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We argue that radiative lepton flavor violating (RLFV) decays P → γl1l̄2 of P ¼ B0
q, D̄0, andK0 meson

states are robust probes of new physics models. In particular, they could be used to put constraints on the
Wilson coefficients of effective operators describing lepton flavor-changing neutral current interactions at
low energy scales. We set up a generic framework for describing these transitions and review new physics
constraints from P → l1l̄2 decays. There is discussion of how RLFV transitions provide access to the
operators that cannot be constrained in two-body decays and we in turn motivate further experimental
searches via these channels.
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I. INTRODUCTION

Currently operating and future B-factories, such as
LHCb and Belle-II, will be accumulating significant
amounts of beauty and charm decay data. These large
data sets will be quite useful in studies of extremely small
decay rates of B and D mesons, which could probe new
physics (NP) at unprecedentedly high energy scales. In
particular, studies of pseudoscalar meson decays P ¼ B0

q,
D̄0, and K0 into the final states containing charged
leptons of different flavors such as P → l1l̄2 and P →
γl1l̄2 could be performed. Such decays are induced by
the operators that generate flavor-changing neutral cur-
rents (FCNC) in the lepton sector, which provide a
fruitful approach to probing beyond the standard model
(BSM) physics, assuming of course that such flavor-
violating interactions are allowed in the BSM models.
There are indeed many well-established new physics
models (see, e.g., [1–7]) that meet this opportunity and
predict charged lepton flavor violating (CLFV) transition
rates that are significantly larger than the standard model
(SM) rates [1].
A convenient way to describe CLFV transitions

in low energy experiments is by introducing an effective
Lagrangian, Leff . Such a Lagrangian is a convenient
parametrization of all new physics models that include
lepton flavor violation with the details of the models
encoded in the Wilson coefficients (WCs) of Leff , which

are obtained by matching the effective Lagrangian to a
given BSM model at the new physics scale Λ [8]. This
Lagrangian is required to be invariant under the unbro-
ken symmetry groups SUð3Þc ×Uð1Þem below the
electroweak symmetry breaking scale. At the low scale
for which a given process occurs the effective operators
would exhibit the relevant standard model (SM) degrees
of freedom with the effective operators written com-
pletely using quarks (qi ¼ b, c, s, u, and d) and leptons
(li ¼ τ, μ, and e). In what follows, we assume that top
quarks are integrated out of the theory, and we do not
consider neutrinos. The effective Lagrangian Leff that
involves CLFV can be written as

Leff ¼ Llq þ LD þ � � � ; ð1Þ
where LD is a dipole part, Llq is the part that contains
four-fermion interactions, and the ellipses represent parts
of the Lagrangian not relevant to this work. Since here
we are interested in the decays of electrically-neutral
pseudoscalar B0

q, D̄0, and K0 mesons to flavor-off-
diagonal lepton pairs and other particles, the transitions
involve FCNC interactions on both quark and lepton
sides. We neglect to include the gluonic part of the
Lagrangian, LG, here as it’s contributions for B0

q, D0, and
K0 mesons is a loop process one order beyond this work
and therefore highly suppressed. It would be included for
the case of quarkonium decays as seen in Ref. [9]. This
can be understood by considering the wave function of
quarkonia which includes qq̄ quark pairs of the same
flavor as well as a significant gluon content, while the
wave functions of mesons such as B0

q, D0, and K0 are
composed of q1q̄2 quark pairs of different flavors.
The dipole part of Eq. (1), which could contribute to the

radiative decays P → γl1l̄2 is written as [10]
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LD ¼ −
m2

Λ2
½ðCl1l2

DR l̄1σ
μνPLl2

þ Cl1l2
DL l̄1σ

μνPRl2ÞFμν þ H:c:�: ð2Þ

The WCs of LD have been well constrained in leptonic
LFV decays [1].
Note that it is known that the quark FCNC transitions,

at least in the decays of down-type quarks, are
dominated by the SM contributions. For instance, the
dipole operator describing q1 → q2γ can be written
as [11]

Lpeng ¼
GFffiffiffi
2

p
X
q

λPqC7γ

ffiffiffiffiffiffiffiffi
4πα

p

π2
mq1

2
q̄1σμνð1þ γ5ÞFμνq2þH:c:

ð3Þ

Here λPq ¼ Vqq2V
�
qq1 denotes the appropriate Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements, mq1 is the
heavier quark, and C7γ is the corresponding Wilson coef-
ficient [11].
The four-fermion dimension-six lepton-quark part of the

effective Lagrangian, Eq. (1), takes the form [10]:

Llq ¼−
1

Λ2

X
q1;q2

½ðCq1q2l1l2
VR l̄1γ

μPRl2þCq1q2l1l2
VL l̄1γ

μPLl2Þq̄1γμq2þðCq1q2l1l2
AR l̄1γ

μPRl2þCq1q2l1l2
AL l̄1γ

μPLl2Þq̄1γμγ5q2

þm2mqHGFðCq1q2l1l2
SR l̄1PLl2þCql1l2

SL l̄1PRl2Þq̄1q2þm2mqHGFðCq1q2l1l2
PR l̄1PLl2þCq1q2l1l2

PL l̄1PRl2Þq̄1γ5q2
þm2mqHGFðCq1q2l1l2

TR l̄1σ
μνPLl2þCq1q2l1l2

TL l̄1σ
μνPRl2Þq̄1σμνq2þH:c:�: ð4Þ

Here mqH is the mass of the heavier quark (mqH ¼
max½mq1 ; mq2 �) and PR;L ¼ ð1� γ5Þ=2 is the right (left)
chiral projection operator. In general the Wilson coeffi-
cients would be different for different lepton flavors li and
quark flavors qi. Note that, contrary to some previous
studies, we include tensor operator in Eq. (4) (see [9] for
motivation). CP-conservation is assumed so all the Wilson
coefficients in Eq. (4) should be viewed as real numbers.
In this paper we discuss the possibility of the Wilson

coefficients of the effective Lagrangian in Eq. (1) for
different li and qi be determined from experimental data
on leptonic and radiative leptonic CLFV decays of B0

q, D̄0,
and K0 states. We review two-body decays P → l1l̄2 in
Sec. III. We will note that restricted kinematics of the two-
body transitions would allow us to select operators with
particular quantum numbers significantly reducing the
reliance on the single operator dominance assumption
[9]. The main part of the paper, Sec. III, will be devoted
to discussion of radiative lepton-flavor violating (RLFV)
decays P → γl1l̄2. We will summarize our results in
Sec. IV and conclude in Sec. V.
Note that here we only consider short distance effects in

kaon decays. In the SM long distance effects on decays
such as K0

LðSÞ → γll̄ dominate the dynamics [12]. In light
of this, our kaon results may be modified by long distance
effects.
In what follows, we will use the convention that the

subscript of “1” will denote the lighter lepton and
the subscript “2” will denote the heavier lepton. Unless
otherwise specified when studying the branching ratios
we assume for a meson, P, that BðP → ðγÞl1l2Þ ¼
BðP → ðγÞl̄1l2Þ þ BðP → ðγÞl1l̄2Þ. Finally, it is impor-
tant to note that some of the two-body and all of the three-
body transitions have yet to be experimentally studied.

Numerical constraints on some Wilson coefficients of the
effective Lagrangian, Leff , from these unstudied decays are
not available.

