PHYSICAL REVIEW D 98, 015027 (2018)

Radiative lepton flavor violating B, D, and K decays

Derek Hazard' and Alexey A. Petrov'”

lDepartmenz of Physics and Astronomy Wayne State University, Detroit, Michigan 48201, USA
2Michigan Center for Theoretical Physics University of Michigan, Ann Arbor, Michigan 48196, USA

® (Received 15 December 2017; published 20 July 2018)

We argue that radiative lepton flavor violating (RLFV) decays P — y#,£, of P = B, D°, and K° meson
states are robust probes of new physics models. In particular, they could be used to put constraints on the
Wilson coefficients of effective operators describing lepton flavor-changing neutral current interactions at
low energy scales. We set up a generic framework for describing these transitions and review new physics

constraints from P — #,7, decays. There is discussion of how RLFV transitions provide access to the

operators that cannot be constrained in two-body decays and we in turn motivate further experimental

searches via these channels.
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I. INTRODUCTION

Currently operating and future B-factories, such as
LHCb and Belle-II, will be accumulating significant
amounts of beauty and charm decay data. These large
data sets will be quite useful in studies of extremely small
decay rates of B and D mesons, which could probe new
physics (NP) at unprecedentedly high energy scales. In
particular, studies of pseudoscalar meson decays P = BY,
D°, and K° into the final states containing charged
leptons of different flavors such as P — #,/, and P —
y¢1¢5 could be performed. Such decays are induced by
the operators that generate flavor-changing neutral cur-
rents (FCNC) in the lepton sector, which provide a
fruitful approach to probing beyond the standard model
(BSM) physics, assuming of course that such flavor-
violating interactions are allowed in the BSM models.
There are indeed many well-established new physics
models (see, e.g., [1-7]) that meet this opportunity and
predict charged lepton flavor violating (CLFV) transition
rates that are significantly larger than the standard model
(SM) rates [1].

A convenient way to describe CLFV transitions
in low energy experiments is by introducing an effective
Lagrangian, L. Such a Lagrangian is a convenient
parametrization of all new physics models that include
lepton flavor violation with the details of the models
encoded in the Wilson coefficients (WCs) of L., which
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are obtained by matching the effective Lagrangian to a
given BSM model at the new physics scale A [8]. This
Lagrangian is required to be invariant under the unbro-
ken symmetry groups SU(3), x U(1),, below the
electroweak symmetry breaking scale. At the low scale
for which a given process occurs the effective operators
would exhibit the relevant standard model (SM) degrees
of freedom with the effective operators written com-
pletely using quarks (¢; = b, ¢, s, u, and d) and leptons
(¢; =1, u, and e). In what follows, we assume that top
quarks are integrated out of the theory, and we do not
consider neutrinos. The effective Lagrangian L. that
involves CLFV can be written as

Legp = Lpg+Lp+ -+, (1)

where L), is a dipole part, L, is the part that contains
four-fermion interactions, and the ellipses represent parts
of the Lagrangian not relevant to this work. Since here
we are interested in the decays of electrically-neutral
pseudoscalar BY, D°, and K° mesons to flavor-off-
diagonal lepton pairs and other particles, the transitions
involve FCNC interactions on both quark and lepton
sides. We neglect to include the gluonic part of the
Lagrangian, Lg, here as it’s contributions for Bg, DY, and
K° mesons is a loop process one order beyond this work
and therefore highly suppressed. It would be included for
the case of quarkonium decays as seen in Ref. [9]. This
can be understood by considering the wave function of
quarkonia which includes gg quark pairs of the same
flavor as well as a significant gluon content, while the
wave functions of mesons such as B), D’ and K° are
composed of ¢;g, quark pairs of different flavors.

The dipole part of Eq. (1), which could contribute to the
radiative decays P — yZ,£, is written as [10]
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The WCs of L, have been well constrained in leptonic
LFV decays [1].

Note that it is known that the quark FCNC transitions,
at least in the decays of down-type quarks, are
dominated by the SM contributions. For instance, the
dipole operator describing ¢; — g,y can be written
as [11]
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(3)
Here 1) =V, V;:, denotes the appropriate Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, m, is the
heavier quark, and Cy, is the corresponding Wilson coef-
ficient [11].

The four-fermion dimension-six lepton-quark part of the
effective Lagrangian, Eq. (1), takes the form [10]:

01ty 7 01t 2 _ 0ty 7 01tr 3 i}
[(CUR 121y PRty + CUS T 2P PLEs) iy uga + (Cag™ 217 PRty + CL 201y  PLEs) 37 ,urs 9

065 0165 _ 01ty 416> i}
+mamy Gr(CUP 2\ Pty + CY 2\ Prts)q1Ga + mamy Gr(CR 20\ Pty + CH 2\ Prts) 41 v5q2
+mzquGF(C%QLI%MZ?WWPLQ + C?]L’Mlfz?lﬁ’wplefz)zh%u% +H.c]. (4)

Here m, is the mass of the heavier quark (m, =
max[m, ,m,]) and Pgy = (1 £ys5)/2 is the right (left)
chiral projection operator. In general the Wilson coeffi-
cients would be different for different lepton flavors #; and
quark flavors ¢g;. Note that, contrary to some previous
studies, we include tensor operator in Eq. (4) (see [9] for
motivation). CP-conservation is assumed so all the Wilson
coefficients in Eq. (4) should be viewed as real numbers.

In this paper we discuss the possibility of the Wilson
coefficients of the effective Lagrangian in Eq. (1) for
different #; and g; be determined from experimental data
on leptonic and radiative leptonic CLFV decays of BY, DO,
and K states. We review two-body decays P — #,7, in
Sec. III. We will note that restricted kinematics of the two-
body transitions would allow us to select operators with
particular quantum numbers significantly reducing the
reliance on the single operator dominance assumption
[9]. The main part of the paper, Sec. III, will be devoted
to discussion of radiative lepton-flavor violating (RLFV)
decays P — y£,¢,. We will summarize our results in
Sec. IV and conclude in Sec. V.

Note that here we only consider short distance effects in
kaon decays. In the SM long distance effects on decays
such as K‘z 5 = y£¢ dominate the dynamics [12]. In light
of this, our kaon results may be modified by long distance
effects.

In what follows, we will use the convention that the
subscript of “1” will denote the lighter lepton and
the subscript “2” will denote the heavier lepton. Unless
otherwise specified when studying the branching ratios
we assume for a meson, P, that B(P — (y)£,¢,) =
B(P — (y)¢,¢5) + B(P — (y)£,¢5). Finally, it is impor-
tant to note that some of the two-body and all of the three-
body transitions have yet to be experimentally studied.

|
Numerical constraints on some Wilson coefficients of the
effective Lagrangian, L., from these unstudied decays are
not available.

