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We consider the dynamics of gauge-Yukawa theories in the presence of a large number of matter
constituents. We first review the current status for the renormalization group equations of gauge-fermion
theories and extend the results to semisimple groups. In this regime these theories develop an interacting
ultraviolet fixed point that for the semisimple case leads to a rich phase diagram. The latter contains a
complete asymptotically safe fixed point repulsive in all couplings. We then add two gauged Weyl fermions
belonging to arbitrary representations of the semisimple gauge group and a complex, gauged scalar to the
original gauge-fermion theory allowing for new Yukawa interactions and quartic scalar self-coupling.
Consequently, we determine the first nontrivial order in 1/N for the Yukawa and quartic beta functions.
Our work elucidates, consolidates, and extends results obtained earlier in the literature. We also acquire
relevant knowledge about the dynamics of gauge-Yukawa theories beyond perturbation theory. Our
findings are applicable to any extension of the standard model featuring a large number of fermions such as

asymptotic safety.
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I. INTRODUCTION

The most general classes of four-dimensional, renorma-
lizable quantum field theories (QFTs) are in the form of
gauge-Yukawa theories. Their dynamics underlies the stan-
dard model (SM) interactions and those of any of its sensible
extensions. It is therefore paramount to gain a deeper
understanding of their dynamics, which is often limited
to perturbation theory.

Fundamental theories are those gauge-Yukawa theories
that, according to Wilson [1,2], are well defined at arbitrarily
short distances. Asymptotically free [3,4] and safe [S] QFTs
are complementary examples of fundamental theories.' The
recent discovery of four-dimensional, controllable, in the
perturbative sense, asymptotically safe QFTs [5,7] has
opened the way to novel dark and bright extensions of
the SM [8—15]. More generally, it is interesting to investigate
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the short distance fate of the SM and its extensions including
gravity [16-20].

To gain information beyond perturbation theory, one can
use supersymmetry. A systematic investigation of non-
perturbative constraints that a supersymmetric, asymptoti-
cally safe QFT must abide, including a-maximization [21]
and collider bounds [22], appeared in [23] extending and
correcting the results of [24]. Building upon results of [21],
the first evidence for nonperturbative, supersymmetric
safety was gathered in [25] and further analyzed in [26].

Nonperturbative results can also be deduced for non-
supersymmetric theories when considering specific limits
in theory space: for example, building upon the large N,
results of [27-31], that gauge-fermion theories at any finite
number of colors can be argued to develop a nonperturba-
tive ultraviolet (UV) fixed point [32]. Consequently, one
can extend the original conformal window, reviewed in
[33,34], to include an asymptotically safe phase [32].

It is therefore timely to consider the dynamics of gauge-
Yukawa theories at large N, [14,35-37]. We investigate
this here by elucidating, consolidating, and extending the
results obtained earlier in the literature. The results are
useful when searching for asymptotically safe extensions of
the SM [13,14].

The paper is organized as follows. In Sec. II, we
introduce our model and the renormalization conventions
used throughout the paper. Section III then proceeds to
review the current status of large N, computations for the
gauge beta function. We then generalize the results to
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semisimple gauge groups and in addition we present their
phase diagrams. In Sec. IV, we provide a detailed compu-
tation of the Yukawa and quartic coupling beta functions at
the first nontrivial order in 1/N, for generic, semisimple
gauge groups. Section V concludes the paper. The explicit
derivations of the various resummation formulas used in the
large Ny computations can be found in Appendix.

II. GAUGE-YUKAWA MODELS:
NOTATION AND CONVENTIONS

We consider both Abelian and non-Abelian semisimple
gauge-Yukawa models featuring N ; vectorlike fermions, ¥;
charged under the full gauge group. Additionally, the models
contain two Weyl spinors, y and &£, and a complex scalar, ¢,
such that there is enough content to form a (chiral) Yukawa
coupling among these three fields, and for quartic scalar self-
interactions to emerge.” The field content of the model is
summarized in Table I where we report the transformation of
each matter field with respect to the gauge interactions.

The Lagrangian of the theory reads

N
1 /
£:—Z A FAH | g i® "D W 4y Dy
=

+ié"D,E+ (D ,,4))( . P)

—(yaij¢”)(i§j+y*’“”¢22?i€j)—%ﬂ“bcd¢2¢2¢c¢d7 (2.1)
where the index I = 1, ...Ny is the ¥ flavor index, i, j are
gauge indices for y and &, and a, b, ¢, d are reserved for the
gauged scalar indices within a given representation that can
be read off from the associated covariant derivative

D,¥; = [0, + igA;(Tg)' ]'¥].
Dy’ = [0, +igAy(T}) 1/,
D& =10, + igAy (T2)' &/,
D" = [0, + igAy(T4)", 18" (2.2)

In the most general version of the model, the gauge group is
allowed to be semisimple. The generalization of the
covariant derivative in this case is straightforward.
Gauge invariance imposes the following constraints,

0= Yhij(T?ﬁ)ba

0= =2 (T},
ab A\e

+A ce(T¢) d

+ yakj(T?)ki + yaik(T?>kj’
- /?'aecd(T:;’;A)eb + ﬂabed(Tf/x))ec
(2.3)

*Gauge anomalies are avoided by either adding new chiral
fermions or by arranging y, £ in anomaly-free representations of
the gauge group. Our results are adaptable to a given gauge-
anomaly-free model.

TABLE I. Summary of the field content of the model. The first
two columns detail the transformation of each field under Lorentz
and flavor symmetry. qy ¢, denotes the U(1) charges of the
fields, while Ry, ., are the representation of the fields under

each simple gauge group labeled by a.

Fields SO(1,3)* SU(Ny) u(1) X 4Gy
v (3.0) ® (0.5 Ny v ®.Ry
x (3.0) 1 a4y @« Ry
¢ (3.0) 1 qe ®q RE
¢ 0,0) 1 p ®q R}
while the constraint on the Abelian charges reads

4y + 49, +q:=0. (2.4)

To prepare for the large-number-of-flavors limit, the
gauge couplings for each gauge group G, are rescaled as
follows:

g(lNSZ( )

,  where N = N‘,»Hd(R@.

Here the Dynkin index S,(R{) is defined via the relation
S2(R§)3"" = Tr[Ts TR, ]. In the fundamental representa-

tion of an SU(N) group we take it to assume the value 1/2.
The dimension of a given representation is indicated
with d(RY).

A. Renormalization conventions

We now briefly summarize our renormalization con-
ventions to prepare for the computations of the renormali-
zation group (RG) functions in the model. We denote all
bare fields and couplings with subscript O.

