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We investigate the possibility of addressing inflation, a strongly first-order electroweak phase transition
(SFOEWPT) together with the dark matter (DM) explanation simultaneously. We study the Higgs-portal real
scalar singlet model and the complex scalar singlet model. In both models, the SFOEWPT can occur through
two-step patterns in which themagnitude of the Higgs-singlet quartic couplings meets the slow-roll condition
of inflation. The Higgs-portal real scalar singlet model cannot address the correct DM relic density together
with the explanation of inflation and SFOEWPT. Taking advantage of the cancellation in the DM-nucleon
interaction, the weakly interacting massive particles DM can saturate the correct DM relic abundance in the
complex scalar singletmodel,with the pseudoscalar being theDMcandidate after the globalU(1) symmetry is
broken.The key ingredient in obtaining the successful inflation and theSFOEWPTis that themagnitude of the
scalar quartic couplings should be relatively lower. Because the cancellation of the DM-nucleon scattering
amplitude mediated by mixtures of SMHiggs and other heavy scalars can occur to a different extent in many
models, we can expect that the features being explored here are general.

DOI: 10.1103/PhysRevD.98.023524

I. INTRODUCTION

Up to now, the standard model of particle physics (SM)
describes three fundamental interactions in nature fairly
well. Unfortunately, the incompleteness of the SM makes it
fail when confronting the three long-standing particle
physics and cosmology problems, i.e., the horizon and
flatness problems of the Universe, the baryon asymmetry of
the Universe, and the existence of the dark matter. First,
cosmic inflation successfully solves the first problem [1–3]
and explains the large-scale structure of the Universe
observed by the cosmic microwave background (CMB)
[4] with the primordial fluctuations. The observation of the
SM Higgs at LHC [5,6] make the Higgs inflation [7,8]
more predictive and standing out from variants of cosmic
inflation mechanisms. While the original Higgs inflation is
beset by the unitarity problem at a high scale around
∼Oð1013Þ GeV induced by the Higgs-gravity nonminimal
coupling [9–19], which requires the Higgs sectors of the
SM to be extended, one of the most economic ways can be
the “Higgs portal” [20,21]. Second, the SM is incapable of
explaining the baryon asymmetry of the Universe (BAU)

because the Sakharov conditions [22] cannot be fulfilled;
i.e., the CP source coming from the Cabibbo-Kobayashi-
Maskawa matrix is insufficient, and the strongly first-order
electroweak phase transition (SFOEWPT) suppressing the
baryon asymmetry washout process is unreachable because
of the overlarge magnitude of the Higgs mass [23].1 The
mechanism of electroweak brayogenesis (EWBG) can
solve the puzzle of the BAU with a SFOEWPT occurs at
the electroweak scale, followed by the electroweak sym-
metry breaking [23]. As requested by the SFOEWPT, the
Higgs sectors of the SM, which can be tested at high-energy
colliders through the detection of the deviations of the
triple Higgs couplings, need to be extended [25]. For the
study of EWBG with the simple singlet scalar extended
SM, see Refs. [26,27] for the real scalar singlet case and
Refs. [28,29] for the complex scalar singlet case. Another
shortcoming of the SM is the absence of the DM candidate,
which is supported by overwhelming well-established
astrophysical and cosmological observations. One of the
simplest solutions is to extend the scalar sectors and
employ the Higgs-portal approach to gain the weakly
interacting massive particles (WIMPs) DM [30]. At
present, with the accumulation of indirect and direct
detection experimental data of DM, the WIMPs DM is
under increasing pressure. The parameter spaces of the
simplest Higgs-portal scalar dark matter model are almost
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1The phase transition in the SM is in fact the crossover pattern;
a SFOEWPT requires a Higgs mass around 70–80 GeV [23,24].
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excluded [31–33] except the Higgs funnel regime
mDM ∼mh=2. Fortunately, in the simplest complex scalar
singlet model, see Refs. [34–37], the globalUð1Þ symmetry
can be broken, and the pseudoscalar serves as the WIMPs
DM candidate. Therein, the cancellation in the DM-
nucleon scattering process happens due to the mixing of
the real part of the singlet and the SM-like Higgs, as
highlighted in Ref. [38], which can save a lot of WIMPs
DM parameter spaces from the ongoing direct detection
experiments bounds.
We investigate the possibility of implementing the

paradigms of inflation, the SFOEWPT, and WIMPs DM
simultaneously by means of extending the SM with a
complex scalar singlet. The cancellation of the Higgs
mixtures mediated DM-SM particle scattering amplitude
makes the pseudoscalar able to saturate the DM at any mass
regions avoiding the constraints from ongoing direct
detection experiments. To satisfy the slow-roll condition
of the Higgs/singlet inflation, the quartic scalar couplings is
found to be small, and aSFOEWPToccurs as the temperature
cools down. Supplemented by an additional CP-violation
source, the successful inflation, EWBG, and correct DM
relic density can be reached simultaneously in certain
parameter spaces of the singlet scalar vacuum expectation
value (VEV) and heavy Higgs masses. The model is
described in Sec. II, in which the real scalar singlet
model can be obtained when the global U(1) is reduced
to Z2 symmetry. The ingredients for cosmic inflation,
SFOEWPT, and dark matter in the model are given in
Sec. III. The numerical results of the whole physical
pictures of the three components are accomplished in
Sec. IV. We conclude in Sec. V.