II. TWO-BODY DECAYS P — ¢,%,

Many studies have focused on rare leptonic decays of 32
mesons, B, — ¢Z, as both precision tests of the SM and as
an opportunity to search for new physics (e.g., [13—17]).
The abundance of produced B and D° states at the LHCb,
Belle II, and BESIII experiments also allows for studies
of lepton-flavor violating decays at these experiments
[18,19]. Such decays were discussed at length previously,
mainly in the context of particular models. Here we shall
review these transitions emphasizing the possibility to
constrain Wilson coefficients of the axial and pseudoscalar
operators of the effective Lagrangian in Eq. (1). These decays
would provide information about C4,%2"12 (C%42/1*2 and/or
CHaN2(C18N%2) iy Eq. (4). One can write the most
general expression for the P — #,£, decay amplitude as [9]

AP = €,8,)=u(py.s))[EEP " +iFE2 2 ys]o(py.sy)
(5)

with E497172 and F9%"1%> being dimensionless constants
which depend on the Wilson coefficients of operators in
Eq. (1) and various decay constants.

The amplitude of Eq. (5) leads to the branching ratio for
flavor off-diagonal leptonic decays of pseudoscalar mesons:

mp
87[FP

Z 6\t 21
B(P = £122) = ot (1= PIER O + [Py

(6)
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TABLE L. Available experimental limits on B(P — £,£,) [19,21-24]. Center dots signify that no experimental
data are available; “FPS” means that the transition is forbidden by phase space.

165 ur et eu

B(BY - ¢,¢,) 2.2 %1073 2.8 x 1070 1.0 x 107
B(BY — ¢,¢,) 5.4 %107
B(D® — £,£,) FPS 1.3x1078
B(KY — ¢,¢5) FPS FPS 4.7 x 10712
TABLE II. Pseudoscalar meson decay constants [25,26], total decay widths, and meson masses [19] used in the

calculation of branching ratios B(P — ¢,75).

State Bg D° K}
fp, MeV 186 +4 224+ 4 207.4 +£3.8 1550+£1.9
Ip, 10714 MeV 4330+ 11 4374 + 15 16050 =+ 60 1.287 + 0.005
mp, GeV 5.28 5.37 1.86 0.498
TABLE III.  Constraints on the Wilson coefficients from pseudoscalar meson decays. Note the K9 results only include short distance

effects. Center dots signify that no experimental data are available to produce a constraint; “FPS” means that the transition is forbidden
by phase space. Particle masses and other input parameters are from [19,21-24].

Leptons Initial state

Wilson coefficient t\t BY(ab) BY(sb) DO(uc) K9 ((d5 - sd)/V/2)
|C 1% A2 Ut 23x 1078 FPS FPS

et 2.6x 1078 . . FPS

eu 23 %107 4.4 x107° 2.4 %1078 5.0 x 10712
|Cha:"172 /72| Ut 23 %1078 e FPS FPS

et 2.6x 1078 .. . FPS

e 2.3x107° 44 %107 2.4 %1078 5.0x 10712
|C?)1quf1f2/A2‘ ur 7.1x 1073 s FPS FPS

et 8.0x 107 . e FPS

eu 7.1 x 1076 1.3 x 107 5.9 x 107 1.7 x 107°
|C1}I)|Rng1f2/A2‘ ut 7.1 %1073 ce FPS FPS

et 8.0x 107 e e FPS

e 7.1 x 1076 1.3 x 107 59x 1074 1.7 x 107°

Here I'p is the total width of the pseudoscalar state. We have
once again neglected the mass of the lighter lepton and set
y = my/mp. Calculating E4 1”2 and F4“1*> for P = BY
(9192 = db), B} (q19> = sb), D° (q1q; = cu), and, K
(919, = ds), the coefficients are

mpfpy
PToA2

2 4192217 q19261¢
+mPGF(CPlL2 "4 Cpp”! 2)]’

919261¢> __ q419201¢2 4192102
EP - [(CAL + CAR )

mpfpy e
pynr [(CRP
+mpGR(CH " = CRE . (7)

q914:261¢2 __ 41922172
Fp = - Cyk )

The hadronic matrix element' in Eq. (7) is defined as [20]

(01g17"75q2|P(p)) = —if pp". (8)

Here p is the momentum of the meson. The constant kp is 1
for BY, D°, and K%; and 1/ V2 for K(Z( 5)- The experimental

limits and numerical values of the pseudoscalar decay
constants used in the calculations can be found in

'One could also consider similar matrix elements
with vector and tensor currents, but it can be shown that
these are zero by applying parity P and time reversal 7
operators to the matrix elements (e.g., (0|3,7#¢,|P(p))=

TP PT gy g, T P~ PT|P(p))=—(017,7" 42| P(p))=0).
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Tables I and II. The resulting constraints on the Wilson
coefficients are found in Table III.

III. THREE-BODY RADIATIVE DECAYS P — 2,2,y

Similarly to the BY — " u~y transition [27-32], addition
of a photon to the #,7, final state allows one to probe
operators of the effective Lagrangian that do not contribute
to P — ¢, ¢, transition. This was pointed out for the LFV
decays in [9], and, more importantly in [33] (for a
calculation of BY — #,/,y in the model of [34]). In
addition, P — #,£, decays suffer from chiral suppression
[see Eq. (7)], which three-body radiative decays do not
necessarily exhibit. Thus, it is possible that RLFV decays
might have larger branching ratios than two-body LFV
transitions (see [27-32] for similar effects in lepton flavor
conserving decays). Here we evaluate radiative lepton-
flavor violating decays of the pseudoscalar mesons with the
model-independent effective Lagrangian of Eq. (1).

It might be theoretically easier to deal with a three-body
final state that contains no strongly-interacting composite
particles. Still, the calculation of the P — #,¢,y decay is
more complicated than P — #,¢,, where all nonperturba-
tive effects are summarized in one decay constant fp.
Further, because of the electromagnetic gauge invariance, it
is important to have a good understanding of what kind of
constraints the kinematic structure of the decay amplitude
imposes on the dynamics of these transitions. Let us now
derive the most general amplitude for P — #,£,y.