In the Lagrangian (2.1), the bare fields renormalize
according to

Aﬁ’o _ ZAIA{‘ZH—e/ZA/é’ \PO _ Z\l{l/zlu—e/ZlI]7

bo=2"w " =211,
& = 2w, (2.6)
while the bare couplings are given by
Y0.aij (Z Z§Z¢) 172 6/2(yazj + 5yal])
/lgbcd = Z¢2/,t (/labcd 4 (%abcd)’
- -1/2
900 = Taokt? = Zg *u?g,,. (2.7)

We use dimensional regularization with d =4 —¢. The
field renormalizations are expanded in terms of their e
poles, writing
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= Z—k . (2.8)
Similarly, the counterterms are expressed as
N Lgw w N1
5ya,jfz€—k§yaij and 52 Z—k ab .. (2.9)

k=1 k=1

It is now possible to expresses the beta function for the
couplings in terms of the field-strength renormalizations
and the counterterms of the renormalized Lagrangian in the
above notation. The beta functions, S, = dx/dInu, are
given by

Vet O ef 0 >

1 0
ﬂ,a,--:< S+ K + + 2 gy ——
yar ﬁaKﬁ 2 5yek1 gh oA fgh

(1) (1) (1)
5 5y<¥?—zx +z. +z,)
atj 2 atj | »
0 Yeri O 0
Brveg = | —1 +K K 2 gy ——
Piavcq < + ﬂaKﬂ + 2 Oy + A% g aﬂefgh
X [51(1” cd — zzg)labcd],
3 Vekl (9 8
= (-1+k ¢ -
ﬁK(, < + B Ao 6‘Kﬂ + ) ayEkl + gh 8ﬂefgh

x [-ZQK,). (2.10)

In order to practically evaluate the gauge field renorm-
alization we make use of

0 = div [Z,(1 —Tz({xo}))],

where {xo} represents the full set of bare couplings
and Iy is the bare, 1PI, 2-point function of the gauge
bosons after having factorized out momenta and polariza-
tion structure; il ,, (p)=ip*A,, (p)Hg(p*) with A, (p) =
Nuw—=DPulu/ p?. Similarly, to compute the fermion and scalar
field renormalization, we rely on the following relations
involving the bare, 1PI, 2-point fermion, —iXz(p) and
2-point scalar, —iSg(p?), functions,

et
0 = div, [z¢ (1 - dipsz({xo})H .

Finally for the renormalization of the couplings we employ

(2.11)

(2.12)

0 = div.[Z/*Zy/* 2}V p({x0})].

0 = div,[ZA5({xo})] (2.13)
where iYp, iAp are the bare, 1PI, 3- and four-point func-
tions. These are used to renormalize the Yukawa and quartic
couplings.

III. GAUGE-FERMION THEORY

We start with reviewing the large A/ dynamics in gauge-
fermion theory investigated some time ago in [27-31]. This
means that we drop ¢, y, and & from the beginning. We
extend the analysis to include semisimple gauge groups.
The full dynamics including ¢, y, and & is investigated
in Sec. IV.

Only a limited set of diagrams contribute when comput-
ing the RG functions in the large N limit. In general the
order, (1/N)%, of a diagram in the large A/ expansion can
be determined as

k = powers of g3 — No. of fermion loops.

(3.1)

It follows that dressing gauge lines with ¥ fermion bubbles
(a bubble chain) does not increase the order of a diagram. To
obtain the contribution at a given orderin 1 /A, itis sufficient
to consider a small set of diagrams, but one has to sum over
the number of bubbles inserted on each gauge line. The
resulting power series in K is so well behaved that it is often
possible to obtain a closed form expression for the 1/¢ pole.

In the following computations we need to have an
expression for the bubble chain. Each elementary bubble
stems from a bare, 1PI, W-fermion loop that in MS reads

iH/w(p) = ipzAm/(p)HO(pz)’ where
P 2\ €/
y(p?) = —2KTy(e) (— 4p/; ) ’ and
200 —E\[(€
Ty(e) = % (3.2)

Note that K, is related to g, like K|, is related to g, in (2.5).
To avoid making the notation heavy we dropped a tilde
on K.

The expression for a bubble chain with n > 0 bubbles
and n + 1 free gauge propagators, D, (p), reduces to

D) (p) = Dy, (p)ilF#(p)]
X [Dyy,0, (p)iT1F#4(p)]...

—i
= ?Am(P)Hg(Pz)

'D;tz,,y (p)

(3.3)

The chain is fully transverse in p because the gauge-fixing
parameter does not renormalize in MS. In our computations
we work in the Landau (Lorenz) gauge. This has the added
benefit that D/(f,l,zo)( p) =D, (p). The discussion above
applies to each individual gauge group a.

A. Large N gauge beta function

To determine the gauge beta function one has to compute
the divergent part of the 2-point function. The leading order
(LO) contribution in 1/ is simply given by one ¥ bubble.
The next-to-leading order (NLO) contribution, on the other
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FIG. 1.

(b)

Feynman diagrams for gauge field renormalization at order 1/ . Diagrams (a) and (b) are present in both the Abelian and non-

Abelian 2-point functions, while (c) and (d) only exist in the non-Abelian theory.

hand, is nontrivial and was computed in [27,28] by
evaluating the diagrams shown in Fig. 1. The first two
diagrams of Figs. 1(a) and 1(b) yield

6% p> & (p)TIY (p)
(i) T TS TG T / (dd’)‘ el
XTY[}’”%V (,(f( ;;Zy 2 ; (34)

6" p> & (p)TIY (p)
(i) Tergrgrarge [ D k- e)
A e

where n > 0 is the number of bubbles in the chain. These
diagrams are present for all gauge groups.3 For the purpose
of summing the contributions from all r, it is useful to
extract the coupling and group structure from the 2-point
functions

*In the Abelian case one replaces the gauge generators with the
fermion charges qy.

) = _dj\f) Ky?AY,
(n) d(G) ( 1 CZ(G)> n+2 4 (n)

My =—— (1 —-—-=—"%|K}"™A}". 3.6
TN 2G,(Ry)) 0 T (3.6

Here the functions A;")T contain the loop structure of the

respective diagrams and C, (Ry) is the quadratic Casimir of
the representation Ry.

Going to the non-Abelian group we have additional
contributions from the gluon self-interactions, cf., Figs. 1(c)
and 1(d). The coupling and group structure from their
contribution to the 2-point function is parametrized by

(n) _ d(G) G,(G)
@ TN Gi(Ry)

KrAw. (3.7)

We now review the final results for the gauge beta
functions for the Abelian and non-Abelian gauge groups.

1. Abelian beta function

We consider the case where the ¥ fermions are charged
under a single U(1) gauge group and determine the asso-
ciated gauge beta function. In this case, we point out that the
K coupling from Eq. (2.5) reduces to K = ¢*q4,N /4 that
agrees with earlier literature. The resummation of the beta
function was performed first by Palanques-Mestre and

016003-4



GAUGE-YUKAWA THEORIES: BETA FUNCTIONS AT ...

