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We consider the dynamics of gauge-Yukawa theories in the presence of a large number of matter
constituents. We first review the current status for the renormalization group equations of gauge-fermion
theories and extend the results to semisimple groups. In this regime these theories develop an interacting
ultraviolet fixed point that for the semisimple case leads to a rich phase diagram. The latter contains a
complete asymptotically safe fixed point repulsive in all couplings. We then add two gaugedWeyl fermions
belonging to arbitrary representations of the semisimple gauge group and a complex, gauged scalar to the
original gauge-fermion theory allowing for new Yukawa interactions and quartic scalar self-coupling.
Consequently, we determine the first nontrivial order in 1=Nf for the Yukawa and quartic beta functions.
Our work elucidates, consolidates, and extends results obtained earlier in the literature. We also acquire
relevant knowledge about the dynamics of gauge-Yukawa theories beyond perturbation theory. Our
findings are applicable to any extension of the standard model featuring a large number of fermions such as
asymptotic safety.
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I. INTRODUCTION

The most general classes of four-dimensional, renorma-
lizable quantum field theories (QFTs) are in the form of
gauge-Yukawa theories. Their dynamics underlies the stan-
dardmodel (SM) interactions and those of any of its sensible
extensions. It is therefore paramount to gain a deeper
understanding of their dynamics, which is often limited
to perturbation theory.
Fundamental theories are those gauge-Yukawa theories

that, according toWilson [1,2], arewell defined at arbitrarily
short distances. Asymptotically free [3,4] and safe [5] QFTs
are complementary examples of fundamental theories.1 The
recent discovery of four-dimensional, controllable, in the
perturbative sense, asymptotically safe QFTs [5,7] has
opened the way to novel dark and bright extensions of
the SM [8–15].More generally, it is interesting to investigate

the short distance fate of the SMand its extensions including
gravity [16–20].
To gain information beyond perturbation theory, one can

use supersymmetry. A systematic investigation of non-
perturbative constraints that a supersymmetric, asymptoti-
cally safe QFT must abide, including a-maximization [21]
and collider bounds [22], appeared in [23] extending and
correcting the results of [24]. Building upon results of [21],
the first evidence for nonperturbative, supersymmetric
safety was gathered in [25] and further analyzed in [26].
Nonperturbative results can also be deduced for non-

supersymmetric theories when considering specific limits
in theory space: for example, building upon the large Nf
results of [27–31], that gauge-fermion theories at any finite
number of colors can be argued to develop a nonperturba-
tive ultraviolet (UV) fixed point [32]. Consequently, one
can extend the original conformal window, reviewed in
[33,34], to include an asymptotically safe phase [32].
It is therefore timely to consider the dynamics of gauge-

Yukawa theories at large Nf [14,35–37]. We investigate
this here by elucidating, consolidating, and extending the
results obtained earlier in the literature. The results are
useful when searching for asymptotically safe extensions of
the SM [13,14].
The paper is organized as follows. In Sec. II, we

introduce our model and the renormalization conventions
used throughout the paper. Section III then proceeds to
review the current status of large Nf computations for the
gauge beta function. We then generalize the results to
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semisimple gauge groups and in addition we present their
phase diagrams. In Sec. IV, we provide a detailed compu-
tation of the Yukawa and quartic coupling beta functions at
the first nontrivial order in 1=Nf for generic, semisimple
gauge groups. Section V concludes the paper. The explicit
derivations of the various resummation formulas used in the
large Nf computations can be found in Appendix.

II. GAUGE-YUKAWA MODELS:
NOTATION AND CONVENTIONS

We consider both Abelian and non-Abelian semisimple
gauge-Yukawamodels featuringNf vectorlike fermions,ΨI
chargedunder the full gaugegroup.Additionally, themodels
contain two Weyl spinors, χ and ξ, and a complex scalar, ϕ,
such that there is enough content to form a (chiral) Yukawa
coupling among these three fields, and for quartic scalar self-
interactions to emerge.2 The field content of the model is
summarized in Table I wherewe report the transformation of
each matter field with respect to the gauge interactions.
The Lagrangian of the theory reads

L¼−
1

4
FA
μνFA;μνþ

XNf

I¼1

iΨ̄Iγ
μDμΨIþiχ̄σ̄μDμχ

þiξ̄σ̄μDμξþðDμϕÞ†ðDμϕÞ

−ðyaijϕaχiξjþy�;aijϕ�
aχ̄iξ̄jÞ−

1

4
λabcdϕ

�
aϕ

�
bϕ

cϕd; ð2:1Þ

where the index I ¼ 1;…Nf is the Ψ flavor index, i, j are
gauge indices for χ and ξ, and a, b, c, d are reserved for the
gauged scalar indices within a given representation that can
be read off from the associated covariant derivative

DμΨi
I ¼ ½∂μ þ igAA

μ ðTA
ΨÞij�Ψj

I;

Dμχ
i ¼ ½∂μ þ igAA

μ ðTA
χ Þij�χj;

Dμξ
i ¼ ½∂μ þ igAA

μ ðTA
ξ Þij�ξj;

Dμϕ
a ¼ ½∂μ þ igAA

μ ðTA
ϕÞab�ϕb: ð2:2Þ

In the most general version of the model, the gauge group is
allowed to be semisimple. The generalization of the
covariant derivative in this case is straightforward.
Gauge invariance imposes the following constraints,

0 ¼ ybijðTA
ϕÞba þ yakjðTA

χ Þki þ yaikðTA
ξ Þkj;

0 ¼ −λebcdðT�A
ϕ Þ

e
a − λaecdðT�A

ϕ Þ
e
b þ λabedðTA

ϕÞec
þ λabceðTA

ϕÞed; ð2:3Þ

while the constraint on the Abelian charges reads

qϕ þ qχ þ qξ ¼ 0: ð2:4Þ

To prepare for the large-number-of-flavors limit, the
gauge couplings for each gauge group Gα are rescaled as
follows:

Kα ¼
g2αN S2ðRα

ΨÞ
4π2dðRα

ΨÞ
; where N ¼ Nf

Y
α

dðRα
ΨÞ: ð2:5Þ

Here the Dynkin index S2ðRα
ΨÞ is defined via the relation

S2ðRα
ΨÞδAB ¼ Tr½TA

Rα
Ψ
TB
Rα
Ψ
�. In the fundamental representa-

tion of an SUðNÞ group we take it to assume the value 1=2.
The dimension of a given representation is indicated
with dðRα

ΨÞ.

A. Renormalization conventions

We now briefly summarize our renormalization con-
ventions to prepare for the computations of the renormali-
zation group (RG) functions in the model. We denote all
bare fields and couplings with subscript 0.
In the Lagrangian (2.1), the bare fields renormalize

according to

Aμ
α;0 ¼ Z1=2

Aα
μ−ϵ=2Aμ

α; Ψ0 ¼ Z1=2
Ψ μ−ϵ=2Ψ;

ϕ0 ¼ Z1=2
ϕ μ−ϵ=2ϕ; χ0 ¼ Z1=2

χ μ−ϵ=2χ;

ξ0 ¼ Z1=2
ξ μ−ϵ=2ξ; ð2:6Þ

while the bare couplings are given by

y0;aij ¼ ðZχZξZϕÞ−1=2μϵ=2ðyaij þ δyaijÞ;
λab0 cd ¼ Z−2

ϕ μϵðλabcd þ δλabcdÞ;
gα;0 ¼ g̃α;0μϵ=2 ¼ Z−1=2

Kα
μϵ=2gα: ð2:7Þ

We use dimensional regularization with d ¼ 4 − ϵ. The
field renormalizations are expanded in terms of their ϵ
poles, writing

TABLE I. Summary of the field content of the model. The first
two columns detail the transformation of each field under Lorentz
and flavor symmetry. qΨ;χ;ξ;ϕ denotes the U(1) charges of the
fields, while Rα

Ψ;χ;ξ;ϕ are the representation of the fields under
each simple gauge group labeled by α.

Fields SOð1; 3Þþ SUðNfÞ U(1) ×αGα

Ψ ð1
2
; 0Þ ⊕ ð0; 1

2
Þ Nf qΨ ⊗α Rα

Ψ
χ ð1

2
; 0Þ 1 qχ ⊗α Rα

χ

ξ ð1
2
; 0Þ 1 qξ ⊗α Rα

ξ

ϕ (0,0) 1 qϕ ⊗α Rα
ϕ

2Gauge anomalies are avoided by either adding new chiral
fermions or by arranging χ, ξ in anomaly-free representations of
the gauge group. Our results are adaptable to a given gauge-
anomaly-free model.

ANTIPIN, DONDI, SANNINO, THOMSEN, and WANG PHYS. REV. D 98, 016003 (2018)

016003-2



Zi ¼ 1þ
X∞
k¼1

1

ϵk
ZðkÞ
i : ð2:8Þ

Similarly, the counterterms are expressed as

δyaij¼
X∞
k¼1

1

ϵk
δyðkÞaij and δλabcd ¼

X∞
k¼1

1

ϵk
δλðkÞabcd: ð2:9Þ

It is now possible to expresses the beta function for the
couplings in terms of the field-strength renormalizations
and the counterterms of the renormalized Lagrangian in the
above notation. The beta functions, βx ¼ dx=d ln μ, are
given by

βy;aij ¼
�
−
1

2
þ Kβ

∂
∂Kβ

þ yekl
2

∂
∂yekl þ λefgh

∂
∂λefgh

�

×

�
δyð1Þaij −

Zð1Þ
χ þ Zð1Þ

ξ þ Zð1Þ
ϕ

2
yaij

�
;

βλab cd ¼
�
−1þ Kβ

∂
∂Kβ

þ yekl
2

∂
∂yekl þ λefgh

∂
∂λefgh

�

× ½δλð1Þabcd − 2Zð1Þ
ϕ λabcd�;

βKα
¼

�
−1þ Kβ

∂
∂Kβ

þ yekl
2

∂
∂yekl þ λefgh

∂
∂λefgh

�

× ½−Zð1Þ
Kα
Kα�: ð2:10Þ

In order to practically evaluate the gauge field renorm-
alization we make use of

0 ¼ divϵ½ZAð1 − ΠBðfx0gÞÞ�; ð2:11Þ
where fx0g represents the full set of bare couplings
and ΠB is the bare, 1PI, 2-point function of the gauge
bosons after having factorized out momenta and polariza-
tion structure; iΠB;μνðpÞ¼ip2ΔμνðpÞΠBðp2ÞwithΔμνðpÞ¼
ημν−pμpν=p2. Similarly, to compute the fermion and scalar
field renormalization, we rely on the following relations
involving the bare, 1PI, 2-point fermion, −iΣBðpÞ and
2-point scalar, −iSBðp2Þ, functions,

0 ¼ divϵ

�
Zχ;ξ

�
1 −

d
dσ̄ · p

ΣχðξÞ;Bðfx0g
��

;

0 ¼ divϵ

�
Zϕ

�
1 −

d
dp2

SBðfx0gÞ
��

: ð2:12Þ

Finally for the renormalization of the couplings we employ

0 ¼ divϵ½Z1=2
ϕ Z1=2

χ Z1=2
ξ YBðfx0gÞ�;

0 ¼ divϵ½Z2
ϕΛBðfx0gÞ�; ð2:13Þ

where iYB; iΛB are the bare, 1PI, 3- and four-point func-
tions. These are used to renormalize the Yukawa and quartic
couplings.