A. General amplitude and differential
decay rate for P — ¢,€,y

The most general expression for the P(p)—
y(k)¢,(p1)?5(p,) decay amplitude can be obtained using
the Bardeen-Tung formalism [35]. The decay amplitude can
be written as

A(P(p) = y(K)Z1(p1)?2(p2))
= u(p1,s))M*(p.k,q)v(py, 52)e;(k), )

where @(py,s,) and v(p,.s,) are spinors for #; and Z5,
g =%(p1— pa), and g;(k) is the polarization vector of
the photon. The function M*(p, k, q), which we seek to
parametrize, transforms as a tensor under Lorentz trans-
formations. This function should only contain dynamical
singularities, so particular care should be taking by writing it
in such a way that it does not contain kinematical ones. The
most general expression for the M¥(p, k, ) from Eq. (9) can
be written by expanding it into simpler Lorentz structures
£ (p, q, k) multiplied by the invariant functions Mf”ﬂ‘fz,
which only depend on Lorentz invariants,

M*(p.k.q) => £ (p.q. )M (p?,...). (10)

The most general parametrization of Eq. (10) contains
twelve form-factors,

M*(p.k.q)
=y (MY M) iy syt (M1 kM)
@ (MEO 1 M) st (MEOT + M)
P+ M) i O+ ),
(11)

In the writing of Eq. (11) we used the equation of motion for
the lepton spinors, and rewrote terms containing ¢** in terms
of components, e.g., ic"*q,=q" —y*¢ and 6**ysq, =ig"ys —
iy"¢ys. Note that terms proportional to ¢ can be expressed as
terms proportional to ¥ using momentum conservation and
equations of motion. Next, terms proportional to the e
tensor, such as ey, Pokp, can be written in terms of the
existing form factors of Eq. (11) using the relation

i Pyy = y'y'yys = ¢Urrs — g r'rs + 9 r'rs - (12)

and the equations of motion. Finally, all possible terms in
Eq. (11) proportional to k* trivially vanish by gauge
invariance.

The set of Eq. (11) is still not minimal, as the condition
of gauge invariance k, M*(p, k, q) = 0 implies that some of

the M ff' “in Eq. (11) are not independent. An elegant way
of finding the minimal set of gauge-invariant Lorentz
structures has been given in [35], which we shall apply
to our analysis. To get the minimal set, it is most convenient

to apply a projection operator
PrK
(v "

to M*(p,k,q). Since P**M, = M" and k,P*" =0, P*
does indeed project out gauge-invariant structures in
M*(p, k,q). Applying P* to Eq. (11) we learn that terms
proportional to p* do not give contributions to the minimal
set and should be dropped, leaving the number of inde-
pendent amplitudes at eight.2 Applying the condition
k, =0 and eliminating kinematical singularities we
write the Lorentz structures L’ for the set of amplitudes as

P o= g —

M (p.k.q) = Ll (p.q. AT (p2,..). (14)

*The number of linearly independent amplitudes is equal to the
number of helicity states [36—39]. There are two possible helicity
states for the leptons, down or up (< or =), and two for the
photon, minus or plus (« or —). For the P - #;¢,y decay this
yields 2 x 2 x 2 = 8 possible combinations: «==> (L = 0), -
== (L=0), «<==>L=1), e=><=L=1), <=
L=1), =<« (L=1), »== (L=2), and « <<«
(L =2). Here L is the orbital angular momentum allowed for
each helicity state due to conservation of total angular momentum
J=0).
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which are defined in a manner that removes all kinematical
singularities. The AP'"2(p?, ...
factors, while L¥ are

) are new scalar form

Ly=r¥  Ly=irsy'k,

L5 = (p-k)g" - (k-q)p",

Ly =iys[(p-k)g" = (k- q)p"],

L5 = (p- k' = p'k.

L = irs[(p - k)r* — p"H,

Ly = q'f~ (k- q@)r*,

Lg = iys[qg" ¥ = (k- q)r*]. (15)
J

dr 1 1

dm},dms,  (2r)3384m3

This implies that the can be

written as

decay amplitude

A(P(p) = 7(K)¢1(p1)Z(p2))
_ZAPf 13 (p*...)i(pi.s))LE (p.q. k)v(py. s2)es (k).

(16)

Using this general amplitude for a three-body pseudo-
scalar decay, P — y/,£,, we calculate a general differ-
ential decay rate, which depends on the same scalar

functions AF172(p2,...),

_ [ 16(A} + A3) (m35(mpy® — m3;) + memp(1 —y?))

1
+ 2(A3 + A7) (mpy* — mi, {m L (mpy* — miymss) + m (’%3’"%3 ——(mp —mi, + m%)2> }

+ 4(A35 + A {2my* + miy ((mpy* — miz)* + my3) —
(

— (A2 + AD{(2m}y* — m},)
~ SRe[A A5 + A, iy (my?

— 16Re[A A5 + AyAglmpymi; (mp
+ 8Re[A3A% + AyAgmpymis(mpy?

+ 4Re[AsA7 + A6A§](m%’ - m%z)(m%yz —my,

Here the Mandelstam Variables have the usual definitions:
miy = (p1+p2)’, miy = (p1+k)? my = (py+k)>
where p , is the 7| ; lepton momentum, k is the y photon
momentum, and they are related to the pseudoscalar
momentum, p, by p = p; + p, + k. The mass mp is the
pseudoscalar mass, m, is the heavier lepton mass, and
y =my/mp. The superscript of P£ ¢, on the scalar
functions A; perts (p%,...) is dropped for brevity in
Eq. (17). We introduce a photon mass, m,, to regulate
the infrared divergences that will appear via bremsstrahlung
diagrams. We use a value of m, = 60 MeV as our cutoff,
which is near the final state invariant mass resolution of
experiments [33].

B. Scalar functions A”‘t’z for B), D°, and K° mesons

The scalar functions Apf “2(p,...) introduced in

Eq. (14) can only depend on kinematical invariants and
form factors. These functions can be calculated on the
lattice or using other nonperturbative methods. Examining
the four-fermion Lagrangian of Eq. (4) one can find that the

contributions of Figs. (1), (3), and (4) to A”1” could be

1
- m%zm%) - 5’"%(’“% + m% - m%z)(mfp)ﬂ —mi,)}

— miym3;) + 4ARe[AsA5 + AyAglmpymiy (mpy?

) (mpy*

4

mpy*(mp + mi,) (mpy* + m3; — miz)}

(mpy - mzz) + m13) + m%y%m% - m%z)(m%yz - m%3 + m%z)}

2

— miy) + 8Re[A| A7 + ApAg]mpymis (mpy? — m3s + mis)

- m%z’"%s)

—m3; + mi)|. (17)

|
written in terms of the form factors for P(p) — y(k)
transitions used to parametrize lepton flavor conserving
decays, such as Pt — y£t0 or P° — y/¢. These form
factors are defined as [28-30,33]

(r(k)ar*rsq21P(p))
= iVdra e, (k)[g*p - k — p°k*|fE[0%* K],  (18)

= Vana €} (k)e" P p ks f710% k2],
(19)

(r(k)lg1r" a2 P(p))

(r*(k)|gi10" q:|P(p))

= ivVana g, (k) [6"”"’3k/}f§l (0%, k2]

+ (p“—

k*
+ (emp, + e ) rhl0n Y. @0

Pk N\
—5k )6" " poksfral O, K]
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4y(py)
q1

A

Ly(p2)

Y

q2
(k)
(2)

P(p) Q1

Y

92 ‘
Lo(pa)

(b)

FIG. 1. Four-fermion interaction diagrams for A(P — yZ,¢5) for operators of type O ~ (£,7,)(§,4,) where g, # ¢, with photon y(k)
attached to the valence quark. The black circles represent the four-fermion LFV vertex defined in L.y of Eq. (4).