PHYS. REV. D 98, 016003 (2018)

Pascual [27]. Including both the LO and the 1/N contri-
butions to the 1PI 2-point function, they found”

Ky e —
ZiTly = Zlo(p?) + Zx 37 > _Ko(AF ™ +2477")
n=1
471.#2 €/2
:—2K<— p2 ) F()(e)

vy (5 et

Notice that we have used the fact that for Abelian gauge
theory Zx = Z,. The function F encodes the diagram
structure, and it turns out that the beta function depends
only on F(0,¢). Using analyticity of F, we can apply the
resummation formula (A4) to obtain

(n+le). (3.8)

2K 1 K - 2
20 =z, = —3—2/\% dx(K—x)F<O,3x>,
(3.9)
where
F(0.x) — (1=x)(1 =31 +3)T(4-x) (3.10)

PQ-PrE-Pri+3

Finally, applying (2.10) the gauge beta function reads

e 0 ) 2K 1
P =K 52y =5 [H—NF (K)] (3.11)

to NLO in 1/A. For later convenience we introduced

Fi(K) :%A%xﬁ(&%x).

2. Non-Abelian beta function

(3.12)

Now we turn to the case where the ¥ fermions transform
under a given representation Ry of a non-Abelian gauge
group. In this instance, the gauge field 2-point function gets
an additional contribution due to the gluon self-interaction.
The NLO 2-point function is then given by

HB—H0+K0d§\(/;)
CZ(G) > (n-1) (n—l):|
Ki(l-———)A +2A
X;{ 0[( 2C,(Ry))" " r

+Kg—17C2(G))Ag-1>}. (3.13)

C>(Ry

~ *The function F is related to the Mestre-Pascual result via
F(n,e) = Fyp(n,—¢/2).

In the non-Abelian case the gauge-coupling renormalization
is more involved. The computation can either be performed
in the background field gauge or in £ gauge provided that for
the latter one includes the vertex renormalization. This
computation was originally performed in [28] using an
alternative method and later reviewed in [29]; and the result
reads

2K? d(G)
=—|1+—*H(K .14
b= 1+ A mw]. e
where we have defined the functions
11C,(G) 3/K - 2\ ~/1
H(K)y=———FS+— dxF(0,= —x |,
1(K) 4C5(Ry) 4 )y 37 )6\5"
~ 20-4 2x2 —14x3 +4x*
G(x) = 1 4-C2(0) 0=t 327~ VA g

Cy(Ry) 4(2x—1)(2x=3)(1—x?)

While F is the function obtained in the U(1) case, the
nontrivial part of G stems from the gluon contribution.’
Notice that H, reduces to F'| in the case of an Abelian gauge
group, so Eq. (3.14) is valid for all simple gauge groups.

B. Extension to semisimple gauge groups

Let us now generalize the result to the case where the
vectorlike fermions are charged under a semisimple gauge
group. To determine the mixed contribution to the gauge-
coupling renormalization Z_itis sufficient to consider only
the mixed diagrams appearing in the gauge 2-point function.
In the £ gauges the mixed contributions to the vertex and
fermion field renormalization cancel against each other. To
determine Z, we employ Eq. (2.11) to accommodate mixed
gauge contributions. Starting from one gauge field, a, the
2-point function contains the usual terms present in
Eq. (3.13). These are unaffected by the presence of other
gauge groups. Additionally, at NLO, it is possible to have a
gauge bubble chain from a different gauge group f stretch-
ing across the fermion loop instead of the original a chain, as
shown in Fig. 2. These are the only type of diagrams mixing
the gauge groups, since a single fermion bubble cannot
couple simultaneously to two different gauge groups. The
new contribution to the 1PI 2-point function coming from
the mixed diagrams with the group S is

Zp Al =2, K, (xO N E v 24y
3d(Gp) .. 2Kﬂ0 "F(n+1.e)
= K - . (3.16
4N “; 3 ) (n+l)e" (3.16)

Torenormalize K, y, we have used the factthat Zx = Z, at
LOin 1/ . Once again, the 1/¢ pole can be extracted using
the resummation formula (A4). The new contribution to the
gauge-coupling renormalization is obtained as

Glx) =

aicy 12(x) when comparing with the result in [29].
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FIG. 2. Feynman diagrams for the 2-point functions giving mixed terms to the beta functions.

d(Gy) . [K x\of. 2

(1) (1) s

AZy =AZ,  =——=K dx(1—— ) F(0,=x |.
K, A, 2N (1/0 x( Kﬁ) < 3)6)

(3.17)
The mixed contributions to the beta function read
0 0 (1)
Appy ==K, | K,—+Ky;—— |AZ
ﬂKa (1< (181(0!+ ﬁaK/}> K{,
d(Gﬁ) Ky . 2

=g dxF(0,=x ). 3.18
e [ arr (0.2) (3.18)

Taking into account the mixed contributions coming from all
the different gauge groups to each beta function we find

2K? d
_2K2[,, d(GJ)
3 N

Pk, HE")(Ka) +%Zd(Gﬁ)Fl (Kﬂ)] .

p#a
(3.19)

Note that the H; functions are dependent on the specific
gauge group and fermion representation as evident from
Eq. (3.15) (hence the superscript). In the case of an Abelian
group H reduces to F.

A test of our results consists in checking that when
reexpanding the beta functions given in Eq. (3.19) as
functions of the couplings the coefficients agree with the
state-of-the-art three-loop perturbative computation [38]
which for G = G, x Gy reads

tee-loop _ 2K7 {1 1 <Ka(5Cz(G ) +3C,(RY)) Ka(79C,(G,) +66C, (R;;)))

. 3 48, (R )d(RG)™

N
1

11K3C,(R)

3K,C,(RY)
f

+K

N (452(1%’;,)51(1%\1,)—1 - 48S(RG)d(RG)!

2885, (Rg)d(Rg) "

2885,(Ry) d(R) >

It is straightforward to check that the leading 1/ terms
agree with the corresponding terms in Eq. (3.19).

In the derivation of Eq. (3.19) we have assumed that the
gauge group under which W is charged contains at most one
U(1). If that were not the case, it would be possible for the
fermion bubbles to couple to two different Abelian groups
simultaneously. This would give a new class of diagrams,
where the bubble chains would alternate between the two
groups. In such a case one would also have to take into
account kinetic mixing between the two gauge groups. This
has not been considered here.

C. Safe phase diagrams

To conclude this section, we investigate the short
distance fate of gauge-fermion theories at a large number

L 1415C5(G,)* +615C,(G,,) C5(R%) —288C, (RS, )

1 17K ,C5(G,)?
) N? (352<R€;>2d<R@>-2
1 2857C,(R%)?
) _W( e,y kg ﬂ
(3.20)

of matter fields. Here asymptotic freedom is lost and unless
an interacting UV fixed point emerges, the underlying
theory can be viewed, at best, as an effective low-energy
description of physical phenomena. In this regime asymp-
totic safety is dynamically achieved due to the collective
effect of the many fermions present in the theory. This is
reflected in the emergence of a nontrivial O of the beta
functions at NLO in 1/N [32].

