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Triplet extensions are attractive alternatives to the standard model (SM) of particle physics. While
models with only one triplet are highly constrained by electroweak precision observables, this is not
necessarily the case once several triplets are present as in the Georgi-Machacek model. As in all other BSM
models, the parameter space of triplet extensions is constrained by the condition that perturbative unitarity
is not violated. For this purpose, limits on the eigenvalues of the scalar 2 → 2 scattering matrix are set. It is
very common in the BSM literature that the scattering matrix is calculated under one crucial assumption:
the scattering energy s is so large that only point interactions involving quartic couplings provide non-
negligible contributions. However, it is not given that this approximation is always valid—in fact, diagrams
involving propagators can play an important role. We discuss the examples of (i) the SMmodel extended by
a real triplet, (ii) the Y ¼ 1 triplet extension of the SM, and (iii) the Georgi-Machacek model, how the tree-
level unitarity constraints are affected once the large s approximation is given up. For all models we find
that the impact of (effective) cubic couplings can be crucial.
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I. INTRODUCTION

While the LHC continues ruling out more and more
parameter space of models beyond the standard model
(BSM), a central question remains unanswered: whether
the measured Higgs boson is the only electroweak- to
TeV-scale scalar particle, or if there is more in the scalar
sector which takes part in electroweak symmetry breaking
(EWSB). Many attractive models have been proposed
which are either motivated from theory as they solve or
ameliorate problems in the standard model, or from
experimental reasons in the sense that they provide new
interesting signals which could be measured at colliders.
One of these possibilities is the presence of one or
more triplet scalars. Those could either be introduced for
implementing a seesaw mechanism of type II for generating
small Majorana neutrino masses [1,2] or for providing
an alternative to EWSB where triplets actively contribute
by developing non-negligible vacuum expectation values

(VEVs) like in the so-called Georgi-Machacek (GM)
model [3].
Before analyzing its properties for the LHC, each

model’s parameter space has to be confronted with theo-
retical constraints. Among the most stringent are the
conditions that perturbative unitarity of scalar 2 → 2
scattering must not be violated. For the simplest triplet
extension, for instance, those have been derived in Ref. [4]
and for the GM model in Refs. [5,6]. These derivations, as
almost all other unitarity constraints on BSMmodels which
are found and applied in the literature, make use of the limit
that the scattering energy s is much larger than all involved
masses. This has the benefit that all diagrams containing
propagators can be disregarded and only quartic point
interactions need to be taken into account.
Recently, it has been pointed out in Ref. [7] that also

checks of the perturbative behavior of a nonsupersymmet-
ric model should be taken seriously. It was shown in the
example of the GM model how large loop corrections can
be triggered by large scalar trilinear couplings, ultimately
casting doubt about the perturbative treatment in large
regions of parameter space. These large couplings might
not be visible at first glance when trading the corresponding
parameters for the (tree-level) masses and therefore remov-
ing them from the list of “input” parameters.
However, large trilinear couplings do not only affect the

loop corrections in a model, but also the 2 → 2 scattering
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processes at
ffiffiffi
s

p
not much larger than the involved

masses. As a result, the amplitude at finite
ffiffiffi
s

p
might be

significantly larger than in the typical limit
ffiffiffi
s

p
→ ∞,

therefore also affecting the perturbative unitarity con-
straints. Because of that, we check here the full
scattering matrix for all possible 2 → 2 processes with
external scalars. We do so for a simple real triplet
extension, a complex triplet extension, and ultimately
the GM model. We do not only include the possibility
of finite

ffiffiffi
s

p
but also the effects of electroweak sym-

metry breaking. While this kind of calculation was done
for the SM decades ago [8], the impact of trilinear
couplings on the unitarity constraints in BSM models
were to our knowledge only checked for the minimal
supersymmetric SM [9] and singlet extensions [10–12].1
We show how the unitarity constraints at finite energies
cut deeply into the otherwise allowed parameter space
of all considered example models and compare them, for
the GM model, with the loop-improved unitarity and
perturbativity checks discussed in Ref. [7].
This paper is organized as follows. In Sec. II we show the

main ingredients for the calculation of the perturbative
unitarity checks. In Secs. III–V, we present the three
example models and show the resulting additional con-
straints coming from the inclusion of the improved treat-
ment of the scalar scattering amplitudes. We conclude
in Sec. VI.

II. TREE-LEVEL PERTURBATIVE
UNITARITY CONSTRAINTS

A. Approximations vs full calculation

Perturbative unitarity constraints consider the 2 → 2
scalar field scattering amplitudes. This means that the
zeroth partial wave amplitude a0 must satisfy either
ja0j ≤ 1 or jRe½a0�j ≤ 1

2
. The matrix a0 is given by

aba0 ¼ 1

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jp⃗bjjp⃗aj
2δ122δ34s

s Z
1

−1
dðcos θÞMbaðcos θÞ; ð1Þ

where p⃗aðbÞ is the center-of-mass three-momentum of
the incoming (outgoing) particle pair a ¼ f1; 2gðb ¼
f3; 4gÞ; θ is the angle between these three-momenta;
and Mbaðcos θÞ is the scattering matrix element. The
exponents δij are 1 if the particles i and j are identical,
and zero otherwise.
At the tree level, the 2 → 2 amplitudes are real, which

is why one usually uses the more severe constraint
jRe½a0�j ≤ 1

2
, which leads to jMj < 8π in the limit

s → ∞. This must be satisfied by all of the eigenvalues
x̃i of the scattering matrix M. M must be derived by

