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We study the postinflationary dynamics of the Standard Model (SM) Higgs field in the presence of a
nonminimal coupling ξjΦj2R to gravity, both with and without the electroweak gauge fields coupled to the
Higgs field. We assume a minimal scenario in which inflation and reheating are caused by chaotic inflation
with a quadratic potential, and no additional new physics is relevant below the Planck scale. By using
classical real-time lattice simulations with a renormalization group improved effective Higgs potential and
by demanding the stability of the Higgs vacuum after inflation, we obtain upper bounds for ξ, taking into
account the experimental uncertainty of the top-Yukawa coupling. We compare the bounds in the absence
and presence of the electroweak gauge bosons and conclude that the addition of gauge interactions has a
rather minimal impact. In the unstable cases, we parametrize the time when such instability develops. For a
top-quark mass mt ≈ 173.3 GeV, the Higgs vacuum instability is triggered for ξ≳ 4–5, although a slightly
lower mass of mt ≈ 172.1 GeV pushes up this limit to ξ ≳ 11–12. This, together with the estimation
ξ ≳ 0.06 for stability during inflation, provides tight constraints to the Higgs field-curvature coupling
within the SM.
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I. INTRODUCTION

The Standard Model (SM) potential may become neg-
ative at very high energies [1,2]. This has prompted an
important effort to determine whether the electroweak
vacuum is, in the present, stable or unstable. Current
measurements of the top-quark and Higgs masses suggest
that we live in a metastable Universe: The probability of the
Higgs field to decay into a higher-scale negative-energy
vacuum is nonzero, but the estimated decay time is much
larger than the present age of the Universe [3].
However, the situation is quite different in the early

Universe. In this case, high energies and high spacetime
curvature can make the vacuum more unstable. In particu-
lar, this may happen during inflation [3–12] or during the
successive period of (p)reheating [13–17]. The dynamics of
the Higgs field Φ during and after inflation, as well as the
potential instability of the Higgs vacuum, depends very
sensitively on the strength of its nonminimal coupling to
the scalar curvature, defined as ξjΦj2R, with R the Ricci
scalar. This interaction is necessary to renormalize the
theory in curved space [18,19], and, given that ξ runs with

energy, it cannot be set to zero at all energy scales.
Gravitation is very weak in comparison with the other
interactions, so current particle-physics experiments pro-
vide only very weak constraints to this coupling [20]. The
coupling ξ can be considered, therefore, as the last
unknown parameter of the SM.
If ξ≲ 0.1, the Higgs field is effectively light during

inflation and behaves as a spectator field, forming a
condensate with a large vacuum expectation value (VEV)
[3,21–23]. If it exceeds the position of the potential barrier,
the Higgs field reaches its true negative-energy vacuum and
generates patches of anti–de Sitter space, resulting in a
catastrophic outcome for our Universe [3–8,10–12]. One
simple way to prevent this from happening is to consider a
sufficiently low inflationary scale, so that even if the Higgs
field is excited during inflation, its amplitude never reaches
the potential barrier. Another way of ensuring vacuum
stability is to consider values of the top-quark mass 2–3
sigma below its central value mt ¼ 172.44�0.13ðstatÞ

�0.47ðsystÞ GeV
[24], so that the second minimum in the Higgs potential is
either shifted to sufficiently high energies or is simply not
present. In any case, if the Higgs field remains stable during
inflation, it starts oscillating around the minimum of its
potential shortly after inflation ends, rapidly decaying into
the SM gauge bosons and fermions via nonperturbative
parametric effects [23,25–27]. This may have relevant
cosmological consequences, like the realization of success-
ful reheating into the SM without additional mediator
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fields [28], the realization of baryogenesis via leptogenesis
in certain extensions of the SM [29–31], or the production of
a primordial background of gravitational waves peaked at
high frequencies [25,32].
On the other hand, if ξ ≫ 0.1, the height of the potential

barrier increases, and the Higgs field is no longer a light
degree of freedom during inflation [3,7]. In this case, the
Higgs field acquires an effective mass of the order of m2

Φ ≃
ξR ∼ 12ξH2� ≳H2� during inflation, with H� the inflation-
ary Hubble rate. This prevents the Higgs field from
developing large amplitude fluctuations during inflation.
However, the situation is quite the opposite after inflation
ends. The postinflationary oscillations of the inflaton ϕ
around the minimum of its potential induce rapid changes
in the spacetime curvature R, which becomes negative
during a significant fraction of time in each oscillation. The
effective mass of the Higgs field becomes tachyonic during
those moments, m2

Φ ∝ R < 0. If ξ is sufficiently large, the
Higgs field may be significantly excited during the
tachyonic periods, potentially triggering the vacuum insta-
bility [13]. This issue has been studied lately, using both
analytical and numerical techniques as well as classical
real-time lattice simulations [13–15]. The results of all of
these works agree qualitatively, finding ξ≲Oð1Þ–Oð10Þ as
an upper bound for achieving stability after inflation.
A similar lattice analysis of the values of the Higgs-inflaton
coupling inducing the instability of the Higgs vacuum has
also been carried out in Ref. [16], while an analysis of the
combined effects of both Higgs field-curvature and Higgs-
inflaton couplings has been done in Ref. [17].
In this work, we use classical field theory lattice

simulations to constrain the range of allowed ξ values
which ensure the stability of the Higgs vacuum after
inflation. We do a systematic parameter analysis of the
Higgs postinflationary dynamics. We use in the simulations
the renormalization group improved Higgs effective poten-
tial and study the impact of the initial conditions and
number of Higgs components in the results. We include
also an analysis of how the timescale at which the Higgs
field develops the instability depends on ξ and the top-
quark mass.
Furthermore, we consider the more realistic situation, so

far not analyzed in the literature, where the Higgs field is
coupled to the electroweak gauge bosons. We mimic the
SM gauge interactions with an Abelian-Higgs analogue
model but argue that this is enough to demonstrate the
effect of restoring the gauge interactions. Our Abelian setup
captures well the gauge boson field effects onto the Higgs
postinflationary dynamics, as we expect the non-Abelian
terms of the Lagrangian to be subdominant, especially at
the earliest times. In this paper, we assess for the first time
the implications for the ξ bounds due to the presence of the
SM electroweak interactions.
We have assumed throughout this work a chaotic infla-

tionary model 1
2
m2

ϕϕ
2, with mϕ ≃ 1013 GeV fixed by the

observed amplitude of the cosmic microwave background
(CMB) anisotropies [33]. We note that, although the simple
chaotic inflation model with a quadratic potential is in
tension with observational data [33,34], it is possible to
modify the large field behavior to make it consistent with
observations [34,35], without changing its postinflationary
dynamics.
The structure of the paper is as follows. In Sec. II, we

present a brief review of the inflaton and Higgs dynamics
after inflation in the presence of a Higgs field-curvature
nonminimal coupling. In Sec. II B, we present the
equations of motion and the initial conditions of the
different fields as well as some qualitative aspects of our
lattice simulations. The following three sections present the
results from our lattice simulations, with an increasing
degree of complexity. In Sec. III, we consider a free scalar
field with no potential. This is useful to understand better
the results in Sec. IV, where we introduce the renormaliza-
tion group improved Higgs potential. We determine the
values of the coupling ξ that give rise to an unstable
Universe and parametrize the timescale at which the
instability takes place, as a function of ξ and mt. In
Sec. V, we repeat the same analysis but including also
the gauge bosons in the lattice. In Sec. VI, we discuss our
results and conclude. Finally, in the Appendix, we discuss
the details of the lattice formulation we have used in our
simulations.
In this paper, we use the signature ð−;þ;þ;þÞ

and, hence, consider a flat background with Friedman-
Lemâitre-Robertson-Walker (FLRW) metric like ds2 ¼
−dt2 þ a2ðtÞdxidxi, where aðtÞ is the scale factor and t
is the cosmic time. We refer to the reduced Planck mass
as mp ¼ ð8πGÞ−1=2 ≃ 2.44 × 1018 GeV.