II. MODEL

In this work, we employ a complex scalar singlet model
with the tree-level potential being given by

V0ðH;SÞ ¼ −μ2hjHj2 þ λhjHj4 − μ2s jSj2 þ λhsjHj2jSj2

þ λsjSj4 −
�
1

2
μ2bS

2 þ H:c:

�
: ð1Þ

A real mass term μb is introduced to break the global U(1)
S → eiαS symmetry, which makes the imaginary parts of S
serve as a DM candidate. After inserting the scalar field
configurations HT ¼ ð0; hÞ= ffiffiffi

2
p

and S ¼ ðsþ IAÞ= ffiffiffi
2

p
, we

obtain

V0ðh; s; AÞ ¼
λhh4

4
þ 1

4
λhsh2A2 −

μ2hh
2

2
þ 1

4
λhsh2s2 þ

λsA4

4

−
μ2sA2

2
þ μ2bA

2

2
þ λss4

4
þ 1

2
λss2A2 −

μ2ss2

2

−
μ2bs

2

2
: ð2Þ

The vacuum stability requires the tree-level potential to be
bounded from below,

λh > 0; λs > 0; λhs > −2
ffiffiffiffiffiffiffiffiffi
λhλs

p
: ð3Þ

The minimization conditions of the potential are

dV0ðh; s; AÞ
dh

����
h¼v

¼ 0;
dV0ðh; s; AÞ

ds

����
s¼vs

¼ 0; ð4Þ

which give rise to

μ2h ¼ λhv2 þ λhsv2s=2;

μ2s ¼ −μ2b þ λhsv2=2þ λsv2s : ð5Þ

The pseudoscalar DM mass is given bymA ¼ μb. The mass
matrix of the real scalars is given by

M2 ¼
�

2v2λh vvsλhs
vvsλhs 2v2sλs

�
: ð6Þ

To diagonalize the mass matrix, we introduce the rotation
matrix R ¼ ððcos θ; sin θÞ; ð− sin θ; cos θÞ) with tan 2θ ¼
−λhsvvs=ðλhv2 − λsv2sÞ to relate the mass basis and field
basis,

�
h1
h2

�
¼

�
cos θ sin θ

− sin θ cos θ

��
h

s

�
: ð7Þ

The mass-squared eigenvalues are obtained as

m2
h1;h2

¼ λhv2 þ λsv2s ∓ λsv2s − λhv2

cos 2θ
: ð8Þ

We identify the h1 as the 126 GeV SM-like Higgs boson
and require the h2 to be dominated by s in this work. The
quartic couplings can be expressed as functions of the
Higgs masses, v, vs, and the mixing angle θ,

λh ¼
cosð2θÞðm2

h1
−m2

h2
Þ þm2

h1
þm2

h2

4v2
; ð9Þ

λs ¼
cosð2θÞðm2

h2
−m2

h1
Þ þm2

h1
þm2

h2

4v2s
; ð10Þ

λhs ¼
tanð2θÞ cosð2θÞðm2

h2
−m2

h1
Þ

2vvs
: ð11Þ

The mixing angle and the heavy Higgs masses are sub-
jective to the bounds coming from the LHCHiggs data. The
mixing of the h and s may lead to T parameter violation,
which sets stringent bounds on the mixing angle and the
masses of the heavy Higgs. One can obtain the oblique
parameter T with the formula of
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T ¼ −
�

3

16πs2W

��
cos2θ

�
1

c2W

�
m2

h1

m2
h1
−M2

Z

�
ln
m2

h1

M2
Z

−
�

m2
h1

m2
h1
−M2

W

�
ln
m2

h1

M2
W

�
þ sin2θ

�
1

c2W

�
m2

h2

m2
h2
−M2

Z

�

× ln
m2

h2

M2
Z
−
�

m2
h2

m2
h2
−M2

W

�
ln
m2

h2

M2
W

�	
; ð12Þ

following the Feynman diagram method in Ref. [39]. The
SM T parameter TSM can be recovered when cos θ ¼ 1.
The quantity ΔT ¼ T − TSM is subjected to the bound
coming from the current global electroweak (EW) fit [40]:
ΔT ¼ 0.09� 0.13. One can obtain severe constraints on
the θ with the increasing of mh2 . Recent combined analysis
of the LHC Higgs data and the electroweak precision
observables performed by Refs. [27,41] suggest the mixing
angle θ can be as large as 0.2 for a moderate heavy Higgs
mass.
The model has been extensively studied to explain one or

two of the inflation, electroweak phase transition (EWPT),
and DM; see Ref. [38] for a recent DM study, Ref. [42]
for the studies of both inflation and the EWPT, and
Refs. [28,29,36,37] for the study of the EWPT and DM.
In this work, we explore the three of the inflation, EWPT,
and DM. When the U(1) is reduced to Z2 with the
pseudoscalar and U(1) breaking term being absent with
μb ¼ 0, the model reduces to the usual Higgs-portal real
scalar singlet DM model, in which the s field can serve as
the DM candidate and make the realization of slow-roll
inflation [42] possible. In this case, the DMmassms is easy
to obtain from Eqs. (2) and (4) with A ¼ 0 and vs ¼ 0,
m2

s ¼ −μ2s þ λhsv2=2, where μ2s can be positive or negative,
provided the EW vacuum is the global vacuum. As studied
in previous literature, see Refs. [43,44], it is easier for a
positive μ2s to let the two-step phase transition occur,
which allows a local minimum at ðh; sÞ ¼ ð0;�

ffiffiffiffiffiffiffiffiffiffiffi
μ2s=λs

p
Þ

to coexist with the global EW vacuum. Recently, the
possibility of implementing the SFOEWPT together with
DM has been explored by Ref. [45]. Reference [46] studied
the possibility of realizing the slow-roll inflation,
SFOEWPT, and DM explanation in the model with typical
DM masses of ms. In this work, we explore the possibility
of accomplishing the three within the two-step phase
transition favored parameter spaces.