1. Safe QCD

For single gauge groups, resembling QCD with many
flavors, asymptotic safety is indeed a possibility [32]. To
elucidate this point while making this work self-contained,
we briefly summarize here the salient points of how a UV
fixed point emerges. To make our point clear, we consider
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N
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N
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(@) SU(N1) x SU(N2)

K1

(b) U(1) x SU(N)

FIG. 3. Phase diagrams of semisimple gauge theories consisting of two non-Abelian groups (left) and an Abelian and a non-Abelian

group (right).

an SU(N) gauge group with N ; flavors transforming accord-
ing to the fundamental representation. From Eq. (3.14), one
shows that there is a fixed pointa K* = 3 up to exponentially
vanishing corrections [32]. This occurs because the G(x)
functionin (3.15) hasapolein theintegrandatx = 1 (K = 3),
corresponding to a logarithmic singularity in the H,(K)
function. The beta function therefore has a UV fixed point at
K* ~ 3 to leading order in 1/, which is obtained from the
condition 1+ d(G)H,(K)/N =0. The new conformal
window for these theories as a function of the number of
flavors and colors extends the original infrared (IR) conformal
window to also contain the asymptotically safe scenario [32].
It is worth mentioning that to provide a rough estimate of the
lower boundary of the asymptotically safe window, one can
use the stability of the 1/N expansion [29,32] by estimating
when the 1/N/? and higher corrections become relevant.

2. Safe semisimple gauge groups

We now investigate the semisimple case starting with the
G = SU(N,) x SU(N,) example. The associated phase
diagram refers to the RG flow plotted in the plane of
the two gauge couplings, K; and K,, and it is presented in
Fig. 3(a). The UV interacting fixed point, repulsive in all
directions, occurs for K7 = K5 = 3 (the blue-dot) up to
exponentially small corrections. Two more interacting fixed
points occur for (K] =3,K5 =0) and (K] =0,K5 = 3)
corresponding to the fixed points of each single gauge
group. Finally we have the Gaussian IR fixed point at the
origin of the coupling space. This analysis complements the
perturbative analysis for semisimple gauge groups inves-
tigated first in [39]. We therefore discover that there is a UV
complete fixed point for semisimple gauge theories with a
two-dimensional critical surface.

The phase diagram for the semisimple group G =
U(1) x SU(N,) is presented in Fig. 3(b). It is structurally
identical to the SU(N,) x SU(N,) case above with the
difference that the UV fixed point for the U(1) gauge
couplings occurs at K} = 15/2.

One can derive a rough estimate of the asymptotically
safe conformal window for the semisimple gauge group as
well. We use again the stability of the 1/A expansion by
estimating numerically the size of the known 1/N? and
1/N?3 corrections from Eq. (3.20). We expect it to be wider
than safe QCD because the effective number of flavors
N = N;d(RY,)d(R},) is larger.

IV. YUKAWA AND SELF-COUPLING
BETA FUNCTIONS

We now review and further elucidate the computation of
the RG functions of the Yukawa [35] and quartic couplings
[14] of the model (2.1) in the presence of a large number of
vectorlike fermions. Finally, the results of the running of
the quartic coupling are extended to the case where the ¥
fermions transform under a semisimple gauge group. We
are interested in the case in which y and A scale with A as
A~y*~1/N. This is the region for which a UV fixed
point can appear due to the interplay between the large N
gauge contribution and leading corrections stemming from
the Yukawa and scalar self-coupling. With this scaling of
the couplings it is sufficient to consider the one-loop
contributions from the Yukawa and quartic coupling to
their beta functions. The counting then ensures that higher
loops give corrections that are higher order in 1/A/.

The leading 1/ contribution stemming from the ¥
fermions is obtained by dressing gauge lines with their

016003-7



ANTIPIN, DONDI, SANNINO, THOMSEN, and WANG

PHYS. REV. D 98, 016003 (2018)

P p-k

FIG. 4. LO gauge contribution to the fermion self-energy.

bubbles. As in Sec. III, these diagrams can be resummed
and the 1/¢ pole extracted in a closed from. We first discuss
the new contribution to the fermion and scalar self-energies
before moving to compute the vertex corrections. We see
that it is straightforward to generalize the results to the
semisimple case except for the quartic self-coupling.

A. Fermion self-energy

To compute the Yukawa beta function we need first to
compute the gauge correction to the fermion self-energy to
LO in 1/N for the y, & fermions.

1. Abelian case

We start with the Abelian case and then extend the result
to the non-Abelian one. At this order in 1/A the relevant
diagram is shown in Fig. 4. For the y (identically for &) self-
energy, the defining integral for the n-bubble diagram is

d'k _io-(p—k)
@2n)* (p—k)?

i (p) = (iq, 50 s / #D) (k).

(4.1)
The integral is known, and the diagram evaluates to

2K,

i5o(n) 3i q)( = i nyn
—i%, ' (p) = 8/\/q G-p 3 3"y (e)l, (n,€)
¥

4 (n+1)e/2
x (— ”—’2‘> , (4.2)
p
where we defined
I (n.c) = n(3-¢e)I'(2-5r(1+ "—‘2*16)1“(12— "THS) .
n+1 (2 +5e)(3 =€)
(4.3)

Summing over all bubbles to obtain the total gauge
contribution to the self-energy at 1/N and shifting the
sum from n — n — 1, we obtain

FIG. 5.

LO gauge contribution to the scalar self-energy.

2 47[”2 ne/2
H,(ne) = 3 <_172>

x [3ely(e)]" (1 — ne)nel, (n —1,€).  (4.5)
The contribution to the RG function stems from the
1/e pole which is extracted using the resummation

formula (A15) and yields

3 ‘] (& )/ < 2 >
= dxH,|(0,=x ). (4.6)
1/e 8/\/ f]w v 3

To arrive at the above relation between Z, and the 2-point
function we used the fact that Z, = 14 O(1/N). For the
reader’s convenience we also give the expression for H,,,

_ dZ )

x(1 = %)F(4 —Xx)

A2 -x)F3-Hr(1+3%°

Hl//(o’ x) = (47)

2. Non-Abelian case

The result for the non-Abelian gauge group case is
obtained by replacing

471'2d<R\P)K0

. ATAY
B T2 s = N5y (Re)

%(90 Cz(R;()fsij (4-8)
in the n-bubble self-energy (4.1). The rest of the compu-
tation follows the Abelian case yielding the field-strength

renormalization

(1) _ 3d(Ry) K 2
Z}((f)_g&/\/’sz(R\y) C2(R){(Zf)) A dxHV, 0,3x . (49)

B. Scalar self-energy

We proceed to determine the correction to the scalar self-
energy at LO in 1/N. This is a necessary step towards the
full computation of the Yukawa and quartic self-coupling.