including each possible combination of two scalar fields in
the initial and final states.
For analyzing whether perturbative unitarity is given

or not, it is common to work in the high energy limit;
i.e., the dominant tree-level diagrams contributing to jMj
involve only quartic interactions. All other diagrams
with propagators are suppressed by the collision energy
squared and are neglected. Moreover, effects of EWSB are
usually ignored; i.e., Goldstone bosons are considered as
physical fields.
However, it is hardly tested if the large s approximation

is valid in all BSMmodels in which it is applied. It could be
that large contributions are present at small s, which then
rule out given parameter regions in the considered model.
Just consider for instance a large TeV-scale cubic scalar
interaction κϕiϕjϕk. Above the resonance, a typical dia-
gram would therefore scale with κ2=s and hence be relevant
for

ffiffiffi
s

p
of OðTeVÞ.

In order to be able to apply these tests, the
Mathematica package SARAH has now been extended
by the functionality to derive more reliable unitarity
limits by giving up the large s approximations. Details
of this implementation in SARAH are given elsewhere
[14]. We only want to summarize the main aspects:

(i) All tree-level diagrams with internal and external
scalars are included to calculate the full scattering
matrix

(ii) The calculation is done in terms of mass eigenstates;
i.e., the full VEV dependence is kept

(iii) All necessary routines for a numerical evaluation
with SPheno are generated

(iv) Very large enhancements close to poles or kinematic
thresholds are cut in order not to overestimate the
limits

(v) Renormalization group equation (RGE) running can
be included to obtain an estimate of the higher order
corrections

B. Analysis setup

We are going to study the impact of the improved
unitarity constraints on three triplet extensions of the
SM: (i) with one real triplet; (ii) with one complex triplet;
and (iii) with both one complex and one real triplet, the
Georgi-Machacek model. Our numerical analysis will be
based on the SPheno [15,16] interface of SARAH [17–21].
By default, SPheno calculates the mass spectrum at the
full one-loop level and includes all important two-loop
corrections to the neutral scalar masses [22–24]. However,
we are not making use of these routines in the following
but work under the assumption that an on-shell (OS)
calculation is working in principle (with all the caveats
discussed in Ref. [7]). Thus, only the tree-level masses
are calculated. These are then used to calculate the per-
turbative unitarity constraints for a given scattering energy

1In Ref. [13], the effect was included for obtaining bounds on
the Higgs trilinear coupling.
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ffiffiffi
s

p
. The constraints from Higgs searches are included via

HiggsBounds [25–27].

III. THE REAL TRIPLET EXTENDED
STANDARD MODEL

A. Model description

We start with a rather simple BSM model: the
SM extended by a real scalar SUð2Þ-triplet T without
hypercharge,

T ¼
�
T0=

ffiffiffi
2

p
T−

ðT−Þ� −T0=
ffiffiffi
2

p
�
: ð2Þ

The scalar potential of this model is given by

V ¼ m2
HjHj2 þ 1

2
m2

TTrðT2Þ þ 1

2
λHjHj4 þ 1

2
λTTrðT4Þ

þ 1

2
λHT jHj2TrðT2Þ þ κH†TH: ð3Þ

After EWSB, both the Higgs and the neutral component of
the triplet receive a vacuum expectation value:

hT0i ¼ 1ffiffiffi
2

p vT; hH0i ¼ 1ffiffiffi
2

p v: ð4Þ

The scalar mass eigenstates are two CP-even states
which are a mixture of H0 and T0 with masses mh and
mH, as well as a (physical) charged Higgs boson H�
with mass mHþ which is a mixture of Hþ and T−. The
rotation in the neutral Higgs sector is fixed by an angle
α. Therefore, it is possible to trade the four Lagrangian
parameters λi (i ¼ H, T, HT) and κ for the three scalar
masses and one rotation angle. The relations are

κ ¼ 2m2
HþvT
ṽ2

; ð5Þ

λH ¼ m2
h þm2

Ht
2
α

ðt2α þ 1Þv2 ; ð6Þ

λHT ¼ 1

vvT

� ffiffiffi
2

p
tαðm2

h −m2
HÞ

t2α þ 1
þ 2m2

HþvvT
ṽ2

�
; ð7Þ

λT ¼ ṽ2m2
H −m2

Hþðt2α þ 1Þv2 þm2
ht

2
αṽ2

ðt2α þ 1Þv2Tṽ2
; ð8Þ

where we have defined ṽ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2T þ v2

p
. Since vT must

be small in order not to be in conflict with electroweak
precision data [28–31], mH and mHþ must always be
close in order to avoid too large quartic couplings. In
addition, κ needs to be small. The absolute values of the
eigenvalues of the scattering matrix in the limit of large
s are given by

8π > Max

�
jλHj; jλHT j; 2jλT j;

1

2
j − 3λH − 5λT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9λ2H − 30λTλH þ 12λ2HT þ 25λ2T

q
j
�
:

B. Results

In order to show the importance of additional tree-level
contributions to the scattering matrix as a function of tan α
and mH, we force λT to be small. This can be done by
setting mHþ to

mHþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þm2
ht

2
α

p
ṽffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2α
p

v
: ð9Þ

Thus, λT vanishes and the largest eigenvalue is approx-
imately given by

as→∞
0 ≃

3m2
h þ m2

Hð3vTt2αþ2
ffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2αv2−2

ffiffi
2

p
tαvTvþ2v2T

p
Þ

vT

32πv2
: ð10Þ

Here, we assumed tan α ≪ 1 andmH ≫ mh. We learn from
this that unitarity tends to be violated for increasing values
of mH and tan α and decreasing values of vT . The large s
approximation needs to be compared for instance with
the diagram shown in Fig. 1. The s-channel diagrams are of
the form

jcj2
m2

h − s
ð11Þ

where the vertex c in the limit λHT ≫ λT , λH is given by

c ¼ 1

8
ð
ffiffiffi
2

p
ðsin α − 3 sinð3αÞÞðκ þ λHTvTÞ þ 2λHTv cosðαÞ

þ 6λHTv cosð3αÞÞ; ð12Þ
which for small tan α can be further simplified to

c ≃ −
ffiffiffi
2

p
tαðκ þ λHTvTÞ þ λHTv ≃ λHTv: ð13Þ

Thus, for
ffiffiffi
s

p
not much larger than mh one can expect that

this diagram scales as λ2HTv
2

m2
h
. Therefore, although the cubic

Lagrangian parameter is small, the EWSB-generated terms
lead to sizable contributions by diagrams of the type of
Fig. 1. Actually, a more careful calculation including also
the crossed t- and u-channel diagrams results in

a0ðHH → HHÞ

≃ −
m4

Hðtαv −
ffiffiffi
2

p
vTÞ2

16πv2v2T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3ðs − 4m2

HÞ
p

×

�
2s log

�
m2

h

m2
h − 4m2

H þ s

�
− 4m2

H þ s

�
: ð14Þ
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For somewhat larger s the dominant contribution to the full
scattering matrix comes from the process hH → hH which
can be approximated to

a0ðhH → hHÞ

≃
m2

H

16πsv2v2Tðm2
H − sÞ

�
ðs −m2

HÞtαv½m2
Hð2tαv − 3

ffiffiffi
2

p
vTÞ

−
ffiffiffi
2

p
svT � þ 2m2

Hs log

�
m2

H

s

�
ðtαv −

ffiffiffi
2

p
vTÞ2

�
: ð15Þ

Of course, one needs to keep in mind that these are just
single entries in the scattering matrix which needs to be
diagonalized. However, we will not quote here any ana-
lytical approximations when doing that since they are
not very helpful because of their length. We compare in
Fig. 2 the analytical approximations for a0ðhH → hHÞ,
a0ðHH → HHÞ and as→∞

0 with the full numerical calcu-
lation. As an example we have chosen here

mH ¼ 400 GeV; tan α ¼ 0.07; vT ¼ 3 GeV: ð16Þ

The range of
ffiffiffi
s

p
is chosen such that all possible resonances

are avoided—and starts about an order of magnitude above

the s-channel resonance of Fig. 1 which leads to the largest
contribution at small scattering energies. We can see that
for small s the full numerical result agrees quite well with
the approximation for the s-channel HH → HH scattering
and is significantly larger than the limit a0 < 1

2
; i.e.,

unitarity is violated. For larger
ffiffiffi
s

p
, the full numerical

result approaches this approximate asymptotic value; i.e.,
the diagrams including trilinear interactions become sup-
pressed. If one uses only the approximation of large s, it
would seem that a0 <

1
2
is fulfilled, therefore underestimat-

ing the actual constraints. In the end, this particular
combination of model parameters is forbidden since it
violates perturbative unitarity—which is only seen by
including the effects of EWSB-generated trilinear scalar
interactions at finite scattering energies.
We now check how the difference between the full tree-

level calculation and the large s approximation is affected
by the different parameters. For this purpose, we show in
Fig. 3 the maximal allowed value of tan α for given values
of mH and the triplet VEV vT. We find as expected that the
maximal value of tan α quickly drops for larger mH and
smaller vT for both calculations, the one with and without

FIG. 1. Diagram contributing to the scalar scattering matrix as
finite s.

FIG. 2. Comparison of the approximated values for the HH →
HH and hH → hH scatterings at finite

ffiffiffi
s

p
with the full numerical

calculation and the approximated result for s → ∞. We have used
here mH ¼ 400 GeV, tan α ¼ 0.07, vT ¼ 3 GeV, and mHþ was
fixed by the condition λT ¼ 0.

FIG. 3. First row: Comparison between the old (dashed lines)
and new (full lines) unitarity constraints for the SM extended by a
real triplet. Here, we show the maximally allowed value of
tan αmax for a given heavy Higgs mass mH and three different
values of the triplet VEV vT. mHþ is chosen to obtain λT ¼ 0. In
the second row the ratio of tan αmax for the full calculation and the
large s approximation is shown.
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explicit s dependence. However, we also see that for
smaller mH a large difference exists between both calcu-
lations: the value allowed for tan α based on the point
interactions only is about a factor of 3 larger than the
correct one by including all contributions. This difference
becomes smaller for increasing mH. The ratio for tan αmax
for both calculations is nearly independent of the chosen
value of vT as can be seen in the second row of Fig. 3.
Finally, we want to remark that we were only concerned

with the improved unitarity constraints in this model. In
addition to our findings, a recent study found that also the
impact of the modified Veltman conditions can place very
severe limits on this model; see Ref. [32] for details.