II. HIGGS EXCITATION DUE
TO INFLATON OSCILLATIONS

We consider throughout the paper the inflationary chaotic
model VðϕÞ ¼ 1

2
m2

ϕϕ
2, where ϕ is the inflaton, and its mass

is fixed to approximately mϕ ¼ 1.5 × 1013 GeV in order to
explain the CMB anisotropies. If ϕ≳Oð10Þmp, the field is
in a slow-roll regime, causing the inflationary expansion of
the Universe. However, when HðtÞ ≈mϕ with HðtÞ the
Hubble parameter, the inflaton field starts oscillating around
the minimum of its potential, ending the inflationary stage.
Let us define t� as the time whenHðt�Þ ¼ mϕ holds exactly
and consider this moment as the onset of the inflaton
oscillations. The coupled equations of motion of the inflaton
and scale factor are, respectively,

ϕ̈þ 3HðtÞϕ̇þm2
ϕϕ ¼ 0; ð1Þ

H2ðtÞ≡
�
_a
a

�
2

¼ 1

6m2
p
ðϕ̇2 þm2

ϕϕ
2Þ: ð2Þ
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To obtain the initial conditions for the homogeneous
inflaton, we have solved numerically the coupled inflaton
and Friedmann equations, Eqs. (1) and (2), imposing the
slow-roll conditions ϕ̇ ≃ −m2

ϕϕ
2=3H2 and ϕ̇ ≪ m2

ϕϕ
2 well

before the end of inflation. From the numerical solution, we
obtain the time t� when Hðt�Þ ¼ mϕ holds exactly. At this
moment, we find

ϕðt�Þ ≃ 2.32mp; ϕ̇ðt�Þ ≃ −0.78mϕmp: ð3Þ

Using Eqs. (1) and (2), the Ricci scalar can be expressed in
terms of ϕ and ϕ̇, like

RðtÞ≡ 6

��
ȧ
a

�
2

þ ä
a

�
¼ 1

m2
p
ð2m2

ϕϕ
2 − ϕ̇2Þ: ð4Þ

The inflaton field after inflation behaves, approximately, as a
damped oscillator with a decaying amplitude [36]:

ϕðtÞ ≃ ϕaðtÞ sinðmϕtÞ; ϕaðtÞ ¼
ffiffiffi
8

3

r
mp

mϕt
: ð5Þ

Each time the inflaton field crosses around zero, ϕ ≈ 0, we
have RðtÞ < 0 from Eq. (4). This can be clearly seen in
Fig. 1, wherewe plot both the inflaton and the Ricci scalar as
a function of time.
Let us focus now on the postinflationary dynamics of the

Higgs field. The relevant piece of the Standard Model we
need to consider is

LSM ⊃
Z

d4xa3
�

1

4g2s
FμνFμνþjDμΦj2þ ξRjΦj2þVðΦÞ

�
;

ð6Þ

where VðΦÞ≡ λðΦ†Φ − v2=2Þ2 is the Higgs potential, v ¼
246 GeV is the electroweak VEV, ξ is the strength of the

coupling of the Higgs field to the Ricci scalar, Fμν is the
gauge field strength (assumed Abelian for simplicity), and
Dμ ¼ ∂μ − iAμ=2 is the gauge covariant derivative describ-
ing the interaction of the Higgs field with the electroweak
gauge bosons. Because of the coupling to the scalar
curvature, the Higgs field gets an effective mass
m2

ΦðtÞ ¼ ξRðtÞ. Therefore, the Higgs field becomes effec-
tively tachyonic with m2

Φ < 0, during the intervals when
the Ricci scalar becomes negative. Because of this, there is
a strong periodic excitation of the Higgs field, a phenome-
non known as tachyonic resonance [37].
We can estimate both the period of time that the Ricci

scalar becomes negative as well as the maximum momenta
excited by the resonance. The inflaton crosses zero peri-
odically at mϕtn ¼ ðn − 1=2Þπ, n ¼ 1; 2; 3;…. We can
determine a typical envelope amplitude between the nth
and the (nþ 1)th crossings, as ϕn=mp ¼ ffiffiffiffiffiffiffiffi

8=3
p

=πn. When
the inflaton crosses around zero, the Ricci scalar becomes
negative R ≃ ϕ2

nðmϕ=mpÞ2ð3m2
ϕΔt2 − 1Þ < 0 for a time

mϕΔt≲ 2=
ffiffiffi
3

p
≈ 1.2, while the inflaton amplitude is

jϕj ≲ ϕn=
ffiffiffi
3

p
∼ 0.3mp=n. On the other hand, the greater

the coupling ξ, the larger the range of Higgs tachyonic
modes excited while the curvature is negative. We estimate
this as an infrared (IR) band from k ¼ 0 up to a cutoff Λ,
k ∈ ½0;Λ�, with

Λ ≃
2

ffiffiffi
2

pffiffiffi
3

p an
πn

ffiffiffi
ξ

p
; ð7Þ

where an is the scale factor at tn (we take initially a1 ¼ 1).
Let us consider the unitary gauge so that the SM Higgs
doublet can be written as a real degree of freedom,
Φ ¼ φ=

ffiffiffi
2

p
. Let us redefine the Higgs amplitude as h≡

φ=a3=2 so that, in cosmic time, this rescaling eliminates the
friction term in the Higgs equation of motion (EOM). If we
ignore the presence of the gauge bosons and of the Higgs
self-interacting potential, the equation of motion of its
Fourier modes is

ḧk þ
�
k2

a2
þ ξRðtÞ þ Δ

�
hk ¼ 0; hk ≡ φkffiffiffi

2
p ; ð8Þ

where Δ≡ − 3
4
ȧ2

a2 −
3
2
ä
a, so that Δ ≪ k2=a2 for subhorizon

scales. We can then set Δ → 0 and, using Eqs. (4) and (5),
write the previous EOM as a Mathieu equation:

d2hk
dz2

þ ðAk − 2q cosð2zÞÞhk ¼ 0; ð9Þ

where z≡mϕðt − t�Þ and

Ak ≡ k2

a2m2
ϕ

þ ϕ2
nðzÞ
2m2

p
ξ; q≡ 3ϕ2

nðzÞ
4m2

p

�
ξ −

1

4

�
: ð10Þ

FIG. 1. The red line shows the oscillations of the inflaton field
as a function of time in units of mp ¼ ð8πGÞ−1=2, and the blue
line shows, for comparison, the corresponding (dimensionless)
Ricci scalar m−2

ϕ R. A solid line indicates positive values, and
a dashed line negative values.
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These equations of motion have been extensively studied in
the context of parametric resonance in m2

ϕϕ
2 preheating;

see, for example, [36,38]. The main difference with respect
to standard parametric resonance is that we are not con-
strained now to the case Ak > 2q, and hence we have
greater resonance bands which induce a stronger particle
creation effect in the broad resonance regime q ≫ 1.
However, note that, due to the expansion of the
Universe, ϕnðzÞ decreases, and hence this pushes the
Higgs field into a narrow resonance regime, where this
effect is much weaker. The dynamics of this theory was
studied in Ref. [7] with the properties of tachyonic
resonance of Ref. [37] and after that numerically in
Ref. [14] and in the lattice in Refs. [15–17].

A. Higgs potential

Let us consider now the effect of plugging back the
Higgs potential. In particular, we consider the renormali-
zation group improved Higgs potential

VðφÞ ¼ λðφÞ
4

φ4; ð11Þ

valid for large field amplitudes above the electroweak scale,
φ ≫ v≡ 246 GeV. Here λðφÞ is the renormalized Higgs
self-coupling at the renormalization scale μ ¼ φ, where the
running behavior has been computed up to three loops
[1,2]. The running is very sensitive to the strong coupling
constant αs, Higgs mass mh, and Yukawa top coupling yt,
the latter being currently the strongest source of uncer-
tainty. We show in Fig. 2 the running of λðφÞ for the central
values αs ¼ 0.1184 and mh ¼ 125.5 GeV and different
values of the Yukawa top-quark coupling. The figure has
been obtained with the public package of Ref. [39]. We
observe that the Higgs potential possesses a maximum
(a barrier) at a given scale φþ and crosses zero at φo,
becoming negative at higher scales. We show these values

for different top-quark masses in Table I. For the world-

average top-quark mass mt ¼ 172.44�0.13ðstatÞ
�0.47ðsystÞ GeV [24],

we have φo ≈ 1011 GeV. Moving this mass ∼1.9 sigma
below, we have φo ≈ 1014 GeV, while for ∼2.5 sigma
below φo is pushed to infinity. Let us also note that the
effective potential also depends on the spacetime curvature
through loop corrections, but, as seen in Ref. [40], these
terms are relevant only for small couplings ξ≲ 1.
Let us now incorporate the potential into the Higgs mode

equation:

ḧk þ
�
k2

a2
þ ξRðtÞ þ Δþ λðφÞ

a3
hh2i

�
hk ¼ 0: ð12Þ

If λ > 0, the Higgs tachyonic resonance effect weakens, as
the Higgs self-interaction λðφÞhh2i > 0 compensates the
negativeness of ξR < 0. If λ < 0, the tachyonic effect, on
the contrary, is enhanced. The presence of the Higgs
potential represents a correction over the mode excitation
described by Eqs. (8) and (10). We need therefore to
introduce the system into a lattice, where we can solve
numerically the EOM of the Higgs including its own
potential nonlinearities, taking into account both cases
λ < 0 and λ > 0, changing locally due to the running of
λ, depending on the Higgs value at every lattice site. Before
we move on into the simulation details, we need to add a
step further, restoring the electroweak gauge interactions of
the Higgs.