III. GAUGE-FERMION THEORY

We start with reviewing the large N dynamics in gauge-
fermion theory investigated some time ago in [27–31]. This
means that we drop ϕ, χ, and ξ from the beginning. We
extend the analysis to include semisimple gauge groups.
The full dynamics including ϕ, χ, and ξ is investigated
in Sec. IV.
Only a limited set of diagrams contribute when comput-

ing the RG functions in the large N limit. In general the
order, ð1=N Þk, of a diagram in the large N expansion can
be determined as

k ¼ powers of g20 − No. of fermion loops: ð3:1Þ
It follows that dressing gauge lines with Ψ fermion bubbles
(a bubble chain) does not increase the order of a diagram. To
obtain the contribution at a given order in 1=N , it is sufficient
to consider a small set of diagrams, but one has to sum over
the number of bubbles inserted on each gauge line. The
resulting power series in K is so well behaved that it is often
possible to obtain a closed form expression for the 1=ϵ pole.
In the following computations we need to have an

expression for the bubble chain. Each elementary bubble
stems from a bare, 1PI, Ψ-fermion loop that in MS reads

iΠμνðpÞ ¼ ip2ΔμνðpÞΠ0ðp2Þ; where

Π0ðp2Þ ¼ −2K0Γ0ðϵÞ
�
−
4πμ2

p2

�
ϵ=2

and

Γ0ðϵÞ ¼
Γ2ð2 − ϵ

2
ÞΓðϵ

2
Þ

Γð4 − ϵÞ : ð3:2Þ

Note that K0 is related to g̃0 like Kα is related to gα in (2.5).
To avoid making the notation heavy we dropped a tilde
on K0.
The expression for a bubble chain with n > 0 bubbles

and nþ 1 free gauge propagators, DμνðpÞ, reduces to

DðnÞ
μν ðpÞ ¼ ½Dμμ1ðpÞiΠμ1μ2ðpÞ�

× ½Dμ2μ3ðpÞiΠμ3μ4ðpÞ�…Dμ2nνðpÞ

¼ −i
p2

ΔμνðpÞΠn
0ðp2Þ: ð3:3Þ

The chain is fully transverse in p because the gauge-fixing
parameter does not renormalize in M̄S. In our computations
we work in the Landau (Lorenz) gauge. This has the added

benefit that Dðn¼0Þ
μν ðpÞ ¼ DμνðpÞ. The discussion above

applies to each individual gauge group α.

A. Large N gauge beta function

To determine the gauge beta function one has to compute
the divergent part of the 2-point function. The leading order
(LO) contribution in 1=N is simply given by oneΨ bubble.
The next-to-leading order (NLO) contribution, on the other
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hand, is nontrivial and was computed in [27,28] by
evaluating the diagrams shown in Fig. 1. The first two
diagrams of Figs. 1(a) and 1(b) yield

iδABp2ΔμνðpÞΠðnÞ
P ðpÞ

¼ −ð−ig̃0Þ4Tr½TA
ΨT

C
ΨT

C
ΨT

B
Ψ�μ2ϵ

Z
ddk
ð2πÞd

ddl
ð2πÞd D

ðnÞ
ρσ ðlÞ

× Tr

�
γμ

i=k
k2

γρ
ið=k − =lÞ
ðk − lÞ2 γ

σ i=k
k2

γν
ið=p − =kÞ
ðp − kÞ2

�
; ð3:4Þ

iδABp2ΔμνðpÞΠðnÞ
T ðpÞ

¼−ð−ig̃0Þ4Tr½TA
ΨT

C
ΨT

B
ΨT

C
Ψ�μ2ϵ

Z
ddk
ð2πÞd

ddl
ð2πÞdD

ðnÞ
ρσ ðk−lÞ

×Tr

�
γμ
ið=k−=pÞ
ðk−pÞ2 γ

ρ ið=l−=pÞ
ðl−pÞ2 γ

ν i=l
l2

γσ
i=k
k2

�
; ð3:5Þ

where n ≥ 0 is the number of bubbles in the chain. These
diagrams are present for all gauge groups.3 For the purpose
of summing the contributions from all n, it is useful to
extract the coupling and group structure from the 2-point
functions

ΠðnÞ
P ¼ dðGÞ

N
Knþ2

0 AðnÞ
P ;

ΠðnÞ
T ¼ dðGÞ

N

�
1 −

1

2

C2ðGÞ
C2ðRΨÞ

�
Knþ2

0 AðnÞ
T : ð3:6Þ

Here the functions AðnÞ
P;T contain the loop structure of the

respective diagrams and C2ðRΨÞ is the quadratic Casimir of
the representation RΨ.
Going to the non-Abelian group we have additional

contributions from the gluon self-interactions, cf., Figs. 1(c)
and 1(d). The coupling and group structure from their
contribution to the 2-point function is parametrized by

ΠðnÞ
G ¼ dðGÞ

N
C2ðGÞ
C2ðRΨÞ

Knþ1
0 AðnÞ

G : ð3:7Þ

We now review the final results for the gauge beta
functions for the Abelian and non-Abelian gauge groups.

1. Abelian beta function

We consider the case where the Ψ fermions are charged
under a single U(1) gauge group and determine the asso-
ciated gauge beta function. In this case, we point out that the
K coupling from Eq. (2.5) reduces toK ¼ g2q2ΨNf=4π2 that
agrees with earlier literature. The resummation of the beta
function was performed first by Palanques-Mestre and

FIG. 1. Feynman diagrams for gauge field renormalization at order 1=N . Diagrams (a) and (b) are present in both the Abelian and non-
Abelian 2-point functions, while (c) and (d) only exist in the non-Abelian theory.

3In the Abelian case one replaces the gauge generators with the
fermion charges qΨ.
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Pascual [27]. Including both the LO and the 1=N contri-
butions to the 1PI 2-point function, they found4

ZKΠB¼ZKΠ0ðp2ÞþZK
K0

N

X∞
n¼1

Kn
0ðAðn−1Þ

T þ2Aðn−1Þ
P Þ

¼−2K
�
−
4πμ2

p2

�
ϵ=2

Γ0ðϵÞ

þ 3K
4N

X∞
n¼1

�
−
2K0

3

�
n 1

ðnþ1Þϵn F̃ðnþ1;ϵÞ: ð3:8Þ

Notice that we have used the fact that for Abelian gauge
theory ZK ¼ ZA. The function F̃ encodes the diagram
structure, and it turns out that the beta function depends
only on F̃ð0; ϵÞ. Using analyticity of F̃, we can apply the
resummation formula (A4) to obtain

Zð1Þ
K ¼ ZKΠBj1=ϵ ¼ −

2K
3

−
1

2N

Z
K

0

dxðK − xÞF̃
�
0;
2

3
x

�
;

ð3:9Þ

where

F̃ð0; xÞ ¼ ð1 − xÞð1 − x
3
Þð1þ x

2
ÞΓð4 − xÞ

3Γ2ð2 − x
2
ÞΓð3 − x

2
ÞΓð1þ x

2
Þ : ð3:10Þ

Finally, applying (2.10) the gauge beta function reads

βK ¼ −K2
∂
∂K Zð1Þ

K ¼ 2K2

3

�
1þ 1

N
F1ðKÞ

�
ð3:11Þ

to NLO in 1=N . For later convenience we introduced

F1ðKÞ ¼ 3

4

Z
K

0

dxF̃

�
0;
2

3
x

�
: ð3:12Þ

2. Non-Abelian beta function

Now we turn to the case where the Ψ fermions transform
under a given representation RΨ of a non-Abelian gauge
group. In this instance, the gauge field 2-point function gets
an additional contribution due to the gluon self-interaction.
The NLO 2-point function is then given by

ΠB¼Π0þK0

dðGÞ
N

×
X
n¼1

�
Kn

0

��
1−

C2ðGÞ
2C2ðRΨÞ

�
Aðn−1Þ
T þ2Aðn−1Þ

P

�

þKn−1
0

C2ðGÞ
C2ðRΨÞ

Aðn−1Þ
G

�
: ð3:13Þ

In the non-Abelian case the gauge-coupling renormalization
is more involved. The computation can either be performed
in the background field gauge or in ξ gauge provided that for
the latter one includes the vertex renormalization. This
computation was originally performed in [28] using an
alternative method and later reviewed in [29]; and the result
reads

βK ¼ 2K2

3

�
1þ dðGÞ

N
H1ðKÞ

�
; ð3:14Þ

where we have defined the functions

H1ðKÞ¼−
11C2ðGÞ
4C2ðRΨÞ

þ3

4

Z
K

0

dxF̃

�
0;
2

3
x

�
G̃

�
1

3
x

�
;

G̃ðxÞ¼1þ C2ðGÞ
C2ðRΨÞ

20−43xþ32x2−14x3þ4x4

4ð2x−1Þð2x−3Þð1−x2Þ : ð3:15Þ

While F̃ is the function obtained in the U(1) case, the
nontrivial part of G̃ stems from the gluon contribution.5

Notice thatH1 reduces toF1 in the case of an Abelian gauge
group, so Eq. (3.14) is valid for all simple gauge groups.