1. Abelian case

Here the diagrams that contribute contain a chain of n
fermion bubbles as shown in Fig. 5. Analytically
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dk n
(2p—k)* D) (k)

—is) (pz) = (igoq(ﬁ)z”e/ (;ﬂ.)d(p_lk)Q
x (2p —k)*. (4.10)

The integral yields the n-bubble contribution

Koq 471'/12 (n+1)e/2
_ls(n)(p2) = — (/’( 2K )n 2< >
Nag p’
X (3=e)j(e)ly(n,e), (4.11)
where we have defined the function
(1 -2le)r(2 -
Iy, ¢) — LU=z N2 =5t RO NREY

2+ Le)T(3 - 2e)

Summing over S (p?) and shifting the summation from
to n — 1, one can rewrite the derivative with respect to p? in
the form

d 99; [ 2K,
—S = 4.13
dp2 ( 4Nq2 v = ( ) (l’l €) ( )
Here we defined
Arp>\ /2 n €
X [3elg(€)]"'Ty(n —1,€). (4.14)

The simple e pole of interest for the RG function is
determined using (A15) and it yields

d

343 K o)
) _ | _ / < _>
Z, = S = dxH,| 0,=x |, 4.15
¢ dp? (%) 1/e 2N Jo P\73 ( )
where
| = 54—
H(0.x) = (13T —x) (4.16)

322 -3 -3r(1+3)

2. Non-Abelian case

To determine the scalar self-energy for the non-Abelian
case one replaces the U(1) charges in (4.10) as follows:

- . 47[2d(Rly)K
(4490)* = G5(T4T})", = :

BT

(4.17)

The rest of the computation is identical to the Abelian case
and yields

() __3d(Ry) /K 2
%o _ZNSZ(R.I,)Cz(Rf/’) | dxHy (037 ). (4.18)

FIG. 6. Contributions to the Yukawa vertex at order 1/N.

C. Yukawa vertex

The only vertex diagram that contributes to the Yukawa
beta function in the Landau gauge is shown in Fig. 6. The
other diagrams vanish trivially in this gauge when the
external momenta are set to 0.

1. Abelian case
With vanishing external momenta, the analytic expres-
sion representing the diagrams contributing to the Yukawa
coupling with n bubbles on the gauge line is
iY" = (=iy)(~iq,go)(iqelo)n¢

dk sk ic-k
] el R =

A common mass has been added to the fermion propagators
as an IR regulator, as it does not influence the divergent part
of the diagram. One finds that

5D (k). (4.19)

n l3yC] q . . 471'/12 (n+1)e/2
lY( ) = 8_/\/ 4 5( 2K0) +1F0(€) <—m2
e\ (2 -He)r(e)
11— 2 2 . 4.2
“ 3) r2-3 (420

Next we sum over every number of fermion bubbles to find
the full 1/ gauge contribution to the vertex, and cast the
expression in a suitable form, yielding

iY = —iy 9 %{%Z( 2K0> 1

where

y(n, €), (4.21)
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Ay’

Hy(n,e) = ( — >n€/2[3ero(e)]”_l

5 (1 e) @ -5e0(1 +5¢)

3 r2-¢

(4.22)

Following the usual procedure the 1/e pole can be
extracted in a closed form using (A15), as H, is sufficiently
regular. The counterterm for the Yukawa coupling is then
extracted via

3 q,9: [K 2
sy =Yl = ywé—zf/o dxH, (O,gx) (4.23)
¥

with

(4.24)

2. Non-Abelian case

The previous result can be extended to the non-Abelian
case provided that we use

Y8495 = Yaudo(T3) (T2)

, 4r*d(Ry)K,

. k
= yau(Ty)"(T2)', NSy (Ry)

(4.25)

in the Abelian expression (4.19). Employing the identity

Co(R,) + Co(Ry) - Co(Ry)

Yakl(T?)ki(T?)lj = VYaij

2 b
(4.26)
we arrive at
syl = —y .,iCZ(Rﬂ + C2(Re) — C1(Ry)
ai aij 2N 2S2(R\P)
K 2
x / dxH, (0,§x>, (4.27)
0

D. Quartic vertex

We evaluate the leading order gauge vertex contribution
to the scalar self-coupling. Such contributions first appear
at 1/N?, and in the Landau gauge the only contribution
stems from the diagram of Fig. 7. All other types of
diagrams, see Fig. 8, contain at least one three-point gauge
insertion on an external scalar leg. Since the gauge
propagator is transverse in the Landau gauge, any such
coupling is proportional to the external momenta and
vanishes when this is taken to 0. Therefore these diagrams
do not contribute to the vertex counterterm.

We proceed by computing the diagrams in the Abelian
theory before considering the non-Abelian one as well as
the semisimple gauge groups.

n-m
N
A //
N
N P k //
N 7
N
N Y
N ’
N 7
N ’
N 7
N e
7 N
e N
7 N\
s \
7 A
> A
7 A
y p-k N
e N
7 N
7 A
m

FIG. 7. g¢* vertex contribution.

1. Abelian computation

In order to evaluate the vertex contribution due to the
diagrams in Fig. 7, we first denote by iA"™) such a
diagram with m bubbles on the one propagator and n — m
bubbles on the other. A" and A"~ are indistinguish-
able; therefore we include a factor of % for each pair (n, m)
to avoid double counting. This also agrees with the
diagrams where n = 2m, in which case the two bubble
chains are indistinguishable and they receive a symmetry
factor % from the Feynman rules. In the limit of vanishing
external momenta, all permutations of the scalar legs count
the same. Moreover, in this limit, only the loop momenta
pass through the bubble chains and the loop integrals are
indifferent to which propagator the bubbles are placed on.
The divergent part of the four-point function at vanishing
external momenta is obtained from

(o] n

iA|l/€ = Z

i) ‘ + permutation
n=0 m=0 ¢

1/
=2) (n41)iA"0
n=0

(4.28)

l/e'

It is thus clear that it is sufficient to evaluate only the
diagrams with bubbles on one of the gauge lines.

To regulate the IR divergence of the relevant diagrams,
we consider nonvanishing external momenta, as given in
Fig. 7, from which we obtain

cen oy

|
|
|
v
|
|
|
|
|
|
|
|
|

I
I
|
|
|
1
|
|
|
I
i
|
I
! | |
! | |

! | | ,
! v v

’

M | |

! | |

I

FIG. 8. g¢* with three-point vertex on the external scalar leg.
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. 1 d’k n
i) = 2 (i2q5,50)°w / D (p = k)DL (k).