B. Electroweak gauge interactions

The equations of motion in the continuum can be
derived from the minimization of action (6). We take the
Higgs Φ ¼ φ=

ffiffiffi
2

p
as a complex doublet, with four real

components

φ ¼
�
φ1 þ iφ2

φ3 þ iφ4

�
; φn ∈ Re: ð13Þ

As we will argue later, we have neglected the purely
non-Abelian terms of the gauge field self-interactions.

FIG. 2. Running of λðφÞ as a function of the Higgs field φ for
αs ¼ 0.1184, mh ¼ 125.5 GeV, and different values of the top-
quark mass mt, obtained from the public package in Ref. [39].
The corresponding gray dashed lines indicate the interpolation
λinðjφjÞ used in the lattice simulations.

TABLE I. The values of the Higgs field where the potential
Eq. (11) has a maximum (φþ) and crosses zero (φ0), obtained for
αs ¼ 0.1184, mh ¼ 125.5 GeV, and different values of the top-
quark mass. These quantities have been obtained with the public
package of Ref. [39].

mt (GeV) φþ (GeV) φ0 (GeV)

172.12 7.83 × 1011 1.01 × 1012

172.73 5.20 × 1010 6.70 × 1010

173.34 7.49 × 109 9.65 × 109

173.95 1.67 × 109 2.15 × 109

174.56 4.92 × 108 6.34 × 108
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The covariant derivative is then simply written as
ðDμÞab ≡ δabð∂μ − iAμÞ, with a, b ¼ 1, 2. The equations
of motion, in the temporal gauge A0 ¼ 0, are

Φ̈ −
1

a2
DiDiΦþ 3

_a
a
_Φþ 2½ξRþ λðjφjÞðΦ†ΦÞ�Φ

þ ∂λ
∂jφj ðΦ

†ΦÞ2 ¼ 0; ð14Þ

Äj−
1

a2
ð∂i∂iAj−∂i∂jAiÞþ

_a
a
Ȧj¼2g2sIm½Φ†ðDjΦÞ�; ð15Þ

∂iȦi ¼ 2g2sa2Im½Φ† _Φ�: ð16Þ

The third of these equations is the Gauss constraint, a
relation between fields that must be obeyed at all times. In
the lattice, we solve a discrete version of Eqs. (14)–(16),
obtained from a discrete gauge-invariant action; see
Eqs. (A8) and (A9). Details of the lattice formalism are
given in the Appendix. Note also that this is not, strictly
speaking, the standard Abelian-Higgs model, as we are
introducing two Higgs complex fields instead of just one.
The form of aðtÞ in these equations, as well as the Ricci

scalar RðtÞ ¼ R½a; ȧ; ä�, is obtained from the self-consis-
tent solution of the inflaton and Friedmann equations (1)
and (2). As we shall see, for the values of ξ considered in
this work, the energy of the Higgs field is always several
orders of magnitude subdominant with respect to the
energy of the inflaton. Hence, we just ignore the contri-
bution of the Higgs field to the Friedmann equation. Note
that the inflaton is taken as a homogeneous field, and we do
not introduce it explicitly in the lattice; it simply dictates the
form of aðtÞ and RðtÞ as a function of time.
In Sec. III, we study tachyonic resonance in the

lattice, taking the Higgs field as a free field without self-
interaction. The Higgs field will then be excited only due to
the rapidly changing spacetime background. In Sec. IV, we
reintroduce back the Higgs potential but ignore yet its
interaction with the gauge bosons. We determine under
those circumstances what values of ξ lead the Higgs field to
become unstable so that it rolls rapidly into the true
vacuum. In Sec. V, we finally incorporate a gauge structure
into the simulations and study their effect on the postinfla-
tionary Higgs dynamics, reevaluating again the critical
values of ξ.
Choosing μ ¼ jφj, we obtain the renormalization group

improved effective potential,1 introducing in the lattice the
Higgs potential evaluated as

VðjφjÞ ¼ λðjφjÞ
4

jφj4; jφj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiX4
n¼1

φ2
n

vuut ; ð17Þ

where we assume jφj ≫ v. As seen before, the Higgs
self-coupling λðφÞ runs with the value of φ. We introduce
the running in our simulations as a local function of the
lattice point n, i.e., λðjφðnÞjÞ: As the value of jφj changes
from lattice point to lattice point, so does too the value
of the Higgs self-interaction. More specifically, we
introduce a quartic logarithmic polynomial λinðjφjÞ ¼P

4
n¼0 cnðlog jφjÞn, interpolating the three-loop calculation

of the running obtained in Ref. [39] for the relevant range of
Higgs amplitudes jφj (see Fig. 2). As we have mentioned,
the running of the potential depends strongly on the value
of the top-quark mass, the current world average being

mt ¼ 172.44�0.13ðstatÞ
�0.47ðsystÞ GeV [24]. We take this uncertainty

into account by providing different sets of fcng constants,
corresponding to different interpolations of the running for
each value of mt.
Our interpolation can describe appropriately only the

running of λ for certain values of jφj, failing at low and high
field amplitudes. This is, however, not a problem, because
those field values are never reached anywhere in the lattice,
before the instability of the Higgs field is developed. On the
other hand, when the Higgs has become unstable and
decays towards the negative-energy vacuum, the amplitude
of the Higgs field starts increasing very fast, reaching the
region where the interpolation fails. However, our aim in
this work is to determine the specific time when the
instability is developed, not to characterize the dynamics
of the Higgs field once the instability has commenced. In
fact, in order to ensure numerical stability during the Higgs
field transition from positive to negative λ, it is convenient
to modify the high-energy running of the latter, so that it
generates a second vacuum at an energy lower than that
dictated by the real running predicted in the Standard
Model. This is achieved for c4 > 0. In particular, we have
chosen the constants so that the negative-energy vacuum is
generated at approximately φ ¼ φv ≈ 1016 GeV. If the
Higgs amplitude goes to this vacuum with negative
potential energy, we say that the Higgs has become
unstable. We have explicitly checked that our characteri-
zation of the times of instability is independent on the
particular choice of constants cn (for a given mt value), as
long as they fit the Higgs effective potential within the
range ∼109–1014 GeV.