B. Extension to semisimple gauge groups

Let us now generalize the result to the case where the
vectorlike fermions are charged under a semisimple gauge
group. To determine the mixed contribution to the gauge-
coupling renormalizationZKα

it is sufficient to consider only
themixed diagrams appearing in the gauge 2-point function.
In the ξ gauges the mixed contributions to the vertex and
fermion field renormalization cancel against each other. To
determineZAα

we employ Eq. (2.11) to accommodatemixed
gauge contributions. Starting from one gauge field, α, the
2-point function contains the usual terms present in
Eq. (3.13). These are unaffected by the presence of other
gauge groups. Additionally, at NLO, it is possible to have a
gauge bubble chain from a different gauge group β stretch-
ing across the fermion loop instead of the original α chain, as
shown in Fig. 2. These are the only type of diagrams mixing
the gauge groups, since a single fermion bubble cannot
couple simultaneously to two different gauge groups. The
new contribution to the 1PI 2-point function coming from
the mixed diagrams with the group β is

ZAα
ΔΠα;B¼ZAα

Kα;0
dðGβÞ
N

X∞
n¼1

Kn
β;0ðAðn−1Þ

T þ2Aðn−1Þ
P Þ

¼3dðGβÞ
4N

Kα

X∞
n¼1

�
−
2Kβ;0

3

�
n F̃ðnþ1;ϵÞ
ðnþ1Þϵn : ð3:16Þ

To renormalizeKα;0, we have used the fact thatZKα
¼ ZAα

at
LO in 1=N . Once again, the 1=ϵ pole can be extracted using
the resummation formula (A4). The new contribution to the
gauge-coupling renormalization is obtained as

4The function F̃ is related to the Mestre-Pascual result via
F̃ðn; ϵÞ ¼ FMPðn;−ϵ=2Þ. 5G̃ðxÞ ¼ dðRΨÞ

dðGÞ I2ðxÞ when comparing with the result in [29].
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ΔZð1Þ
Kα

¼ΔZð1Þ
Aα

¼−
dðGβÞ
2N

Kα

Z
Kβ

0

dx

�
1−

x
Kβ

�
F̃

�
0;
2

3
x

�
:

ð3:17Þ

The mixed contributions to the beta function read

ΔβKα
¼−Kα

�
Kα

∂
∂Kα

þKβ
∂

∂Kβ

�
ΔZð1Þ

Kα

¼ dðGβÞ
2N

K2
α

Z
Kβ

0

dxF̃

�
0;
2

3
x

�
: ð3:18Þ

Taking into account themixed contributions coming fromall
the different gauge groups to each beta function we find

βKα
¼ 2K2

α

3

�
1þdðGαÞ

N
HðαÞ

1 ðKαÞþ
1

N

X
β≠α

dðGβÞF1ðKβÞ
�
:

ð3:19Þ

Note that the H1 functions are dependent on the specific
gauge group and fermion representation as evident from
Eq. (3.15) (hence the superscript). In the case of an Abelian
group H1 reduces to F1.
A test of our results consists in checking that when

reexpanding the beta functions given in Eq. (3.19) as
functions of the couplings the coefficients agree with the
state-of-the-art three-loop perturbative computation [38]
which for G ¼ Gα × Gβ reads

βthree−loopKα
¼ 2K2

α

3

�
1þ 1

N

�
Kαð5C2ðGαÞþ3C2ðRα

ΨÞÞ
4S2ðRα

ΨÞdðRα
ΨÞ−1

−
K2

αð79C2ðGαÞþ66C2ðRα
ΨÞÞ

288S2ðRα
ΨÞdðRα

ΨÞ−1
�

þ 1

N

�
3KβC2ðRβ

ΨÞ
4S2ðRβ

ΨÞdðRβ
ΨÞ−1

−
11K2

βC2ðRβ
ΨÞ

48SðRβ
ΨÞdðRβ

ΨÞ−1
�
−

1

N 2

�
17KαC2ðGαÞ2

3S2ðRα
ΨÞ2dðRα

ΨÞ−2

þK2
α
1415C2ðGαÞ2þ615C2ðGαÞC2ðRα

ΨÞ−288C2ðRα
ΨÞ2

288S2ðRα
ΨÞ2dðRα

ΨÞ−2
þ�� �

�
−

1

N 3

�
K2

α
2857C2ðRα

ΨÞ3
288S2ðRα

ΨÞ3dðRα
ΨÞ−3

þ�� �
��

:

ð3:20Þ

It is straightforward to check that the leading 1=N terms
agree with the corresponding terms in Eq. (3.19).
In the derivation of Eq. (3.19) we have assumed that the

gauge group under whichΨ is charged contains at most one
U(1). If that were not the case, it would be possible for the
fermion bubbles to couple to two different Abelian groups
simultaneously. This would give a new class of diagrams,
where the bubble chains would alternate between the two
groups. In such a case one would also have to take into
account kinetic mixing between the two gauge groups. This
has not been considered here.

C. Safe phase diagrams

To conclude this section, we investigate the short
distance fate of gauge-fermion theories at a large number

of matter fields. Here asymptotic freedom is lost and unless
an interacting UV fixed point emerges, the underlying
theory can be viewed, at best, as an effective low-energy
description of physical phenomena. In this regime asymp-
totic safety is dynamically achieved due to the collective
effect of the many fermions present in the theory. This is
reflected in the emergence of a nontrivial 0 of the beta
functions at NLO in 1=N [32].

1. Safe QCD

For single gauge groups, resembling QCD with many
flavors, asymptotic safety is indeed a possibility [32]. To
elucidate this point while making this work self-contained,
we briefly summarize here the salient points of how a UV
fixed point emerges. To make our point clear, we consider

FIG. 2. Feynman diagrams for the 2-point functions giving mixed terms to the beta functions.
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an SUðNÞ gauge group withNf flavors transforming accord-
ing to the fundamental representation. From Eq. (3.14), one
shows that there is a fixed point aK� ¼ 3 up to exponentially
vanishing corrections [32]. This occurs because the G̃ðxÞ
function in (3.15)has a pole in the integrand atx ¼ 1 (K ¼ 3),
corresponding to a logarithmic singularity in the H1ðKÞ
function. The beta function therefore has a UV fixed point at
K� ≈ 3 to leading order in 1=N , which is obtained from the
condition 1þ dðGÞH1ðKÞ=N ¼ 0. The new conformal
window for these theories as a function of the number of
flavors and colors extends the original infrared (IR) conformal
window to also contain the asymptotically safe scenario [32].
It is worth mentioning that to provide a rough estimate of the
lower boundary of the asymptotically safe window, one can
use the stability of the 1=N expansion [29,32] by estimating
when the 1=N 2 and higher corrections become relevant.

2. Safe semisimple gauge groups

We now investigate the semisimple case starting with the
G ¼ SUðN1Þ × SUðN2Þ example. The associated phase
diagram refers to the RG flow plotted in the plane of
the two gauge couplings, K1 and K2, and it is presented in
Fig. 3(a). The UV interacting fixed point, repulsive in all
directions, occurs for K�

1 ¼ K�
2 ¼ 3 (the blue-dot) up to

exponentially small corrections. Two more interacting fixed
points occur for ðK�

1 ¼ 3; K�
2 ¼ 0Þ and ðK�

1 ¼ 0; K�
2 ¼ 3Þ

corresponding to the fixed points of each single gauge
group. Finally we have the Gaussian IR fixed point at the
origin of the coupling space. This analysis complements the
perturbative analysis for semisimple gauge groups inves-
tigated first in [39]. We therefore discover that there is a UV
complete fixed point for semisimple gauge theories with a
two-dimensional critical surface.

The phase diagram for the semisimple group G ¼
Uð1Þ × SUðN2Þ is presented in Fig. 3(b). It is structurally
identical to the SUðN1Þ × SUðN2Þ case above with the
difference that the UV fixed point for the U(1) gauge
couplings occurs at K�

1 ¼ 15=2.
One can derive a rough estimate of the asymptotically

safe conformal window for the semisimple gauge group as
well. We use again the stability of the 1=N expansion by
estimating numerically the size of the known 1=N 2 and
1=N 3 corrections from Eq. (3.20). We expect it to be wider
than safe QCD because the effective number of flavors
N ¼ NfdðR1

ΨÞdðR2
ΨÞ is larger.

IV. YUKAWA AND SELF-COUPLING
BETA FUNCTIONS

We now review and further elucidate the computation of
the RG functions of the Yukawa [35] and quartic couplings
[14] of the model (2.1) in the presence of a large number of
vectorlike fermions. Finally, the results of the running of
the quartic coupling are extended to the case where the Ψ
fermions transform under a semisimple gauge group. We
are interested in the case in which y and λ scale with N as
λ ∼ y2 ∼ 1=N . This is the region for which a UV fixed
point can appear due to the interplay between the large N
gauge contribution and leading corrections stemming from
the Yukawa and scalar self-coupling. With this scaling of
the couplings it is sufficient to consider the one-loop
contributions from the Yukawa and quartic coupling to
their beta functions. The counting then ensures that higher
loops give corrections that are higher order in 1=N .
The leading 1=N contribution stemming from the Ψ

fermions is obtained by dressing gauge lines with their

0 1 2 3 4

0

1

2

3

4

K1

K
2

(a)

0 2 4 6 8 10

0

1

2

3

4

K1

K
2

(b)

FIG. 3. Phase diagrams of semisimple gauge theories consisting of two non-Abelian groups (left) and an Abelian and a non-Abelian
group (right).
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bubbles. As in Sec. III, these diagrams can be resummed
and the 1=ϵ pole extracted in a closed from. We first discuss
the new contribution to the fermion and scalar self-energies
before moving to compute the vertex corrections. We see
that it is straightforward to generalize the results to the
semisimple case except for the quartic self-coupling.