Here Q = p — k and the tensor form factors are defined for
an off-shell photon. The tensor form factors f%, , 5[k{. k3]
are functions of two variables: k;, which is the momentum
flowing from a vertex associated with the tensor current,
and k,, which is the momentum of the photon emitted
from the valence quark of the meson. Note that for the on-
shell photon k? = 0, there exist a relationship between f7,
and fP,. Gauge invariance implies that f7,[Q% 0] =
(p - k)fE,[0?,0], so the tensor matrix element simplifies
to [28]

Vara
2A2
Vara
A2
2Va4ra

A2
Alab _ _ Vira
5 2A2
Vara

A2

(2312 O\
Afer = T (O = Oy O

lab __
A = —

Vira

212 23172
(" + P Flmi] +5

Al = L5 (Ol = Y ) o .

Note that in this section [e.g., in writing Eq. (22)] we
suppressed the previously used superscript of PZ ¢, in
favor of a superscript related to the associated diagrams,
which consists of the figure number and subfigure letters
(i.e., 1lab). We only show the odd subscript scalar function
equations. The even subscript equations can be found from
the odd subscript equations by replacing the left-handed
WCs by their negative magnitudes (i.e., Cy; — —Cyy,
Cup = —Cyy, etc.,) and multiplying the odd subscript
scalar function by the imaginary constant i{. This may be
used to find A, from A;, A4 from Az, Ag from As, and Ag
from A5 and is true throughout this section.

There is no contribution in Fig. 1 from the pseudoscalar
operators of the Lagrangian in Eq. (4). This can be seen by
taking a matrix element of the divergence of axial current to
relate the axial and pseudoscalar matrix elements,

(r(k)|g10,,9:|P(p))
= ivana e (k)[€,ask 7,0, 0]
+ (paeﬂl/p/)’ppkﬂ + P keﬂyaﬁpﬁ)f$2[Q27OH' (21)

Using Egs. (18), (19), and (21) we can calculate the scalar
function contributions of the axial, vector, and tensor
operators from the Lagrangian in Eq. (4) of type O~
(¢16,)(g1q,) where g, # ¢, which are found in Fig. (1).
The contributions of these diagrams to the scalar functions

P 2
A; "% are

2 2
O\t 6\t m3 — m?,
(I CBEO) iy G (ﬁl iy, 0] + P2 %{m%z,m),

2

0\ 0\
(CRE 2 = R 2 ympmy G 7, [m3,, 0],

‘e ‘e
(T = C 2 )y?mpmy G, [, 0], and

(22)

(r(k)|qirsqz|P(p))

1

e — M - P 2
P {rlarursalP(p)),  (23)

and using Eq. (18) to get

(r(©)q17592|P(p)) = 0. (24)

A similar argument can be made to prove that the scalar
operators also do not give form factor contributions.

The bremsstrahlung diagrams in Fig. 2 are calculated
similarly to the two-body decays of Sec. III using the
matrix element of Eq. (8). We have given the photon a small
mass, m,, to regulate the infrared divergences. This
divergence only appears in the quark flavor changing axial
and pseudoscalar operator terms of the scalar functions,

015027-6
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£1(p1)
q1
P(p) (k)
®
Lo(p2)

(a)

£1(p1)
q1
P(p) v(k)
®
Lo(p2)

(b)

FIG. 2. Bremsstrahlung diagrams for A(P — y£,/,) for operators of type O ~ (£,£,)(G,q,) where ¢, # g,. The black circles

represent the four-fermion LFV vertex defined in L.y of Eq. (4).

Eq. (25), so the photon mass is set to zero for the
nondivergent terms. The same is true for the differential
decay rate in Eq. (17). The axial and pseudoscalar operator
scalar function terms are defined here as

A2ab _ Vidra
I 2
2A

+ mpGr(CRE " + CRE)

ympfp(mp + m; —m,)

m%3(m§3 - m%yz)

9192612 q419261¢2
(CAR + CAL

9

2y 4ﬂa(C41fI2f1f2 _ C‘]llhflfz
AL

2ab __
A3 - A2 AR

ympfp
2

2 q19221¢2 41926182
+mpGr(Cpp™ "2 = Cpp”'?)) —

(25)
b(pr)
q1
P (p) @ la(p2)
o
v(k)
(a)
b(p1)
q1
P(p) 0 La(pa)
o
v(k)
(©)

mis(ma; — m%yz) '

The dipole operator diagrams of Eq. (2) found in
Fig. 3 contain contributions from the SM dipole penguin
operator, Eq. (3). This is directly related to both the on and
off-shell tensor matrix elements in Egs. (20) and (21) from
which we need to write matrix elements of the form
(r(k)|g 0" (1 £ y5)q>|P(p)). These can be found by using

the relation 6,75 = —4€,,,50%, which yields:

(r(k)|q 6™ (1x7s)q:|P(p)) 0,
= iVara el (k){ (5,020 + p- kf,[Q2,0])erke
+i(f1,[Q%.0]+ p- QfF,[0%.0)) (9% p-k— p*kt)}.

(26)
(r(Q)1g,10" (1 £v5)qo| P(p))k,
= fivana e, (Q){er™ £ i(g™p -k — p"k*)}
x (f7110. Q%] + f1[0, 0%). (27)
(k)
0 v\[\N\I\J\IV
P (p) a l(pr)
®
Ly(p2)
(b)
(k)
q1
P(p) G Li(p1)
®
Lo(p2)
d

FIG. 3. Dipole operator diagrams for A(P — y¢ 1Z>). The grey circles with the black border represent the SM dipole penguin vertex
(Eqg. (3)) and the black boxes represent the dipole LFV vertex [Eq. (2)]. Note that the contributions of these diagrams are severely
constrained by already available data on #; — £,y decays.
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(i(p1)

A

P(p) ¢ Ly(pa)

Y

2
S

(k)
(a)

(k)

P(p) P (i(pr)

£a(pa)
(b)

FIG. 4. Four-fermion interaction diagrams for A(P — y¢,¢,) for operators of type #,£,§q with photon y (k) attached to the SM dipole
penguin vertex. The black circles represent the four-fermion LFV vertex [Eq. (4)] and the grey circles with the black border represent the

SM dipole penguin vertex [Eq. (3)].