II. TWO-BODY DECAYS P → l1l̄2

Many studies have focused on rare leptonic decays of B0
q

mesons, Bq → ll̄, as both precision tests of the SM and as
an opportunity to search for new physics (e.g., [13–17]).
The abundance of produced B0

q and D̄0 states at the LHCb,
Belle II, and BESIII experiments also allows for studies
of lepton-flavor violating decays at these experiments
[18,19]. Such decays were discussed at length previously,
mainly in the context of particular models. Here we shall
review these transitions emphasizing the possibility to
constrain Wilson coefficients of the axial and pseudoscalar
operators of the effective Lagrangian inEq. (1). These decays
would provide information aboutCq1q2l1l2

PL ðCq1q2l1l2
PR Þ and/or

Cq1q2l1l2
AL ðCq1q2l1l2

AR Þ in Eq. (4). One can write the most
general expression for the P → l1l̄2 decay amplitude as [9]

AðP→l1l̄2Þ¼ ūðp1;s1Þ½Eq1q2l1l2
P þ iFq1q2l1l2

P γ5�vðp2;s2Þ
ð5Þ

with Eq1q2l1l2
P and Fq1q2l1l2

P being dimensionless constants
which depend on the Wilson coefficients of operators in
Eq. (1) and various decay constants.
The amplitude of Eq. (5) leads to the branching ratio for

flavor off-diagonal leptonic decays of pseudoscalar mesons:

BðP→l1l̄2Þ¼
mP

8πΓP
ð1−y2Þ2½jEq1q2l1l2

P j2þjFq1q2l1l2
P j2�:

ð6Þ
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Here ΓP is the total width of the pseudoscalar state. We have
once again neglected the mass of the lighter lepton and set
y ¼ m2=mP. Calculating E

q1q2l1l2
P and Fq1q2l1l2

P for P ¼ B0
d

(q1q2 ¼ db), B0
s (q1q2 ¼ sb), D̄0 (q1q2 ¼ cu), and, K0

L
(q1q2 ¼ ds), the coefficients are

Eq1q2l1l2
P ¼ κP

mPfPy
2Λ2

½ðCq1q2l1l2

AL þ Cq1q2l1l2

AR Þ
þm2

PGFðCq1q2l1l2
PL þ Cq1q2l1l2

PR Þ�;

Fq1q2l1l2
P ¼ iκP

mPfPy
2Λ2

½ðCq1q2l1l2
AL − Cq1q2l1l2

AR Þ
þm2

PGFðCq1q2l1l2
PL − Cq1q2l1l2

PR Þ�: ð7Þ

The hadronic matrix element1 in Eq. (7) is defined as [20]

h0jq̄1γμγ5q2jPðpÞi ¼ −ifPpμ: ð8Þ

Here p is the momentum of the meson. The constant κP is 1
for B0

q, D̄0, and K0; and 1=
ffiffiffi
2

p
for K0

LðSÞ. The experimental

limits and numerical values of the pseudoscalar decay
constants used in the calculations can be found in

TABLE III. Constraints on the Wilson coefficients from pseudoscalar meson decays. Note the K0
L results only include short distance

effects. Center dots signify that no experimental data are available to produce a constraint; “FPS” means that the transition is forbidden
by phase space. Particle masses and other input parameters are from [19,21–24].

Leptons Initial state
Wilson coefficient l1l2 B0

dðdb̄Þ B0
sðsb̄Þ D̄0ðuc̄Þ K0

Lððds̄ − sd̄Þ= ffiffiffi
2

p Þ
jCq1q2l1l2

AL =Λ2j μτ 2.3 × 10−8 � � � FPS FPS
eτ 2.6 × 10−8 � � � � � � FPS
eμ 2.3 × 10−9 4.4 × 10−9 2.4 × 10−8 5.0 × 10−12

jCq1q2l1l2

AR =Λ2j μτ 2.3 × 10−8 � � � FPS FPS

eτ 2.6 × 10−8 � � � � � � FPS
eμ 2.3 × 10−9 4.4 × 10−9 2.4 × 10−8 5.0 × 10−12

jCq1q2l1l2

PL =Λ2j μτ 7.1 × 10−5 � � � FPS FPS
eτ 8.0 × 10−5 � � � � � � FPS
eμ 7.1 × 10−6 1.3 × 10−5 5.9 × 10−4 1.7 × 10−6

jCq1q2l1l2

PR =Λ2j μτ 7.1 × 10−5 � � � FPS FPS
eτ 8.0 × 10−5 � � � � � � FPS
eμ 7.1 × 10−6 1.3 × 10−5 5.9 × 10−4 1.7 × 10−6

TABLE I. Available experimental limits on BðP → l1l̄2Þ [19,21–24]. Center dots signify that no experimental
data are available; “FPS” means that the transition is forbidden by phase space.

l1l2 μτ eτ eμ

BðB0
d → l1l2Þ 2.2 × 10−5 2.8 × 10−5 1.0 × 10−9

BðB0
s → l1l2Þ � � � � � � 5.4 × 10−9

BðD̄0 → l1l2Þ FPS � � � 1.3 × 10−8

BðK0
L → l1l2Þ FPS FPS 4.7 × 10−12

TABLE II. Pseudoscalar meson decay constants [25,26], total decay widths, and meson masses [19] used in the
calculation of branching ratios BðP → l1l̄2Þ.
State B0

d B0
s D̄0 K0

L

fP, MeV 186� 4 224� 4 207.4� 3.8 155.0� 1.9
ΓP, 10−14 MeV 4330� 11 4374� 15 16050� 60 1.287� 0.005
mP, GeV 5.28 5.37 1.86 0.498

1One could also consider similar matrix elements
with vector and tensor currents, but it can be shown that
these are zero by applying parity P̂ and time reversal T̂
operators to the matrix elements (e.g., h0jq̄1γμq2jPðpÞi¼
h0jT̂ −1P̂−1P̂T̂ q̄1γμq2T̂

−1P̂−1P̂T̂ jPðpÞi¼−h0jq̄1γμq2jPðpÞi¼0).
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Tables I and II. The resulting constraints on the Wilson
coefficients are found in Table III.

III. THREE-BODY RADIATIVE DECAYS P → l̄1l2γ

Similarly to the B0
s → μþμ−γ transition [27–32], addition

of a photon to the l1l̄2 final state allows one to probe
operators of the effective Lagrangian that do not contribute
to P → l1l̄2 transition. This was pointed out for the LFV
decays in [9], and, more importantly in [33] (for a
calculation of B0

s → l1l̄2γ in the model of [34]). In
addition, P → l1l̄2 decays suffer from chiral suppression
[see Eq. (7)], which three-body radiative decays do not
necessarily exhibit. Thus, it is possible that RLFV decays
might have larger branching ratios than two-body LFV
transitions (see [27–32] for similar effects in lepton flavor
conserving decays). Here we evaluate radiative lepton-
flavor violating decays of the pseudoscalar mesons with the
model-independent effective Lagrangian of Eq. (1).
It might be theoretically easier to deal with a three-body

final state that contains no strongly-interacting composite
particles. Still, the calculation of the P → l1l̄2γ decay is
more complicated than P → l1l̄2, where all nonperturba-
tive effects are summarized in one decay constant fP.
Further, because of the electromagnetic gauge invariance, it
is important to have a good understanding of what kind of
constraints the kinematic structure of the decay amplitude
imposes on the dynamics of these transitions. Let us now
derive the most general amplitude for P → l1l̄2γ.

A. General amplitude and differential
decay rate for P → l̄1l2γ

The most general expression for the PðpÞ →
γðkÞl1ðp1Þl̄2ðp2Þ decay amplitude can be obtained using
the Bardeen-Tung formalism [35]. The decay amplitude can
be written as

AðPðpÞ → γðkÞl1ðp1Þl̄2ðp2ÞÞ
¼ ūðp1; s1ÞMμðp; k; qÞvðp2; s2Þε�μðkÞ; ð9Þ

where ūðp1; s1Þ and vðp2; s2Þ are spinors for l1 and l̄2,
q ¼ 1

2
ðp1 − p2Þ, and ε�μðkÞ is the polarization vector of

the photon. The function Mμðp; k; qÞ, which we seek to
parametrize, transforms as a tensor under Lorentz trans-
formations. This function should only contain dynamical
singularities, so particular care should be taking bywriting it
in such a way that it does not contain kinematical ones. The
most general expression for theMμðp; k; qÞ fromEq. (9) can
be written by expanding it into simpler Lorentz structures
lμ
i ðp; q; kÞ multiplied by the invariant functions MPl1l2

i ,
which only depend on Lorentz invariants,

Mμðp; k; qÞ ¼
X
i

lμ
i ðp; q; kÞMPl1l2

i ðp2;…Þ: ð10Þ

The most general parametrization of Eq. (10) contains
twelve form-factors,

Mμðp;k;qÞ
¼ γμðMPl1l2

1 þ=kMPl1l2
2 Þþ iγ5γμðMPl1l2

3 þ=kMPl1l2
4 Þ

þqμðMPl1l2
5 þ=kMPl1l2

6 Þþ iγ5qμðMPl1l2
7 þ=kMPl1l2

8 Þ
þpμðMql1l2

9 þ=kMql1l2
10 Þþ iγ5pμðMPl1l2

11 þ=kMPl1l2
12 Þ:

ð11Þ
In thewriting of Eq. (11) we used the equation of motion for
the lepton spinors, and rewrote terms containing σμν in terms
of components, e.g., iσμνqν¼qμ−γμ=q and σμνγ5qν¼iqμγ5−
iγμ=qγ5. Note that terms proportional to=q can be expressed as
terms proportional to =k using momentum conservation and
equations of motion. Next, terms proportional to the ϵμναβ

tensor, such as ϵμναβγνpαkβ, can be written in terms of the
existing form factors of Eq. (11) using the relation

iϵμναβγβ ¼ γμγνγαγ5 − gμνγαγ5 − gναγμγ5 þ gμαγνγ5 ð12Þ
and the equations of motion. Finally, all possible terms in
Eq. (11) proportional to kμ trivially vanish by gauge
invariance.
The set of Eq. (11) is still not minimal, as the condition

of gauge invariance kμMμðp; k; qÞ ¼ 0 implies that some of
theMPl1l2

i in Eq. (11) are not independent. An elegant way
of finding the minimal set of gauge-invariant Lorentz
structures has been given in [35], which we shall apply
to our analysis. To get the minimal set, it is most convenient
to apply a projection operator

Pμν ¼ gμν −
pμkν

ðp · kÞ ð13Þ

to Mμðp; k; qÞ. Since PμνMν ¼ Mμ and kμPμν ¼ 0, Pμν

does indeed project out gauge-invariant structures in
Mμðp; k; qÞ. Applying Pμν to Eq. (11) we learn that terms
proportional to pμ do not give contributions to the minimal
set and should be dropped, leaving the number of inde-
pendent amplitudes at eight.2 Applying the condition
kμl

μ
i ¼ 0 and eliminating kinematical singularities we

write the Lorentz structures Lμ
i for the set of amplitudes as

Mμðp; k; qÞ ¼
X
i

Lμ
i ðp; q; kÞAPl1l2

i ðp2;…Þ; ð14Þ

2The number of linearly independent amplitudes is equal to the
number of helicity states [36–39]. There are two possible helicity
states for the leptons, down or up (⇐ or ⇒), and two for the
photon, minus or plus (← or →). For the P → l̄1l2γ decay this
yields 2 × 2 × 2 ¼ 8 possible combinations: ←⇒⇒ (L ¼ 0), →
⇐⇐ (L ¼ 0), ← ⇐ ⇒ (L ¼ 1), ←⇒ ⇐ (L ¼ 1), → ⇐ ⇒
(L ¼ 1), →⇒ ⇐ (L ¼ 1), →⇒⇒ (L ¼ 2), and ← ⇐⇐
(L ¼ 2). Here L is the orbital angular momentum allowed for
each helicity state due to conservation of total angular momentum
(J ¼ 0).
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which are defined in a manner that removes all kinematical
singularities. The APl1l2

i ðp2;…Þ are new scalar form
factors, while Lμ

i are

Lμ
1 ¼ γμ=k; Lμ

2 ¼ iγ5γμ=k;

Lμ
3 ¼ ðp · kÞqμ − ðk · qÞpμ;

Lμ
4 ¼ iγ5½ðp · kÞqμ − ðk · qÞpμ�;

Lμ
5 ¼ ðp · kÞγμ − pμ=k;

Lμ
6 ¼ iγ5½ðp · kÞγμ − pμ=k�;

Lμ
7 ¼ qμ=k − ðk · qÞγμ;

Lμ
8 ¼ iγ5½qμ=k − ðk · qÞγμ�: ð15Þ

This implies that the decay amplitude can be
written as

AðPðpÞ → γðkÞl1ðp1Þl̄2ðp2ÞÞ
¼

X
i

APl1l2

i ðp2;…Þūðp1; s1ÞLμ
i ðp; q; kÞvðp2; s2Þε�μðkÞ:

ð16Þ

Using this general amplitude for a three-body pseudo-
scalar decay, P → γl1l̄2, we calculate a general differ-
ential decay rate, which depends on the same scalar
functions APl1l2

i ðp2;…Þ,

dΓ
dm2

12dm
2
23

¼ 1

ð2πÞ3
1

384m3
P

�
−16ðA2

1 þ A2
2Þðm2

13ðm2
Py

2 −m2
23Þ þm2

γm2
Pð1 − y2ÞÞ

þ 2ðA2
3 þ A2

4Þðm2
Py

2 −m2
12Þ

�
m2

13ðm4
Py

2 −m2
12m

2
23Þ þm2

γ

�
m2

13m
2
23 −

1

4
ðm2

P −m2
12 þm2

γÞ2
��

þ 4ðA2
5 þ A2

6Þf2m6
Py

4 þm2
12ððm2

Py
2 −m2

13Þ2 þm4
23Þ −m2

Py
2ðm2

P þm2
12Þðm2

Py
2 þm2

23 −m2
13Þg

− ðA2
7 þ A2

8Þfð2m2
Py

2 −m2
12Þððm2

Py
2 −m2

23Þ2 þm4
13Þ þm2

Py
2ðm2

P −m2
12Þðm2

Py
2 −m2

23 þm2
13Þg

− 8Re½A1A�
3 þ A2A�

4�fm2
13ðm4

Py
2 −m2

12m
2
23Þ −

1

2
m2

γðm2
P þm2

γ −m2
12Þðm2

Py
2 −m2

12Þg
− 16Re½A1A�

5 þ A2A�
6�mPym2

13ðm2
P −m2

12Þ þ 8Re½A1A�
7 þ A2A�

8�mPym2
13ðm2

Py
2 −m2

23 þm2
13Þ

þ 8Re½A3A�
5 þ A4A�

6�mPym2
13ðm4

Py
2 −m2

12m
2
23Þ þ 4Re½A3A�

7 þ A4A�
8�mPym2

13ðm4
Py

2 −m2
12m

2
23Þ

þ 4Re½A5A�
7 þ A6A�

8�ðm2
P −m2

12Þðm2
Py

2 −m2
12Þðm2

Py
2 −m2

23 þm2
13Þ

�
: ð17Þ

Here the Mandelstam variables have the usual definitions:
m2

12 ¼ ðp1 þ p2Þ2, m2
13 ¼ ðp1 þ kÞ2, m2

23 ¼ ðp2 þ kÞ2,
where p1;2 is the l1;2 lepton momentum, k is the γ photon
momentum, and they are related to the pseudoscalar
momentum, p, by p ¼ p1 þ p2 þ k. The mass mP is the
pseudoscalar mass, m2 is the heavier lepton mass, and
y ¼ m2=mP. The superscript of Pl1l2 on the scalar
functions APl1l2

i ðp2;…Þ is dropped for brevity in
Eq. (17). We introduce a photon mass, mγ, to regulate
the infrared divergences that will appear via bremsstrahlung
diagrams. We use a value of mγ ¼ 60 MeV as our cutoff,
which is near the final state invariant mass resolution of
experiments [33].