A. Fermion self-energy

To compute the Yukawa beta function we need first to
compute the gauge correction to the fermion self-energy to
LO in 1=N for the χ, ξ fermions.

1. Abelian case

We start with the Abelian case and then extend the result
to the non-Abelian one. At this order in 1=N the relevant
diagram is shown in Fig. 4. For the χ (identically for ξ) self-
energy, the defining integral for the n-bubble diagram is

−iΣðnÞ
χ ðpÞ¼ ðiqχ g̃0Þ2μϵ

Z
ddk
ð2πÞd σ̄

μ iσ · ðp−kÞ
ðp−kÞ2 σ̄νDðnÞ

νμ ðkÞ:

ð4:1Þ
The integral is known, and the diagram evaluates to

−iΣðnÞ
χ ðpÞ ¼ −

3i
8N

q2χ
q2Ψ

σ̄ ⋅ p
�
−
2K0

3

�
nþ1

3nΓn
0ðϵÞΓψ ðn; ϵÞ

×

�
−
4πμ2

p2

�ðnþ1Þϵ=2
; ð4:2Þ

where we defined

Γψðn; ϵÞ ¼
nð3 − ϵÞ
nþ 1

Γð2 − ϵ
2
ÞΓð1þ nþ1

2
ϵÞΓð1 − nþ1

2
ϵÞ

Γð2þ n
2
ϵÞΓð3 − nþ2

2
ϵÞ :

ð4:3Þ

Summing over all bubbles to obtain the total gauge
contribution to the self-energy at 1=N and shifting the
sum from n → n − 1, we obtain

dΣχ

dσ̄ · p
¼ −

9

16N

q2χ
q2Ψ

X∞
n¼1

�
−
2K0

3

�
n 1

nϵn
HΨðn; ϵÞ; ð4:4Þ

where

Hψðn; ϵÞ ¼ −
2

3

�
−
4πμ2

p2

�
nϵ=2

× ½3ϵΓ0ðϵÞ�n−1ð1 − nϵÞnϵΓψ ðn − 1; ϵÞ: ð4:5Þ

The contribution to the RG function stems from the
1=ϵ pole which is extracted using the resummation
formula (A15) and yields

Zð1Þ
χðξÞ ¼

dΣχðξÞ
dσ̄ · p

����
1=ϵ

¼ 3

8N

q2χðξÞ
q2Ψ

Z
K

0

dxHψ

�
0;
2

3
x

�
: ð4:6Þ

To arrive at the above relation between Zχ and the 2-point
function we used the fact that Zχ ¼ 1þOð1=N Þ. For the
reader’s convenience we also give the expression for Hψ ,

Hψð0; xÞ ¼
xð1 − x

3
ÞΓð4 − xÞ

3Γ2ð2 − xÞΓð3 − x
2
ÞΓð1þ x

2
Þ : ð4:7Þ

2. Non-Abelian case

The result for the non-Abelian gauge group case is
obtained by replacing

ðqχ g̃0Þ2 → g̃20ðTA
χ TA

χ Þij ¼
4π2dðRΨÞK0

N S2ðRΨÞ
C2ðRχÞδij ð4:8Þ

in the n-bubble self-energy (4.1). The rest of the compu-
tation follows the Abelian case yielding the field-strength
renormalization

Zð1Þ
χðξÞ ¼

3dðRΨÞ
8N S2ðRΨÞ

C2ðRχðξÞÞ
Z

K

0

dxHψ

�
0;
2

3
x

�
: ð4:9Þ

B. Scalar self-energy

We proceed to determine the correction to the scalar self-
energy at LO in 1=N . This is a necessary step towards the
full computation of the Yukawa and quartic self-coupling.

1. Abelian case

Here the diagrams that contribute contain a chain of n
fermion bubbles as shown in Fig. 5. Analytically

FIG. 5. LO gauge contribution to the scalar self-energy.FIG. 4. LO gauge contribution to the fermion self-energy.
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−iSðnÞðp2Þ¼ ðig̃0qϕÞ2μϵ
Z

ddk
ð2πÞd

i
ðp−kÞ2 ð2p−kÞμDðnÞ

μν ðkÞ

× ð2p−kÞν: ð4:10Þ

The integral yields the n-bubble contribution

−iSðnÞðp2Þ ¼ −i
K0q2ϕ
N q2Ψ

ð−2K0Þnp2

�
−
4πμ2

p2

�ðnþ1Þϵ=2

× ð3 − ϵÞΓn
0ðϵÞΓϕðn; ϵÞ; ð4:11Þ

where we have defined the function

Γϕðn; ϵÞ ¼
Γð1 − nþ1

2
ϵÞΓð2 − ϵ

2
ÞΓðnþ1

2
ϵÞ

2Γð2þ n
2
ϵÞΓð3 − nþ2

2
ϵÞ : ð4:12Þ

Summing over SðnÞðp2Þ and shifting the summation from n
to n − 1, one can rewrite the derivative with respect to p2 in
the form

d
dp2

Sðp2Þ¼−
9q2ϕ

4N q2Ψ

X∞
n¼1

�
−
2K0

3

�
n 1

nϵn
Hϕðn;ϵÞ: ð4:13Þ

Here we defined

Hϕðn; ϵÞ ¼ 4

�
−
4πμ2

p2

�
nϵ=2

�
1 −

n
2
ϵ

��
1 −

ϵ

3

�

× ½3ϵΓ0ðϵÞ�n−1Γϕðn − 1; ϵÞ: ð4:14Þ

The simple ϵ pole of interest for the RG function is
determined using (A15) and it yields

Zð1Þ
ϕ ¼ d

dp2
Sðp2Þ

����
1=ϵ

¼ 3q2ϕ
2N q2Ψ

Z
K

0

dxHϕ

�
0;
2

3
x

�
; ð4:15Þ

where

Hϕð0; xÞ ¼
ð1 − x

3
ÞΓð4 − xÞ

3Γ2ð2 − x
2
ÞΓð3 − x

2
ÞΓð1þ x

2
Þ : ð4:16Þ

2. Non-Abelian case

To determine the scalar self-energy for the non-Abelian
case one replaces the U(1) charges in (4.10) as follows:

ðqϕg̃0Þ2→ g̃20ðTA
ϕT

A
ϕÞab¼

4π2dðRΨÞK0

N S2ðRΨÞ
C2ðRϕÞδab: ð4:17Þ

The rest of the computation is identical to the Abelian case
and yields

Zð1Þ
ϕ ¼ 3dðRΨÞ

2N S2ðRΨÞ
C2ðRϕÞ

Z
K

0

dxHϕ

�
0;
2

3
x

�
: ð4:18Þ

C. Yukawa vertex

The only vertex diagram that contributes to the Yukawa
beta function in the Landau gauge is shown in Fig. 6. The
other diagrams vanish trivially in this gauge when the
external momenta are set to 0.

1. Abelian case

With vanishing external momenta, the analytic expres-
sion representing the diagrams contributing to the Yukawa
coupling with n bubbles on the gauge line is

iYðnÞ ¼ ð−iyÞð−iqχ g̃0Þðiqξg̃0Þμϵ

×
Z

ddk
ð2πÞd σ

μ iσ̄ · k
k2 −m2

iσ · k
k2 −m2

σ̄νDðnÞ
μν ðkÞ: ð4:19Þ

A common mass has been added to the fermion propagators
as an IR regulator, as it does not influence the divergent part
of the diagram. One finds that

iYðnÞ ¼ −
i3y
8N

qχqξ
q2Ψ

ð−2K0Þnþ1Γ0ðϵÞn
�
4πμ2

m2

�ðnþ1Þϵ=2

×

�
1 −

ϵ

3

�
Γð2 − nþ1

2
ϵÞΓðnþ1

2
ϵÞ

Γð2 − ϵ
2
Þ : ð4:20Þ

Next we sum over every number of fermion bubbles to find
the full 1=N gauge contribution to the vertex, and cast the
expression in a suitable form, yielding

iY ¼ −iy
9

4N

qχqξ
q2Ψ

X∞
n¼1

�
−
2K0

3

�
n 1

nϵn
Hyðn; ϵÞ; ð4:21Þ

where

FIG. 6. Contributions to the Yukawa vertex at order 1=N .
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Hyðn; ϵÞ ¼
�
4πμ2

m2

�
nϵ=2

½3ϵΓ0ðϵÞ�n−1

×

�
1 −

ϵ

3

�
Γð2 − n

2
ϵÞΓð1þ n

2
ϵÞ

Γð2 − ϵ
2
Þ : ð4:22Þ

Following the usual procedure the 1=ϵ pole can be
extracted in a closed form using (A15), asHy is sufficiently
regular. The counterterm for the Yukawa coupling is then
extracted via

δyð1Þ ¼ Yj1=ϵ ¼ y
3

2N

qχqξ
q2Ψ

Z
K

0

dxHy

�
0;
2

3
x

�
ð4:23Þ

with

Hyð0; xÞ ¼
ð1 − x

3
ÞΓð4 − xÞ

6Γ3ð2 − x
2
ÞΓð1þ x

2
Þ : ð4:24Þ

2. Non-Abelian case

The previous result can be extended to the non-Abelian
case provided that we use

yqχqξg̃20 → yaklg̃20ðTA
χ ÞkiðTA

ξ Þlj
¼ yaklðTA

χ ÞkiðTA
ξ Þlj

4π2dðRΨÞK0

N S2ðRΨÞ
ð4:25Þ

in the Abelian expression (4.19). Employing the identity

yaklðTA
χ ÞkiðTA

ξ Þlj ¼−yaij
C2ðRχÞþC2ðRξÞ−C2ðRϕÞ

2
;

ð4:26Þ
we arrive at

δyð1Þaij ¼ −yaij
3

2N
C2ðRχÞ þ C2ðRξÞ − C2ðRϕÞ

2S2ðRΨÞ

×
Z

K

0

dxHy

�
0;
2

3
x

�
: ð4:27Þ

D. Quartic vertex

We evaluate the leading order gauge vertex contribution
to the scalar self-coupling. Such contributions first appear
at 1=N 2, and in the Landau gauge the only contribution
stems from the diagram of Fig. 7. All other types of
diagrams, see Fig. 8, contain at least one three-point gauge
insertion on an external scalar leg. Since the gauge
propagator is transverse in the Landau gauge, any such
coupling is proportional to the external momenta and
vanishes when this is taken to 0. Therefore these diagrams
do not contribute to the vertex counterterm.
We proceed by computing the diagrams in the Abelian

theory before considering the non-Abelian one as well as
the semisimple gauge groups.