The on-shell matrix element in Eq. (26) contributes to
Figs. 3(a) and 3(b). While the off-shell matrix element in
Eq. (27) is necessary for calculating the dipole operator
contributions of the diagrams in Figs. 3(c) and 3(d). In these
|

1 dra

diagrams, the lepton current is attached to the photon coming
from the meson’s valence quarks and so Q <> k when we
calculate Eq. (27). Using these matrix elements we find the
dipole operator components of the scalar functions which are

‘)¢ ‘)¢ r
A:]’)abcd — _F (CDIRZ — CDILZ) 2 ympmpg \/§C7},Zﬂqf?[7
q

2 4ﬂaympmH GF
3abed _
A3a c A2 m12 C77’Zﬂ

14 G
— __L"’m_Fchzﬁ

ffz _ f]fz) P (Cf 2 _'_Cflfz) TH)’

L” % Cf]fz

16 2
DL ) T1 ™ (C + C ) IT),H)’ (28)

where we have used the shorthand notations f7 and f7  that we define as

m2

Fh1 = frimiy. 0] + 5[0, m3,] + ————=

fl;,II = f% [m%z 0] + f% [0, m%z] Tt

So far we have not addressed the contributions of the
diagrams in Fig. 4. These diagrams contain contributions
from the axial, vector, and tensor operators from the
Lagrangian in Eq. (4) of type #,/,4q, where the quarks
are both the same flavor. As was the case for the four-fermion
operators that had a flavor change on both the quark side and
lepton side, the scalar and pseudoscalar operators do not
contribute. We can calculate the contributions of the vector
|

dab _

Ala 2A2

Adab _ 4”“2 Cq/ fz q,f fz mH GF
2A2

=S i

m12

mp + mi,

fhalmiy. 0] + f45[0,m7,] and

Fralmia, 0] + 1[0, m3,]. (29)

[

operators using the same tensor matrix element as in
Eq. (27), but with one important modification. The form
factors are the sum of two form factors related to each quark
flavor, fr; = ~?‘,» +f %2 (e.g., see [40]). For convenience we
will use a definition with the quark charge explicitly
included in the formula, f7; = Q, f7; + Q,,f7;. This is
important because in the case of Fig. 4(a) we only have
contributions from 7 and in Fig. 4(b) we only have f72.

Vara G

MZ (quf - Cq/f " w_FCHZﬂP Pq, [0, m,] +fT3 [0, mi,)),
P

sz,lp(f 710,m3,)] +fT 10, m3,)).

G
= CWD” P10, 3] + Fra]0, m3,)). (30)
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TABLE IV. Upper limits on B2 — y¢,¢, branching ratios from known Wilson coefficient constraints using form factors for four-
fermion axial and pseudoscalar operators of type O ~ (£,£,)(G,q,) where q, # g,.

Upper limits

Wilson coefficient B(BY — yur)

B(BY — yer)

B(Bj — yeu) B(BY — yep)

oVl 9.2 x 107 1.2 % 10-6 6.5 x 10-!1 3.7 x 10710
cibn 9.2 x 1077 1.2x 107 6.5 x 1011 3.7 x 10710
e 9.0 x 107 1.2 x 1076 3.2 % 107! 1.7 x 10710
o 9.0 x 107 1.2 % 1076 3.2 % 1071 1.7 x 1010

TABLE V. Upper limits on D°(uc), K9 ((d5—sd)/\2) —
y€\¢, branching ratios from known Wilson coefficient con-
straints using form factors for four-fermion axial and pseudo-
scalar operators of type O ~ (£,£,)(G,q,) where q, # g,. Note
the K% results are for short distance (SD) interactions.

Wilson Upper limits

coefficient B(D® - yep) B(KY - yep)sp
Cf\llélzflfz 22 % 10_10 23 x 10714
CZIL‘hflfz 22 % 10-10 23x 10714
C;I)llnglfz 4.5 x 10_9 2.2 % 10_14
C%quzflfz 4.5 % 1072 22x%x 10714

Applying this information to the decays of BY, D°, and

K° mesons shown in Figs. 1-4, we find that each scalar
Pt\t,

function A; is written as

A?’flfz(p2,‘“) :A}ab +A12ab +Al3ab(?d+A?ab (l: 1 —8),
(31)

which are functions of model independent form factors and
decay constants.

IV. RESULTS

Unfortunately, no experimental limits on the branching
ratios of radiative lepton-flavor violating decays exist to
constrain all of the applicable Wilson coefficients of the
effective Lagrangian of Eq. (1). We encourage our col-
leagues from the LHC and KEK to study these decays.
However, some information about Wilson coefficients is
available from other transitions, such as two-body decays
discussed in Sec. III. In this section we use this information,
along with the assumption of single operator dominance to
derive the expectations for the size of the radiative LFV
decays, if driven by those operators. These upper limits are
presented in Tables IV and V and the differential decay rates
are plotted in Figs. 5-8 of Sec. IVA.

All of the form factors and numerical constants, unless
previously mentioned, used to obtain the results in this

section may be found in Appendix A. In some cases where
form factors are currently unknown, we apply a constituent
quark model to estimate the relevant contribution. The quark
model approach and results may be found in Appendix B.

A. Spectra

Inputting the scalar functions of Eq. (31) in the differential
decay rate, Eq. (17), and integrating over the Mandelstam
variables m3; and m?,, we calculate the differential decay
rate, d'/dm?,, and total decay rate, ['(P — y¢,£,). Using
these results we may predict the differential decay spectra for
individual operators, (1/I")(dl"/dE,). Where we make the
variable change from m?, to E,, the photon energy in the
meson rest frame, and normalize to the total decay rate. This
analysis requires the practical assumption of single operator
dominance so that the unknown WCs of individual operators
will cancel between the differential and total decay rates.

The differential decay rates for the vector and tensor
operators of type O ~ (£,£,)(§,q,) where q; # q, are

drypei s e+ Gy Ana 1
am?, — A* (27)3576
X (2miy = 3mpy*) fy[mi,, 0], (32)

3

) (m% — m%z)
P

dr%]qulfz Cig + C}, 4ma y’my Gp 23
2 7 3 2 (mp —mi,)
dn?, AT (2n)° 288m}
X ((2fF,[m3,. 0] + m3 fF,[m1,.0])>
+ m%z( Irjz[m%z’o])z)- (33)

Here we have suppressed the superscripts of the WCs for
brevity (e.g., C782"1"2 - Cyz). We drop terms higher in
order than y?, which is a good approximation in most cases
as the ratio y is small. The vector and tensor operators with
flavor change on both the quark and lepton side are of
particular importance to our analysis. They cannot be
constrained via two-body decays and so the three-body
decay channels present us with a unique opportunity to
place limits on the associated WCs. The vector operators
also have an advantage over the tensor operators because
they are not chirally suppressed by quark and lepton
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FIG.5. Vector operator (O ~ (£,£,)(G,q,) where g, # ¢,) differential decay plots as functions of photon energy E,: (a) B, — yut or
yet (solid blue curve), B; — yeu (short-dashed gold curve), B; — yur or yer (dotted red curve), B; — yep (dot-dashed green curve);
(b) D — yer (solid blue curve), D — yeu (short-dashed gold curve), K — yeu (dotted red curve).