B. Scalar functions APl1l2
i for B0

q, D̄0, and K0 mesons

The scalar functions APl1l2
i ðp2;…Þ introduced in

Eq. (14) can only depend on kinematical invariants and
form factors. These functions can be calculated on the
lattice or using other nonperturbative methods. Examining
the four-fermion Lagrangian of Eq. (4) one can find that the
contributions of Figs. (1), (3), and (4) to APl1l2

i could be

written in terms of the form factors for PðpÞ → γðkÞ
transitions used to parametrize lepton flavor conserving
decays, such as Pþ → γlþν̄ or P0 → γll̄. These form
factors are defined as [28–30,33]

hγðkÞjq̄1γμγ5q2jPðpÞi
¼ i

ffiffiffiffiffiffiffiffi
4πα

p
ε�αðkÞ½gαμp · k − pαkμ�fPA½Q2; k2�; ð18Þ

hγðkÞjq̄1γμq2jPðpÞi ¼
ffiffiffiffiffiffiffiffi
4πα

p
ε�νðkÞϵμναβpαkβfPV ½Q2; k2�;

ð19Þ

hγ�ðkÞjq̄1σμνq2jPðpÞi

¼ i
ffiffiffiffiffiffiffiffi
4πα

p
ε�αðkÞ

�
ϵμναβkβfPT1½Q2; k2�

þ
�
pα −

p · k
k2

kα
�
ϵμνρβpρkβfPT2½Q2; k2�

þ
�
ϵμναρpρ þ

kα

k2
ϵμνρβpρkβ

�
fPT3½Q2; k2�

�
: ð20Þ
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Here Q ¼ p − k and the tensor form factors are defined for
an off-shell photon. The tensor form factors fPT1;2;3½k21; k22�
are functions of two variables: k1, which is the momentum
flowing from a vertex associated with the tensor current,
and k2, which is the momentum of the photon emitted
from the valence quark of the meson. Note that for the on-
shell photon k2 ¼ 0, there exist a relationship between fPT2
and fPT3. Gauge invariance implies that fPT3½Q2; 0� ¼
ðp · kÞfPT2½Q2; 0�, so the tensor matrix element simplifies
to [28]

hγðkÞjq̄1σμνq2jPðpÞi
¼ i

ffiffiffiffiffiffiffiffi
4πα

p
ε�αðkÞ½ϵμναβkβfPT1½Q2;0�

þðpαϵμνρβpρkβþp ·kϵμναβpβÞfPT2½Q2;0��: ð21Þ
Using Eqs. (18), (19), and (21) we can calculate the scalar

function contributions of the axial, vector, and tensor
operators from the Lagrangian in Eq. (4) of type O ∼
ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2, which are found in Fig. (1).
The contributions of these diagrams to the scalar functions
APl1l2
i are

A1ab
1 ¼

ffiffiffiffiffiffiffiffi
4πα

p

2Λ2
ðCq1q2l1l2

VR − Cq1q2l1l2
VL ÞymPfPV ½m2

12; 0�

−
ffiffiffiffiffiffiffiffi
4πα

p

Λ2
ðCq1q2l1l2

TR − Cq1q2l1l2
TL ÞymPmHGF

�
fPT1½m2

12; 0� þ
m2

P −m2
12

2
fPT2½m2

12; 0�
�
;

A1ab
3 ¼ −

2
ffiffiffiffiffiffiffiffi
4πα

p

Λ2
ðCq1q2l1l2

TR − Cq1q2l1l2
TL ÞymPmHGFfPT2½m2

12; 0�;

A1ab
5 ¼ −

ffiffiffiffiffiffiffiffi
4πα

p

2Λ2
ðCq1q2l1l2

AR þ Cq1q2l1l2
AL ÞfPA½m2

12� þ
ffiffiffiffiffiffiffiffi
4πα

p

Λ2
ðCq1q2l1l2

TR − Cq1q2l1l2
TL Þy2m2

PmHGFfPT2½m2
12; 0�; and

A1ab
7 ¼

ffiffiffiffiffiffiffiffi
4πα

p

Λ2
ðCq1q2l1l2

VR − Cq1q2l1l2
VL ÞfPV ½m2

12; 0�: ð22Þ

Note that in this section [e.g., in writing Eq. (22)] we
suppressed the previously used superscript of Pl1l2 in
favor of a superscript related to the associated diagrams,
which consists of the figure number and subfigure letters
(i.e., 1ab). We only show the odd subscript scalar function
equations. The even subscript equations can be found from
the odd subscript equations by replacing the left-handed
WCs by their negative magnitudes (i.e., CVL → −CVL,
CAL → −CAL, etc.,) and multiplying the odd subscript
scalar function by the imaginary constant i. This may be
used to find A2 from A1, A4 from A3, A6 from A5, and A8

from A7 and is true throughout this section.
There is no contribution in Fig. 1 from the pseudoscalar

operators of the Lagrangian in Eq. (4). This can be seen by
taking a matrix element of the divergence of axial current to
relate the axial and pseudoscalar matrix elements,

hγðkÞjq̄1γ5q2jPðpÞi

¼ −
1

mq1 þmq2

pμhγðkÞjq̄1γμγ5q2jPðpÞi; ð23Þ

and using Eq. (18) to get

hγðkÞjq̄1γ5q2jPðpÞi ¼ 0: ð24Þ

A similar argument can be made to prove that the scalar
operators also do not give form factor contributions.
The bremsstrahlung diagrams in Fig. 2 are calculated

similarly to the two-body decays of Sec. III using the
matrix element of Eq. (8). We have given the photon a small
mass, mγ , to regulate the infrared divergences. This
divergence only appears in the quark flavor changing axial
and pseudoscalar operator terms of the scalar functions,

(a) (b)

FIG. 1. Four-fermion interaction diagrams forAðP → γl1l̄2Þ for operators of typeO ∼ ðl1l̄2Þðq̄1q2Þwhere q1 ≠ q2 with photon γðkÞ
attached to the valence quark. The black circles represent the four-fermion LFV vertex defined in Leff of Eq. (4).

DEREK HAZARD and ALEXEY A. PETROV PHYS. REV. D 98, 015027 (2018)

015027-6



Eq. (25), so the photon mass is set to zero for the
nondivergent terms. The same is true for the differential
decay rate in Eq. (17). The axial and pseudoscalar operator
scalar function terms are defined here as

A2ab
1 ¼

ffiffiffiffiffiffiffiffi
4πα

p

2Λ2
ðCq1q2l1l2

AR þ Cq1q2l1l2
AL

þm2
PGFðCq1q2l1l2

PR þ Cq1q2l1l2

PL ÞÞ

×
ymPfPðm2

P þm2
γ −m2

12Þ
m2

13ðm2
23 −m2

Py
2Þ ;

A2ab
3 ¼ 2

ffiffiffiffiffiffiffiffi
4πα

p

Λ2
ðCq1q2l1l2

AR − Cq1q2l1l2
AL

þm2
PGFðCq1q2l1l2

PR − Cq1q2l1l2
PL ÞÞ ymPfP

m2
13ðm2

23 −m2
Py

2Þ :

ð25Þ

The dipole operator diagrams of Eq. (2) found in
Fig. 3 contain contributions from the SM dipole penguin
operator, Eq. (3). This is directly related to both the on and
off-shell tensor matrix elements in Eqs. (20) and (21) from
which we need to write matrix elements of the form
hγðkÞjq̄1σμνð1� γ5Þq2jPðpÞi. These can be found by using
the relation σμνγ5 ¼ − i

2
ϵμναβσ

αβ, which yields:

hγðkÞjq̄1σμνð1� γ5Þq2jPðpÞiQν

¼ i
ffiffiffiffiffiffiffiffi
4πα

p
ε�αðkÞfðfPT1½Q2;0�þp ·kfPT2½Q2;0�Þϵpkαμ

� iðfPT1½Q2;0�þp ·QfPT2½Q2;0�Þðgαμp ·k−pαkμÞg;
ð26Þ

hγ�ðQÞjq̄1σμνð1� γ5Þq2jPðpÞikν
¼ fi

ffiffiffiffiffiffiffiffi
4πα

p
ε�αðQÞfϵpkμα � iðgαμp · k − pμkαÞg

× ðfPT1½0; Q2� þ fPT3½0; Q2�Þ: ð27Þ

(a) (b)

(c) (d)

FIG. 3. Dipole operator diagrams for AðP → γl1l̄2Þ. The grey circles with the black border represent the SM dipole penguin vertex
(Eq. (3)) and the black boxes represent the dipole LFV vertex [Eq. (2)]. Note that the contributions of these diagrams are severely
constrained by already available data on l1 → l2γ decays.