III. INGREDIENTS OF INFLATION, PHASE
TRANSITION, AND DARK MATTER

For comparison and completeness, we include the
inflation, EWPT, and DM phenomenology studies in both
the Higgs-portal real scalar singlet DM and the complex
scalar singlet model. In this section, we present the
approach we employed to perform the numerical analysis
of the three components.

A. Scalar portal inflation dynamics

For the slow-roll inflation dynamics analysis, we follow
the approach of Refs. [42,47]. In the U(1) complex scalar
singlet model, the action in the Jordan frame is

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

p

2
R − ξhðH†HÞR − ξsðS†SÞR

þ ∂μH†∂μH þ ∂μS†∂μS − VðH;SÞ
�
; ð13Þ

whereMp is the reduced Planck mass, R is the Ricci scalar,
and ξh;s define the nonminimal coupling of the h, s field.
The quantum-corrected effective Jordan frame Higgs

potential at large field values [hðsÞ] can be written as

VðhðsÞÞ ¼ 1

4
λhðsÞðμÞhðsÞ4; ð14Þ

along the two-field potential evaluated along the Higgs or
singlet axis, where the scale can be defined to be μ ∼
OðhÞ ≈ h in order to suppress the quantum correction. And
the quartic couplings λhðsÞ at the Planck scale can be
obtained using the renormalization group equations given
in Appendix B. We impose quantum corrections to the
potential and calculate the quantum corrections in the
Jordan frame before performing the conformal transforma-
tion as in Refs. [48,49]. After the conformal transformation,

g̃μν ¼ Ω2gμν; Ω2 ≡ 1þ ξss2

M2
P
þ ξhh2

M2
P
; ð15Þ

and a field redefinition,

dχh
dh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2hh

2=M2
P

Ω4

r
;

dχs
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2ss2=M2

P

Ω4

r
; ð16Þ

we obtain

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

2
M2

PRþ 1

2
∂μχh∂μχh þ

1

2
∂μχs∂μχs

þ fðχs; χhÞ∂μχh∂μχs −Uðχs; χhÞ
�
; ð17Þ

where Uðχs; χhÞ ¼ Ω−4VðsðχsÞ; hðχhÞÞ and

fðχs; χhÞ ¼
6ξhξs
M2

PΩ4

ds
dχs

dh
dχh

hs: ð18Þ

Basically, we can obtain h and s inflations depending on
if λh=ξ2h ≪ λs=ξ2s or λh=ξ2h ≫ λs=ξ2s ; see Refs. [42,47].
Then, the kinetic terms of the scalar fields are canonical.
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We get the Einstein frame by locally rescaling the metric by
a factor Ω2 ¼ 1þ ðξhh2 þ ξss2Þ=M2

pl ≈ 1þ ξhh2ðs2Þ=M2
pl

with sðhÞ ∼ 0. The noncanonical kinetic term for h can be
resolved by rewriting the inflationary action in terms of the
canonically normalized field χ as

Sinf ¼
Z

d4x
ffiffiffĩ
g

p �
M2

p

2
Rþ 1

2
ð∂χÞ2 − UðχÞ

�
; ð19Þ

with the potential in terms of the canonically normalized
field χ as

UðχÞ ¼ λhðhðχÞÞ4
4Ω4

or UðχÞ ¼ λsðsðχÞÞ4
4Ω4

; ð20Þ

where the new field χ is defined by

dχ
dh

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þξhh2=M2

pþ6ξ2hh
2=M2

pÞ=ð1þξhh2=M2
pÞ2

q
ð21Þ

or

dχ
ds

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ξss2=M2

pl þ 6ξ2ss2=M2
plÞ=ð1þ ξss2=M2

plÞ2
q

ð22Þ

for h or s inflations [42]. Note that λh;s and ξh;s have a scale
[hðsÞ] dependence.
The slow-roll parameters are then given by

ϵðχÞ ¼ M2
p

2

�
dU=dχ
UðχÞ

�
2

; ηðχÞ ¼ M2
p

�
d2U=dχ2

UðχÞ
�
:

ð23Þ

The field value at the end of inflation χend is obtained when
ϵ ¼ 1, and the horizon exit value χin can be calculated with
a fixed e-folding number between the two periods,

Ne ¼
Z

χin

χend

dχ
1

Mp

ffiffiffiffiffi
2ϵ

p : ð24Þ

Therefore, one can calculate the inflationary observables ns
and r with the slow-roll parameters at the χin,

ns ¼ 1þ 2η − 6ϵ; r ¼ 16ϵ: ð25Þ

Meanwhile, the amplitude of scalar fluctuations Δ2
R can be

calculated as

Δ2
R ¼ 1

24π2M4
p

UðχÞ
ϵ

¼ 2.2 × 10−9: ð26Þ

The CMB observation of the amplitude of scalar fluctions
[4] is used to determine ξh;s.