C. Initial conditions

We start the lattice simulations at time t ¼ t�, where
we impose for all four components of the Higgs that their
initial homogeneous amplitude vanishes: φnðt�Þ ¼ 0,
n ¼ 1, 2, 3, 4. We then add on top a spectrum of

1As argued in Ref. [7], the scale choice should also involve the
Ricci scalar R, but in the current time-dependent case it could lead
to unphysical effects.
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fluctuations, which mimic the spectra of quantum vacuum
fluctuations,2

hjφkj2i ¼
1

2a3�ωk
; ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a2�
þ ξR�

s
; ð19Þ

where a� ¼ aðt�Þ≡ 1 and R� ≡ Rðt�Þ ≈ 10H2� from
Eq. (4).
The spectra of quantum fluctuations (19) is set in the

lattice in a similar way as in LATTICEEASY [41], imposing in
momentum space the following spectra for the Higgs field
amplitude and derivatives:

φnðkÞ ¼
jφnjffiffiffi
2

p ðeiθn1 þ eiθn2Þ ðk < kcÞ;

φ0
nðkÞ ¼

jφnjffiffiffi
2

p iωk;nðeiθn1 − eiθn2Þ ðk < kcÞ; ð20Þ

where ωk;n ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=a�Þ2 þ ξR�

p
and θn1 and θn2 are real

phases drawn from a uniform random distribution in the
interval θn1, θn2 ∈ ½0; 2πÞ, whereas jφnj varies according to
the probability distribution

PðjφnjÞdjφnj ¼
2jφnj
ω2
k;n

e
−jφn j2

ω2
k;n djφnj: ð21Þ

The ultraviolet cutoff kc is introduced in order to prevent
the excitation of UV modes which are not expected to be
excited by the tachyonic resonance, i.e., kc ≈ Λ with Λ
given by Eq. (7).
Hence, the variance of (a component of) the Higgs field

initially is

hφ2�i ¼
1

4π2a3�

Z
kc

0

dk
k2

ωk

¼ 1

8π2

�
kcωkc þ ξR� log

�
ξR�

kc þ ωkc

��
; ð22Þ

where we have taken a� ¼ 1 in the second equality. Typical
numbers chosen in our simulations are ξ ∼ 10 and
kc ∼ 10H�, which gives an initial Higgs amplitude of

ffiffiffiffiffiffiffiffiffi
hφ2�i

q
≈ 0.82H� ≈ 1.2 × 1013 GeV: ð23Þ

Typically,
ffiffiffiffiffiffiffiffiffi
hφ2�i

p
≫ φþ, and hence the Higgs field may

already be in the right side of the barrier when the initial
conditions are set. This, however, does not mean that the
Higgs field will immediately become unstable, as the
mainly positive sign of R may impede it. We shall discuss
this issue in more detail in Secs. IV and V. Let us also
remark that this way of fixing the initial conditions is
appropriate only if the tachyonic resonance regime of the
system enhances the Higgs amplitude significantly over the
value given in Eq. (23). If it does not, we cannot trust the
lattice approach. Finally, let us also note that there is a
contribution to the Higgs effective mass from its self-
interactions; i.e., the effective Higgs mass should be rather
m2

eff ≈ ξR� þ λhφ�i2. Taking λ ≈ −0.01, ξ ≈ 10, and
H� ¼ mϕ ≈ 6 × 10−6mp, we see that the second term
(Higgs self-interaction) is negligible with respect to the
first one (Higgs nonminimal coupling).

III. SIMULATIONS WITH A FREE
SCALAR FIELD

In this section, we study the case of a noninteracting
scalar field; i.e., we solve only the first equation in
Eqs. (14)–(16), setting λ ¼ gs ¼ 0. Although this is obvi-
ously not a physical case, it will be helpful to understand
our later results better when we include the Higgs self-
interactive potential. Thus, we consider now a four-
component Higgs field, coupled to the spacetime curvature
through the term ξRΦ†Φ, with R½ϕ; ϕ̇� evolving due to the
oscillating inflaton. We have done several lattice simula-
tions of this system, varying the coupling ξ within the
range ξ ∈ ½4; 70�.
We show in Fig. 3 the spectra of the Higgs field for the

particular cases ξ ¼ 5 and ξ ¼ 30. In both panels, the red
color corresponds to early times, while dark blue and
purple corresponds to late times. In these spectra, a cutoff
has been put in the distribution of initial fluctuations at the
scale kc, as indicated in Eq. (20). The value of kc has been
estimated from a previous set of lattice simulations without
a cutoff, in which we see that, for k > kc, the Higgs
excitation due to the tachyonic resonance is negligible.
Both spectra grow very fast, saturating eventually at a time
t ≈ tres, defined below. Naturally, the spectra grows several
orders of magnitude more in the ξ ≈ 30 case (right panel in
Fig. 3) than in the ξ ≈ 5 case (left panel in Fig. 3), as the
tachyonic effect is stronger in the first case.
In Fig. 4, we show the Higgs conformal and physical

amplitudes as a function of time, averaged over the whole
volume of the lattice, for the couplings ξ ¼ 3, 6, 10, 15, 30.
We remind that this plot is for a four-component Higgs
field, while for a single component we have hφ2

ni ≈ hφ2i=4
for each n ¼ 1, 2, 3, 4.

2Our initial conditions are set at a time when the slow-roll
conditions are not yet totally broken. Therefore, we can introduce
instead quantum vacuum fluctuations in de Sitter,

hjφkj2i ¼
πe−πIm½ν�

4H�a3�

����Hð1Þ
ν

�
k

a�H�

�����2 ð18Þ

with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − ðξR�=H�Þ2

p
. However, for the couplings ξ > 4

we are considering, this spectra is almost identical to the FLRW
case described by Eq. (19).
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We expect the Higgs excitation to end when q ≲ 1; see
Eq. (10). Taking q ¼ 0.2 as the condition signaling the end
of the tachyonic resonance regime, we find, using Eq. (5),
that the time tres it takes to switch off the resonance is

mϕðtres − t�Þ ≈ 1.58
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ξ − 1

p
: ð24Þ

In the figure, we indicate this time with vertical dashed
lines. We see that for t≲ tres particle creation is exponen-
tial, and the greater the ξ, the stronger the growth of the
conformal Higgs amplitude h ¼ aφ. However, as we
approach t ≈ tres, the Higgs excitation stops. From then
on, the dynamics of the Higgs field is dominated by the
expansion of the Universe. More specifically, we have
found that the late-time behavior of the Higgs amplitude is

hjφðtÞji ∼ ðmϕtÞ−ð0.64�0.03Þ; mϕt → ∞; ð25Þ

where the particular numerical value of the exponent
depends on the value of ξ considered. We indicate this
in the left panel in Fig. 4 with dashed lines. As expected,
Eq. (25) indicates that hφi ∝ a−1ðtÞ. We have found that a
rough estimate for the Higgs amplitude for late times is

hjφðtÞji ≈ esðξÞðmϕtÞ−pðξÞmp;

sðξÞ≡ −12.1þ 0.17ξþ 0.00046ξ2;

pðξÞ≡ 0.67 − 0.0048 log ξ − 0.0017ðlog ξÞ2; ð26Þ

where the first factor accounts for the initial excitation of
the Higgs modes and the second accounts for the later
energy dilution.
Before we move on, it is important to note that, as we

decrease ξ, the amplitude of the excited IR modes decreases
significantly, being comparable to the amplitude of the
(nonexcited) UV modes for very low couplings. This
signals that the lattice simulations cannot be trusted for
these low couplings, because there is no significant
excitation of the Higgs field over the initial vacuum
fluctuations. Correspondingly, for these low couplings,
the contribution of the UV modes to the Higgs amplitude
becomes increasingly important, and hence its value can
depend strongly on where we put the cutoff kc of the initial
fluctuations. Therefore, there is a minimum value ξ for
which we can trust the lattice simulations. In this paper, we

have determined this condition as hφðtresÞi
hφ�i

aðtresÞ
a�

> 2, which

FIG. 3. The time evolution of the Higgs field spectra κ3a2jφκj2 as a function of κ ≡ k=mϕ, for the noninteracting case (Sec. III) with
the Higgs field-curvature couplings ξ ¼ 5 (left panel) and 30 (right panel). The different colored lines show the spectra at different times,
going from early times (red) to late times (purple). The time interval between lines is mϕΔt ¼ 2, so mϕðt − t�Þ ¼ 0; 2; 4;…; 100.

FIG. 4. Left: The Higgs conformal amplitude a2hφ2i obtained from lattice simulations, for the noninteracting case (Sec. III) with the
Higgs field-curvature couplings ξ ¼ 1=6, 3, 6, 10, 15, 30. The dashed, vertical lines indicate the estimated time tres. Right: The root
mean square of the Higgs physical amplitude hφ2i for the same couplings. We indicate in dashed lines the corresponding fit (25) for the
late-time dynamics.
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means basically that the contribution to the Higgs ampli-
tude from the Higgs excitation is greater than the one from
the Higgs initial vacuum fluctuations. With this, we find
that we cannot trust simulations with ξ≲ 4.