(a) (b)

FIG. 2. Bremsstrahlung diagrams for AðP → γl1l̄2Þ for operators of type O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2. The black circles
represent the four-fermion LFV vertex defined in Leff of Eq. (4).
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The on-shell matrix element in Eq. (26) contributes to
Figs. 3(a) and 3(b). While the off-shell matrix element in
Eq. (27) is necessary for calculating the dipole operator
contributions of the diagrams in Figs. 3(c) and 3(d). In these

diagrams, the lepton current is attached to the photon coming
from the meson’s valence quarks and so Q ↔ k when we
calculate Eq. (27). Using these matrix elements we find the
dipole operator components of the scalar functions which are

A3abcd
1 ¼ −

1

Λ2
ðCl1l2

DR − Cl1l2
DL Þ 4πα

π2
ymPmH

GFffiffiffi
2

p C7γ

X
q

λqfPT;I;

A3abcd
3 ¼ 2

Λ2

4πα

π2
ymPmH

m2
12

GFffiffiffi
2

p C7γ

X
q

λqððCl1l2
DR − Cl1l2

DL ÞfPT;I − ðCl1l2
DR þ Cl1l2

DL ÞfPT;IIÞ;

A3abcd
5 ¼ −

1

Λ2

4πα

π2
y2m2

PmH

m2
12

GFffiffiffi
2

p C7γ

X
q

λqððCl1l2
DR − Cl1l2

DL ÞfPT;I − ðCl1l2
DR þ Cl1l2

DL ÞfPT;IIÞ; ð28Þ

where we have used the shorthand notations fPT;I and fPT;II that we define as

fPT;I ¼ fPT1½m2
12; 0� þ fPT1½0; m2

12� þ
m2

P −m2
12

2
fPT2½m2

12; 0� þ fPT3½0; m2
12� and

fPT;II ¼ fPT1½m2
12; 0� þ fPT1½0; m2

12� þ
m2

P þm2
12

2
fPT2½m2

12; 0� þ fPT3½0; m2
12�: ð29Þ

So far we have not addressed the contributions of the
diagrams in Fig. 4. These diagrams contain contributions
from the axial, vector, and tensor operators from the
Lagrangian in Eq. (4) of type l1l̄2q̄q, where the quarks
are both the same flavor.Aswas the case for the four-fermion
operators that had a flavor change on both the quark side and
lepton side, the scalar and pseudoscalar operators do not
contribute. We can calculate the contributions of the vector

operators using the same tensor matrix element as in
Eq. (27), but with one important modification. The form
factors are the sum of two form factors related to each quark
flavor, fTi ¼ f̃q1Ti þ f̃q2Ti (e.g., see [40]). For convenience we
will use a definition with the quark charge explicitly
included in the formula, fTi ¼ Qq1f

q1
Ti þQq2f

q2
Ti. This is

important because in the case of Fig. 4(a) we only have
contributions from fq1Ti and in Fig. 4(b) we only have fq2Ti.

A4ab
1 ¼ −

ffiffiffiffiffiffiffiffi
4πα

p

π2Λ2

X2
j¼1

ðCqjl1l2
VR − C

qjl1l2
VL Þ ymP

2

GFffiffiffi
2

p C7γ

X
q

λPq ðfP;qjT1 ½0; m2
12� þ f

P;qj
T3 ½0; m2

12�Þ;

A4ab
5 ¼

ffiffiffiffiffiffiffiffi
4πα

p

π2Λ2

X2
j¼1

ðCqjl1l2
VR þ C

qjl1l2
VL ÞmH

2

GFffiffiffi
2

p C7γ

X
q

λPq ðfP;qjT1 ½0; m2
12� þ f

P;qj
T3 ½0; m2

12�Þ;

A4ab
7 ¼ −

ffiffiffiffiffiffiffiffi
4πα

p

π2Λ2

X2
j¼1

ðCqjl1l2
VR − C

qjl1l2
VL ÞmH

GFffiffiffi
2

p C7γ

X
q

λPq ðfP;qjT1 ½0; m2
12� þ f

P;qj
T3 ½0; m2

12�Þ: ð30Þ

(a) (b)

FIG. 4. Four-fermion interaction diagrams forAðP → γl1l̄2Þ for operators of type l1l̄2q̄qwith photon γðkÞ attached to the SM dipole
penguin vertex. The black circles represent the four-fermion LFV vertex [Eq. (4)] and the grey circles with the black border represent the
SM dipole penguin vertex [Eq. (3)].
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Applying this information to the decays of B0
q, D̄0, and

K0 mesons shown in Figs. 1–4, we find that each scalar
function APl1l2

i is written as

APl1l2
i ðp2;…Þ¼A1ab

i þA2ab
i þA3abcd

i þA4ab
i ði¼ 1−8Þ;

ð31Þ

which are functions of model independent form factors and
decay constants.

IV. RESULTS

Unfortunately, no experimental limits on the branching
ratios of radiative lepton-flavor violating decays exist to
constrain all of the applicable Wilson coefficients of the
effective Lagrangian of Eq. (1). We encourage our col-
leagues from the LHC and KEK to study these decays.
However, some information about Wilson coefficients is
available from other transitions, such as two-body decays
discussed in Sec. III. In this section we use this information,
along with the assumption of single operator dominance to
derive the expectations for the size of the radiative LFV
decays, if driven by those operators. These upper limits are
presented in Tables IVand Vand the differential decay rates
are plotted in Figs. 5–8 of Sec. IVA.
All of the form factors and numerical constants, unless

previously mentioned, used to obtain the results in this

section may be found in Appendix A. In some cases where
form factors are currently unknown, we apply a constituent
quarkmodel to estimate the relevant contribution. The quark
model approach and results may be found in Appendix B.

A. Spectra

Inputting the scalar functions of Eq. (31) in the differential
decay rate, Eq. (17), and integrating over the Mandelstam
variables m2

23 and m2
12, we calculate the differential decay

rate, dΓ=dm2
12, and total decay rate, ΓðP → γl1l̄2Þ. Using

these resultswemaypredict the differential decay spectra for
individual operators, ð1=ΓÞðdΓ=dEγÞ. Where we make the
variable change from m2

12 to Eγ , the photon energy in the
meson rest frame, and normalize to the total decay rate. This
analysis requires the practical assumption of single operator
dominance so that the unknownWCsof individual operators
will cancel between the differential and total decay rates.
The differential decay rates for the vector and tensor

operators of type O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2 are

dΓq1q2l1l2
V

dm2
12

¼ C2
VR þ C2

VL

Λ4

4πα

ð2πÞ3
1

576m2
P
ðm2

P −m2
12Þ3

× ð2m2
12 − 3m2

Py
2ÞfPV ½m2

12; 0�; ð32Þ

dΓq1q2l1l2
T

dm2
12

¼ C2
TR þ C2

TL

Λ4

4πα

ð2πÞ3
y2m2

qHG
2
F

288m2
P

ðm2
P −m2

12Þ3

× ðð2fPT1½m2
12; 0� þm2

Pf
P
T2½m2

12; 0�Þ2
þm2

12ðfPT2½m2
12; 0�Þ2Þ: ð33Þ

Here we have suppressed the superscripts of the WCs for
brevity (e.g., Cq1q2l1l2

VR → CVR). We drop terms higher in
order than y2, which is a good approximation in most cases
as the ratio y is small. The vector and tensor operators with
flavor change on both the quark and lepton side are of
particular importance to our analysis. They cannot be
constrained via two-body decays and so the three-body
decay channels present us with a unique opportunity to
place limits on the associated WCs. The vector operators
also have an advantage over the tensor operators because
they are not chirally suppressed by quark and lepton

TABLE IV. Upper limits on B0
q → γl1l̄2 branching ratios from known Wilson coefficient constraints using form factors for four-

fermion axial and pseudoscalar operators of type O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2.

Wilson coefficient

Upper limits

BðB0
d → γμτÞ BðB0

d → γeτÞ BðB0
d → γeμÞ BðB0

s → γeμÞ

Cqbl1l2

AR
9.2 × 10−7 1.2 × 10−6 6.5 × 10−11 3.7 × 10−10

Cqbl1l2

AL
9.2 × 10−7 1.2 × 10−6 6.5 × 10−11 3.7 × 10−10

Cqbl1l2

PR
9.0 × 10−7 1.2 × 10−6 3.2 × 10−11 1.7 × 10−10

Cqbl1l2

PL
9.0 × 10−7 1.2 × 10−6 3.2 × 10−11 1.7 × 10−10

TABLE V. Upper limits on D̄0ðuc̄Þ, K0
Lððds̄ − sd̄Þ= ffiffiffi

2
p Þ →

γl1l̄2 branching ratios from known Wilson coefficient con-
straints using form factors for four-fermion axial and pseudo-
scalar operators of type O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2. Note
the K0

L results are for short distance (SD) interactions.