1. Abelian computation

In order to evaluate the vertex contribution due to the
diagrams in Fig. 7, we first denote by iΛðn;mÞ such a
diagram with m bubbles on the one propagator and n −m
bubbles on the other. Λðn;mÞ and Λðn;n−mÞ are indistinguish-
able; therefore we include a factor of 1

2
for each pair ðn;mÞ

to avoid double counting. This also agrees with the
diagrams where n ¼ 2m, in which case the two bubble
chains are indistinguishable and they receive a symmetry
factor 1

2
from the Feynman rules. In the limit of vanishing

external momenta, all permutations of the scalar legs count
the same. Moreover, in this limit, only the loop momenta
pass through the bubble chains and the loop integrals are
indifferent to which propagator the bubbles are placed on.
The divergent part of the four-point function at vanishing
external momenta is obtained from

iΛj1=ϵ ¼
X∞
n¼0

Xn
m¼0

iΛðn;mÞ
���
1=ϵ

þ permutation

¼ 2
X∞
n¼0

ðnþ 1ÞiΛðn;0Þ
���
1=ϵ

: ð4:28Þ

It is thus clear that it is sufficient to evaluate only the
diagrams with bubbles on one of the gauge lines.
To regulate the IR divergence of the relevant diagrams,

we consider nonvanishing external momenta, as given in
Fig. 7, from which we obtain

FIG. 7. g4 vertex contribution.

FIG. 8. g4 with three-point vertex on the external scalar leg.
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iΛðn;0Þ ¼ 1

2
ði2q2ϕg̃20Þ2μ2ϵ

Z
ddk
ð2πÞd D

μνðp − kÞDðnÞ
νμ ðkÞ;

ð4:29Þ
where the factor 1

2
is the aforementioned symmetry factor.

Evaluating the integral one obtains the result

iΛðn;0Þ ¼ iπ2

4N 2

q4ϕ
q4Ψ

ð−2K0Þnþ2μϵ

×

�
−
4πμ2

p2

�ðnþ1Þϵ=2
Γn
0ðϵÞΓλðn; ϵÞ; ð4:30Þ

with

Γλðn;ϵÞ¼
ð3− ϵÞð4− ϵþnϵÞ

ðnþ1Þϵ

×
Γð1− nþ1

2
ϵÞΓð1− ϵ

2
ÞΓð1þ nþ1

2
ϵÞ

Γð2þ n
2
ϵÞΓð2− nþ2

2
ϵÞ : ð4:31Þ

At this point we may sum over all the different diagrams as
indicated by Eq. (4.28) to obtain the pole structure of the
vertex.By redefining the summation fromn→n−2, one finds

iΛj1=ϵ ¼
i54π2μϵ

N 2

q4ϕ
q4Ψ

X∞
n¼2

�
−
2K0

3

�
n 1

ϵn−1
Hλðn; ϵÞ

����
1=ϵ

;

ð4:32Þ
where

Hλðn; ϵÞ ¼
�
−
4πμ2

p2

�ðn−1Þϵ=2

× ½3ϵΓ0ðϵÞ�n−2
ðn − 1Þϵ

12
Γλðn − 2; ϵÞ: ð4:33Þ

It is now possible to resum the pole structure of the vertex
contribution using (A22). The resulting leading order gauge
contribution to the quartic counterterm pole is

δλð1Þ ¼ Λj1=ϵ ¼
24π2

N 2

q4ϕ
q4Ψ

μϵK2Hλ

�
1;
2

3
K

�
; ð4:34Þ

with

Hλð1; xÞ ¼
ð1 − x

3
ÞΓð4 − xÞ

6Γ3ð2 − x
2
ÞΓð1þ x

2
Þ : ð4:35Þ

2. Non-Abelian case

In the non-Abelian case we have

iΛðn;0Þab
cd ¼

1

2
ðig̃20Þ2fTA

ϕ; T
B
ϕgacfTA

ϕ; T
B
ϕgbdμ2ϵ

×
Z

ddk
ð2πÞd D

μνðp − kÞDðnÞ
νμ ðkÞ: ð4:36Þ

By comparing this expression with the Abelian diagram of
(4.29) we can read off the non-Abelian result, paying

attention to the fact that the color structure changes depend-
ing on the permutation of the external scalars. The con-
tribution to the counterterm in the non-Abelian theory is thus
given by

δλð1Þabcd ¼
24π2d2ðRΨÞ
N 2S22ðRΨÞ

Aab
cdK2Hλ

�
1;
2

3
K

�
; ð4:37Þ

with

Aab
cd ¼

1

8
ðfTA

ϕ; T
B
ϕgacfTA

ϕ; T
B
ϕgbd

þ fTA
ϕ; T

B
ϕgadfTA

ϕ; T
B
ϕgbcÞ: ð4:38Þ

3. Semisimple gauge group

The quartic coupling contains mixed gauge-coupling
contributions already at LO in 1=N . If we consider the case
where both the scalar and the vectorlike fermions are
charged under a semisimple gauge group, then the quartic
coupling receives mixed contributions of the type sketched
in Fig. 9. For every pair of simple gauge groups ðGα; GβÞ,
all the diagrams contain at least one power ofKα;0 andKβ;0,
respectively. Starting from the simple diagram where all
fermion bubbles are put on the Gβ gauge line, we have

iΛðn;0Þ ¼ ði2g̃α;0g̃β;0Þ2ðTA
ϕ;αT

B
ϕ;βÞacðTA

ϕ;αT
B
ϕ;βÞbdμ2ϵ

×
Z

ddk
ð2πÞd D

μν
α ðp − kÞDðnÞ

β;νμðkÞ: ð4:39Þ

Recall here that the generators belong to different gauge
groups and therefore they commute. Comparing this dia-
gram to Eqs. (4.29) and (4.30) leads to

iΛðn;0Þ ¼ iðTA
ϕ;αT

B
ϕ;βÞacðTA

ϕ;αT
B
ϕ;βÞbd

π2μϵ

2N 2

dðRα
ΨÞdðRβ

ΨÞ
S2ðRα

ΨÞS2ðRβ
ΨÞ

× ð−2Kα;0Þð−2Kβ;0Þnþ1

�
−
4πμ2

p2

�ðnþ1Þϵ=2

× Γn
0ðϵÞΓλðn; ϵÞ: ð4:40Þ

FIG. 9. The mixed gauge term contributing to the quartic vertex
in a semisimple gauge theory.
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We can distribute the fermion bubbles in several ways on
the two gauge lines. Each bubble gives a factor of Kα;0 or
Kβ;0 depending on the gauge line, but the kinematic part of
the diagram remains unchanged in the limit of vanishing
external momentum. Because the pole structure does not
depend on the external momentum, the pole structure of a
general diagram can be related to the diagram with fermion
bubbles on only one of the gauge lines. In particular,

iΛðn;mÞj1=ϵ ¼ i

�
Kα;0

Kβ;0

�
m
Λðn;0Þ

����
1=ϵ

: ð4:41Þ

Thus summing over all possible bubbles and taking into
account the different permutations of the external scalars,
we arrive at

iΛab
cdj1=ϵ ¼ iBα;β

ab
cd

108π2

N 2

dðRα
ΨÞdðRβ

ΨÞ
S2ðRα

ΨÞS2ðRβ
ΨÞ

X∞
n¼1

Xn−1
m¼0

�
−
2Kα;0

3

�
1þm

�
−
2Kβ;0

3

�
n−m Hλðnþ 1; ϵÞ

nϵn

����
1=ϵ

; ð4:42Þ

having defined the tensor

Bα;β
ab

cd ¼
1

2
½ðTA

ϕ;αT
B
ϕ;βÞacðTA

ϕ;αT
B
ϕ;βÞbd þ ðTA

ϕ;αT
B
ϕ;βÞadðTA

ϕ;αT
B
ϕ;βÞbc�: ð4:43Þ

Employing Eq. (A29) and collecting the contributions from all the mixed terms, we find

δλð1Þabcd¼
X
α

24π2d2ðRα
ΨÞ

N 2S22ðRα
ΨÞ

A1
ab

cdK2
αHλ

�
1;
2

3
Kα

�
þ
X
α<β

Bα;β
ab

cd

48π2

N 2

dðRα
ΨÞdðRβ

ΨÞ
S2ðRα

ΨÞS2ðRβ
ΨÞ

KαKβ

Kα−Kβ

Z
Kα

Kβ

dxHλ

�
1;
2

3
x

�
; ð4:44Þ

which naturally also contains the unmixed contributions.