IV. THE COMPLEX TRIPLET
EXTENSION OF THE SM

A. Model description

The general scalar potential for the SM extended by a
complex SUð2ÞL triplet with hypercharge Y ¼ 1 can be
written as2

V ¼ m2
HjHj2 þm2

TTrðT†TÞ þ ðκHTT†H þ h:cÞ

þ 1

2
λHjHj4 þ 1

2
λTTrðT†TT†TÞ − 1

2
λHT jHj2TrðTT†Þ

þ 1

2
λHT 0H†T†TH þ 1

2
λT 0TrðT†TÞ2: ð17Þ

The matrix form for the triplet is given by

T ¼
�
Tþ=

ffiffiffi
2

p
−Tþþ

T0 −Tþ=
ffiffiffi
2

p
�
: ð18Þ

The scalar spectrum in this model consists of two neutral
CP-even, one neutral CP-odd, two charged and one doubly
charged Higgs with masses mh, mH, mA, mHþ , mHþþ ,
respectively. The relations between the masses and the
Lagrangian parameters are

λH ¼ m2
h þm2

Ht
2
α

ðt2α þ 1Þ v2; ð19Þ

λHT ¼ −
4m2

A

v2 þ 4v2T
−
2tαðmh −mHÞðmh þmHÞ

ðt2α þ 1ÞvvT
; ð20Þ

κ ¼
ffiffiffi
2

p
m2

AvT
v2 þ 4v2T

; ð21Þ

λT 0 ¼ m2
Av

2

v2v2T þ 4v4T
þ 8m2

Hþ

v2 þ 2v2T

þm2
ht

2
α þm2

H − ð4m2
Hþ − 2m2

HþþÞðt2α þ 1Þ
ðt2α þ 1Þv2T

; ð22Þ

λHT 0 ¼ 8m2
Hþ

v2 þ 2v2T
−

8m2
A

v2 þ 4v2T
; ð23Þ

λT ¼ −
2ðm2

A − 2m2
Hþ þm2

HþþÞ
v2T

þ 8m2
A

v2 þ 4v2T
−

8m2
Hþ

v2 þ 2v2T
: ð24Þ

The mass terms m2
H and m2

T are fixed by the minimization
conditions of the scalar potential.

B. Results

The unitarity constraints in the large s limit are given by

Max

�
jλHj;

1

2
jλHT j;

1

4
j2λHT − 3λHT 0 j; 1

2
jλHT − λHT 0 j;

1

4
j2λHT þ λHT 0 j; 1

2
jλT − 2λT 0 j; jλT 0 j; jλT þ λT 0 j;

1

4
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð−3λH þ 3λT þ 4λT 0 Þ2 þ 6ðλHT 0 − 2λHTÞ2

q
þ 6λH þ 6λT þ 8λT 0 j;

1

2
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−λH þ 2λT þ λT 0 Þ2 þ λ2HT 0

q
þ λH þ 2λT þ λT 0 j

�
< 8π: ð25Þ

We see that in this version it is also not possible to have
a large cubic interaction which is not proportional to a
quartic coupling, because κ is always smaller than λHTv.
Nevertheless, there is an important difference compared to
the case of the real triplet. While it was not possible in the
real case to have a sizable mass splitting between the addi-
tional neutral and charged Higgs states, this is no longer the
case here. If we fix mA and mHþþ by the conditions
λT ¼ λT 0 ¼ 0, and assume λH to be small compared to
λHT , λHT 0 , the condition to preserve unitarity becomes

1

2

ffiffiffi
3

2

r ���� 4m2
Htαv − 8m2

HþvT
v2vT

���� < 8π: ð26Þ

Thus, mH and mHþ do not have to be close in mass to fulfil
this condition. In contrast, mHþ > mH is even preferred for
tαv > vT . On the other hand, the process hh → HH is in
this limit calculated to

a0ðhh → HHÞ

¼ m2
Hðtαv − 2vTÞ

32π
ffiffiffi
s

p
v2v2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

HÞ4
p

×

"
2m2

Hð2vT − tαvÞ log
 
−2m2

h −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

HÞ
p

þ s

−2m2
h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

HÞ
p

þ s

!

þ vT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

HÞ
q #

; ð27Þ2Here and in the following we use the convention
Qem ¼ T3L þ Y.
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which is completely independent of mHþ and grows
quickly with mH. As long as we have a scattering
energy

ffiffiffi
s

p
< 4mHþ, also no interferences can occur; i.e.,

we can expect a different behavior compared to the large
s limit. This is confirmed in Fig. 4, where we find a
hard limit for large mH which is nearly independent of
mHþ if the charged Higgs is heavier than the neutral
one. While the constraints according to Eq. (25) rule out
part of the considered parameter space, the full numeri-
cal results including the trilinear interactions constrain
the model more severely. Here, the scattering energies
which place the strongest constraints range from
∼400 GeV to ∼1 TeV.

V. THE GEORGI-MACHACEK MODEL

A. Model description

The GM model extends the SM by two scalar SUð2ÞL
triplets, one real triplet η with hypercharge Y ¼ 0 and a
complex one χ with Y ¼ −1, therefore also featuring a
doubly charged component. Both triplets are required to
actively participate in EWSB and therefore to assume a
VEV vη;ϕ. In order not to be in conflict with electroweak
precision measurements, and in particular the ρ parameter,
a global SUð2ÞL × SUð2ÞR symmetry is imposed, leading
to vη ¼ vϕ and a simplification of the scalar potential.
In order to write the latter in a very compact way, it is
convenient to express the two triplets as a bitriplet and the
Higgs doublet Φ as a bidoublet under SUð2ÞL × SUð2ÞR:

Φ ¼
�
ϕ0� ϕþ

ϕ− ϕ0

�
; Δ ¼

0
B@

χ0� ηþ χþþ

χ− η0 χþ

χ−− η− χ0

1
CA: ð28Þ

The scalar potential can then be written as

VðΦ;ΔÞ ¼ μ22
2
TrΦ†Φþ μ23

2
TrΔ†Δþ λ1½TrΦ†Φ�2

þ λ2TrΦ†ΦTrΔ†Δþ λ3TrΔ†ΔΔ†Δ

þ λ4½TrΔ†Δ�2 − λ5TrðΦ†σaΦσbÞTrðΔ†taΔtbÞ
−M1TrðΦ†τaΦτbÞðUΔU†Þab
−M2TrðΔ†taΔtbÞðUΔU†Þab; ð29Þ

with τa and ta being the SUð2Þ generators for the doublet
and triplet representations; U is e.g., given in Ref. [6]. The
electroweak VEV vSM can then be reexpressed as

v2SM ¼ v2ϕ þ 8v2χ ≃ 246 GeV; ð30Þ

while the relative sizes of the VEVs are parametrized by an
angle θH:

sH ≡ sin θH ¼ 2
ffiffiffi
2

p vχ
vSM

; cH ≡ cos θH ¼ vϕ
vSM

: ð31Þ

The scalar mass spectrum of the model consists of seven
physical states: three CP-even neutral scalars, one physical
CP-odd scalar (i.e., pseudoscalar), two (complex) physical
singly charged scalars and one (complex) doubly charged
Higgs. Due to the custodial symmetry, one CP-even scalar,
one singly and the doubly charged Higgs can be combined
into a custodial fiveplet with a common tree-level mass m5

while the other charged scalar combines with the pseudo-
scalar to a triplet with tree-level massm3. Those masses are
given by

FIG. 4. Exclusion limits using the unitarity constraints in the
large s limit (dashed line) and the full calculation (full lines)
in the (mH , mHþ −mH) plane. Parameter space to the right of
the contour lines is excluded by the respective conditions. The
color code shows the logarithm of the ratio of the maximal
eigenvalues of the scattering matrix for the two calculations.
In the first row, we use tan α ¼ 0.05, and in the second
tan α ¼ 0.1. The masses mA and mHþþ are fixed by the
conditions λT ¼ λT 0 ¼ 0.
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m2
5 ¼ vSM

�
sHð3

ffiffiffi
2

p
M2 þ sHλ3vSMÞ

þ c2H

�
M1ffiffiffi
2

p
sH

þ 3

2
λ5vSM

��
; ð32Þ

m2
3 ¼

vSMM1ffiffiffi
2

p
sH

þ 1

2
λ5v2SM: ð33Þ

The remaining two neutral Higgs eigenstates are denoted h
and H, where the former corresponds to the measured SM-
like eigenstate. The mixing angle which rotates between

these two mass eigenstates is denoted α. For more details
on the model we refer the reader e.g., to Ref. [6].

B. Unitarity constraints

The unitarity constraints in the large s approximation for
this model are given by [5,6]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6λ1 − 7λ3 − 11λ4Þ2 þ 36λ22

q
þ j6λ1 þ 7λ3 þ 11λ4j

< 4π;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λ1 þ λ3 − 2λ4Þ2 þ λ25

q
þ j2λ1 − λ3 þ 2λ4j < 4π;

j2λ3 þ λ4j < π;

jλ2 − λ5j < 2π: ð34Þ

In the following, we perform a brief analytical estimate of
the additional terms appearing for small s which can be of
similar size—or even larger. The full 2 × 2 scattering
matrix has dimension 91 × 91; i.e., it is highly unlikely
to learn anything from this matrix. Therefore, we concen-
trate on single scattering channels like the ones depicted in
Fig. 5. We find for λi → 0 (i ¼ 2, 3, 4, 5) that the sum of all
diagrams is given by

as0ðHH →HHÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs− 4m2

5Þ
q

216πss4Hðs2H − 1Þðt2α þ 1Þ2v4SM
×

�
m2

htαvSM

�
−3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− 2s2H

q
sHtα þ 2

ffiffiffi
3

p
s2H − 2

ffiffiffi
3

p �

þm2
HvSM

�
−2

ffiffiffi
3

p
s2Htα − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− 2s2H

q
sH þ 2

ffiffiffi
3

p
tα

�	
2

×

�
t2α

t2α þ 1

�2 logð m2
h

−4m2
5
þm2

hþsÞ
4m2

5 − s
þ 1

m2
h − s

�
þ 2

m2
5 − s

þ
2 logð m2

H
−4m2

5
þm2

HþsÞ
ðt2α þ 1Þð4m2

5 − sÞ−
4 logð m2

5

s−3m2
5

Þ
s− 4m2

5

þ 1

ðt2α þ 1Þðm2
H − sÞ

	
: ð35Þ

Here, the remaining Lagrangian parameters appearing in
the vertices have been reexpressed in terms of masses
and mixing angles. For the relations see e.g., Ref. [7]. This
can be further simplified if we assume sH, tα ≪ 1 and
m5 ≃ 2mH:

as0ðHH → HHÞ

¼ −
2 logð m2

H
s−15m2

H
Þðm2

htα þm2
HðsH − tαÞÞ2

9πs4Hðt2α þ 1Þ3v2SM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 16m2

HÞ
p : ð36Þ

Under the same assumptions, the maximal eigenvalue of
Eq. (34) can be expressed as

amax;s→∞
0 ¼ 3ðm2

h þm2
Ht

2
αÞ

16πðt2α þ 1Þv2SM
: ð37Þ

Thus, if we go close to the kinematic threshold, but still off-
resonance, and choose s ¼ 5m2