Wilson Upper limits

coefficient BðD̄0 → γeμÞ BðK0
L → γeμÞSD

Cq1q2l1l2
AR

2.2 × 10−10 2.3 × 10−14

Cq1q2l1l2
AL

2.2 × 10−10 2.3 × 10−14

Cq1q2l1l2
PR

4.5 × 10−9 2.2 × 10−14

Cq1q2l1l2
PL

4.5 × 10−9 2.2 × 10−14
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masses. Assuming WCs are of similar size, this means the
vector operators would give a larger contribution to the
overall decay rate and conversely are better constrained by
experimental limits. The differential spectra given in
Eqs. (32) and (33) are shown in Figs. 5–6.
The three-body decays considered here also provide

complementary access to the axial and pseudoscalar

operators of type O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2. We
do not provide the equations for the individual differential
decay rates as they are more cumbersome than their vector
and tensor counterparts and they are better constrained via
two-body decays. Their differential spectra are plotted in
Figs. 7–8 We demonstrate how well constrained these and
other operators are in Sec. IV B and Appendix B 2.

(a) (b)

FIG. 6. Tensor operator (O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2) differential decay plots as functions of photon energy Eγ : (a) Bd → γμτ or
γeτ (solid blue curve), Bd → γeμ (short-dashed gold curve), Bs → γμτ or γeτ (dotted red curve), Bs → γeμ (dot-dashed green curve);
(b) D → γeτ (solid blue curve), D → γeμ (short-dashed gold curve).

(a) (b)

FIG. 5. Vector operator (O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2) differential decay plots as functions of photon energy Eγ: (a) Bd → γμτ or
γeτ (solid blue curve), Bd → γeμ (short-dashed gold curve), Bs → γμτ or γeτ (dotted red curve), Bs → γeμ (dot-dashed green curve);
(b) D → γeτ (solid blue curve), D → γeμ (short-dashed gold curve), K → γeμ (dotted red curve).

(a) (b)

FIG. 7. Axial operator (O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2) differential decay plots as functions of photon energy Eγ: (a) Bd → γμτ or
γeτ (solid blue curve), Bd → γeμ (short-dashed gold curve), Bs → γμτ or γeτ (dotted red curve), Bs → γeμ (dot-dashed green curve);
(b) left scale D → γeμ (solid blue curve), right scale K → γeμ (short-dashed gold curve).
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B. Limits

Using the available limits on Wilson coefficients from
Sec. III with the form factors of Appendix A, we predict the
upper threshold experiments must reach to potentially see
LFV in the P → γl1l̄2 decays involving the axial and
pseudoscalar operators of type O ∼ ðl1l̄2Þðq̄1q2Þ where
q1 ≠ q2 and dipole operators. These upper bounds are
presented in Table IV for B0

q decays and in Table V for D̄0

andK0
L decays. K0

L is used in lieu of K0 for the limits on the
branching ratios due to a lack of experimental information
on the total decay rate of K0. The normalized differential
decay plots of K0 are the same as K0

L because the
normalization to the total decay rate cancels out the
numerical differences (i.e., a factor of 1=

ffiffiffi
2

p
).

The predicted upper limits of the four-fermion axial and
pseudoscalar operators for radiative pseudoscalar decays
P → γl1l̄2 in Tables IV and V demonstrate that these
operators ultimately are better constrained by their two-
body decay counterparts. When we compare the predicted
upper bounds of three-body rates in Tables IV and V to the
two-body experimental limits in Table I we see they are one
to two orders of magnitude smaller. Therefore the three-
body decays could still provide complimentary access to
these operators.

The tensor form factors in Appendix A also allow
us to analyze the contributions of the dipole operators of
Eq. (2). The dipole operators are best constrained via
radiative lepton decays l2 → l1γ, where l2 ¼ τ, μ and
l1 ¼ μ, e. These decays have been the focus of most LFV
experiments and therefore have the best constraints:
Bðτ → μγÞ ¼ 4.4 × 10−8, Bðτ → eγÞ ¼ 3.3 × 10−8, and
Bðμ → eγÞ ¼ 4.2 × 10−13 [19,41,42]. In our previous work
we were able to provide complimentary access via two-
body vector quarkonium decays V → γl1l̄2 [9].
Using the WC constraints obtained from the radiative

lepton decays l2 → l1γ in [9], we predict the dipole
operator decay upper limits for P → γl1l̄2 in Table VI.
Here the predicted upper limits range from 10−21–10−38,
which is much lower than we would expect to be within
experimental reach during the foreseeable future.
Despite showing that P → γl1l̄2 is not a useful means
to constrain the dipole operators, the results in Table VI
are ten or more orders of magnitude smaller than the
predictions of the axial and pseudoscalar operators in
Tables IV and V. This confirms that P → γl1l̄2 decays
are better equipped to constrain four-fermion operators.
Indeed the operators in the best position to be con-
strained are the quark flavor changing four-fermion

TABLE VI. Upper limits on B0
qðqb̄Þ, D̄0ðuc̄Þ → γl1l̄2 branching ratios from known dipole Wilson coefficient constraints using form

factors for dipole operators. FPS stands for “forbidden phase space.”

Predicted upper limits

Leptons l1l2 Wilson coefficient [9] (GeV−2) BðB0
d → γl1l̄2Þ BðB0

s → γl1l̄2Þ BðD̄0 → γl1l̄2Þ
μτ jCl1l2

DR =Λ2j ¼ 2.6 × 10−10 3.1 × 10−28 1.2 × 10−26 FPS
eτ 2.7 × 10−10 3.3 × 10−28 1.3 × 10−26 3.8 × 10−38

eμ 3.1 × 10−7 5.3 × 10−24 1.2 × 10−21 1.4 × 10−27

μτ jCl1l2
DL =Λ2j ¼ 2.6 × 10−10 3.1 × 10−28 1.2 × 10−26 FPS

eτ 2.7 × 10−10 3.3 × 10−28 1.3 × 10−26 3.8 × 10−38

eμ 3.1 × 10−7 5.3 × 10−24 1.2 × 10−21 1.4 × 10−27

(a) (b)

FIG. 8. Pseudoscalar operator (O ∼ ðl1l̄2Þðq̄1q2Þ where q1 ≠ q2) differential decay plots as functions of photon energy Eγ:
(a) Bd → γμτ or γeτ (solid blue curve), Bd → γeμ (short-dashed gold curve), Bs → γμτ or γeτ (dotted red curve), Bs → γeμ (dot-dashed
green curve); (b) left scale D → γeμ (solid blue curve), right scale K → γeμ (short-dashed gold curve).
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vector operators, which see no chiral suppression via
lepton or quark masses and cannot be constrained via
two-body decays.