2 We use the Plank bounds [4]
to require the values of ns and r to be ns ¼ 0.9677�
0.0060 at 1σ level and r < 0.11 at 95% confidence level by
assumingNe ¼ 60, with which one can obtain the slow-roll
inflation favored parameter regions of λhðsÞ for Higgs
(singlet) inflation, together with the Higgs-singlet quartic
couplings λhs which contribute to the inflation potential
through the renormalization group equations (RGEs) evo-
lution effects as shown in Appendix A. In the complex
scalar singlet case, these constraints transfer to the bounds
on mh2 , vs, and the mixing angle of θ through Eq. (9). The
slow-roll parameters r are typically of order ∼Oð10−2Þ for
our cases. The stability of the inflationary potential has
been required by requiring conditions shown by Eq. (3)
from the electroweak scale to the Planck scale using RGEs
listed in Appendix A. The perturbativity of quartic coupling
in the potential is also required as in Ref. [47], i.e., jλhj < 1,
jλhsj <

ffiffiffiffiffiffi
4π

p
, jλsj <

ffiffiffiffiffiffi
4π

p
. As studied previously in

Refs. [42,47], the successful implementation of slow-roll
Higgs or singlet inflation requires a relatively lower
magnitude of quartic scalar couplings, that prefer the
two-step SFOEWPT, as will be explored in the next
section.
The parametric resonance of the oscillating Higgs field

to W bosons (singlet scalar) via jHj2jWj2ðjHj2jSj2Þ can
help the Higgs (singlet) inflation reheating occur [42,51].
Reference [46] studied typical small λs ∼Oð10−9 − 10−2Þ
for singlet inflation reheating. Reference [21] studied
s-inflation reheating with a larger λs, which can apply to
our analysis. The reheating can happen through the
stochastic resonance to the Higgs bosons or the production
of the s-inflaton excitations in the case of the complex
scalar singlet model, while for the Higgs-portal real scalar
singlet DM model, the reheating can occur due to the
production of the s-inflaton excitations in which
λs > 0.019. After reheating, the Universe can undergo a
cosmological phase transition at around the temperature of
TC ∼Oð102Þ GeV, which we evaluate with the approach
given in the following section.

B. Cosmological phase transition calculation approach

With the temperature cooling down, the Universe can
evolve from the symmetric phase to the symmetry broken
phase. The behavior can be studied with the finite temper-
ature effective potential with particle physics models [52],
through which one can obtain the critical classics field

2The nonminimal coupling for single-field inflation is gen-
erally of order Oð104Þ, which might lead to possible unitarity
problems at a high scale around ∼Oð1013Þ GeV [9–14], while
Refs. [15–19] argued that the SM Higgs inflation do not
necessarily involve the problem. The studies of Refs. [15,50]
indicate that the perturbative unitarity breaking can be healed by
the additional singlet. In this work, we do not address the issue.
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value and temperature being vC and TC to characterize the
critical phases. Roughly speaking, a SFOEWPT can be
obtained when vC=TC > 1; then, the electroweak sphaleron
process is quenched inside the bubble, and therefore one
can obtain the net number of baryons over antibaryons in
the framework of EWBG. For the uncertainty of the value
and possible gauge-dependent issues, we refer to Ref. [53].
The effective potential includes the tree-level Higgs

potential described by Eq. (2), the Coleman-Weinberg
potential, and the finite temperature corrections take the
form of [54]

Vðh;s;A;TÞ¼V0ðh;s;AÞþVCWðh;s;AÞþVctðh;s;AÞ
þV1ðh;s;A;TÞþVdaisyðh;s;A;TÞ: ð27Þ

With the field-dependent masses being given in
Appendix B, the one-loop Coleman-Weinberg scalar poten-
tial in MS and Landau gauge is

VCWðh;s;AÞ¼
ni

4ð4πÞ2M
4
i ðh;s;AÞ

�
log

M2
i ðh;s;AÞ
Q2

−ci

�
;

ð28Þ
with Mi to identify eigenvalues of the scalar matrix, and
other field-dependent masses, here, nh1;h2;h3;G�;G0;W�;Z;t ¼
1; 1; 1; 2; 1; 6; 3;−12, and cW�;Z ¼ 5=6with others ci being
3=2. The running scaleQ is chosen to beQ ¼ 246.22 GeV
in the numerical analysis. The counterterms that can
prevent the VEV shift by the one-loop Coleman-
Weinberg potential are implemented following the
approach of Ref. [55]. The finite temperature corrections
to the effective potential at one loop are given by [52]3

V1ðh;s; A; TÞ ¼
T4

2π2
X
i

niJB;F

�
M2

i ðh; s; AÞ
T2

�
; ð29Þ

where the functions JB;FðyÞ are

JB;FðyÞ ¼ �
Z

∞

0

dxx2 ln ½1 ∓ exp ð−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y

q
Þ�; ð30Þ

with the upper (lower) sign corresponding to bosonic
(fermionic) contributions. Here, the above integral JB;F
can be expressed as a sum of the second kind of modified
Bessel functions K2ðxÞ [55,56],

JB;FðyÞ ¼ lim
N→þ∞

∓ XN
l¼1

ð�1Þly
l2

K2ð
ffiffiffi
y

p
lÞ: ð31Þ

Last but not least, the resummation of ring (or daisy)
diagrams are also crucial for the evaluation of vC and TC
with the finite temperature effective potential [57],