IV. SIMULATIONS WITH AN
UNSTABLE POTENTIAL

Let us now move to simulations with the full Higgs
potential (11), including the four components of the Higgs
field but yet without including gauge interactions. All
the results of this section have been obtained with lattice
cubes of N3 ¼ 2563 points and minimum momentum
pmin ¼ 0.18mϕ.
To get a qualitative understanding of the dynamics, let us

recall the linearized equation of motion (8) for the Higgs
field modes hk ≡ φka3=2. For high Higgs field values,
φ > φ0, the self-coupling is negative λðφÞ < 0, and there-
fore the interaction term tends to increase the Higgs field
value and induce a transition to the negative-energy
vacuum. The more the Higgs field has been amplified
by the tachyonic resonance, the faster the instability is. On
the other hand, because the Ricci scalar remains a larger
time positive than negative during each inflaton oscillation,
the nonminimal coupling term ξRðtÞ effectively creates a
potential barrier than resists this increase. The amplitude of
the curvature term decays as ξRðtÞ ∝ a−3ðtÞ ∝ t−2, so it
becomes, however, gradually less important. If it contrar-
ests the instability until the Higgs field amplitude has
decreased below the barrier scale φ < φ0, then the Higgs
field remains stable throughout the entire evolution.
Because the amplification by the tachyonic resonance
depends exponentially on the nonminimal coupling ξ
[see Eq. (26)], whereas the effective barrier due to ξ depends
on it only linearly, one expects that for high ξ the instability
takes place faster, and for low enough ξ it is prevented
completely.
Figure 5 shows the volume-averaged amplitude of the

Higgs field hjφji as a function of time, for different choices
of the Higgs field-curvature coupling ξ, obtained directly
from lattice simulations. In this figure, we have used the
running of the potential corresponding to the top-quark
mass mt ¼ 172.12 GeV; see Fig. 2. This potential has the
barrier at φþ ≈ 7.8 × 1011 GeV. We can see that, for initial
times mϕðt − t�Þ≲ 10, the amplitude grows (in an oscillat-
ing way) due to the Higgs tachyonic resonance regime, as
described in Sec. II.
In Fig. 5, we see that for high values of the nonminimal

coupling, ξ ≥ 16, the Higgs field becomes unstable during
the tachyonic resonance, triggering a transition to the high-
energy vacuum φ ¼ φv. For lower values of the non-
minimal coupling, the tachyonic resonance ends before the
Higgs field has become unstable. After this, the behavior is
initially similar to the free field case discussed in Sec. III:
The system settles in a quasistationary state in which the

field amplitude gradually decreases due to the expansion
of space. In the intermediate range of couplings,
12.2 ≤ ξ ≤ 14, the instability eventually takes place, at a
time that we denote by ti. We indicate this with a vertical
dashed line in Fig. 5.
For ξ ≤ 12, the field amplitude eventually decreases

below the potential barrier, φ < φþ. By this time, the
barrier stabilizes the field, and therefore the instability does
not take place at all. This demonstrates that physically the
instability is due to the tachyonic resonance. Even though
the amplitude of the initial vacuum fluctuations is higher
than the barrier scale, it is not high enough to lead to an
instability before it is damped to safe values by the
expansion of the Universe. From the spectra shown in
Fig. 6, we can see that the infrared modes have to be
amplified by roughly 3 orders of magnitude by the

FIG. 5. The volume-average value of the Higgs field jφj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiP
nφ

2
n

p
obtained from lattice simulations with an unstable

potential (Sec. IV), for the top-quark mass mt ¼ 172.12 GeV.
Each line represents simulations with a different value of ξ. For
the cases in which the Higgs field develops an instability, the
vertical dashed lines indicate the instability time mϕti. The two
dashed horizontal lines indicate the position of the barrier φþ
estimated for this potential and the (modified) high-amplitude,
negative-energy vacuum φv.

FIG. 6. Higgs field spectra κ3a2jφkj2 as a function of κ ¼ k=mϕ

in the presence of an unstable potential (Sec. IV), for ξ ¼ 12.2
and mt ¼ 172.12 GeV. The spectra are depicted at times
mϕðt − t�Þ ¼ 0; 10; 20;…, going from early times (red) to late
times (dark blue).
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tachyonic resonance in order for the instability to take
place. In particular, this means that the use of classical field
theory simulations is well justified in this case.
We can explain the triggering of the Higgs instability in

terms of the balance between the terms ξR and −λðφÞhφ2i
that appear in the EOM of the field modes, Eq. (12). We
have plotted in Fig. 7 the time evolution of these two terms
for mt ¼ 172.12 GeV and different values of ξ. Although
ξR is periodically oscillating between positive and negative
values, the resulting oscillation average is always positive.
We observe that, initially, the first term dominates over the
second, but, as commented, when (if) the absolute value of
the second term becomes of the same order of magnitude
as the first one, the Higgs field becomes unstable. This can
happen during the initial regime of tachyonic resonance or
later on due when the resonance is already switched off, as
R ∝ 1=a3 whereas hφ2i ∝ 1=a2.
In conclusion, as expected, we can define a critical

coupling, ξc ≈ 12 for mt ¼ 172.12 GeV, so that for ξ≲ ξc
the Higgs field is always stable, while for ξ≳ ξc the field
becomes unstable at a certain time mϕti, whose numerical
value decreases as ξ gets greater. This general picture also
applies for other values of the top mass. If we take the top-
quark mass a bit higher, φþ is lower, and hence the Higgs
field takes a much longer time to settle on the safe side of
the potential barrier. Because of this, the larger the massmt,
the lower the value of the critical coupling ξc.
The order of magnitude fit of the time dependence of the

amplitude obtained for the free case in Eq. (26) also holds
quite well in the self-interacting scenario, before the
instability takes place. This indicates that the effect on
the Higgs dynamics of λ is not very important before the
transition to the high-energy vacuum takes place. Inverting
this fit, we can find an order-of-magnitude estimate of the
time to at which we recover λðφÞ > 0:

mϕto ≈ ðφom−1
p e−sðξÞÞ− 1

pðξÞ; ð27Þ

where φo is given in Table I. For ξ ≈ 5, this gives mϕto ≈
Oð102;4;5;6;7Þ for top-quark masses mt ¼ 172.12, 172.73,
173.34, 173.95, and 174.56 GeV, respectively.
We show in Fig. 8 the instability time as a function of ξ

obtained from our lattice simulations. We have observed
that the specific value of mϕti depends on the particular
random realization of the Higgs field initial conditions in
Eq. (20), so for each point we have done several simu-
lations for different realizations of the initial conditions
(this is discussed in more detail in Sec. IVA). Points
indicate the average value ofmϕti, while the shadow region
surrounding each of the curves indicates the standard
deviation.
The behavior of the five curves with ξ is quite similar. In

all curves, we can identify two critical values, ξð1Þc ≡ ξc and

ξð2Þc , which are identified in the figure with dotted and
dotted-dashed vertical lines and indicated in Table II. The
meaning of these values is as follows:

FIG. 7. We show, for mt ¼ 172.12 GeV and different values of
ξ (Sec. III), the time evolution of the terms ξR (dashed lines) and
−λðjφjÞφ2 (continuous lines). For ξR, we plot an oscillation
average to compare both terms more easily. These are the terms
that appear in Eq. (12) for the field modes. We also plot, with
vertical lines, the corresponding time mϕti at which the Higgs
field becomes unstable.