E. Complete set of large N beta functions

Having evaluated all relevant diagrams we now compute all the beta functions using Eq. (2.10), starting with the Yukawa
that reads

ðβyÞaij ¼
1

32π2
½ðyby†;byaÞij þ ðyay†;bybÞij þ 2Tr½yay†;b�ybij�

− yaij
X
α

3dðRα
ΨÞ

16N

C2ðRα
χÞ þ C2ðRα

ξÞ
S2ðRα

ΨÞ
KαHψ

�
0;
2

3
Kα

�
− yaij

X
α

3dðRα
ΨÞ

4N

C2ðRα
ϕÞ

S2ðRα
ΨÞ

KαHϕ

�
0;
2

3
Kα

�

− yaij
X
α

3dðRα
ΨÞ

2N

C2ðRα
χÞ þ C2ðRα

ξÞ − C2ðRα
ϕÞ

2S2ðRα
ΨÞ

KαHy

�
0;
2

3
Kα

�
þO

�
1

N 2

�
: ð4:45Þ

This result includes the one-loop terms from the matter sector.
For the quartic scalar coupling, the beta function is

βλ
ab

cd ¼
1

16π2
ð2λaecfλbfde þ 2λaedfλ

bf
ce þ λabefλ

ef
cdÞ þ

1

4π2
Tr½ydy†;e�λabce

−
1

4π2
Tr½yay†cyby†d þ yay†dy

by†c� − λabcd
X
α

3dðRα
ΨÞ

N

C2ðRα
ϕÞ

S2ðRα
ΨÞ

KαHϕ

�
0;
2

3
Kα

�

þ 48π2

N 2

X
α<β

Bα;β
ab

cd

dðRα
ΨÞdðRβ

ΨÞ
S2ðRα

ΨÞS2ðRβ
ΨÞ

KαKβ

Kα − Kβ

�
KαHλ

�
1;
2

3
Kα

�
− KβHλ

�
1;
2

3
Kβ

��

þ 24π2

N 2

X
α

Aα
ab

cd
d2ðRα

ΨÞ
S22ðRα

ΨÞ
�
K2

αHλ

�
1;
2

3
Kα

�
þ K3

α
∂

∂Kα
Hλ

�
1;
2

3
Kα

��
þO

�
1

N 3

�
: ð4:46Þ

Finally the gauge beta function for the full model of Eq. (2.1) is

βKα
¼2K2

α

3

�
1þ dðRα

ΨÞ
N S2ðRα

ΨÞ
�
1

2
S2ðRα

χÞþ
1

2
S2ðRα

ξÞþ
1

4
S2ðRα

ϕÞ
�
þdðGÞ

N
HðαÞ

1 ðKαÞþ
1

N

X
β≠α

dðGβÞF1ðKβÞ
�
þO

�
1

N 2

�
: ð4:47Þ

ANTIPIN, DONDI, SANNINO, THOMSEN, and WANG PHYS. REV. D 98, 016003 (2018)

016003-12



We note that the 1=N counting is consistent with the fact
that λ ∼ y2 ∼ g2 ∼ 1=N .

F. A mnemonic for Yukawa and quartic beta functions

Since the beta functions of many phenomenological
models are known to LO, it is convenient to rewrite the
above Yukawa and quartic beta function Eqs. (4.45) and
(4.46) in a more compact form. With this prescription one
can immediately obtain the bubble diagram contributions to
known one-loop beta functions by simply using the follow-
ing recipe. The Yukawa beta function at a large number of
fermions can be written in the following compact form,

βy ¼ c1y3 þ y
X
α

cαKαIyðKαÞ; ð4:48Þ

with

IyðKαÞ ¼ Hϕ

�
0;
2

3
Kα

��
1þ Kα

C2ðRα
ϕÞ

6ðC2ðRα
χÞ þ C2ðRα

ξÞÞ
�
;

ð4:49Þ
containing information about the resummed fermion bub-
bles and c1, cα are the standard one-loop coefficients for the
Yukawa beta function. Thus, when c1, cα are known, the
total Yukawa beta function with bubble diagram contribu-
tions is straightforward. Similarly, for the quartic coupling
we write

βλ ¼ c1λ2 þ λ
X
α

cαKαIλg2ðKαÞ þ
X
α

c0αK2
αIg4ðKαÞ

þ
X
α<β

cαβKαKβIg2
1
g2
2
ðKα; KβÞ; ð4:50Þ

with c1, cα, c0α; cαβ being the known one-loop coefficients6

for the quartic beta function, and the resummed fermion
bubbles appear via

Iλg2ðKαÞ ¼ Hϕ

�
0;
2

3
Kα

�

Ig4ðKαÞ ¼ Hλ

�
1;
2

3
Kα

�
þ Kα

dHλð1; 23KαÞ
dKα

Ig2
1
g2
2
ðKα; KβÞ ¼

1

Kα − Kβ

�
KαHλ

�
1;
2

3
Kα

�

− KβHλ

�
1;
2

3
Kβ

��
: ð4:51Þ

It is thus also straightforward to obtain the total quartic beta
function including the bubble diagram contributions when
c1, cα, c0α; cαβ are known.

G. Pole structure of the beta functions

We now elucidate the pole structure of the resummed
beta functions, which is a characteristic feature of the
theories investigated here.
Since the pole structure of beta function in theories with a

simple gauge group has been discussed already in the
literature [29–32], we move immediately to consider the
semisimple gauge-fermion theories. Here we observe that if
the group structures contain an Abelian factor the corre-
sponding beta function is such that it still features a
singularity for K ¼ 15

2
regardless of the presence of other

non-Abelian factors. This is so since the extra contribution
assumes the form ofF1 rather thanH1 [see Eq. (4.46)]. Thus,
it is not possible to shift the resulting UV fixed point value of
theAbeliangauge coupling away from theAbelianpole. This
is clearlymanifest in the phase diagram structure of Fig. 3(b).
For the Yukawa beta function we first observe, using

Eqs. (4.7), (4.16), and (4.24), that the following relations hold:

Hψð0; xÞ ¼ xH0ðxÞ; Hϕð0; xÞ ¼ H0ðxÞ;

Hyð0; xÞ ¼ Hλð1; xÞ ¼
�
1 −

x
4

�
H0ðxÞ; ð4:52Þ

where

H0ðxÞ ¼
ð1 − x

3
ÞΓð4 − xÞ

3Γ2ð2 − x
2
ÞΓð3 − x

2
ÞΓð1þ x

2
Þ : ð4:53Þ

This means that they all inherit a pole at x ¼ 5 yielding

Hψ

�
0;
2

3
Kα

�
∼

1
15
2
− Kα

; Hϕ

�
0;
2

3
Kα

�
∼

1
15
2
− Kα

;

Hy

�
0;
2

3
Kα

�
∼

1

Kα − 15
2

: ð4:54Þ

Thus the Yukawa coupling RG function Eq. (4.45) near the
pole assumes the following form:

βy ¼ c1y3 þ yKα

�
1

Kα − 15
2

�
ðc2 þ c3KαÞ; ð4:55Þ

where c1, c2, c3 are positive constants stemming from the
group structure of the theory. It is clear that the three
summation functions altogether provide large negative con-
tributions when approaching the pole (i.e.,Kα ¼ 15

2
) from the

left. The pole in the Yukawa beta function appears at the
original Abelian gauge coupling location [see Eq. (3.12)].
This implies that if the gauge group features anAbelian factor,
from Eq. (4.55), we deduce that the Yukawa gauge coupling
vanishes in the UV (free rather than safe). The situation
changes dramatically when only non-Abelian gauge groups
are involved. This is so since the non-Abelian gauge beta
function reaches anUVfixedpoint atKα ¼ 3,which is clearly

6Clearly these are not the same numerical coefficients appear-
ing in (4.48).
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away from theAbelian pole, allowing for nontrivial UV 0’s of
the Yukawa beta function.
Similarly to the Yukawa beta function the RG equation

for the quartic coupling, due to the KαHϕð0; 23KαÞ term in
Eq. (4.46), receives a large negative contribution at the
Abelian pole. This is made explicit by the relations

Hλ

�
1;
2

3
Kα

�
¼ Hy

�
0;
2

3
Kα

�
∼

1

Kα − 15
2

;

∂
∂Kα

Hλ

�
1;
2

3
Kα

�
∼ −

1

ðKα − 15
2
Þ2 : ð4:56Þ

Thus, the quartic coupling RG function Eq. (4.46) near the
first singularity assumes the form

βλ¼c1λ2þc2λKα

�
1

Kα−15
2

�
þc3K2

α

�
1

Kα−15
2

−
1

ðKα−15
2
Þ2
�
;

ð4:57Þ

where c1, c2, c3 denote positive constants (distinct from the
Yukawa case). From Eq. (4.57) we learn that the quartic
beta function has an even more singular structure located at
the Abelian pole. If the theory contains an Abelian gauge
group one observes that the quartic coupling develops an
explosive behavior (λ ∝ expðNfÞ) at the Abelian fixed
point and the fixed point analysis cannot be trusted.
The situation for the non-Abelian case resemble the

Yukawa case. Here the non-Abelian UV fixed point is
achieved at Kα ¼ 3 which is below and sufficiently away
from the pole in the quartic coupling, allowing for (depend-
ing on the theory) the existence of UV fixed points in all
couplings.

V. CONCLUSION

We investigated gauge-Yukawa theories at a large
number of gauged fermion fields. We began our analysis
by reviewing the state of the art of the gauge-fermion
theories. We considered also semisimple groups and by
discussing their RG phase diagram we discovered a
complete asymptotically safe fixed point which turns out
to be repulsive in all gauge couplings.
Subsequently we enriched the original gauge-fermion

theories by introducing two Weyl gauged fermions trans-
forming according to arbitrary representations of the gauge
group and further added a complex gauged scalar. The latter
is responsible for the presence of Yukawa and quartic scalar
self-coupling interactions. On par with the gauge sector, we
determined the leading 1=Nf Yukawa and quartic beta
functions.We then discussed the pole structure of the system
of RG equations. This has an immediate impact on the
existence, location and stability of related fixed points. In
particular, one observes that when an Abelian gauge cou-
pling is present in the theory, the Yukawa beta function is
driven to be free while the quartic coupling becomes

uncontrollable, de facto requiring a fully nonperturbative
analysis near this point. The situation changes dramatically
when only non-Abelian gauge couplings are present.
Because the latter achieve a fixed point at a much lower
value of the Abelian one (still appearing as the only pole in
the Yukawa and quartic beta function) Yukawa and quartic
couplings (depending on the theory) can still admit UV
interacting fixed points. These results cannot be extended to
the supersymmetric case [23] for a number of reasons. The
first reason is that the resummation procedure would have to
respect supersymmetry and, in addition, it has already been
proven in [23] that it is impossible to have an UV fixed point
for any Nf in super-QCD.
Our work elucidates, corrects, consolidates, and extends

results obtained earlier in the literature [13,14,27–32,35]. It
also provides the stepping stone and the needed instruments
for future theoretical and phenomenological extensions and
analyses.
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APPENDIX: RESUMMATION FORMULAS