Vdaisyðh; s; A; TÞ ¼
T
12π

X
i

ni½ðM2
i ðh; s; AÞÞ32

− ðM2
i ðh; s; A; TÞÞ32�; ð32Þ

whereM2
i ðh; s; A; TÞ are the eigenvalues of the full bosonic

mass matrix with thermal corrected effects being taken into
account ½M2

i ðh; s; A; TÞ ¼ M2
i ðh; s; AÞ þM2

xðTÞ�; the ther-
mal correction masses M2

xðTÞ are given in Appendix B.
Then, the critical parameters of the SFOEWPT can be

calculated when there are two degenerate vacuums with a
potential barrier. Because of the rich vacuum structures of
the potential at finite temperature, there can be one-step or
multistep phase transitions. A SFOEWPT can be realized at
the first or the second step in the two-step scenario. When
the U(1) reduces to Z2 symmetry with the pseudoscalar A
absent, one returns to the usual real scalar singlet case. As
studied previously in Ref. [45], a one-step SFOEWPT calls
for a larger quartic coupling between h and s, while a two-
step SFOEWPT can happen at a relatively smaller quartic
coupling between h and s. When the singlet s serves as the
DM candidate, the two-step mode indicates the Z2 sym-
metry is broken at some higher finite temperatures and
restored at some lower and zero temperatures [31,58]. In
this case, the phase transition types occur as shown by the
left panel of Fig. 1; the form of the finite temperature
effective potential reduces from Eq. (27) to Vðh; s; TÞ
without A contributions. At the critical temperatures for
a different set of quartic couplings and dark matter masses,
one has two local minima, wherein

Vð0; sAC; TCÞ ¼ VðvBC; 0; TCÞ;
dVð0; s; TCÞ

ds

����
s¼sAC

¼ 0;

dVðh; 0; TCÞ
dh

����
h¼vBC

¼ 0: ð33Þ

For the phase transition to occur in this pattern, at zero
temperature, the local vacuum in the direction of s
[localized at (h ¼ 0, s ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
μ2s=λs

p
)] should be higher

than the global electroweak vacuum at (h ¼ v, s ¼ 0),
which requires λs > 2ðm2

s − λhsv2Þ2=ðm2
hv

2Þ. And the vac-
uum in the direction of s should appear earlier than that of
the h with the temperature decreasing. As will be shown in
Sec. IV, the two ingredients lead to the successful inflation
in a tiny corner of parameter spaces where one can obtain a
SFOEWPT in this model.

FIG. 1. EWPT types in the real scalar singlet and U(1) breaking
complex scalar singlet models for the left and right panels.

3The counterterms that can prevent the VEV shift by the one-
loop Coleman-Weinberg potential are implemented implicitly
following Ref. [55].
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For the complex singlet case, the studies of Refs. [28,29]
show that the dark matter mass effects on the evolution of the
effective potential with temperature cooling down is negli-
gible. And for simplicity, we do not expect the A field get
a VEV at finite temperature and focus on the case in which
the vacua can happen along the h and/or s direction(s)
with the temperature decreasing. As studied previously in
Refs. [42,47], a relatively larger quartic scalar coupling will
lead to the violation of the perturbativity and unitarity that
will invalidate the slow-roll inflation. To obtain a strongly
first-order phase transition together with the successful
inflation, we focus on the two-step phase transition here.
The right panel of Fig. 1 is for the phase transition type of the
complex singlet case. Considering the mixing of h and s at
zero temperature as shown in the Sec. II, the critical
temperature and critical field value can be evaluated through

Vð0; sAC; θ; 0; TCÞ ¼ VðvBC; sBC; θ; 0; TCÞ;
dVðh; s; θ; 0; TCÞ

ds

����
h¼vBC;s¼sBC

¼ 0;

dVð0; s; θ; 0; TCÞ
ds

����
s¼sAC

¼ 0; ð34Þ

when two degenerate vacua with a potential barrier
structure show up for a set of mh1;h2;A and θ at finite
temperatures. We assume the classical field A does
not get a VEV at any temperature, as mentioned before.
Here, we note that, to ensure the phase transition occurs in
this pattern, at zero temperature, the vacuum at (h ¼ 0,
sA ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
μ2s=λs

p
) should be higher then the global

vacuum at (h ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4λsμ2h − 2λhsμ

2
sÞ=ð4λhλs − λ2hsÞ

q
, sB ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λhμ

2
s − 2λhsμ

2
hÞ=ð4λhλs − λ2hsÞ

q
) [which is ðvh; vsÞ of

Sec. II]. The counterterm in Eq. (27) keeps the sAC and sBC
around the sA and sB, respectively. A study of this pattern
phase transition triggered by vector dark matter can be found
in Ref. [59], in which a gauge-invariant approach is
employed.

C. Dark matter

As noted by Ref. [60], when the freeze-out temperature
(Tfs) is smaller than the EWPT temperature, the thermal
averaged annihilation cross section [see Eqs. (C2–C10)] in
the relic density evaluation process can be temperature
independent. In particular, in the dark matter mass regions
smaller than ∼Oð10Þ TeV, one can always have Tfs ≤ TC.
Therefore, one can calculate the relic density self-consis-
tently in those dark matter mass regions. Furthermore, at
this stage, the nonminimal gravity couplings’ effect is
negligible, and for the typical case of dark matter decay
through the nonminimal gravity couplings, we refer to
Refs. [61,62].