5 ≃ 20m2
H, we can expect

that the ratio of the two expressions very roughly is

as0ðHH → HHÞ
amax;s→∞
0

¼ 8m2
H logð5Þ

27
ffiffiffi
5

p
s2Hðm2

h þm2
Ht

2
αÞ
: ð38Þ

This ratio can become huge for small sH and/or large mH.
What is the origin of this behavior? The vertex cH5H5h

involved in the SM-like Higgs exchange is given by

cH5H5h ¼ −
2
ffiffiffi
3

p
M2ffiffiffiffiffiffiffiffiffiffiffi

1
t2α
þ 1

q ≃
2m2

Hð3
ffiffiffi
2

p
sH − 2

ffiffiffi
3

p
tαÞ

3s2H
ffiffiffiffiffiffiffiffiffiffiffi
3
t2α
þ 3

q
vSM

: ð39Þ

Thus, the huge scattering amplitudes are a consequence of
large trilinear couplings which are triggered by large values

FIG. 5. Diagram contributing to the scalar scattering matrix at
finite s.
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ofM2 (andM1). SinceM2 andM1 do not enter the unitarity
constraints so far used in the literature, this effect has been
missed entirely.

C. Results

In order to validate our rough analytical understanding
and to further explore the impact of the new unitarity
constraints, we now use the numerical machinery available
with the recent update of SARAH. The implementation of the
GM model in SARAH was discussed in Ref. [33]. There are
many possibilities for what to use as input parameters.
Naively using the Lagrangian parameters λi, M1 and M2

will hardly produce points which are in agreement with the
Higgs mass measurements. Therefore, we trade λ1, M1 and
M2 for mh, mH and α. With that choice, the full set of input
parameters is

mh; mH; α; λ2; λ3; λ4; λ5; sinθH: ð40Þ

1. Dependence on the scattering energy

As a first step, we show in Fig. 6 the dependence of the
full scattering matrix on the scattering energy

ffiffiffi
s

p
for

different choices of MH. The other parameters are set to

λ2 ¼ 0.1; λ3 ¼ 0.5; λ4 ¼ −0.02; λ5 ¼ 0.1;

α ¼ 20°; sin θH ¼ 0.15: ð41Þ
We can see that for

ffiffiffi
s

p
in the TeV range, the unitarity limits

are clearly violated formH above 250 GeV. The value of
ffiffiffi
s

p
at which this happens is shifted with increasing mH, but at
most 2.5 TeV for mH ¼ 400 GeV. In contrast, agreement
with the large s approximation is only found for much
larger values of

ffiffiffi
s

p
. The difference between our full

calculation and the old approximated one in the maximal
scattering element from Eq. (37) can be as large as a factor

of 10 for mH ¼ 400 GeV. Even for mH ¼ 250 GeV a
factor of 3 difference is visible.

2. Comparison between old and new
unitarity constraints

As a next step, we want to make a more exhaustive
comparison between the old and new results. For this
purpose, we consider the (sin θH, mH) plane for the same
values of α and λi as in Eq. (41). In the full calculation
including the propagator diagrams, we scan the scattering
energy

ffiffiffi
s

p
between 250 and 2500 GeV to find the maximal

eigenvalue of the scattering matrix. We compare this value
with the one obtained by using the old constraints which
only depend on the quartic couplings. The outcome is
summarized in Fig. 7. While the old constraints are passed
in the entire plane, the improved calculation cuts out
significant regions. This is not only the case for small
sin θH < 0.15 as one could expect from the previous
discussion, but also for sin θH > 0.35. The reason is that
m5 in this parameter region scales as

m5 ∼mH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−2sH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2H

p
þ ffiffiffi

6
p

tα −
ffiffiffi
6

p
s2HtαÞ

sH
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2H

p
ð1þ t2αÞ

s
ð42Þ

∼3mH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6sH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − 6s2H

p
10sH

s
ð43Þ

where we have used tα ≃ 1
3
. This equation turns to zero for

sH ¼ 1=
ffiffiffi
7

p
≃ 0.38, leading to tachyonic five-plets for

larger sH and very small m5 for sH values slightly below
this root. As a consequence, the t-channel diagrams with a
five-plet exchange become large. In general, we find that
the maximal eigenvalue of the scattering matrix can change
even by a factor of 100 for largeMH and very small sin θH.
The reason is that in this region the calculated value of M2

becomes huge and is in the multi-TeV range. It is worth
mentioning that this region still has a stable vacuum; i.e.,
the new unitarity conditions really make the difference
between “allowed” or “forbidden.”3 In the second row of
Fig. 7 we also show the value for the optimal scattering
energy, i.e., the energy at which the largest scattering
eigenvalue becomes maximal, excluding resonances. In the
regions which are affected most by the new constraints, this
energy is moderately small and well below our largest
chosen value of 2.5 TeV.

3. Comparison with extended perturbativity constraints

In Ref. [7], a set of conditions was proposed which
indicate if problems with the expansion of the perturbative
series might exist. Those constraints check the relative and

FIG. 6. The maximal scattering eigenvalue as a function of the
scattering energy

ffiffiffi
s

p
for different values of MH . The other

parameters were set to λ2 ¼ 0.1, λ3 ¼ 0.5, λ4 ¼ −0.02, λ5 ¼ 0.1,
α ¼ 20°, sin θH ¼ 0.15. The dashed purple line gives the results
using the old constraints.

