11Þ coshð10kyÞ
þ 36ðnð9nðnðnð38904nþ 337921Þ þ 874186Þ þ 955526Þ þ 3275674Þ þ 245493Þ coshð2kyÞ
þ 9ð3nðnð3nð128nð249nþ 2827Þ þ 1387381Þ þ 5291653Þ þ 2269913Þ þ 785321Þ coshð4kyÞ
þ 30ðnð3nð9nð204nþ 3895Þ þ 55289Þ þ 97939Þ þ 29521Þ coshð8kyÞ þ 6ð3nð3nðnð12nð21168nþ 136177Þ
þ 3540839Þ3664529Þ þ 4065547Þ þ 741787ÞÞsech 4

3ðn−1ÞðkyÞg=f24ðn − 1Þðcoshð2kyÞ þ 2Þ2
× ð5 coshð2kyÞ þ 3nþ 7Þ½ð9nþ 11Þ coshð2kyÞ þ 30nþ 10�3g: ðA7Þ

Note that the coefficient 3n − 1 of coshð12kyÞ in the numerator and the coefficient n − 1 of the denominator determine the
sign of the effective potential.
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