The thermal averaged dark matter pair annihilation cross
sections are given by

σvr ¼ hσviZZ þ hσviWW þ hσviff̄ þ hσvihihj ; ð35Þ
with i, j ¼ 1, 2, and these contributions are listed in
Appendix C; these formulas simply reduce to the formula
of Ref. [42] for the real scalar singlet case, which gives rise
to the usual Higgs-portal real scalar singlet DM scenario.
With the thermal averaged dark matter annihilation cross
sections at hand, we calculate the relic density with the
method of Ref. [63], which is checked to be around
the percent level discrepancy with MICROMEGAS [64].
The current value of the relic abundance of dark matter
Ωdmh2 ≈ 0.12 [65]. Because of the mixing of h and s, one
can expect the h1;2-mediated diagrams to contribute to the
spin-independent cross section. Here, one notes that can-
cellation between the two parts of the scattering cross
section can happen, as explored in Ref. [38]. The property
would relax the parameter spaces being bounded by the
direct detection experiments, especially after the strongest
bounds coming from XENON1T [66].

IV. RESULTS

For the real scalar singlet DM scenario, we plot Fig. 2 to
demonstrate the possibility to explain inflation and a
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λ h
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0.0 0.2 0.4 0.6 0.8
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λs

λ h
s

FIG. 2. Higgs-portal real scalar singlet DM scenario. In the red
and blue dotted regions, we can obtain hðsÞ inflation and a
SFOEWPT. The blue region is excluded by the Higgs invisible
decay bounds.
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SFOEWPT. In the top and bottom panels, the shape of
the two-step SFOEWPT allowed parameter spaces is
mostly characterized by the requirement that the EW
vacuum be a global vacuum at zero temperature, i.e.,
V0ðh ¼ 0; s ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
μ2s=λs

p
Þ > V0ðh ¼ v; s ¼ 0Þ, which sets

λs > 2ðm2
s − λhsv2Þ2=ðm2

hv
2Þ, augmented by μ2s ¼

−ðm2
s − λhsv2=2Þ > 0, which guarantee the existence of

the local vacuum at ðh ¼ 0; s ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
μ2s=λs

p
Þ. In the two

panels, the three free parameters ms, λhs, and λs are chosen
by considering the above requirements. In the phase
transition process, the requirement that the vacuum in
the direction of s appearing earlier than the one in the
direction of h further constrains the parameter spaces. The
Higgs invisible decay branching ratio excludes parameter
spaces of ms < mh=2. The result is consistent with pre-
vious studies of the phase transition in the SMþ 1 singlet
model with Z2 symmetry; see Refs. [43–45]. In that
parameter space around the Higgs funnel regime, the
explanation of DM is possible; see Ref. [32]. In the bottom
plot, the DM mass is set to be ms ≥ mh=2, considering the
aforementioned Higgs invisible decay exclusion. The plot
depicts that there is a chance to explain inflation in a small
corner of the SFOEWPT allowed region. This is because
the quartic scalar coupling λs is basically small as required
by the perturbativity and unitarity at a high scale to realize
slow-roll inflation. The relatively large λhs here shuts down
the window to explain DM. It is different from the results of
Ref. [46], in which the phase transition is estimated with the
Coleman-Weinberg contributions being neglected and theT2

terms of the high temperature expansion method being kept.
For the U(1) breaking complex scalar singlet model case,

the DMmass is independent of the inflation dynamics since
it does not enter into RGEs of quartic couplings. The effects
of DM mass are negligible for the two-step EWPT process
as studied previously in Refs. [28,29]. After taking into
account the present Higgs data together with the electro-
weak precision observables [41], we present the results
with a benchmark of θ ¼ 0.2 in Fig. 3. The top panel shows
that most of the parameter spaces are excluded by pertur-
bativity and stability at the inflation scale, and only a small
part of the SFOEWPT-favored parameter spaces allows the
explanation of the slow-roll inflation, with the other part
parameter spaces are excluded by perturbativity and sta-
bility at the inflation scale. The bottom panel shows that
a larger vs and smaller mh2 are required to successfully
implement cosmic inflation, in order to preserve the
perturbativity of quartic coupling and make the vacuum
stable up to the Planck scale. The critical temperature of the
SFOEWPT is found to be Oð102Þ GeV, which is larger
than the freeze-out temperatures and consistent with the
DM relic density computation. The magnitude of the relic
density can increase from undersaturated to oversaturated
with the increasing (decreasing) of vs (mh2) since then one
has a smaller DM-Higgs quartic coupling λhs [as indicated
by Eq. (9)] and therefore a smaller annihilation cross
section of dark matter pairs. The increasing (decreasing)

of dark matter mass mA leads to oversaturation (under-
saturation) of relic abundance in the successful inflation
regions. One novel feature here is that the inflation,
SFOEWPT, and DM explanation–favored parameter spaces
do not suffer from the direct detection constraints even after
the results of XENON1T [66] and future more stringent
ongoing DM direct detection bounds, due to the cancella-
tion effect of the DM-SM particle scattering amplitudes
being explored in Ref. [38].