0.8} ' ' ' ' ]
<o /,/’ i
— o 1
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FIG. 6. Tensor operator (O ~ (£,¢,)(g,q,) where q, # g,) differential decay plots as functions of photon energy E,:(a) By — yutor
yert (solid blue curve), B; — yeu (short-dashed gold curve), B; — yur or yer (dotted red curve), B; — yep (dot-dashed green curve);
(b) D — yer (solid blue curve), D — yeu (short-dashed gold curve).

masses. Assuming WCs are of similar size, this means the
vector operators would give a larger contribution to the
overall decay rate and conversely are better constrained by
experimental limits. The differential spectra given in
Egs. (32) and (33) are shown in Figs. 5-6.

The three-body decays considered here also provide
complementary access to the axial and pseudoscalar

250
|
200t
T ol
> 150}

e

s|g 100}
- | = 50

0 . . : R R = -

00 05 10 15 20 25

E, (GeV)
(a)

operators of type O~ (£,£,)(G,1q,) where q, # g,. We
do not provide the equations for the individual differential
decay rates as they are more cumbersome than their vector
and tensor counterparts and they are better constrained via
two-body decays. Their differential spectra are plotted in
Figs. 7-8 We demonstrate how well constrained these and
other operators are in Sec. IV B and Appendix B 2.

8of 14
T eof 13
[0}
e 40 2
S
—I= 20} 1

0 ; : . 5 0

0.0 0.2 0.4 0.6 0.8
E, (GeV)
()

FIG. 7. Axial operator (O ~ (¢ % 2)(G192) where g, # g,) differential decay plots as functions of photon energy E,: (a) B, — yut or
yet (solid blue curve), B; — yep (short-dashed gold curve), B, — yur or yer (dotted red curve), B, — yeu (dot-dashed green curve);
(b) left scale D — yeu (solid blue curve), right scale K — yep (short-dashed gold curve).
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FIG. 8. Pseudoscalar operator (O ~ (¢1£,)(4,q,) where q; # g,) differential decay plots as functions of photon energy E,:
(a) By — yur or yer (solid blue curve), B; — yeu (short-dashed gold curve), B, — yuz or yer (dotted red curve), B, — yeu (dot-dashed
green curve); (b) left scale D — yep (solid blue curve), right scale K — yeu (short-dashed gold curve).

B. Limits

Using the available limits on Wilson coefficients from
Sec. III with the form factors of Appendix A, we predict the
upper threshold experiments must reach to potentially see
LFV in the P — y/,¢, decays involving the axial and
pseudoscalar operators of type O~ (£,£,)(G,q,) where
g1 # q» and dipole operators. These upper bounds are
presented in Table IV for B) decays and in Table V for D°

and K? decays. K? is used in lieu of K° for the limits on the
branching ratios due to a lack of experimental information
on the total decay rate of K°. The normalized differential
decay plots of K° are the same as K because the
normalization to the total decay rate cancels out the
numerical differences (i.e., a factor of 1/ V2).

The predicted upper limits of the four-fermion axial and
pseudoscalar operators for radiative pseudoscalar decays
P — y¢,¢, in Tables IV and V demonstrate that these
operators ultimately are better constrained by their two-
body decay counterparts. When we compare the predicted
upper bounds of three-body rates in Tables IV and V to the
two-body experimental limits in Table I we see they are one
to two orders of magnitude smaller. Therefore the three-
body decays could still provide complimentary access to
these operators.

The tensor form factors in Appendix A also allow
us to analyze the contributions of the dipole operators of
Eq. (2). The dipole operators are best constrained via
radiative lepton decays ¢, — £y, where ¢, =7, u and
¢, = u, e. These decays have been the focus of most LFV
experiments and therefore have the best constraints:
B(t = py) =44 x 1078, B(r - ey) =3.3x 1078, and
B(u — ey) = 4.2 x 10713 [19,41,42]. In our previous work
we were able to provide complimentary access via two-
body vector quarkonium decays V — yZ,7, [9].

Using the WC constraints obtained from the radiative
lepton decays 7, — ¢y in [9], we predict the dipole
operator decay upper limits for P — y#,¢, in Table VL.
Here the predicted upper limits range from 1072'-1073%,
which is much lower than we would expect to be within
experimental reach during the foreseeable future.
Despite showing that P — y#,7, is not a useful means
to constrain the dipole operators, the results in Table VI
are ten or more orders of magnitude smaller than the
predictions of the axial and pseudoscalar operators in
Tables IV and V. This confirms that P — y#,#, decays
are better equipped to constrain four-fermion operators.
Indeed the operators in the best position to be con-
strained are the quark flavor changing four-fermion

TABLE VI. Upper limits on Bg(ql_y), DO(ue) - yt, ¢, branching ratios from known dipole Wilson coefficient constraints using form
factors for dipole operators. FPS stands for “forbidden phase space.”

Leptons 7,7, Wilson coefficient [9] (GeV~2)

Predicted upper limits

B(BY - yt,¢5)

B(BY - y¢,¢,) B(D® - y¢,¢,)

pt |CE2 /A2 = 2.6 x 10710
et 2.7 x 10710
eu 3.1 % 1077
pt |C/2/A2) = 2.6 x 10710
et 2.7 x 10710
eu 3.1 % 1077

3.1 x 10728 1.2 x 10726 FPS
3.3x 10728 1.3 x 10726 3.8 x 10738
53 x 107 1.2 x 1072 1.4 x 10727
3.1x 10728 1.2 x 10726 FPS
3.3x 10728 1.3 x 10726 3.8 x 10738
5.3 x 1072 1.2 x 1072 1.4 x 10777
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vector operators, which see no chiral suppression via
lepton or quark masses and cannot be constrained via
two-body decays.

V. CONCLUSIONS

Studies of lepton flavor violating transitions are a prom-
ising path in the search for new physics. A convenient way to
study new physics is to employ effective Lagrangians. All
models of new physics that include flavor-violating inter-
actions are encoded in the values of Wilson coefficients of
the low energy effective Lagrangian in Eq. (1). We argued
that those Wilson coefficients can be constrained through the
studies of radiative B), D°, and K° decays to two different
flavored leptons.