V. CONCLUSIONS

Studies of lepton flavor violating transitions are a prom-
ising path in the search for new physics.A convenientway to
study new physics is to employ effective Lagrangians. All
models of new physics that include flavor-violating inter-
actions are encoded in the values of Wilson coefficients of
the low energy effective Lagrangian in Eq. (1). We argued
that thoseWilson coefficients can be constrained through the
studies of radiative B0

q, D̄0, and K0 decays to two different
flavored leptons.
It is clear that studies of two-body P → l1l̄2 decays

allowed for the quantum number selection of a smaller
subset of the effective operators, which reduced our
reliance on single operator dominance. Yet, the radiative
three-body decays to γl1l̄2 allowed access to the effective
operators in Eq. (1) which cannot be probed via any two-
body meson decays. In addition to probing new operators,
the three-body radiative transitions also allowed for com-
plimentary access to four-fermion operators constrained by
two-body decays without the need to include a composite
strongly-interacting meson to the final state. Finally, we
provide evidence that the dipole operators are so well
constrained by radiative LFV transitions l2 → l1γ that
their threshold for contributions to BðP → γl1l̄2Þ is many
orders of magnitude below experimental reach. Thus, their
contribution to the sum of amplitudes in Eq. (31) can be
safely dropped.
As more data is produced by Belle II and the LHCb

experiment, we emphatically encourage our experimental
colleagues to produce experimental limits on both LFVand
radiative LFV decays of the B0

q, D̄0, and K0 mesons
discussed in this work.
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APPENDIX A: FORM FACTORS AND
NUMERICAL CONSTANTS

To estimate differential decay rates and the upper limits
of the total decay rates of the radiative decays in Sec. IV, we
must apply the form factors of Eqs. (18)–(20) and the
numerical constants of Tables VII and VIII. Numerical
inputs for the CKM matrix elements are found in [19].
Before we can apply these form factors, we must relate

them to those calculated in the literature, which are defined
as [28–33]

hγ�ðk2Þjq̄1γμγ5q2jPðpÞi

¼ ieε�αðk2Þðgαμk1 · k2 − kα1k
μ
2Þ
FP
A½k21; k22�
mP

;

hγ�ðk2Þjq̄1γμq2jPðpÞi

¼ eε�αðk2Þϵk1k2μα
FP
V ½k21; k22�
mP

;

hγ�ðk2Þjq̄1σμνγ5q2jPðpÞik1ν
¼ eε�αðk2Þðgαμk1 · k2 − kα1k

μ
2ÞFP

TA½k21; k22�; and

hγ�ðk2Þjq̄1σμνq2jPðpÞik1ν
¼ ieε�αðk2Þϵk1k2μαFP

TV ½k21; k22�: ðA1Þ

These form factors are functions of two momenta, k1,
which is emitted from the q1 → q2 weak transition
current, and k2, which is emitted from one of the valence
quarks of the meson P. Here the photon is off-shell,
but the on-shell definitions may be found by assuming
k22 ¼ 0 and applying the momentum conservation rela-
tion p ¼ k1 þ k2.
Assuming k2 ¼ 0 and making the appropriate substitu-

tions ofQ ¼ p − k and k for k1 and k2 we find the necessary
relations between the form factors in Eqs. (18)–(20) and
Eq. (A1) as

FP
V;A½Q2; 0� ¼ mpfPV;A½Q2; 0�;
FP
TV ½Q2; 0� ¼ −fPT1½Q2; 0� − p · kfPT2½Q2; 0�;

FP
TA½Q2; 0� ¼ −fPT1½Q2; 0� − p ·QfPT2½Q2; 0�;

FP
TV;TA½0; Q2� ¼ −fPT1½0; Q2� − fPT3½0; Q2�: ðA2Þ

To make use of these relations we employ the para-
metrizations of [28] for the FV , FA, FTV , and FTA form
factors. For the B0

q → γ form factor parametrization when

TABLE VII. MS quark masses for decay calculations [19].

mu md mc ms mb

2.2þ0.6
−0.4 MeV 4.7þ0.5

−0.4 MeV 1.28�0.03GeV 96þ8
−4 MeV 4.18þ0.04

−0.03 GeV

TABLE VIII. Penguin operator Wilson coefficients, C7γ , for
decay calculations.

Transition Scale μ [GeV] jC7γj Ref.

b → dðsÞγ 5.0 0.299 [11]
c → uγ 1.3 0.0025

4jV�
ubVcbj [43]
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the photon γ is emitted from the valence quarks (k1 ¼ Q,
k2 ¼ k) we use

F
Bq

i ½E� ¼ βi
fPmP

Δi þ Eγ
; i ¼ V;A;TV;TA ðA3Þ

where Eγ is the photon energy in the P-meson rest-frame.
The constants β and Δ are numerical parameters which can
be found in Table IX.
For the parametrization of the D̄0; K0 → γ form factors

when the photon γ is emitted from the valence quarks
(k1 ¼ Q, k2 ¼ k) we use

FP
i ½m2

12� ¼
Qq1F

ðq1Þ
i ½0�þQq2F

ðq2Þ
i ½0�

1−m2
12

M2
i

; i¼V;A;TV;TA:

ðA4Þ

Here QdðsÞ ¼ − 1
3
, QuðcÞ ¼ 2

3
, and the remaining param-

eters are found in Table X [33].
The form factors FP

TV;TA½0; Q2� for B0
q and D̄0 decays are

parametrized using vector meson dominance in [30,31],
which gives

FP
TV;TA½0;Q2�¼FP

TV;TA½0;0�

−
X
V

2fVg½0�P→Vþ
Q2=mV

Q2−m2
Vþ imVΓV

: ðA5Þ

The vector meson dominance input parameter values are
found in Table XI. The ρ andωmesons are part of the vector
meson sum for B0

d and D̄0 form factors because of their
respective d and u valence quark content. The ϕ meson is
part of the vector meson sum for the B0

s form factor because
of its s valence quark content. The zeromomentumvalues of

the tensor form factors are F
B0
d;s

TV;TA½0; 0� ¼ 0.115 [28]

and FD̄0

TV;TA½0; 0� ¼ QcfcTV;TA½0� þQufuTV;TA½0�.
Given these form factors and the general input values

given in Tables VII and VIII we are able to plot the
normalized differential decay rates and estimate the upper
limits for the radiative branching ratios assuming single
operator dominance in Sec. IV.

APPENDIX B: QUARK MODEL

When the necessary form factors are unavailable to take
a model independent approach to the calculation of the
four-fermion operator contributions of the diagrams in
Fig. 4, we may choose a model dependent approach. We
apply a constituent quark model to calculate the contribu-
tions of four-fermion vector, axial, and tensor operators of
the type ðl1l̄2Þðq̄qÞ. We constrained both the vector and
tensor Wilson coefficients for these operators previously in
[9]. The results are reproduced here in Table XII and can be
used to find a predicted upper bound on the branching ratio
of BðP → γl1l̄2Þ for individual operators using the single
operator dominance assumption.

TABLE X. Parameters of the D̄0; K0 → γ form factors, as defined in Eq. (A4) [33,44]. The K0 tensor form factors
will be calculated elsewhere.

Parameter V A TV TA

D̄0 → γ Fc
i ð0Þ −0.12 0.14 −0.12 −0.12

Fu
i ð0Þ −0.37 −0.31 −0.38 −0.38

Mi (GeV) 2.0 2.3 2.0 2.4
K0 → γ Fd

i ð0Þ −0.22 0.20 � � � � � �
Fs
i ð0Þ −0.18 −0.19 � � � � � �

Mi (GeV) 0.89 0.89 � � � � � �

TABLE IX. Parameters of the B0
q → γ form factors, as defined

in Eq. (A3) [28].

Parameter FV FTV FA FTA

B0
d;s → γ βðGeV−1Þ 0.28 0.30 0.26 0.33

ΔðGeVÞ 0.04 0.04 0.30 0.30

TABLE XI. Vector meson dominance input parameters for FTV;TA½0; Q2� form factors.

V g½0�B0
q→V

þ g½0�D̄0→Vþ fV (MeV) mV (MeV) ΓV (MeV) Refs.