Herewe present proofs for the four resummation formulas
used for the largeN computations.Regardless of the quantity
in questiononly the pole structure at ϵ → 0 is relevant.Weuse
the notation “ ∼

ϵ→0
” to mean equal divergent parts. Note that all

of these resummations are only valid to LO in 1=N .
All the resummation formulas rely on a function Hðn; ϵÞ

being regular both for α ¼ nϵ → 0 with ϵ constant and for
ϵ → 0 with α constant. In general, the functions occurring
in this paper can easily be checked to satisfy this condition,
except, possibly, for the term ½3ϵΓ0ðϵÞ�n with fixed α and
ϵ → 0. To see that this term is well behaved, it is sufficient
to note that the base satisfies�

6Γ2ð2 − ϵ
2
ÞΓð1þ ϵ

2
Þ

Γð4 − ϵÞ
�α=ϵ−1

¼ ð1þ ϵfðϵÞÞα=ϵ; ðA1Þ

for some regular function f that is regular in 0. To prove
that this expression has no pole, observe that there must
exist constants c; δ > 0 such that

jfðϵÞj ≤ c; ∀ jϵj < δ: ðA2Þ
It must then hold that
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lim
ϵ→0

j1þ ϵfðϵÞjα=ϵ ≤ lim
ϵ→0þ

ð1þcϵÞα=ϵ¼ lim
x→∞

�
1þc

x

�
xα
¼ ecα ðA3Þ

having substituted x ¼ 1
ϵ. It is thus found that ½3ϵΓ0ðϵÞ�n is without a pole in ϵ → 0 and fixed nϵ.

1. First resummation

X∞
n¼1

�
−
2K0

3

�
n Hðnþ 1; ϵÞ
ðnþ 1Þϵn ∼

1=ϵ
−

2

3ϵ

Z
K

0

dx

�
1 −

x
K

�
H

�
0;
2

3
x

�
ðA4Þ

The proof, originally due to [27], is presented here to keep
the work self-contained. We define

RðϵÞ ¼
X∞
n¼1

�
−
2K0

3

�
n Hðnþ 1; ϵÞ
ðnþ 1Þϵn : ðA5Þ

The resummation proceeds assuming that Hðn; ϵÞ can be
written as a power series,

Hðn; ϵÞ ¼
X∞
j¼0

HðjÞðϵÞðnϵÞj; ðA6Þ

where every HðjÞðϵÞ is regular in ϵ. Such an expansion only
exists ifHðαϵ ; ϵÞ is regular in both α and ϵ. Furthermore, the
bare coupling is renormalized withK0 ¼ Z−1

K K. As this is a
LO in 1=N computation, one may then expand

Z−n
K ¼

�
1 −

2K
3ϵ

þO

�
1

N

��
−n

¼
X∞
k¼0

�
nþ k − 1

k

��
2K
3ϵ

�
k
þO

�
1

N

�
: ðA7Þ

Inserting all this back into Eq. (A5), we find

RðϵÞ ¼
X∞
n¼1

X∞
k¼0

X∞
j¼0

�
−
2K
3

�
nþk

�
nþ k − 1

k

�

×
ð−1Þkðnþ 1Þj−1

ϵnþk−j HðjÞðϵÞ; ðA8Þ

where HðjÞðϵÞ are regular functions of ϵ. Defining
m ¼ nþ k, the sums are redefined in terms of m and k.
The only poles in ϵ occur for j < m, so the divergent part of
R is given by

RðϵÞ ∼
ϵ→0

X∞
m¼1

�
−
2K
3

�
m Xm−1

j¼0

HjðϵÞ
ϵm−j

×
Xm−1

k¼0

�
m − 1

k

�
ð−1Þkðm − kþ 1Þj−1: ðA9Þ

The sum greatly simplifies as the identity

Xm
k¼0

�
m

k

�
ð−1Þkðx − kÞj ¼ 0; ðA10Þ

valid for all integer 0 ≤ j < m and real numbers x, implies
that the k sum vanishes for all j ≠ 0. Meanwhile the j ¼ 0
term evaluates to

Xm−1

k¼0

�
m − 1

k

� ð−1Þk
m − kþ 1

¼ ð−1Þm−1

mðmþ 1Þ : ðA11Þ

Performing the j and k sums then yields

RðϵÞ ∼
ϵ→0

−
X∞
m¼1

�
2K
3

�
m Hð0ÞðϵÞ

ϵm
1

mðmþ 1Þ : ðA12Þ

Expanding now Hð0ÞðϵÞ ¼ P∞
l¼0H

ð0Þ
l ϵl and selecting the

simple pole one finds

RðϵÞ∼
1=ϵ

−
1

ϵ

X∞
l¼0

�
2K
3

�
lþ1 Hð0Þ

l

ðlþ 1Þðlþ 2Þ : ðA13Þ

Finally, before resumming the power series in Hð0Þ
l , the

fraction is decomposed so that

RðϵÞ∼
1=ϵ

−
1

ϵ

�X∞
l¼0

�
2K
3

�
lþ1 Hð0Þ

l

ðlþ1Þ−
3

2K

X∞
l¼0

�
2K
3

�
lþ2 Hð0Þ

l

ðlþ2Þ
�

∼
1=ϵ

−
2

3ϵ

�Z
K

0

dxH

�
0;
2

3
x

�
−
1

K

Z
K

0

dxxH

�
0;
2

3
x

��
;

ðA14Þ

taking a K derivative and resumming the power series
before integrating again. This concludes the proof.
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2. Second resummation

X∞
n¼1

�
−
2K0

3

�
n 1

nϵn
Hðn; ϵÞ∼

1=ϵ
−

2

3ϵ

Z
K

0

dxH

�
0;
2

3
x

�

ðA15Þ

To prove this formula [35], let

SðϵÞ ¼
X∞
n¼1

�
−
2K0

3

�
n 1

nϵn
Hðn; ϵÞ: ðA16Þ

Assuming again that Hðn; ϵÞ is sufficiently regular, it may
be expanded according to Eq. (A6). At the same time, the
bare coupling is renormalized by K0 ¼ Z−1

K K. Then using
the expansion Eq. (A7) one finds that

SðϵÞ ¼
X∞
n¼1

X∞
k¼0

X∞
j¼0

�
−
2K
3

�
nþk

�
nþ k − 1

k

�

×
ð−1Þknj−1
ϵnþk−j HðjÞðϵÞ: ðA17Þ

Note that asHjðϵÞ is regular in 0, only the terms in the sum
with j ≤ nþ k − 1 contribute to the pole structure. The
sums are redefined with m ¼ nþ k and so

SðϵÞ ∼
ϵ→0

X∞
m¼1

�
−
2K
3

�
mXm−1

j¼0

HðjÞðϵÞ
ϵm−j

×
Xm−1

k¼0

�
m − 1

k

�
ð−1Þkðm − kÞj−1: ðA18Þ

According to the identity (A10), the k sum vanishes for
all j ≠ 0. The sum is thus evaluated by keeping just the
j ¼ 0 term,7

SðϵÞ ∼
ϵ→0

−
X∞
m¼1

�
2K
3

�
m 1

m
Hð0ÞðϵÞ
ϵm

: ðA19Þ

Expanding Hð0ÞðϵÞ as power series, the sum gives

SðϵÞ ∼
ϵ→0

−
X∞
m¼1

X∞
l¼0

�
2K
3

�
m 1

m
Hð0Þ

l

ϵm−l ; where

Hð0ÞðϵÞ ¼
X∞
l¼0

Hð0Þ
l ϵl: ðA20Þ

As only the simple pole in epsilon is of interest to us, the
resummation can now be concluded,

SðϵÞ∼
1=ϵ

−
1

ϵ

X∞
l¼0

�
2K
3

�
lþ1 1

lþ 1
Hð0Þ

l

∼
1=ϵ

−
2

3ϵ

Z
K

0

dx
X∞
l¼0

�
2x
3

�
l
Hð0Þ

l : ðA21Þ

The second to last step is done by taking a K derivative
before reintegrating so that the power series of Hð0ÞðxÞ ¼
Hð0; xÞ can finally be resummed proving (A15).

3. Third resummation

X∞
n¼2

�
−
2K0

3

�
n 1

ϵn−1
Hðn; ϵÞ∼

1=ϵ

1

ϵ

�
2K
3

�
2

H

�
1;
2

3
K

�

ðA22Þ

To prove that this is the case, let

TðϵÞ ¼
X∞
n¼2

�
−
2K0

3

�
n 1

ϵn−1
Hðn; ϵÞ: ðA23Þ

Here too, the functionHðn; ϵÞ is expanded as a power series
in nϵ as given in Eq. (A6) such that allHðjÞðϵÞ are regular in
ϵ ¼ 0. Simultaneously the bare couplings are renormalized
K0 ¼ Z−1

K K0 using Eq. (A7), and we write

TðϵÞ ¼
X∞
n¼2

X∞
j¼0

X∞
k¼0

�
−
2K
3

�
nþk

�
nþ k− 1

k

�
ð−1ÞkHðjÞðϵÞ

×
nj

ϵnþk−j−1 : ðA24Þ

The sums can be rewritten in terms of m ¼ nþ k
so that

TðϵÞ ¼
X∞
m¼2

�
−
2K
3

�
mX∞

j¼0

HðjÞðϵÞ
ϵm−j−1

×

�Xm−1

k¼0

�
m − 1

k

�
ð−1Þkðm − kÞj − ð−1Þm−1

�
:

ðA25Þ

7For j ¼ 0 one has to use the summation,

Xn
k¼0

�
n

k

� ð−1Þk
n − kþ 1

¼ ð−1Þn
Xn
k¼0

�
n

k

� ð−1Þk
kþ 1

¼ ð−1Þn
nþ 1

Xn
k¼0

�
nþ 1

kþ 1

�
ð−1Þk ¼ ð−1Þn

nþ 1
:
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Here the last term is a compensation for the fact that
the k sum is taken to go all the way to m − 1 rather than
just to m − 2. Poles in ϵ only appear for j ≤ m − 2
in which case the identity (A10) causes the first term in
the sum to vanish. Thus, for the pole structure it holds
that