3This statement holds until one also includes the perturbativity
constraints which we discuss in the next subsection.
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absolute size of the counterterms (CTs) when imposing an
on-shell calculation of the scalar sector.4 A third condition
makes use of the one-loop corrected couplings in the
unitarity constraints on the quartic couplings after the
breaking of the custodial symmetry. The fourth condition
checks the finite corrections to the scalar masses if a MS
scheme is applied instead of an OS one. We will compare
the new unitarity constraints with these constraints, namely:
(1) A parameter point is considered problematic if the

CT to at least one Lagrangian parameter is larger

than the tree-level value of this parameter times
some constant value v, i.e.,���� δxx

���� > v: ð44Þ

(2) A parameter point is considered to violate perturba-
tivity if the CT of at least one quartic coupling
becomes larger than some fixed value, i.e.,

jδxj > c · π; ð45Þ

with c within 1 and 4.
(3) A parameter point is considered to violate perturba-

tion theory if the unitarity constraints on the quartic
couplings (i.e., in the limit s → ∞) are violated
when inserting the renormalized couplings, i.e.,

jMðλNx → λN þ δλNxÞj > 8π: ð46Þ

(4) A parameter point is considered to violate perturba-
tion theory if the two-loop corrections to at least one
scalar mass, calculated in the M̄S scheme, are larger
than the one-loop corrections, i.e.,

jðm2
ϕÞTree − ðm2

ϕÞ1Lj < jðm2
ϕÞ2L − ðm2

ϕÞ1Lj: ð47Þ

We make this comparison for different parameter ranges
which were discussed in Ref. [7]; cf. Figs. 3, 6 and 7 in this
reference. The results are shown in Fig. 8. In the upper row,
we vary sin θH for two different heavy Higgs masses
mH ¼ 300, 800 GeV. In the lower row we show the
dependence on both mH and λ5. For a discussion of the
choices of varying parameters we refer the interested reader
to Ref. [7]. All other input parameters are listed in the
caption of each figure. We show the maximal scattering
eigenvalue for different intervals of the scattering energyffiffiffi
s

p
. All parameter regions which we show here are allowed

by Higgs data, vacuum stability and the old unitarity
constraints. However, in Ref. [7] it was found that pertur-
bation theory is not trustworthy in some ranges of the
varied parameters. The large loop corrections are also
caused by large (effective) trilinear couplings. Since the
same couplings can also enhance the scattering amplitudes,
we find that there is actually a nice agreement between the
perturbativity constraints and the improved unitarity con-
straints discussed here. The reason for the very different
scaling of the old and new unitarity constraints as function
of λ5 are diagrams with effective trilinear couplings
∼λ5vSM. One finds that the dominant contributions scale as

jamax
0 j ∼ −

2λ25v
2
SM logð m2

H
−3m2

HþsÞ
3π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð−4m2

H þ sÞ
p

s2H
≃

1

4π

�
λ5vSM
mHsH

�
2

<
1

2

ð48Þ

FIG. 7. First row: Logarithm of the ratio of the new and old
results. The red line indicates the region ruled out by the new
constraints, while the old calculation would allow the entire
plane. The dashed contours give the values of m3 (blue) and m5

(black). The other parameters were set to λ2 ¼ 0.1, λ2 ¼ 0.5,
λ4 ¼ −0.02, λ5 ¼ 0.1, α ¼ 20°. Here we scanned

ffiffiffi
s

p
between

250 GeV and 2500 TeV in order to obtain the tightest constraint.
This “optimal” scattering energy is shown in the second row. The
black contours in this plot show the values of jM2j in GeV.

4Since the custodial symmetry is broken at the loop level, one
has to calculate 17 independent CTs in order to perform an on-
shell renormalization.
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while the old constraints impose λ5
8π <

1
2
; i.e., there can be a

strong enhancement of λ5
v2SM
m2

Hs
2
H
for small sH and not too

large mH.

4. RGE effects

Finally, we want to estimate the effect of higher-order
corrections which we are still missing by performing a pure
tree-level calculation. A full one-loop calculation of the
entire 2 → 2 scattering process is well beyond the scope of
this paper. Therefore, we use the one-loop RGEs and
calculate the process with running couplings and masses at
the scattering energy

ffiffiffi
s

p
. The RGEs for the GM model

have been calculated in Ref. [34] using the generalized
version of the Lagrangian parameters. We have imple-
mented this model in SARAH and cross-checked the β-
functions. While we agree with the expressions for all
scalar parameters, we found discrepancies for g2 and the
Yukawa couplings. We find for the β functions of these
parameters in the limit of Yτ → 0 and no flavor mixing

16πβg2 ¼ −
13

6
g32; ð49Þ

16πβYt
¼ 9Y3

t

2
þ 3Y2

bYt

2
− Yt

�
17g21
20

þ 9g22
4

þ 8g23

�
; ð50Þ

16πβYb
¼ 9

2
Y3
b þ

3

2
Y2
t Yb − Yb

�
1

4
g21 þ

9

4
g22 þ 8g23

�
: ð51Þ

Having the model and the RGEs at hand, we can check the
impact of the running. Since we are here only interested in
an estimate of the size of this effect, we use the simplified—
but common—approach of tree-level matching combined
with one-loop running. Higher-order corrections will be
important especially in the presence of large quartic
couplings [35]. We show in Fig. 9 the maximal eigenvalue
of the scattering matrix as a function of the largest
considered scattering energy

ffiffiffiffiffiffiffiffiffi
smax

p
. For each

ffiffiffiffiffiffiffiffiffi
smax

p
, we

check for the best scattering energy between s which is in
between smin and smax including the RGE running of all