(2m)¢
(4.29)

where the factor % is the aforementioned symmetry factor.
Evaluating the integral one obtains the result

in q¢

IA(0) e (=2K )" 2u¢
< <- 4;’2‘ )<n+1)€/2r(’)’(6)rl(n,€), (4.30)
with
Fl(n’e):(3—€)(4—€+n€)

(n+1)e
F(1-2e)l(1-5)(1+e)

F(2+%e)l(2-"2e)

(4.31)

At this point we may sum over all the different diagrams as
indicated by Eq. (4.28) to obtain the pole structure of the
vertex. By redefining the summation from n — n—2, one finds

. 15477 ,u q 2K,
lA|]/g: q¢z< ) ——H,(n,e)

s

1/e
(4.32)
where
47.[”2 (n—=1)e/2
Hl(l’l,(:’) = <——2>
14
~1
x [3eTy(€)]"2 (n=Der —2.¢).  (4.33)

It is now possible to resum the pole structure of the vertex
contribution using (A22). The resulting leading order gauge
contribution to the quartic counterterm pole is

4
sl = A|1/e =2 A H

with

—T(1+3)°

2. Non-Abelian case

In the non-Abelian case we have

. a L
lA(n,O) hcd _ 5 (zg%)z{TA, Tg

) / (Sjr];"

By comparing this expression with the Abelian diagram of
(4.29) we can read off the non-Abelian result, paying

AT T

D*(p = k)Dy) (k). (4.36)

n-m
N //
N
s
«p k ,
N
s
N
AN v P
N s
N s
N s
N s
N s
s N
s N
s N
s N
s \
» N
e N
s \

4 N
7 N
4 \

m

FIG.9. The mixed gauge term contributing to the quartic vertex
in a semisimple gauge theory.

attention to the fact that the color structure changes depend-
ing on the permutation of the external scalars. The con-
tribution to the counterterm in the non-Abelian theory is thus
given by

247%d(Ry)

saVab = C AT
¢ N2S3(Ry)

2
A"bchzHﬁ(l,gK), (4.37)

with
1
A, = g ({5, 15y {14, T5Y",

+A{T}. T5} AT}, T3} ). (4.38)

3. Semisimple gauge group

The quartic coupling contains mixed gauge-coupling
contributions already at LO in 1 /N If we consider the case
where both the scalar and the vectorlike fermions are
charged under a semisimple gauge group, then the quartic
coupling receives mixed contributions of the type sketched
in Fig. 9. For every pair of simple gauge groups (G,. Gy),
all the diagrams contain at least one power of K, o and Ky,
respectively. Starting from the simple diagram where all
fermion bubbles are put on the G4 gauge line, we have

= (i234,09p0)* (T4 aT(/ 5 (Tf/§ aT(/ /})b T

. / <§d§

Recall here that the generators belong to different gauge
groups and therefore they commute. Comparing this dia-
gram to Egs. (4.29) and (4.30) leads to

l'A(n,O)

D (p —k)DYY (k). (4.39)

2, ¢ d(R“)d(Rﬂ)
lA(n 0) — (TA aTB ) (TA aTB )b TH b4 b g
pa” ¢ p) c\"pa” Qp d2N2S2(R$)S2(R(;)

4”ﬂ2> (n+1)e/2
2

¢ (<2K o) (=2K 5 ) (—

x T (e);(n, ). (4.40)
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We can distribute the fermion bubbles in several ways on iA |1/€ _ l<Ka,o> mA(n,O) (4.41)

the two gauge lines. Each bubble gives a factor of K, or Kzo
K depending on the gauge line, but the kinematic part of
the diagram remains unchanged in the limit of vanishing

external momentum. Because the pole structure does not ) ) o
depend on the external momentum, the pole structure of a Thus summing over all possible bubbles and taking into

general diagram can be related to the diagram with fermion account the different permutations of the external scalars,

1/e

bubbles on only one of the gauge lines. In particular, we arrive at
|
10872 d(R, © N/ 2K, 0\ [ 2K\ Hy(n 4 1, €)
iAade|1/, — iBa,ﬂ ab d > St - - ’ ) (442)
¢ cd N S>(RY, nzz:l = 3 3 ne" e
having defined the tensor
1
Ba,ﬁabcd = E [(Tg,aTg,ﬁ)ac(Tg,aTg,ﬂ)bd + (TA (1T(§/}>a (Tl(?) aTS/)’) ] (443)

Employing Eq. (A29) and collecting the contributions from all the mixed terms, we find

24;;%12 R"’ ) 487% d(R%)d(RY) K,K; [Ke 2
@ K2H B, ¥)2 Ty, —ah / dxH, (1,2 4.44

a<fp

which naturally also contains the unmixed contributions.

E. Complete set of large N beta functions

Having evaluated all relevant diagrams we now compute all the beta functions using Eq. (2.10), starting with the Yukawa
that reads

1 . . .
(B)aij = 35,2 [6Y " ya)ij + a0 y5)i; + 2T [yay ?]ypi]
3d(Rg) Co(Ry) + Co(RE) ( > Co(Rj) ( 2
— Yai a Yai a KaH O’_Ka>
JZ 16\ S>(R%) JZ 4/\/ S,(RY) I\ 73
0) C2(RY) + Co(RE) — Ca(RY) 2 1
K.,H,|0,-K, Oo|—)- 4.45
y‘“fz 25(RY) “ ( 3 ) - <N2> (449
This result includes the one-loop terms from the matter sector.
For the quartic scalar coupling, the beta function is
1 1
B ca = 16722 (2/1“e¢f/1hfd + Zflaedf/lhf + A4b f/lefcd) 4 Tr[)’dyT'e]/labce
7
1 3d(R ) 2
_ T Z byt _ pab K H,|0,=K
2 T vy + vy Ldz S R,,) « ¢< . >
48;: d(RY)d(R)) K.K 2
Z ap’ cd : K Iﬁ( - KzH; 1,§Kﬁ
a<p Rly)SZ(R ) a p
2471 . dH(RE) 2 0 2 1
1,= K} —H,1,ZK, O —=]. 4.46
e “’SzR@{ (15 >+ "OK, *( )] +o(5) (440
Finally the gauge beta function for the full model of Eq. (2.1) is
B _2Kaly AWy (1 (RY) 415, (R?) +1.8, (R2) +@H(“) Zd (G)F\(Kg)| +0O (4.47)
K3 | TSy (Ry) \ 27277 7272 g mR e ) N,#{, pF1(Ky N2 '
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We note that the 1/ counting is consistent with the fact
that A ~y?> ~ g> ~ 1/N.

F. A mnemonic for Yukawa and quartic beta functions

Since the beta functions of many phenomenological
models are known to LO, it is convenient to rewrite the
above Yukawa and quartic beta function Egs. (4.45) and
(4.46) in a more compact form. With this prescription one
can immediately obtain the bubble diagram contributions to
known one-loop beta functions by simply using the follow-
ing recipe. The Yukawa beta function at a large number of
fermions can be written in the following compact form,

By =1y + 5 caKal,(Ky), (4.48)

with

I,(K,) =H (OgK)<1+K C>(Rj)
y\Ba ¢ '3 e (16(C2(R?)+C2(R?

containing information about the resummed fermion bub-
bles and ¢y, ¢, are the standard one-loop coefficients for the
Yukawa beta function. Thus, when ¢, ¢, are known, the
total Yukawa beta function with bubble diagram contribu-
tions is straightforward. Similarly, for the quartic coupling
we write

b= Cll2 + lzc(zKalig
a

o)+ Zc,,Kzu

+ anﬁKaKﬁIg%gg (Kav Kﬁ),

a<p

(4.50)

with ¢y, ¢, ¢4, ¢, being the known one-loop coefficients®
for the quartic beta function, and the resummed fermion
bubbles appear via

2
Lp(K,) = H, (0, 3 Ka>

2

K,)
1!14(Ka):H/1 17§Ka + K,

dH,(1,%2K,
dK,

1 2
= KaH/l LfKa
K, K, 3

2

It is thus also straightforward to obtain the total quartic beta
function including the bubble diagram contributions when
C1, Cg» Co» Cop are known.