TðϵÞ ∼
ϵ→0

X∞
m¼2

�
2K
3

�
m X∞

j¼0

HðjÞðϵÞ
ϵm−j−1 ¼

X∞
m¼2

�
2K
3

�
m Hð1; ϵÞ

ϵm−1 ;

ðA26Þ

where the last equality is due to a resummation of the H
function. Reexpanding now Hð1; ϵÞ yields

TðϵÞ ∼
ϵ→0

�
2K
3

�
2X∞
m¼0

X∞
l¼0

�
2K
3

�
m Hl

ϵmþ1−l ; where

Hð1; ϵÞ ¼
X∞
l¼0

Hlϵ
l: ðA27Þ

At this point one can immediately determine the simple
ϵ pole, which is evaluated to

TðϵÞ∼
1=ϵ

1

ϵ

�
2K
3

�
2X∞
m¼0

�
2K
3

�
m
Hm ¼ 1

ϵ

�
2K
3

�
2

H

�
1;
2

3
K

�
:

ðA28Þ

4. Fourth resummation

X∞
n¼1

Xn−1
m¼0

�
−
2Kα;0

3

�
1þm

�
−
2Kβ;0

3

�
n−m Hðn; ϵÞ

nϵn
∼
1=ϵ

4

9ϵ

KαKβ

Kα − Kβ

Z
Kα

Kβ

dxH

�
0;
2

3
x

�
ðA29Þ

To prove this, denote by

UðϵÞ ¼
X∞
n¼1

Xn−1
m¼0

�
−
2Kα;0

3

�
1þm

�
−
2Kβ;0

3

�
n−m Hðn; ϵÞ

nϵn
: ðA30Þ

First the sum over m is performed by noting that

Xn−1
m¼0

�
−
2Kα;0

3

�
1þm

�
−
2Kβ;0

3

�
n−m

¼ 2

3

�
1

Kα;0
−

1

Kβ;0

�
−1
��

−
2Kα;0

3

�
n
−
�
−
2Kβ;0

3

�
n
�
: ðA31Þ

Now going from the bare to the renormalized couplings usingKα;0 ¼ Z−1
Kα
Kα ¼ Kαð1 − 2Kα

3ϵ Þ−1 at LO in 1=N , it is beneficial
to first consider the first term,

�
1

Kα;0
−

1

Kβ;0

�
−1

¼ −
KαKβ

Kα − Kβ
: ðA32Þ

This term is thus finite and does not contribute to the pole structure. The sum can be written as

UðϵÞ ¼ −
2

3

KαKβ

Kα − Kβ

X∞
n¼1

��
−
2Kα;0

3

�
n
−
�
−
2Kβ;0

3

�
n
�
Hðn; ϵÞ
nϵn

: ðA33Þ

At this stage the resummation (A15) can be applied directly to obtain

UðϵÞ∼
1=ϵ

4

9ϵ

KαKβ

Kα − Kβ

�Z
Kα

0

dxH

�
0;
2

3
x

�
−
Z

Kβ

0

dxH

�
0;
2

3
x

��
: ðA34Þ

GAUGE-YUKAWA THEORIES: BETA FUNCTIONS AT … PHYS. REV. D 98, 016003 (2018)

016003-17



[1] K. G. Wilson, Phys. Rev. B 4, 3174 (1971).
[2] K. G. Wilson, Phys. Rev. B 4, 3184 (1971).
[3] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).
[4] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
[5] D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014)

178.
[6] F. Sannino and V. Skrinjar, arXiv:1802.10372.
[7] D. F. Litim, M. Mojaza, and F. Sannino, J. High Energy

Phys. 01 (2016) 081.
[8] F. Sannino, Proceedings, High-Precision Alpha Strong

Measurements from LHC to FCC-ee: Geneva, Switzerland,
2015 (CERN, 2015), pp. 11–19.

[9] F. Sannino and I. M. Shoemaker, Phys. Rev. D 92, 043518
(2015).

[10] S. Abel and F. Sannino, Phys. Rev. D 96, 056028 (2017).
[11] S. Abel and F. Sannino, Phys. Rev. D 96, 055021 (2017).
[12] G. M. Pelaggi, F. Sannino, A. Strumia, and E. Vigiani,

Front. Phys. 5, 49 (2017).
[13] R. Mann, J. Meffe, F. Sannino, T. Steele, Z.-W. Wang, and

C. Zhang, Phys. Rev. Lett. 119, 261802 (2017).
[14] G. M. Pelaggi, A. D. Plascencia, A. Salvio, F. Sannino,

J. Smirnov, and A. Strumia, Phys. Rev. D 97, 095013
(2018).

[15] A. D. Bond, G. Hiller, K. Kowalska, and D. F. Litim, J. High
Energy Phys. 08 (2017) 004.

[16] A. Eichhorn, A. Held, and P. V. Griend, arXiv:1802.08589.
[17] A. Eichhorn, A. Held, and C. Wetterich, Phys. Lett. B 782,

198 (2018).
[18] M. Reichert, A. Eichhorn, H. Gies, J. M. Pawlowski, T.

Plehn, and M.M. Scherer, Phys. Rev. D 97, 075008 (2018).
[19] A. Eichhorn, S. Lippoldt, and V. Skrinjar, Phys. Rev. D 97,

026002 (2018).
[20] A. Eichhorn and F. Versteegen, J. High Energy Phys. 01

(2018) 030.

[21] K. A. Intriligator and B. Wecht, Nucl. Phys. B667, 183
(2003).

[22] D. M. Hofman and J. Maldacena, J. High Energy Phys. 05
(2008) 012.

[23] K. Intriligator and F. Sannino, J. High Energy Phys. 11
(2015) 023.

[24] S. P. Martin and J. D. Wells, Phys. Rev. D 64, 036010
(2001).

[25] B. Bajc and F. Sannino, J. High Energy Phys. 12 (2016) 141.
[26] B. Bajc, N. A. Dondi, and F. Sannino, J. High Energy Phys.

03 (2018) 005.
[27] A. Palanques-Mestre and P. Pascual, Commun. Math. Phys.

95, 277 (1984).
[28] J. A. Gracey, Phys. Lett. B 373, 178 (1996).
[29] B. Holdom, Phys. Lett. B 694, 74 (2010).
[30] C. Pica and F. Sannino, Phys. Rev. D 83, 035013 (2011).
[31] R. Shrock, Phys. Rev. D 89, 045019 (2014).
[32] O. Antipin and F. Sannino, arXiv:1709.02354.
[33] F. Sannino, in Proceedings, 49th Cracow School of

Theoretical Physics, Zakopane, Poland, 2009 [Acta
Phys. Pol. B 40, 3533 (2009)].

[34] C. Pica, Proc. Sci., LATTICE2016 (2016) 015.
[35] K. Kowalska and E. M. Sessolo, J. High Energy Phys. 04

(2018) 027.
[36] P. M. Ferreira, I. Jack, and D. R. T. Jones, Phys. Lett. B 399,

258 (1997).
[37] P. M. Ferreira, I. Jack, D. R. T. Jones, and C. G. North,

Nucl. Phys. B504, 108 (1997).
[38] L. Mihaila, in Proceedings, 11th International Symposium

on Radiative Corrections (RADCOR 2013), Durham,
United Kingdom, 2013 [Proc. Sci. RADCOR2013 (2013)
060].

[39] J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D
93, 045009 (2016).

ANTIPIN, DONDI, SANNINO, THOMSEN, and WANG PHYS. REV. D 98, 016003 (2018)

016003-18

https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1007/JHEP12(2014)178
https://doi.org/10.1007/JHEP12(2014)178
http://arXiv.org/abs/1802.10372
https://doi.org/10.1007/JHEP01(2016)081
https://doi.org/10.1007/JHEP01(2016)081
https://doi.org/10.1103/PhysRevD.92.043518
https://doi.org/10.1103/PhysRevD.92.043518
https://doi.org/10.1103/PhysRevD.96.056028
https://doi.org/10.1103/PhysRevD.96.055021
https://doi.org/10.3389/fphy.2017.00049
https://doi.org/10.1103/PhysRevLett.119.261802
https://doi.org/10.1103/PhysRevD.97.095013
https://doi.org/10.1103/PhysRevD.97.095013
https://doi.org/10.1007/JHEP08(2017)004
https://doi.org/10.1007/JHEP08(2017)004
http://arXiv.org/abs/1802.08589
https://doi.org/10.1016/j.physletb.2018.05.016
https://doi.org/10.1016/j.physletb.2018.05.016
https://doi.org/10.1103/PhysRevD.97.075008
https://doi.org/10.1103/PhysRevD.97.026002
https://doi.org/10.1103/PhysRevD.97.026002
https://doi.org/10.1007/JHEP01(2018)030
https://doi.org/10.1007/JHEP01(2018)030
https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1007/JHEP11(2015)023
https://doi.org/10.1007/JHEP11(2015)023
https://doi.org/10.1103/PhysRevD.64.036010
https://doi.org/10.1103/PhysRevD.64.036010
https://doi.org/10.1007/JHEP12(2016)141
https://doi.org/10.1007/JHEP03(2018)005
https://doi.org/10.1007/JHEP03(2018)005
https://doi.org/10.1007/BF01212398
https://doi.org/10.1007/BF01212398
https://doi.org/10.1016/0370-2693(96)00105-0
https://doi.org/10.1016/j.physletb.2010.09.037
https://doi.org/10.1103/PhysRevD.83.035013
https://doi.org/10.1103/PhysRevD.89.045019
http://arXiv.org/abs/1709.02354
https://doi.org/10.22323/1.256.0015
https://doi.org/10.1007/JHEP04(2018)027
https://doi.org/10.1007/JHEP04(2018)027
https://doi.org/10.1016/S0370-2693(97)00291-8
https://doi.org/10.1016/S0370-2693(97)00291-8
https://doi.org/10.1016/S0550-3213(97)00448-3
https://doi.org/10.1103/PhysRevD.93.045009
https://doi.org/10.1103/PhysRevD.93.045009