FIG. 8. The instability time mϕti at which the Higgs field
develops an instability and decays to the true negative-energy
vacuum, as a function of the Higgs field-curvature coupling ξ
(Sec. IV). These results are obtained directly from lattice
simulations. Each of the five lines corresponds to the five
different interpolating potentials, corresponding to the top-quark
masses mt ¼ 172.12 GeV (red), mt ¼ 172.73 GeV (green),
mt ¼ 173.34 GeV (blue), mt ¼ 173.95 GeV (purple), and mt ¼
174.56 GeV (brown). The dashed vertical lines indicate the

position of the critical couplings ξð1Þc , while the dotted lines

indicate the position of the couplings ξð2Þc ; see Table II. For each
data point, we have done several lattice simulations correspond-
ing to different realizations of the initial Higgs field conditions;
see the bulk text. The points indicate the average value mϕti,
while the envelope of each of the lines indicates the standard
deviation σ ≡ N−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi − x̄iÞ2

p
. For data points with ξ ≈ ξc,

only some of the ten simulations do not become unstable, and

hence we do not show the deviation in these cases. For ξ≲ ξð1Þc ,
all simulations are always stable (i.e., mϕti ¼ ∞), and hence data
points are not drawn.
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(i) ξ > ξð2Þc .—For these values, we observe that the
Higgs field always develops an instability, at a time
mϕti ≲Oð10Þ, quite independently on the value ξ (at
least for the caseswehave simulated). This is seen as a
plateau in the right part of the numerical curves shown
in Fig. 8. Qualitatively, for this range of values, the
Higgs field becomes unstable when it is still in the
tachyonic resonance regime. One can see an example
of this in Fig. 5 for mt ¼ 172.12 GeV: For the cases

ξ ¼ 16, 18, 20, which verify ξ > ξð2Þc ≈ 14, the Higgs
becomes unstable in the oscillatory regime, while for

ξ ¼ 12, 14, with ξ≲ ξð2Þc , the instability is developed
when the resonance has already finished.

(ii) ξð1Þc < ξ < ξð2Þc .—For these values, the Higgs field
also develops an instability, but this happens only
after the tachyonic resonance has ended. For these
values, the instability time mϕti depends very
strongly on the value ξ. A change of few units in ξ
changes mϕti in several orders of magnitude.

(iii) ξ < ξð1Þc .—Finally, for these values, we observe that
the Higgs field is always stable, coming back to the
safe side of the potential without having become
unstable.

We indicate the values of both ξð1Þc and ξð2Þc for the cases
mt ¼ 173.34, 172.73, and 172.12 GeV (blue, green, and
red curves, respectively) in Table II. Note that, as expected,
as we increase the value of the top-quark mass, the position
of the barrier in the Higgs potential moves to smaller field
values, and hence the initial distribution of the Higgs field
is much deeper in the negative-energy region. Because of

this, ξð1Þ;ð2Þc are lower, and the Higgs field takes much longer
to enter into the safe side of the potential. Let us note that
the identification of these critical values is not unambigu-
ous, and, in particular, for couplings near the critical one

ξ ≈ ξð1Þc , we observe that, depending on the specific
realization of the initial conditions, the Higgs field may
or may not become unstable. This source of uncertainty is
indicated with a � sign in Table II. Finally, let us note that
our technical definition of the second critical coupling is

such that, for ξ > ξð2Þc , we have mϕti < 20.

The curved, dashed lines in Fig. 8 indicate the approxi-
mated time at which the Higgs field enters into the safe side
of the potential, using Eq. (27). The idea is that, at the
critical coupling ξ ¼ ξð1Þc , the curve for mϕti obtained from
the numerical simulations (bands in colors in Fig. 8) will
meet approximately the corresponding dashed ones. We
can see in Fig. 8 that this works relatively well, taking into
account that Eq. (27) is only a rough estimation.
In Fig. 8, it can also be seen that, for mt ¼ 173.95 GeV

and mt ¼ 174.56 GeV, the instability curves do not meet
their corresponding curved-dashed lines for ξ≳ 4, which
are the cases that we cannot study in the lattice as discussed
at the end of Sec. III. Hence, for these masses we can
provide only the upper bound ξc ≲ 4.
As a final comment, let us note that in all our simulations

we made the inflaton to oscillate indefinitely, even though
this is clearly not realistic. The inflaton is expected to be
coupled to other species which will eventually induce its
decay due to parametric resonance effects at a time that we
denote by tbr, where the label br stands for the backreaction
from the decay products of the inflaton. After this time, the
energy density is no longer dominated by a coherently
oscillating scalar field, and therefore Eq. (4) is no longer
valid. This puts an end to the tachyonic resonance regime of
the Higgs field. Therefore, the estimates for ξc provided
here will not be valid if tbr ≲ tres. For example, as seen
in Ref. [42], if the inflaton is coupled to a single scalar
field χ with coupling g2ϕ2χ2, one finds mϕtbr ≳ 40 for
g2 ≲ 6.9 × 10−3, so that tbr ≳ tres for the values of ξ
considered here. Therefore, in this case, our bounds can
be applied.

A. Dependence of lattice simulations on the Higgs
number of components and initial conditions

We address now how our results depend on the position
of the momenta cutoff in the spectra of initial conditions as
well as on the number of Higgs components we put in our
simulations.

1. Dependence on Higgs initial conditions

We have explained previously how the initial conditions
of theHiggs field are set throughout the lattice. Basically, we
impose at initial time t ¼ t� vanishing homogeneous modes
φn ¼ 0 (n ¼ 1, 2, 3, 4), and then we add quantum fluctua-
tions to each of the components. These fluctuations are
imposed only up to a certain cutoff momentum kc so that for
k > kc the fluctuations are set to zero. Also, the random
nature of the initial conditions is implemented in the code
through a pseudorandom number generator, so that different
seeds produce different realizations for the initial conditions.
It is essential to fix the initial cutoff appropriately, so that

the nonexcited UV quantum modes, which cannot be
treated in the lattice, are not excited as classical modes.
In the results presented in Fig. 8, we have done several

TABLE II. Higgs field-curvature critical couplings ξð1Þc and ξð2Þc ,
obtained from lattice simulations, for different values of the top-
quark mass. The error in ξc signals the uncertainty with respect to
initial conditions. The meaning of this parameter is explained in
the bulk text.

mt (GeV) ξð1Þc ξð2Þc

172.12 12.2� 0.2 14
172.73 7.7� 0.1 11.8
173.34 4.3� 0.2 10.6
173.95 <4.0 9.8
174.56 <4.0 9.3
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simulations with different initializations for each point.
More specifically, for values ξ < 5, we have done ten
simulations, five of them with κc ¼ 10 (κc ≡ kc=mϕ) and
the other five with κc ¼ 12. We have also varied the seed in
each of the ten simulations. This matches quite well the
analytical estimation for the classical estimation of modes
during tachyonic resonance given in Eq. (7). For values

5 < ξ < ξð2Þc , the second set of five simulations has been
done instead with cutoff κc ¼ 15. Finally, for points

ξ > ξð2Þc , we have done only four simulations (two with
κc ¼ 10 and twowith κc ¼ 15), because for these points the
dependence of our results on the initial conditions is
negligible.
The top panel in Fig. 9 shows how the instability curves

change for different choices of the initial cutoff κc for the
particular case mt ¼ 173.34 GeV. The inclusion of UV
modes in the lattice beyond the physical cutoff makes larger
the Higgs amplitude hh2i, so that the negative λhh2i=a3
term in Eq. (12) is enhanced, and hence reduces the
instability time mϕti. For ξ≳ 10, this effect is negligible,
because, as we saw in Sec. III, the amplitude of the excited
IR modes dominates over the UV ones, but it becomes

increasingly important as ξ diminishes. As we decrease the
coupling, the UVmodes become more relevant, and, if they
are not appropriately eliminated, their contribution can
make the instability time wrongly smaller. At very low
couplings, this is related to the invalidity of the lattice
approach, as explained in the last paragraph in Sec. III.
Finally, let us note that, although the vacuum always

becomes unstable for values ξ > ξð1Þc , the opposite con-

dition ξ < ξð1Þc does not guarantee stability. To show that,
we would need to do ∼e180 runs to account for the number
of different causally disconnected patches of the Universe
and check that none of them leads to vacuum decay. This is
not feasible, so we simply exclude parameters where
vacuum decay happens in a typical run. Our sampling of
initial conditions show in any case that the statistical
variance of the critical couplings is much smaller than
the critical couplings themselves. Therefore, it is safe to
expect that there would be full stability at some critical
value slightly smaller than but of the order of the ones
found. Besides, the uncertainty in mt propagates as a much
larger effect than the statistical uncertainty in ξc.