Ig%g% (Ka’ Kﬁ)

(4.51)

(’Clearly these are not the same numerical coefficients appear-
ing in (4.48).

G. Pole structure of the beta functions

We now elucidate the pole structure of the resummed
beta functions, which is a characteristic feature of the
theories investigated here.

Since the pole structure of beta function in theories with a
simple gauge group has been discussed already in the
literature [29-32], we move immediately to consider the
semisimple gauge-fermion theories. Here we observe that if
the group structures contain an Abelian factor the corre-
sponding beta function is such that it still features a
singularity for K = regardless of the presence of other
non-Abelian factors. ThlS is so since the extra contribution
assumes the form of F'| rather than H [see Eq. (4.46)]. Thus,
itis not possible to shift the resulting UV fixed point value of
the Abelian gauge coupling away from the Abelian pole. This
is clearly manifest in the phase diagram structure of Fig. 3(b).

For the Yukawa beta function we first observe, using
Eqgs. (4.7), (4.16), and (4.24), that the following relations hold:

Ho(x).
H,(0,x) = Hy(1,x) = (1 - 3) Ho(x).

HW(O,x) = xH,(x), H¢(0,x) =

(4.52)

where

(1-3r@-x)
329G -1 +3)

This means that they all inherit a pole at x = 5 yielding
2 1 2 1
H/(Ov_Ka) ~ ’ H()<09_Ka> ~ s
Y73 B-K, 3 L-K,

2 1
Hy O,gKa NKa_lz_S.

Thus the Yukawa coupling RG function Eq. (4.45) near the
pole assumes the following form:

Hy(x) =

(4.53)

1
ﬂy e Cly3 + yKa (ﬁ (455)

a 2

)(c2 + 3K,),

where c;, ¢,, c3 are positive constants stemming from the
group structure of the theory. It is clear that the three
summation functions altogether provide large negative con-
tributions when approaching the pole (i.e., K, = %) from the
left. The pole in the Yukawa beta function appears at the
original Abelian gauge coupling location [see Eq. (3.12)].
This implies that if the gauge group features an Abelian factor,
from Eq. (4.55), we deduce that the Yukawa gauge coupling
vanishes in the UV (free rather than safe). The situation
changes dramatically when only non-Abelian gauge groups
are involved. This is so since the non-Abelian gauge beta
function reaches an UV fixed pointat K, = 3, whichis clearly
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away from the Abelian pole, allowing for nontrivial UV 0’s of
the Yukawa beta function.

Similarly to the Yukawa beta function the RG equation
for the quartic coupling, due to the K,H,(0,%K,) term in
Eq. (4.46), receives a large negative contribution at the
Abelian pole. This is made explicit by the relations

2 2 1
H/l 17§KUC :Hy O,gKa NK 15°

-2
0 o (1 ZK) 1
A s Ba | YT T T 15\
aI(a 3 (Ka_%)z

(4.56)

Thus, the quartic coupling RG function Eq. (4.46) near the
first singularity assumes the form

1 1 1
A:cl/lercz/iK,(—) +c3K2,< - )
‘ Ka_% ‘ Ka_% (Ka_%y

(4.57)

where ¢y, ¢5, ¢3 denote positive constants (distinct from the
Yukawa case). From Eq. (4.57) we learn that the quartic
beta function has an even more singular structure located at
the Abelian pole. If the theory contains an Abelian gauge
group one observes that the quartic coupling develops an
explosive behavior (1 «exp(N;)) at the Abelian fixed
point and the fixed point analysis cannot be trusted.

The situation for the non-Abelian case resemble the
Yukawa case. Here the non-Abelian UV fixed point is
achieved at K, = 3 which is below and sufficiently away
from the pole in the quartic coupling, allowing for (depend-
ing on the theory) the existence of UV fixed points in all
couplings.

V. CONCLUSION

We investigated gauge-Yukawa theories at a large
number of gauged fermion fields. We began our analysis
by reviewing the state of the art of the gauge-fermion
theories. We considered also semisimple groups and by
discussing their RG phase diagram we discovered a
complete asymptotically safe fixed point which turns out
to be repulsive in all gauge couplings.

Subsequently we enriched the original gauge-fermion
theories by introducing two Weyl gauged fermions trans-
forming according to arbitrary representations of the gauge
group and further added a complex gauged scalar. The latter
is responsible for the presence of Yukawa and quartic scalar
self-coupling interactions. On par with the gauge sector, we
determined the leading 1/N, Yukawa and quartic beta
functions. We then discussed the pole structure of the system
of RG equations. This has an immediate impact on the
existence, location and stability of related fixed points. In
particular, one observes that when an Abelian gauge cou-
pling is present in the theory, the Yukawa beta function is
driven to be free while the quartic coupling becomes

uncontrollable, de facto requiring a fully nonperturbative
analysis near this point. The situation changes dramatically
when only non-Abelian gauge couplings are present.
Because the latter achieve a fixed point at a much lower
value of the Abelian one (still appearing as the only pole in
the Yukawa and quartic beta function) Yukawa and quartic
couplings (depending on the theory) can still admit UV
interacting fixed points. These results cannot be extended to
the supersymmetric case [23] for a number of reasons. The
first reason is that the resummation procedure would have to
respect supersymmetry and, in addition, it has already been
proven in [23] that it is impossible to have an UV fixed point
for any N in super-QCD.

Our work elucidates, corrects, consolidates, and extends
results obtained earlier in the literature [13,14,27-32,35]. It
also provides the stepping stone and the needed instruments
for future theoretical and phenomenological extensions and
analyses.
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APPENDIX: RESUMMATION FORMULAS

Here we present proofs for the four resummation formulas
used for the large A/ computations. Regardless of the quantity
in question only the pole structure ate — O1is relevant. We use
the notation *“ ~  to mean equal divergent parts. Note that all

e—=0
of these resummations are only valid to LO in 1/N.