V. CONCLUSIONS AND DISCUSSIONS

In previous studies, two of the inflation, SFOEWPT, and
DM have been explored in Higgs-portal models
[42,45,46,59]. In this work, we investigate the possibility
of accomplishing the three ingredients simultaneously in
the framework of the usual Higgs-portal singlet scalar
model and the complex singlet scalar model with the global
U(1) being broken. For the Higgs-portal singlet scalar
model, it is found that one cannot explain DM together with
successful inflation and a two-step SFOEWPT. In com-
parison with the usual Higgs-portal singlet scalar dark
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FIG. 3. U(1) breaking complex scalar singlet model for DM,
inflation, and the SFOEWPT. The cyan and yellow regions are
the successful SFOEWPT- and inflation-favored parameter
spaces in the two plots. The freeze-out temperature is shown
with the blue dashed line. The solid line represents the DM relic
density, and the direct detection bounds from XENON1T yield
null exclusions.
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matter case, the DM direct detection bounds on parameter
spaces in the scenario of the complex singlet scalar are vastly
relaxed due to the two Higgs-mediated DM-SM particles
scattering amplitude cancellation effects. In the scenario, we
observe that a successful slow-roll inflation, a SFOEWPT,
and the correct DM relic density can be accomplished after
taking into account theoretical constraints, electroweak
precision observables, and the present LHC Higgs data.
With an additional CP-violation source by implementing

the CP Violation (CPV) dimension-6 operator [28], the
flatness of the potential will not be destroyed, and the
BAU can be generated during the EWPT process within
the framework of EWBG.The search of the parameter spaces
can be performed through the resonant heavy Higgs search
at the LHC and Super proton-proton Collider (SppC)
[25,41,67,68]. The gravitational wave signals generated
during the EWPT with the typical spectrum frequency of
Oð10−4 − 10−2Þ Hz can also be used to test the parameter
spaces. The physics picture in this work can be general and
realized in many models supposing to some extent cancella-
tion exists in theHiggs and other heavyHiggs-mediatedDM-
SM particles scattering processes.
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APPENDIX A: BETA FUNCTIONS

The one-loop beta functions for the various parameters
can be found in the Higgs-portal real scalar singlet case
[47], except that for the complex singlet scenarios, the
scalar quartic coupling beta functions are replaced by

βλh ¼
3g41

128π2
þ 3g21g

2
2

64π2
−
3g21λh
16π2

þ 9g42
128π2

−
9g22λh
16π2

−
3g4t
8π2

þ 3g2t λh
4π2

þ 3λ2h
2π2

þ λ2hs
16π2

; ðA1Þ

βλs ¼
λ2hs
8π2

þ 5λ2s
4π2

; ðA2Þ

βλhs ¼−
3g21λhs
32π2

−
9g22λhs
32π2

þ3g2t λhs
8π2

þ3λhλhs
4π2

þ λ2hs
4π2

þλhsλs
2π2

:

ðA3Þ
We use the electroweak-scale values of the various cou-
plings consistent with Ref. [69] for the initial conditions of
the RGEs.

APPENDIX B: FIELD-DEPENDENT MASSES
AND THERMAL MASSES

The field-dependent masses are given by

Mðh; s; AÞ ¼

0
B@

mhh mhs mhA

mhs mss msA

mhA msA mAA

1
CA; ðB1Þ

with

mhh ¼
1

2
ð6λhh2 − 2μ2h þ λhsðs2 þ A2ÞÞ; ðB2Þ

mhs ¼ λhshs; ðB3Þ
mhA ¼ λhshA; ðB4Þ

mss ¼
1

2
λhsh2 − μ2s − μ2b þ λsð3s2 þ A2Þ; ðB5Þ

msA ¼ 2λssA; ðB6Þ

mAA ¼ 1

2
λhsh2 − μ2s þ μ2b þ λsð3A2 þ s2Þ: ðB7Þ

The mass matrix (B1) can be diagonalized, with eigenval-
ues being M2

1;2;3, and other field dependent masses are

M2
G0ðh; s; AÞ ¼ 1

2
ð2λhh2 þ λhsA2 − 2μ2h þ λhss2Þ; ðB8Þ

M2
G�ðh; s; AÞ ¼ 1

2
ð2λhh2 þ λhsA2 − 2μ2h þ λhss2Þ; ðB9Þ

M2
t ðhÞ ¼

g2t h2

2
; ðB10Þ

M2
ZðhÞ ¼

1

4
ðg21 þ g22Þh2; ðB11Þ

M2
WðhÞ ¼

g22h
2

4
: ðB12Þ

The thermal masses/corrections in the U(1) breaking model
are given by

M2
hi
ðTÞ¼ g21T

2

16
þ3g22T

2

16
þg2t T2

4
þλhT2

2
þλhsT2

12
; ðB13Þ

M2
G0;�ðTÞ ¼ M2

hi
ðTÞ; ðB14Þ

M2
sðTÞ ¼

λhsT2

6
þ λsT2

3
; ðB15Þ

M2
AðTÞ ¼

λhsT2

6
þ λsT2

3
ðB16Þ

for the scalar fields; the gauge fields thermal masses can be
found in Ref. [70].
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APPENDIX C: DM ANNIHILATIONS
CROSS SECTIONS