It is clear that studies of two-body P — #,¢, decays
allowed for the quantum number selection of a smaller
subset of the effective operators, which reduced our
reliance on single operator dominance. Yet, the radiative
three-body decays to y#,¢, allowed access to the effective
operators in Eq. (1) which cannot be probed via any two-
body meson decays. In addition to probing new operators,
the three-body radiative transitions also allowed for com-
plimentary access to four-fermion operators constrained by
two-body decays without the need to include a composite
strongly-interacting meson to the final state. Finally, we
provide evidence that the dipole operators are so well
constrained by radiative LFV transitions £, — ¢y that
their threshold for contributions to B(P — y#,£5) is many
orders of magnitude below experimental reach. Thus, their
contribution to the sum of amplitudes in Eq. (31) can be
safely dropped.

As more data is produced by Belle II and the LHCb
experiment, we emphatically encourage our experimental
colleagues to produce experimental limits on both LFV and
radiative LFV decays of the BY, D°, and K° mesons
discussed in this work.
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APPENDIX A: FORM FACTORS AND
NUMERICAL CONSTANTS

To estimate differential decay rates and the upper limits
of the total decay rates of the radiative decays in Sec. IV, we
must apply the form factors of Eqgs. (18)—(20) and the
numerical constants of Tables VII and VIII. Numerical
inputs for the CKM matrix elements are found in [19].
Before we can apply these form factors, we must relate

TABLE VII. MS quark masses for decay calculations [19].

my my m mg my

2270%MeV 4.71037MeV 1.28£0.03GeV 967F MeV 4.18700; GeV

TABLE VIIL.  Penguin operator Wilson coefficients, C,, for
decay calculations.

Transition Scale u [GeV] |C7, | Ref.
b —d(s)y 5.0 0.299 [11]
c—uy 1.3 4|(€/00‘2/f/;\ [43]

ub

them to those calculated in the literature, which are defined
as [28-33]

(r(k2)|@17"rsq:|P(p))
= ifé’;(kz)(ga”kl “ky

(r*(k2)|g17"q21P(p))
P2 12
- 66‘* (kz)eklkzﬂ(l FV [kl . kz] )
a mP

(r*(k2)|gi16"ysq2|P(p))ky,

= eey(ky)(g™ky - ko — k(fkg)FgA[k%’ k%} and
(r*(k2)|g16" qa|P(p)) k1,

 iee (kn)eb e 12, 3]

FL[k2, k3]
— kiky) = D

mp

(A1)

These form factors are functions of two momenta, ki,
which is emitted from the ¢, — g, weak transition
current, and k,, which is emitted from one of the valence
quarks of the meson P. Here the photon is off-shell,
but the on-shell definitions may be found by assuming

=0 and applying the momentum conservation rela-
tion p = ki + k».

Assuming k> = 0 and making the appropriate substitu-
tions of Q = p — kand k for k; and k, we find the necessary
relations between the form factors in Egs. (18)—(20) and
Eq. (A1) as

F\};A[QZ’O]_mpf A10%.0].

F7y[0%,0] = —f7,10%,0] = p - kf7,[0%,0],
F7410%.0] = =f7,(0%.0] = p - Of7,[0%,0],

TV 740, Qz] =~ [O Q ] 73 [0» Qz}- (A2)

To make use of these relations we employ the para-
metrizations of [28] for the Fy, Fy, Fry, and Fp, form
factors. For the Bg — y form factor parametrization when
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TABLE IX. Parameters of the 82 — y form factors, as defined
in Eq. (A3) [28].

Parameter FV FTV FA FTA
Bg,s -y A(Gevh) 0.28 0.30 0.26 0.33
A(GeV) 0.04 0.04 0.30 0.30

the photon y is emitted from the valence quarks (k; = Q,
ky = k) we use

fpmp
A +E,’

F[E] = p; i=V,ATV.TA (A3)

where E, is the photon energy in the P-meson rest-frame.
The constants f and A are numerical parameters which can
be found in Table IX.

For the parametrization of the D°, K — y form factors
when the photon y is emitted from the valence quarks
(ky = Q, k, = k) we use

0y, Fi" (0] + 0, F*[0)

F{[mi) = , i=V,A,TV,TA.
1-5h
(A4)
Here Qy) = —%, Que) = %, and the remaining param-

eters are found in Table X [33].

The form factors %, ;,[0, 0?] for B) and D° decays are
parametrized using vector meson dominance in [30,31],
which gives

FI;V,TA [O’ QZ} :ng,TA [070}

2
=S 2ol
Vv

Q2 - m%/ + imvrv ’

(AS)

The vector meson dominance input parameter values are
found in Table XI. The p and @ mesons are part of the vector
meson sum for B) and D form factors because of their
respective d and u valence quark content. The ¢ meson is
part of the vector meson sum for the BY form factor because
of its s valence quark content. The zero momentum values of

0
the tensor form factors are F?“’;‘;TA[O,O] =0.115 [28]

and F lr);)/,m [0.0] = Qcf v 74l0] + Quf Ty 74 [0]-

Given these form factors and the general input values
given in Tables VII and VIII we are able to plot the
normalized differential decay rates and estimate the upper
limits for the radiative branching ratios assuming single
operator dominance in Sec. IV.

APPENDIX B: QUARK MODEL

When the necessary form factors are unavailable to take
a model independent approach to the calculation of the
four-fermion operator contributions of the diagrams in
Fig. 4, we may choose a model dependent approach. We
apply a constituent quark model to calculate the contribu-
tions of four-fermion vector, axial, and tensor operators of
the type (£,2,)(gq). We constrained both the vector and
tensor Wilson coefficients for these operators previously in
[9]. The results are reproduced here in Table XII and can be
used to find a predicted upper bound on the branching ratio
of B(P — y¢,¢,) for individual operators using the single
operator dominance assumption.

TABLE X. Parameters of the D°, K° — y form factors, as defined in Eq. (A4) [33,44]. The K° tensor form factors

will be calculated elsewhere.

Parameter \%4 A TV TA
D0 =y F¢(0) -0.12 0.14 -0.12 —-0.12
F(0) -0.37 -0.31 —-0.38 —-0.38
M; (GeV) 2.0 2.3 2.0 24
K% >y F4(0) -0.22 0.20 e e
F(0) —-0.18 -0.19
M; (GeV) 0.89 0.89
TABLE XI. Vector meson dominance input parameters for Fry 74[0, Q%] form factors.
Vv g[Oﬁl‘}_’v g[()]Q”—W fv MeV) my (MeV) I'y MeV) Refs.
p 0.27 —-0.66 154 775.26 £0.25 147.8+0.9 [19,31,45]
1) -0.27 —0.66 453 782.65 £0.12 8.49 £ 0.08 [19,31,45]
¢ —-0.38 —58.8 1019.460 +0.016 4.247 £0.016 [19,31,45]
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TABLE XII.  Known Wilson coefficient limits from our previous work in [9]. Note the center dots denote unknown values which could
be constrained via P — y£¢5.