All the resummation formulas rely on a function H(n, ¢)
being regular both for « = ne — 0 with e constant and for
€ — 0 with a constant. In general, the functions occurring
in this paper can easily be checked to satisfy this condition,
except, possibly, for the term [3eI'y(¢e)]" with fixed a and
€ — 0. To see that this term is well behaved, it is sufficient
to note that the base satisfies

<6F2(2 - ST(1+4
I'4-e¢)

a/e—1
D™~ g @y

for some regular function f that is regular in 0. To prove
that this expression has no pole, observe that there must
exist constants ¢, 6 > 0 such that

If(e)|<ec, Vle| <é.
It must then hold that

(A2)
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1ir%|1 +ef(e)|¥e < lim (1 +ce)¥¢ = lim <1 —|—C> = e (A3)
having substituted x = L. It is thus found that [3eI'y(e)]" is without a pole in ¢ — 0 and fixed ne.
1. First resummation
- 2K 1, 2 [K 2
Z( 0) L@N__/ dx<1—ﬁ>H<o,—x> (A4)
= + 1) 1/e  3e Jo K 3
[
The proof, originally due to [27], is presented here to keep =~ The sum greatly simplifies as the identity
the work self-contained. We define
"/ m
S,/ 2Ky\"H(n+1,¢) Z( )(—1)k(x—k)f:0 (A10)
R(e) = - — A5 ’
@=% (-5) . 2

n=1

The resummation proceeds assuming that H(n,e¢) can be
written as a power series,

o0

HY)(¢)(ne)! (A6)
=0

J

where every H\/) (€) is regular in €. Such an expansion only
exists if H(¢, €) is regular in both « and e. Furthermore, the

bare coupling is renormalized with K, = Z¢'K. As this is a
LO in 1/N computation, one may then expand

ze = 1= Lo( L)
o= - o)

_Z<”+k_1><23—§)k+0(%>. (A7)

Inserting all this back into Eq. (AS5), we find

- EES (L)

=1 k=0
L= )];E’i ]:le) HO)(e), (A8)

where HU)(e) are regular functions of e. Defining
m = n + k, the sums are redefined in terms of m and k.
The only poles in € occur for j < m, so the divergent part of
R is given by

valid for all integer 0 < j < m and real numbers x, implies
that the k sum vanishes for all j # 0. Meanwhile the j = 0
term evaluates to

(1)

S (" e sy e
— k m—k+1 mim+1)
Performing the j and k sums then yields
© 2K\"HO(e) 1
R(e) ~ — — . Al2
(e)e—>0 m§=:l ( 3 ) e" m(m+1) (A12)

Expanding now H"(e) = Y-% oH(f )¢’ and selecting the

simple pole one finds

1 2K\ HY
(€ )17:22 (7) C+1)({+2)

=0

(A13)

Finally, before resumming the power series in Hg)), the

fraction is decomposed so that

ot 50 )

=0

K
N—E / dxH O,%x —l/ dxxH 0,%x ,
1/e 3¢ 0 3 K 0 3

(A14)

taking a K derivative and resumming the power series
before integrating again. This concludes the proof.
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2. Second resummation

- 2Ko\" 1 2 [K 2
- H(n,e)~ —— dxH|0,=
; < 3 ) ne" ( 6)1/6 36% ( 3x>

(A15)

To prove this formula [35], let

S@ =3 (-?) nlﬂH(n,e).

n=1

(A16)

Assuming again that H(n, €) is sufficiently regular, it may
be expanded according to Eq. (A6). At the same time, the
bare coupling is renormalized by K, = Zz'K. Then using
the expansion Eq. (A7) one finds that

0-SEHE LY
(A17)

Note that as H(¢) is regular in 0, only the terms in the sum
with j <n+ k—1 contribute to the pole structure. The
sums are redefined with m = n + k and so

(A18)

According to the identity (A10), the k sum vanishes for
all j # 0. The sum is thus evaluated by keeping just the
j=0 term,’

® 2K\ 1 HO(e)
S(G)g:o_mz: (T) PRTR

Expanding H")(¢) as power series, the sum gives

(A19)

"For j = 0 one has to use the summation,

;(Z) %= H)ni(’;) (k—1>1k

[So]

where

Mg

mlH()

€—>0 o 0< ) emf’

ZHOG.
=0

As only the simple pole in epsilon is of interest to us, the
resummation can now be concluded,

1 & <2K> 41 ] 0)
e 7r1He
l/e €= Z+1
2 [K SN (2x\¢
il
1/e 3¢ 0 =0 3
The second to last step is done by taking a K derivative

before reintegrating so that the power series of H( (x) =
H (0, x) can finally be resummed proving (A15).

Y
Il

(A20)

(A21)

3. Third resummation

i 2K\ o LKV (1 25
20 _H(ne)~-—|== -
= 3 6‘"_1 ’ /e € 3 3

(A22)
To prove that this is the case, let
- 2Kp\" 1
T(e) = ; (_T> = H(n,e).  (A23)

Here too, the function H(n, €) is expanded as a power series
in ne as given in Eq. (A6) such that all H') (¢) are regular in
€ = 0. Simultaneously the bare couplings are renormalized
Ko = Zx'K, using Eq. (A7), and we write

iii <—27K)n+k <n+]]:_ 1)(—1)kH(.i)(€)

n=2 j=0 k=0

n'
X T (A24)
The sums can be rewritten in terms of m=n-+k
so that

x [’”i(m;1>(_1)k(m_k)j_(_1)m_l |

: (A25)
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Here the last term is a compensation for the fact that
the k sum is taken to go all the way to m — 1 rather than
just to m—2. Poles in € only appear for j<m—2
in which case the identity (A10) causes the first term in
the sum to vanish. Thus, for the pole structure it holds

2K\?2
6 ~ 3 22 m+1 — 1> where

MY (5
H(l.€) = (A27)

erf‘

Mg

Y
Il

0

that
- - At this point one can immediately determine the simple
Z 2K Z HY)(e) B Z 2K mH(1,¢€) ¢ pole, which is evaluated to
e 50 m—j—1 3 en=1 °
=2 :0 m=2
T 2K _ 12K 2
(A26) 2K (12
l/e € Z € 3 '3 '
where the last equality is due to a resummation of the H (A28)
function. Reexpanding now H(1,¢) yields
|
4. Fourth resummation
oo n—1
2K, o\ !tm ([ 2Kzo\"m H 4 K,K K, 2
YN (- _Z0h0 (n. ) s dxH (0,5 x (A29)
= = 3 3 ne" 1/€9€K Kﬁ 3
To prove this, denote by
oo n—1
2K(10 I+m 2K/50 n—m H(}’l,e)
= - : - : . A30
=S8 () () o
First the sum over m is performed by noting that
”2‘1: 2K 0\ [ 2Kgo\mm 2 1 1171/ 2Kq0\" 2K50\" (A31)
m=0 3 3 B 3 Ka,O Kﬁ,O 3 3 '

Now going from the bare to the renormalized couplings using K, = Z}(‘l K,=K,(1-

to first consider the first term,

2Ka)=1atLOin 1/, it is beneficial

1 1 ]! K,K
- | =__2ah (A32)
Koo Kpo K, — Ky
This term is thus finite and does not contribute to the pole structure. The sum can be written as
2 KKy & 2K, 0\" 2Ks0\"] H(n,e)
U - _= —_—— —_ —_ 2 A33
(€) 3K, —Kﬁ; [( 3 3 ne” (A33)
At this stage the resummation (A15) can be applied directly to obtain
4 K,Kg 2 Ky 2

Ul(e dxH|0,=x | — dxH|( 0,= . A34
©)5.5ek, K, U * < 3x> /o * < 3X>} A3
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