The relevant cubic and quartic interaction couplings are
given by

gh1 ¼ cos θ; gh2 ¼ − sin θ;

gh1AA ¼ λhsv cos θ þ λsvs sin θ;

gh2AA ¼ 2λsvs cos θ − λhsv sin θ;

gh1h1h1 ¼ 3½2λhvðcos θÞ3 þ λhsvðsin θÞ2 cos θ
þ λhsvs sin θðcos θÞ2 þ 2λsvsðsin θÞ3�;

gh2h1h1 ¼ 2ðλhs − 3λhÞv sin θðcos θÞ2 − λhsvðsin θÞ3
þ 2ð3λs − λhsÞvsðsin θÞ2 cos θ þ λhsvsðcos θÞ3;

gh2h2h2 ¼ 3ð−2λhvðsin θÞ3 − λhsv sin θðcos θÞ2
þ λhsvsðsin θÞ2 cos θ þ λsvsðcos θÞ3Þ;

gh1h2h2 ¼ vð3λh − λhsÞðsin 2θÞ sin θ þ λhsvðcos θÞ3
þ 2ð3λs − λhsÞvs sin θðcos θÞ2 þ λhsvsðsin θÞ3;

gh1h2AA ¼ ð2λs − λhsÞ sin θ cos θ;
gh2h2AA ¼ λhsðsin θÞ2 þ 2λsðcos θÞ2;
gh1h1AA ¼ λhsðcos θÞ2 þ 2λsðsin θÞ2: ðC1Þ

With these couplings and the propagators of h1;2,

Dh1 ¼ ð4m2
A −m2

h1
Þ þ IΓh1mh1 ; ðC2Þ

Dh2 ¼ ð4m2
A −m2

h2
Þ þ IΓh2mh2 ; ðC3Þ

the thermal averaged annihilation cross sections are given
by

hσvih1h1 ¼
1

64πm2
A

����gAAh1h1 þ 1

Dh1

gh1AAgh1h1h1

þ 1

Dh2

gh2AAgh2h1h1 þ
2g2h1AA

ðm2
h1
− 2m2

AÞ
����2

× ð1 −m2
h1
=m2

AÞ1=2; ðC4Þ

hσvih2h2 ¼
1

64πm2
A

����gAAh2h2 þ 1

Dh1

gh1AAgh1h2h2

þ 1

Dh2

gh2AAgh2h2h2 þ
2g2h2AA

ðm2
h2
− 2m2

AÞ
����2

× ð1 −m2
h2
=m2

AÞ1=2; ðC5Þ

hσvih1h2 ¼
1

32πm2
A

����gAAh1h2 þ 1

Dh1

gh1AAgh2h1h1

þ 1

Dh2

gh2AAgh1h2h2 þ
gh1AAgh2AA
ðm2

h1
−2m2

AÞ
þ gh1AAgh2AA
ðm2

h2
−2m2

AÞ
����

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þm2

h1
−m2

h2

4m2
A

�
−
m2

h1

m2
A

s
; ðC6Þ

hσvih1h2bb ¼
3m2

W

πg2

�
mb

v

�
2
���� gh1ðλhsgh1 − λsgh2Þ

Dh1

þ gh2ðλhsgh2 þ λsgh1Þ
Dh2

����2
�
1 −

m2
b

M2
A

�3
2

; ðC7Þ

hσvih1h2tt ¼
3m2

W

πg2

�
mt

v

�
2
���� gh1ðλhsgh1 − λsgh2Þ

Dh1

þ gh2ðλhsgh2 þ λsgh1Þ
Dh2

����2
�
1 −

m2
t

m2
A

�3
2

; ðC8Þ

hσvih1h2WW ¼ m4
W

8πm2
A

���� gh1ðλhsgh1 − λsgh2Þ
Dh1

þ gh2ðλhsgh2 þ λsgh1Þ
Dh2

����2

×

�
1 −

m2
W

m2
A

�1
2

�
2þ

�
1 − 2

m2
A

m2
W

�
2
�
; ðC9Þ

hσvih1h2ZZ ¼ m4
Z

16πmA
2

���� gh1ðλhsgh1 − λsgh2Þ
Dh1

þ gh2ðλhsgh2 þ λsgh1Þ
Dh2

����2
�
1 −

m2
Z

mA
2

�1
2

×

�
2þ

�
1 − 2

m2
A

m2
Z

�
2
�
: ðC10Þ
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Safonov, M. Spannowsky, and P. Winslow, Phys. Rev. D 96,
035007 (2017).

[69] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F.
Sala, A. Salvio, and A. Strumia, J. High Energy Phys. 12
(2013) 089.

[70] R. G. Cai, M. Sasaki, and S. J. Wang, J. Cosmol. Astropart.
Phys. 08 (2017) 004.

FROM INFLATION TO COSMOLOGICAL ELECTROWEAK … PHYS. REV. D 98, 023524 (2018)

023524-11

https://doi.org/10.1103/PhysRevD.95.035011
https://doi.org/10.1103/PhysRevD.95.035011
https://doi.org/10.1103/PhysRevLett.117.021302
https://doi.org/10.1103/PhysRevLett.117.021302
https://lapth.cnrs.fr/micromegas/
https://lapth.cnrs.fr/micromegas/
https://lapth.cnrs.fr/micromegas/
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevD.94.035022
https://doi.org/10.1103/PhysRevD.96.035007
https://doi.org/10.1103/PhysRevD.96.035007
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1088/1475-7516/2017/08/004
https://doi.org/10.1088/1475-7516/2017/08/004