ρ 0.27 −0.66 154 775.26� 0.25 147.8� 0.9 [19,31,45]
ω −0.27 −0.66 45.3 782.65� 0.12 8.49� 0.08 [19,31,45]
ϕ −0.38 −58.8 1019.460� 0.016 4.247� 0.016 [19,31,45]
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1. Constituent quark model

The amplitude for the diagrams in Fig. 4 using this model is

iAP→γl1l2 ¼ −
i
Λ2

ε�μðkÞ
X2
i¼1

ðūl1 ½Cqil1l2
VR γαPR þ Cqil1l2

VL γαPL�vl2
h0jq̄1ΓV;qi

αμ q2jPðpÞi

þ ūl1 ½Cqil1l2
AR γαPR þ Cqil1l2

AL γαPL�vl2h0jq̄1ΓA;qi
αμ q2jPðpÞi

þm2mqiGFūl1 ½Cqil1l2
TR σαβPL þ Cqil1l2

TR σαβPR�vl2h0jq̄1ΓT;qi
αβμq2jPðpÞiÞ: ðB1Þ

This amplitude is dependent on matrix elements of the form h0jq̄1Γq2jPi with the matrices Γ defined for each operator
(O ∼ ðl1l̄2Þðq̄iqiÞ, i ¼ 1, 2) as

ΓV;q1
αμ ¼ i

GFffiffiffi
2

p
ffiffiffiffiffiffiffiffi
4πα

p

π2
mq1C7γ

X
q

λPq γα
x=p − =kþmq1

ðxp − kÞ2 −m2
q1

σμνð1þ γ5Þkν;

ΓA;q1
αμ ¼ i

GFffiffiffi
2

p
ffiffiffiffiffiffiffiffi
4πα

p

π2
mq1C7γ

X
q

λPq γαγ5
x=p − =kþmq1

ðxp − kÞ2 −m2
q1

σμνð1þ γ5Þkν;

ΓT;q1
αβμ ¼ i

GFffiffiffi
2

p
ffiffiffiffiffiffiffiffi
4πα

p

π2
mq1C7γ

X
q

λPqσαβ
x=p − =kþmq1

ðxp − kÞ2 −m2
q1

σμνð1þ γ5Þkν; ðB2Þ

ΓV;q2
αμ ¼ i

GFffiffiffi
2

p
ffiffiffiffiffiffiffiffi
4πα

p

π2
mq2C7γ

X
q

λPqσμνð1þ γ5Þkν
−ð1 − xÞ=pþ =kþmq2

ðð1 − xÞp − kÞ2 −m2
q2

γα;

ΓA;q2
αμ ¼ i

GFffiffiffi
2

p
ffiffiffiffiffiffiffiffi
4πα

p

π2
mq2C7γ

X
q

λPqσμνð1þ γ5Þkν
−ð1 − xÞ=pþ =kþmq2

ðð1 − xÞp − kÞ2 −m2
q2

γαγ5; and

ΓT;q2
αβμ ¼ i

GFffiffiffi
2

p
ffiffiffiffiffiffiffiffi
4πα

p

π2
mq2C7γ

X
q

λPqσμνð1þ γ5Þkν
−ð1 − xÞ=pþ =kþmq2

ðð1 − xÞp − kÞ2 −m2
q2

σαβ: ðB3Þ

In modeling the quark-antiquark distribution, we chose
to follow [46–48], where we can write the wave function of
the ground state, PðpÞ, as

ψP ¼ Icffiffiffi
6

p ϕP½x�γ5ð=pþmPg½x�Þ: ðB4Þ

TABLE XII. KnownWilson coefficient limits from our previous work in [9]. Note the center dots denote unknown values which could
be constrained via P → γl1l̄2.

Leptons Quark

Wilson coefficient ðGeV−2Þ l̄1l2 b c s u=d

jCql1l2

VLðRÞ=Λ
2j μτ 3.5 × 10−6 5.5 × 10−5 � � � � � �

jCql1l2

VLðRÞ=Λ
2j eτ 4.1 × 10−6 1.1 × 10−4 � � � � � �

jCql1l2

VLðRÞ=Λ
2j eμ � � � 1.0 × 10−5 2.0 × 10−3 � � �

jCql1l2

ALðRÞ=Λ
2j eμ � � � � � � 2.0 × 10−3 3.0 × 10−3

jCql1l2

TLðRÞ=Λ
2j μτ 2.8 × 10−2 1.2 � � � � � �

jCql1l2

TLðRÞ=Λ
2j eτ 3.2 × 10−2 2.4 � � � � � �

jCql1l2

TLðRÞ=Λ
2j eμ · · · 4.8 � � � � � �

TABLE XIII. Constituent quark masses used in calculations of
quark model matrix element [49].

Quark mu md ms mc mb

Constituent mass (MeV) 335.5 339.5 486 1550 4730
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The variable x is the momentum fraction of one of the
quarks and Ic is the identity matrix of color space. We have
assigned the momenta in Fig. (4) such that the valence
quark q̄1 has momentum xP and the valence quark q2 has
momentum ð1 − xÞP. The function gP½x� is gH½x� ∼ 1 for
heavy mesons and gL½x� ¼ 0 for light mesons. The dis-
tribution amplitudes used for light and heavy mesons and
their normalization are

ϕL ∼ xð1 − xÞ;

ϕH ∼
�
mqL

MH

1

1 − x
þ 1

x
− 1

�
−2
;

fP
2

ffiffiffi
6

p ¼
Z

1

0

ϕ½x�dx: ðB5Þ

Here mqL is the mass of the light quark and the
normalization is related to the decay constant fP. By

taking the trace and integrating over the momentum
fraction we find the matrix element

h0jq̄1Γμq2jPi ¼
Z

1

0

Tr½ΓμψP�dx: ðB6Þ

2. Spectra and limits

Since we applied a constituent quark model to calcu-
late the transition amplitudes we need to define its
parameters (constituent quark mass) that are used to
calculate the matrix element in Eq. (B6). These masses
are in Table XIII. Using this matrix element and
integrating over the Mandelstam variables m2

23 and m2
12

we can calculate the differential decay rate as a function
of the photon energy, Eγ , in the rest-frame of the meson
P and the total decay rate. An example plot for these
differential decay spectra normalized to the total decay

(a) (b) (c)

FIG. 9. Differential decay plots as functions of photon energy Eγ for (a) vector/axial, (b) left-handed tensor, and (c) right-handed
tensor operators of the type O ∼ ðl1l̄2Þðb̄bÞ. Plotted decay rates are Bd → γμτ or γeτ (solid blue curve), Bd → γeμ (short-dashed gold
curve), Bs → γμτ or γeτ (dotted red curve), Bs → γeμ (dot-dashed green curve).

TABLE XIV. Upper limits on B0
qðqb̄Þ → γl1l̄2 branching ratios from known Wilson coefficient constraints using constituent quark

model. The center dots indicate no Wilson coefficient constraints were available for a prediction of an upper bound. Experimental
studies of this decay channel would present an opportunity to constrain these Wilson coefficients.

Wilson coefficient

Upper limits

BðB0
d → γμτÞ BðB0

d → γeτÞ BðB0
d → γeμÞ BðB0

s → γμτÞ BðB0
s → γeτÞ BðB0

s → γeμÞ

Cbl1l2
VR

5.7 × 10−20 7.8 × 10−20 � � � 1.8 × 10−18 2.5 × 10−18 · · ·

Cbl1l2
VL

5.7 × 10−20 7.8 × 10−20 � � � 1.8 × 10−18 2.5 × 10−18 · · ·

Cql1l2
VR

� � � � � � � � � � � � � � � 1.3 × 10−10

Cql1l2
VL

� � � � � � � � � � � � � � � 1.3 × 10−10

Cql1l2
AR

� � � � � � 2.0 × 10−12 � � � � � � 1.5 × 10−11

Cql1l2
AL

� � � � � � 2.0 × 10−12 � � � � � � 1.5 × 10−11

Cbl1l2
TR

3.9 × 10−21 5.1 × 10−21 � � � 2.1 × 10−19 2.8 × 10−19 � � �
Cbl1l2
TL

1.1 × 10−18 1.5 × 10−18 � � � 3.9 × 10−17 5.1 × 10−17 � � �
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rate is Fig. 9, which shows the spectra of B0
q decays for the

vector, axial, and tensor operators of type ðl1l̄2Þðq̄qÞ. The
normalization cancels out sources of uncertainty such as the
Wilson coefficients (i.e., Cqil1l2

VRðLÞ) and the CKM matrix
element values. As we did in Sec. IV B, we apply known
Wilson coefficient constraints fromTable. XII and the single
operator dominance assumption to the total decay rate to
make predictions of the branching ratio upper limit for these
operators, which can be found in Tables. XIV and XV.
These limits range in order of magnitude from

10−10–10−28 and therefore many are below experimental
reach. It is the spaces between these limits that should draw
the reader’s attention. There is much opportunity here to
constrain the operators whose limits cannot be predicted.
Providing limits using these RLFV decays would of course
be complementary to two-body LFV decays of quarkonia
(e.g., [9]), but would come for free aswe constrain the vector
and tensor operators with flavor changes on both the quark
and lepton sides.
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