2. Dependence on Higgs number of components

We now compare our results, in which we have taken the
Higgs field as a four-component field (Nc ¼ 4), with a
similar set of lattice simulations with a one-component
field (Nc ¼ 1).
We expect differences between the two scenarios for

several reasons. The first one is that, if we include a four-
component field, the tachyonic mass is exciting four scalar
fields instead of one. If we neglect at first the Higgs self-
interaction term, this means hφ2

ni ≈ hφ2i=4 (n ¼ 1, 2, 3, 4).
Because of this, if we consider only a one-component
Higgs field, the magnitude of the negative self-interaction
term is being underestimated and increases artificially the
instability time mϕti for a given coupling ξ as well as the
critical value ξc.
To check this, we show in the bottom panel in Fig. 9 the

dependence of the instability curve on the number of
components, for the top-quark masses mt ¼ 172.12 GeV
andmt ¼ 173.34 GeV. We compare the cases Nc ¼ 4 (i.e.,
the case we have presented above) and Nc ¼ 1. As
expected, for the one-component case the critical coupling
ξc increases slightly. For the mt ¼ 173.34 GeV case, we
have ξc ≈ 6 instead of ξc ≈ 4, while for the mt ¼
172.12 GeV we have ξc ≈ 13 instead of ξc ≈ 12. Apart
from that, we see that the particular shape of the instability
curve is significantly changed, meaning that the effect of
the interaction between the different Higgs components is
relevant for the dynamics of the system.

V. SIMULATIONS WITH GAUGE FIELDS

Until now, we have ignored the coupling of the Higgs
field to the gauge bosons of the Standard Model. We now

FIG. 9. Top: The instability time mϕti for the top-quark mass
mt ¼ 173.34 GeV. Each curve corresponds to a different value of
the cutoff of the initial fluctuations κc ≡ kc=mϕ, and each point
corresponds to a particular lattice simulation. We depict here
the interval 4 < ξ < 20. Bottom: The instability curves for
mt ¼ 173.34 GeV and mt ¼ 172.12 GeV when we introduce a
four-component or a one-component Higgs field. Each point
corresponds to a single lattice simulation.
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evaluate if the effects of this interaction modify signifi-
cantly the results presented in the last section.
Let us consider the following action in the continuum,

which imitates the interactions of the Higgs with the four
SUð2Þ × Uð1Þ weak and hypercharge gauge bosons (W1;2;3

and Y), in the Abelian approximation:

S ¼ −
Z

a3ðtÞd4x
�

1

4g2
X3
a¼1

Wa
μνW

μν
a þ 1

4g02
YμνYμν

þ ðDμΦÞ†ðDμΦÞ þ λðΦ†ΦÞ2
�
: ð28Þ

Here, Wa
μν ≡ ∂μWa

ν − ∂νWa
μ, Yμν ≡ ∂μYν − ∂νYμ, and

ðDμÞij ≡ δijð∂μ − iYμ=2 − iWa
μ=2Þ. We take the SUð2Þ

and Uð1Þ couplings as constants with g2 ≈ 0.3 and g02 ≈
0.3 (corresponding to their value at very high energies,
according to the SM renormalization group). This action
describes correctly the Higgs-gauge fields interactions of
the SM, as long as the nonlinear interactions of the gauge
fields among themselves (due to the truly non-Abelian
nature of the SM symmetries) can be ignored. This is
typically a good approximation as long as the gauge fields
are not largely excited.
As shown in Ref. [26], a system with N > 1 Abelian

gauge bosons can be equivalently described by a single
effective gauge boson Aμ. We can define the gauge boson
field amplitudes in terms of the effective gauge boson as
follows:

Yμ ≡ g02

g2s
Aμ; Wa

μ ≡ g2

g2s
Aμ; g2s ≡ g02 þ 3g2: ð29Þ

Substituting Eq. (29) in action (28), we recover action (6)
for an effective gauge boson with gauge coupling
g2s ≈ g02 þ 3g2. The effective gauge boson is then simply
the sum of the original ones, i.e., Aμ ¼ Yμ þ

P
3
a¼1 W

a
μ.

Naturally, what our lattice simulations do is to solve a
discrete version of Eq. (16), which we provide in Eq. (A8)
in the Appendix. Details of how we derive this equation and
the assumptions we made are provided in more detail there.
The results we present in this section are based on lattice
simulations with N3 ¼ 1283 points, with a minimum
infrared momenta kmin ¼ 0.5mϕ. This captures quite well
the relevant range of momenta excited during the tachyonic
resonance regime, for both the Higgs and the gauge fields.
Let us try to quantify the energy transferred from

the Higgs field into the electroweak gauge bosons.
Action (6) can be written as S ¼ Sm þ SR, with SR ≡R
d4x

ffiffiffiffiffiffi−gp
ξRjΦj2 containing the Ricci-Higgs interaction

term and Sm containing the other terms. We define the

matter stress-energy tensor as TðmÞ
μν ¼ 2

a3
δSm
δgμν. The energy

density can then be written as

TðmÞ
00 ¼ 1

2
j _φj2 þ 1

2a2
X
i

jDiφj2 þ
1

2a2
X
i

F2
0i

þ 1

2a4
X
i;j<i

F2
ij þ VðjφjÞ

≡ Eφ
K þ Eφ

G þ EE þ EM þ EV: ð30Þ

We show in Fig. 10 the evolution of the different
contributions to the energy density (30) as a function of
time, for the case ξ ¼ 8. These energies have been divided

by the inflaton energy ∼
m2

ϕϕ
2�

2a3 . We see that the Higgs and
gauge field energy is several orders of magnitude lower
than the inflaton energy, which justifies neglecting their
contribution to the Friedmann equation, as commented in
Sec. II B. At late times, the Higgs kinetic and gradient
energies evolve as Eφ

K; E
φ
G ∼ a−4 and thus eventually

become subdominant with respect to the magnetic energy.
We show in Fig. 11 the time evolution of the Higgs

spectra in the presence of a gauge interaction with g2s ¼ 1.2
and compare it when such an interaction is not present
(g2s ¼ 0). We clearly see that the gauge bosons have a very
important backreaction effect on the Higgs field, propa-
gating its spectra to the UV.
Finally, Fig. 12 shows the instability time mϕti as a

function of ξ obtained from lattice simulations, when we do
include the coupling of the Higgs with the gauge bosons.
We have simulated the cases mt ¼ 172.12, 172.73, and
173.34 GeV and compared with the results obtained in
Sec. IV, when we ignored such coupling. Although the
instability curves are slightly different with respect to the
case without gauge bosons, the values for the critical

coupling ξð1Þc and ξð2Þc do not change significantly. We
show these values in Table III.
In conclusion, our simulations demonstrate that the

addition of gauge fields does not impact significantly in
the postinflationary dynamics of the system. The inter-
action of the Higgs with the electroweak gauge fields

FIG. 10. We plot, for ξ ¼ 8 and mt ¼ 173.34 GeV, the differ-
ent contributions to the energy density (30) as a function of time
(Sec. V). The Higgs field becomes unstable around mϕti ≈ 500.
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changes only marginally the results on the critical cou-
plings ξð1Þ;ð2Þc . Besides, as we used an Abelian setup, this
also indicates that the addition of the truly non-Abelian
gauge bosons will not change the above conclusion, as the
nonlinear nature of the non-Abelian gauge field interactions
cannot stimulate further the gauge bosons. Quite on the
contrary, the nonlinear structure of non-Abelian inter-
actions typically prevents the stimulation of the gauge
fields up to the level of excitation that (linear) Abelian
interactions allow for.