FIG. 8. Comparison between the new unitarity constraints and the perturbativity constraints proposed in Ref. [7]. The maximal
eigenvalue of the scattering matrix calculated for different intervals of the scatter energy

ffiffiffi
s

p
are shown. The vertical lines show where the

different perturbativity constraints, summarized in Eqs. (44) to (47), are violated. The purple dashed line gives the result using the old
calculation with the large s approximation. Upper row: jamax

0 j as a function of sin θH for the input masses mH ¼ 300 GeV (left-hand
plot) and 800 GeV (right-hand plot). The other parameters were set to λ2 ¼ 0.1, λ3 ¼ 0.5, λ4 ¼ −0.02, λ5 ¼ 0.1, α ¼ 20°. Lower row:
jamax

0 j as a function of mH using λ2 ¼ λ3 ¼ λ5 ¼ 0.1, λ4 ¼ −0.1, α ¼ 20°, sin θH ¼ 0.25 (left plane), and as a function of λ5 using
λ2 ¼ 0.1, λ3 ¼ 0.5, λ4 ¼ −0.1, α ¼ 20°, sin θH ¼ 0.3, mH ¼ 750 (right plane).
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couplings up to
ffiffiffi
s

p
. For comparison we also show amax

0

without RGE running.5 We do so for the heavy Higgs
masses mH ¼ 500 GeV and 750 GeV. The other param-
eters were set to

λ2 ¼ 0; λ3 ¼ −λ4 ¼ λ5 ¼ x with x ¼ f0.1; 1g
α ¼ 20°; sin θH ¼ 0.22: ð52Þ

For comparison, we include also the maximal eigenvalue
using the old calculation which includes only the contri-
butions from point interactions. For those, we also include
the RGE running up to a scaleQ ¼ ffiffiffiffiffiffiffiffiffi

smax
p

. This might look
a bit strange: these constraints use already the large s limit
since they neglect the phase space factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2=s

p
;

however this is a common procedure in the literature and
shall only serve for illustration purposes here. We see that
for small quartic couplings, the effect of the RGEs is

moderately small. This is not surprising because also
the running of the trilinear parameters M1 and M2 is
proportional to the quartic couplings as well as gauge and
Yukawa couplings squared. Therefore, even if we run the
quartic couplings to 10 TeV, the contributions from
the trilinear couplings dominate the unitarity constraints.
If we go to larger values of the quartics (lower row in
Fig. 9), the running becomes stronger because of the λ3

dependence of the respective β functions. Thus, the scale
dependence of the old constraints is quite strong and to
some extent also much stronger than the one of the new
constraints. At large

ffiffiffiffiffiffiffiffiffi
smax

p
, when the quartic couplings

have grown even more through RGE evolution, their point
interactions also dominate over the 2 → 2 scattering
including propagators—leading to an agreement between
the old and new constraints independently of the chosen
value of mH.

D. Impact on benchmark scenarios

Before we conclude, we want to comment briefly on the
impact of the new constraints on benchmark scenarios
studied in the literature. One widely used benchmark
plane is the so-called (m5, sH) where by construction the
trilinear couplings are small [36,37]. Therefore, the change
in the scattering elements is only moderate. In contrast,
very recently Ref. [38] has proposed six benchmark points
which cover also larger values of M1 and M2. Therefore,
we find quite significant changes. In particular BP2, BP4
and BP6 are clearly ruled out. For these three points, the
maximal scattering eigenvalue changes by a factor 10
to 100.

VI. CONCLUSION

In this paper we have computed the full scalar 2 → 2
scattering amplitudes for models with scalar SUð2ÞL
triplets. Those amplitudes are needed for determining the
bounds from imposing perturbative unitarity. So far, these
bounds have been computed using the limit of large
scattering energy, neglecting all diagrams with internal
propagators. Here, instead, we include the effects stemming
from finite energies

ffiffiffi
s

p
. We find that the full calculation is

necessary in the presence of large trilinear scalar inter-
actions, be it from electroweak symmetry breaking effects
or from trilinear Lagrangian parameters. We showed this at
the example of three models: (i) the SM extended by a real
triplet with zero hypercharge, (ii) the SM extended by a
complex triplet with Y ¼ 1, and (iii) the Georgi-Machacek
model. In all examples we find sizable regions of parameter
space which are excluded by the constraints obtained from
the full calculation but which would have been regarded as
allowed using the old procedure. For the last model, we find
good agreement of the new unitarity constraints with the
recently proposed loop-level perturbativity checks of
Ref. [7]. Since our study makes use of tree-level relations,

FIG. 9. The maximal eigenvalue of the scattering matrix
depending on the highest scattering energy

ffiffiffiffiffiffiffiffiffi
smax

p
up to which

we have computed the processes. We present the results with
(dashed line) and without (solid line) the inclusion of RGE
running of the parameters. In the first row we use small quartic
couplings of �0.1, while in the second row the couplings are �1.

5Per construction, the slope of the obtained curve can never
be negative if no RGEs are considered. Small variations are only
due to discrete steps in the scanning of the scattering amplitudes
up to

ffiffiffiffiffiffiffiffiffi
smax

p
.
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we have finally estimated the effects of loop corrections by
including renormalization group running of the parameters
to the scattering energy.
A more thorough estimate of the loop effects is beyond

the scope of this paper and we leave the inclusion of
higher-order corrections to the calculation of the scatter-
ing amplitudes, which can be important in particular in
nonsupersymmetric models, to future work. The results
for other very popular models like the singlet-extended
SM and two-Higgs doublet models are discussed else-
where [14,39].
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