Leptons Quark
Wilson coefficient (GeV~2) 2105 b c s u/d
|C‘I'f” 162 /AZ‘ ut 3.5x 1076 5.5 x 107
|qu /z /AZ\ et 4.1x10°° 1.1x10™*
|qu fz /Az‘ e e 1.0 x 1073 2.0 x 1073
|qu fz /A2| ey e xx 2.0x 1073 3.0x 1073
|qu fz /A2| ut 2.8 x 1072 1.2
|qu fa /A2| et 3.2 x 10_2 24
|Cflffz/A2| eu 4.8

1. Constituent quark model

The amplitude for the diagrams in Fig. 4 using this model is
. 2
. Uox 4162, a i“1%2
iApoyeie, = “Az¢ #(k) Z( ACTR Py PR+ Cy ' PL]W2<O|‘11 w92 P(P))
i=1

_ 0 O\ _ A
+ ity [CoR' 7" Pr + C47 ZVGPL]WZ<O|Q1F3/7 7:|P(p))
165 10> = 1.4
+ mymg, Gritg, [CTp' 206" Py + Cl' 26 PRlvg, <O|¢I1Faﬁ7¢ ¢@|P(p)))- (B1)

This amplitude is dependent on matrix elements of the form (0|g,I'g,|P) with the matrices I" defined for each operator
(O~ (£162)(q:iq:), i =1, 2) as

F(‘l/ﬁql B .GF \/4;zam C7yZlP xﬂ—k—km‘h

= ]— Yo7 5 O 1/(1 +75)kv,
V2 P (xp— k)2 —m "
G 47m xp—f+m
g1 F 91 v
Fgﬂ = l\/§ C7yzﬂq7a 5 (p— k) —m2, (1 +75)k.
T, Gr 47m xp—K+m, )
Pl =1 5~ %Zﬂq %t (ep 7 = mz, w1 T TR (B2)
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In modeling the quark-antiquark distribution, we chose
to follow [46-48], where we can write the wave function of TABLE XIII. Constituent quark masses used in calculations of

the ground state, P( p), as quark model matrix element [49].
Quark m, my my m, my
—__¢
wp = \/gd’P[x]?’S (# + mpglx]). (B4)  Constituent mass (MeV) 3355 3395 486 1550 4730
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FIG. 9. Differential decay plots as functions of photon energy E, for (a) vector/axial, (b) left-handed tensor, and (c) right-handed
tensor operators of the type O ~ (£,£,)(bb). Plotted decay rates are B; — yut or yer (solid blue curve), B; — yeu (short-dashed gold
curve), B, — yur or yer (dotted red curve), B, — yeu (dot-dashed green curve).

The variable x is the momentum fraction of one of the
quarks and /.. is the identity matrix of color space. We have
assigned the momenta in Fig. (4) such that the valence
quark g; has momentum xP and the valence quark g, has
momentum (1 — x)P. The function gp[x] is gy[x] ~ 1 for
heavy mesons and g; [x] =0 for light mesons. The dis-
tribution amplitudes used for light and heavy mesons and
their normalization are

¢r~x(1 —x),
my, 1 1 -2
~ |— ——1 s
Z [MHl—x—’—x

fr / !

—— = x|dx. B5

Jr= [ ol (B5)
Here m,, is the mass of the light quark and the

normalization is related to the decay constant fp. By

taking the trace and integrating over the momentum
fraction we find the matrix element

Oaralp) = [T (@6)

2. Spectra and limits

Since we applied a constituent quark model to calcu-
late the transition amplitudes we need to define its
parameters (constituent quark mass) that are used to
calculate the matrix element in Eq. (B6). These masses
are in Table XIII. Using this matrix element and
integrating over the Mandelstam variables m3; and m?,
we can calculate the differential decay rate as a function
of the photon energy, E,, in the rest-frame of the meson
P and the total decay rate. An example plot for these
differential decay spectra normalized to the total decay

TABLE XIV. Upper limits on Bg(ql_)) — y¢, ¢, branching ratios from known Wilson coefficient constraints using constituent quark
model. The center dots indicate no Wilson coefficient constraints were available for a prediction of an upper bound. Experimental
studies of this decay channel would present an opportunity to constrain these Wilson coefficients.

Upper limits

Wilson coefficient B(BY — yur) B(BY — yer)

B(BY — yep)

B(BY - yur)  B(B) > yer)  B(BY = yep)

(il 57 %1072 7.8 x 10720 1.8 x 10718 25% 10718
ot 5.7 x 1020 7.8 x 10720 1.8x 10718 2.5x% 10718
cia’ 1.3 % 10710
ci 1.3 % 10710
sz;fz 2.0 x 10712 1.5%x 107!
Czi.fz 2.0x 10712 1.5%x 107!
Cra” 3.9 x 10°2! 5.1 % 10721 2010717 28x 10719
o 1.1 x 10718 1.5 x 10718 3.9 x 1077 5.1x 10717
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rate is Fig. 9, which shows the spectra of Bg decays for the

vector, axial, and tensor operators of type (£,7,)(gq). The
normalization cancels out sources of uncertainty such as the
Wilson coefficients (i.e., C%Eg) and the CKM matrix
element values. As we did in Sec. IV B, we apply known
Wilson coefficient constraints from Table. XII and the single
operator dominance assumption to the total decay rate to
make predictions of the branching ratio upper limit for these
operators, which can be found in Tables. XIV and XV.

These limits range in order of magnitude from
1071910728 and therefore many are below experimental
reach. It is the spaces between these limits that should draw
the reader’s attention. There is much opportunity here to
constrain the operators whose limits cannot be predicted.
Providing limits using these RLFV decays would of course
be complementary to two-body LFV decays of quarkonia
(e.g.,[9]), but would come for free as we constrain the vector
and tensor operators with flavor changes on both the quark
and lepton sides.

TABLE XV. Upper limits on D°(uc) — y£,£, branching
ratios from known Wilson coefficient constraints using con-
stituent quark model. The center dots indicate no Wilson
coefficient constraints were available for a prediction of an
upper bound. Experimental studies of this decay channel
would present an opportunity to constrain these Wilson
coefficients.

Upper limits

Wilson coefficient B(D® - yer) B(D° — yep)
Cff}éfz 5.1 x 10728 8.8 x 107
coi 5.1 %1028 8.8 x 107
cuni 1.3x 10716
cunt 1.3x 10716
CCTi}fi 6.0 x 10728 2.5 x 107
cohee 6.2 x 107 37 x107%
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