VI. SUMMARY AND DISCUSSION

In this work, we have studied the postinflationary
dynamics of the Standard Model Higgs field with lattice
simulations, in the case where it possesses a nonminimal
coupling ξ to gravity. This term is necessary for the
renormalization of the theory in curved spacetime. We
have assumed a chaotic inflation model with m2

ϕϕ
2 poten-

tial. We include the running of λðφÞ in our simulations as a
function of the value of the Higgs field at the lattice point.
We have considered different runnings, corresponding to
different experimental values of the top-quark mass. The
running is such that it generates two vacua to the Higgs
potential: one at φ ≈ 0 and one at high energies. With our
lattice simulations, we have been able to obtain the critical
coupling ξc such that for ξ≳ ξc the Higgs field becomes
unstable and decays into the negative-energy Planck-scale
vacuum. Our lattice simulations also take into account the
four components of the Higgs field and the cutoff of the
spectra of initial fluctuations, which are necessary to
correctly quantify the value of ξc. We have done two sets
of lattice simulations: one with only the Higgs field,
including the effective expansion caused by the postinfla-
tionary dynamics of the inflaton, and another in which we
also include the coupling of the Higgs field to gauge bosons
(modeled with an Abelian-Higgs-like approach). We have
observed that the effect of the gauge bosons is not relevant
for the Higgs postinflationary dynamics.
The upper bounds in Tables II and III, together with the

estimation ξ≳ 0.06 from the stability of the Higgs field
during inflation [7], provide tight constraints to the values
of this coupling compatible with observations. However,
we have assumed a chaotic inflationary model with
potential m2

ϕϕ
2. It is expected that inflationary models

with lower inflaton amplitudes during preheating will
widen this range of values, as the value of the Ricci scalar
jRðtÞj decreases, and hence the excitation of the Higgs field
due to the tachyonic resonance is less strong. If the
Standard Model potential does not have a second neg-
ative-energy vacuum at high energies, we cannot find upper
bounds for ξc in this way.
In this work, we have neglected the terms coming purely

from the non-Abelian structure of the SM Lagrangian,

FIG. 11. We plot the spectra of the conformal Higgs field for
different times (Sec. V). Continuous lines correspond to a Higgs
field coupled to gauge bosons (g2s ¼ 1.2), while the dashed lines
indicate the equivalent when such a coupling is set to zero
(g2s ¼ 0). Here, we have chosen mt ¼ 173.34 GeV and ξ ¼ 8.
From early (red) to late times (purple), we have mϕðt − t�Þ ¼ 0,
2, 4, 8, 18, 59, 100, 161, and 403.

FIG. 12. The instability time mϕti as a function of ξ, obtained
from the lattice simulations with both Higgs and gauge bosons
(Sec. V). We have depicted the cases for the top-quark mass
mt ¼ 172.12 GeV (red), mt ¼ 172.73 GeV (green), and mt ¼
173.34 GeV (blue). The three gray curves show the results, for
these same three masses, of the lattice simulations with no gauge
bosons incorporated (i.e., the curves of Fig. 8). As before, the
dashed and dotted-dashed vertical lines indicate the estimations

ξð1Þc and ξð2Þc , respectively, whose meaning is described in the bulk
text in Sec. IV, and the curved dashed lines show the estimation of
Eq. (27) for the three different top-quark masses.

TABLE III. Higgs field-curvature critical couplings ξð1Þc and

ξð2Þc , obtained from lattice simulations for different values of the
top-quark mass, in the presence of a coupling of the Higgs field to
the gauge bosons. The meaning of this parameter is explained in
the bulk text.

mt (GeV) ξð1Þc ξð2Þc

172.12 11.3� 0.4 15
172.73 7.4� 0.3 13
173.34 5� 0.5 11
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considering instead that the fWa; Yg bosons can be
regarded as Abelian gauge fields. We have argued that
considering linear Abelian interactions leads to a larger
excitation of the gauge fields, so that the non-Abelian terms
can be safely ignored. We reach the important conclusion
that the inclusion of gauge bosons in the system (even in the
Abelian approach) does not change significantly the upper

bound for ξ. The critical values ξð1Þ;ð2Þc change only margin-
ally when comparing both the absence and presence of
gauge fields.
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APPENDIX: LATTICE FORMULATION

We present the discrete equations of motion we solve in
our lattice simulations with gauge bosons, which as
explained include the four components of the Higgs field
and the three components of the effective gauge boson Aμ,
Eq. (29) (remember we set A0 ¼ 0). Let us define new
spacetime variables as ðz; z⃗Þ≡mϕðt; x⃗Þ and rewrite the
field variables in terms of dimensionless variables,
Aμ → Aμ=mϕ, Φ → Φ=mϕ. Continuous action (6) can be
written in terms of these variables as

S ¼
Z

d4z

�
1

4g2s

�
a
X
i

F2
0i −

1

a

X
i;j≠i

F2
ij

�
þ a3jD0Φj2

− a
X
i

jDiΦj2 − a3ð2ξRjΦj2 þ λðjΦjÞjΦj4Þ
	
; ðA1Þ

where we have defined R as

RðtÞ≡ 6

��
a0

a

�
2

þ a00

a

�
¼ RðtÞ

m2
ϕ

: ðA2Þ

Let us consider a lattice cube with N3 points, with time step
dt and lattice spacing dx. For a given field f, we define the
following discrete forward and backward derivatives at a
position n⃗ in the lattice as [dx0≡dt, dxi≡dx, (i ¼ 1, 2, 3)]:

ðΔþ
μ fÞðn⃗Þ≡ 1

dxμ
½fðn⃗þ dxμσ̂μÞ − fðn⃗Þ�;

ðΔ−
μfÞðn⃗Þ≡ 1

dxμ
½fðn⃗Þ − fðn⃗ − dxμσ̂μÞ�; ðA3Þ

with σ̂μ a set of orthonormal vectors. Let us also define
discrete lattice covariant derivatives as

ðDþ
μ fÞðn⃗Þ≡ 1

dxμ
½Vμfðn⃗þ dxμσ̂μÞ − fðn⃗Þ�;

ðD−
μfÞðn⃗Þ≡ 1

dxμ
½fðn⃗Þ − V�

−μfðn⃗ − dxμσ̂μÞ�; ðA4Þ

where Vμ ≡ e−iAμdxμ represents a “link.” We can write an
action in the discrete equivalent to Eq. (A1) as

S ¼ −
X
n̂

dtdx3ðLI þ LII þ LIII þ LIV þ LVÞ; ðA5Þ

where the different pieces of the Lagrangian are

LI ¼ −
aþ0=2

2g2s

X
i

ðΔþ
0 Ai − Δþ

i A0Þ2;

LII ¼
1

4g2sa

X
i;j

ðΔþ
i Aj − Δþ

j AiÞ2;

LIII ¼ −a3þ0=2ðV0Φþ0 −ΦÞ†ðV0Φþ0 −ΦÞ;
LIV ¼ a

X
i

ðViΦþi −ΦÞ†ðViΦþi −ΦÞ;

LV ¼ a3ð2ξRjΦj2 þ λðφÞjΦj4Þ: ðA6Þ

Here, we take the scale factor as evaluated at semi-integer
times, and we define

a≡ aþ0=2 þ a−0=2
2

: ðA7Þ

We can minimize this Lagrangian with respect φ† and Ai,
respectively, to obtain the discrete equations of motion.
Setting A0 ¼ 0, they are

Δ−
0 ½a3þ0=2Δ

þ
0 Φ�−a

X
i

D−
i D

þ
i Φ¼−

�
a3

2jΦj
∂VðjΦjÞ
∂jΦj þξR

�
Φ;

Δ−
0 ðaþ0=2Δþ

0 AiÞ−
1

a

X
j

½Δ−
j Δ

þ
j Ai−Δ−

j Δ
þ
i Aj�

¼−2g2s
a
dx

Im½Φ†
þiViΦ�: ðA8Þ

On the other hand, minimizing the action with respect A0,
we obtain the Gauss conservation law in the discrete:
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X
i

Δ−
i Δ

þ
0 Ai ¼ Jn̂; Jn̂ ≡ 2g2s

a2þ0=2

dt
Im½Φ†

þ0Φ�: ðA9Þ

In order to trust the results from our lattice simulations, the
fields must preserve then the condition

ΔG ≡ 1

N3

X
n̂

P
iðΔ−

i Δ
þ
0 AiÞ − Jn̂P

iðΔ−
i Δ

þ
0 AiÞ þ Jn̂

≪ 1: ðA10Þ

We have checked in our simulations that this is indeed the
case, for all running times. Typically, ΔG ≲ 10−12.
The minimum and maximum momenta captured by the

lattice are pmin ¼ 2π
L and pmax ¼

ffiffi
3

p
N

2
pmin, respectively,

with L≡ dxN. We must choose N and L so that we
capture the relevant range of momenta of this system.
Figure 13 shows the instability curve for the top-quark
mass mt ¼ 173.34 GeV, for different lattice parameters

pmin and N. We see that the results are consistent,
independently on the particular features of the lattice.
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