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We consider idealized parton shower event generators that treat parton spin and color exactly, leaving
aside the choice of practical approximations for spin and color. We investigate how the structure of such a
parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting
functions proportional to a, can be viewed not just as a model, but as the lowest order approximation to a
shower that is defined at any perturbative order. To support this argument, we present a formulation for a

parton shower at order af for any k. Since some of the input functions needed are specified by their

properties but not calculated, this formulation does not provide a useful recipe for an order af parton
shower algorithm. However, in this formulation we see how the operators that generate the shower are
related to operators that specify the infrared singularities of QCD.
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I. INTRODUCTION

Parton shower event generators for hadron collisions,
such as HERWIG [1], PYTHIA [2], and SHERPA [3], perform
calculations of cross sections according to an approxima-
tion to the standard model or its possible extensions. They
are essential for the analysis of experiments at the Large
Hadron Collider. The main ideas behind these generators
were developed in the 1980s [4-6]. There has been
extensive development of the algorithms since then
[7-16]. The successor programs [1-3,17-23], are quite
sophisticated. Useful reviews of the field can be found in
[24,25]. One of the available successor programs is our
own, DEDUCTOR [15,21,26-33]. This paper concerns the
perturbative part of these parton shower generators, leaving
aside models for the underlying event and hadronization.
Furthermore, we consider an idealized version of a parton
shower generator in which one accounts exactly for spin
and color. Approximations for spin and color are a separate
issue, which we do not discuss here.

Our aim in this paper is to investigate how the structure
of a shower that treats spin and color exactly is related to
the structure of QCD. In particular, we ask whether a
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shower with splitting functions proportional to a; can be the
leading order approximation to something that is defined at
any order in a,. We find an affirmative answer to this
question. Specifically, we find that there is a construction
for defining a parton shower that generalizes current
showers at any order of perturbation theory. We find also
that the problem of relating the structure of a parton shower
to the structure of QCD is not as straightforward as one
might have naively guessed. First, the construction makes
use of functions analogous to the Catani-Seymour dipole
splitting functions [34] that specify the infrared behavior of
QCD, but beyond leading order the shower splitting
functions are not related to the functions that specify the
infrared behavior of QCD by anything so simple as just
changing their sign. Second, the formulas for the shower
automatically includes factors that sum threshold loga-
rithms [35-80]. These factors are not included in current
parton shower generators at even leading order, except for
Debpuctor [32,33]. Third, the formulas automatically
include matching of the parton shower to a perturbative
calculation beyond leading order of the hard scattering that
starts the shower. This is fairly straightforward [81-103] for
a leading order shower, but not for a shower beyond
leading order.

We believe that is important to understand that a lowest
order parton shower generator can represent the lowest
order in a systematically improvable approximation.
However, the construction in this paper is not a useful
recipe for actually creating a parton shower algorithm
beyond the leading order: some of the components of
the recipe are specified by their properties but not explicitly
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constructed. A complete construction will require specify-
ing such choices as a shower ordering variable and
momentum mappings. Such a specification will require
considerable effort, which lies beyond the scope of this
paper.

The papers [104-108] present treatments of a parton
shower at order a2. Reference [106] attempts to extend the
dipole splittings often used in a leading order shower to a
higher order analogue for the case of e™e™ annihilation.
This approach is similar in spirit to what we do in this
paper. An alternative approach [104,105,107,108], concen-
trates on the next-to-leading order (NLO) Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) kernel for the
evolution of parton distribution functions. Although the
parton evolution kernels play a role in our formalism, it is
not a central role.

II. OVERVIEW

The construction of a parton shower at any perturbative
order, presented in Sec. VI, is rather abstract. In this
section, we attempt to provide an overview of what the
later mathematics is intending to do.

In our view, it is most useful to think of a parton shower
algorithm as beginning with the theorem [109] that allows us
to write a cross section for an infrared safe observable as a
convolution of a hard scattering factor with parton distri-
bution functions. Then the parton shower fills in more detail
by using the renormalization group. The parton shower
develops with decreasing values of a parameter that is a
measure of the hardness of interactions.' The essential
insight is that the scattering process appears differently
depending on the hardness scale at which one examines
it. At the hardest scale, the scale of the hard interaction, there
are just a few partons (typically quarks and gluons). Then, as
the hardness scale at which we examine the process
decreases, these partons split, making more partons in a
parton shower.” At any stage, a certain amount of structure
has emerged, while softer structure remains unresolved.

In this paper, we start with the principle that a parton
shower should fully reflect the infrared singularity structure
of Feynman graphs for QCD and also the role of parton
distribution functions in absorbing initial state singularities.
Thus, we start with the infrared sensitive operator asso-
ciated with the parton distributions and with a perturbative
operator D(u?) that represents the infrared singularities of
QCD Feynman diagrams. We connect D(u?) to both the
shower splitting kernels and to the subtractions [110-117]
needed to calculate a perturbative cross section beyond the
leading order (LO). We work at arbitrary perturbative order.

'HERWIG then rearranges the ordering of splittings in its
shower so that larger angle splittings come first.

2Thus, with respect to initial state partons, the shower
evolution starts from the hard interaction and moves backward
in time to softer initial state interactions.

That is, we consider a hard scattering cross section
calculated, with subtractions, at N¥LO and a parton shower
with N¥=1LO splitting functions. (This counts a LO shower
as having splitting functions proportional to ay.)

The construction that we present is based on the operator
D(u?). This operator is to contain the infrared singularity
structure of Feynman graphs for QCD. There is no unique
recipe for constructing the o contribution, D) (4?), to
D(u?). As described in Sec. V, one needs to specify a
definition of hardness associated with the integrations in
graphs, one needs a momentum mapping, and one needs to
specify the form of the functions used as one moves away
from the strict soft and collinear limits. At first order, we
have made these choices, so that dD)(u?)/dlog(u?) is
part of DEDUCTOR. At higher orders, we do not attempt to
construct the D" (u?). Rather, we provide formulas for
what to do once one has D" (u?) for n < k.

The formalism uses another operator V(4?). This oper-
ator is obtained from D(u?) and factors associated with the
parton distributions but it is obtained by integrating over all
of the parton splitting variables, so that it is infrared finite.
In a standard first order parton shower, the Sudakov
exponent is quite directly related to the part of V(u?) that
comes from one real parton emission. There is some
freedom in setting the color and spin structure of V(u?).
Thus we leave V(u?) partly unspecified.

The parton shower defined here needs to respect the
structure of quantum field theory. Thus it includes quantum
interference and maintains an exact accounting for the
quantum spins and colors of the partons in the shower. The
formulation is based on what we call the statistical space,
introduce in Ref. [15]. It consists of states that describe the
momenta, flavors, colors, and spins of any number of
partons. The colors and spins are treated as fully quantum
mechanical. This means that the statistical states are density
matrices in the quantum color and spin space. We review
the statistical space in Sec. IV.

Using the statistical space, we maintain an exact
accounting for the quantum spins and colors. It is not
known how to make this practical in computer code,
particularly for color. Thus one needs separate approxima-
tions, such as the LC + approximation for color that is used
in DEDUCTOR. We view the issue of approximations for
spin and color as separate from the construction of the
shower with exact spin and color. We do not discuss spin
and color approximations in this paper.

The final result of the construction, presented in
Eq. (134), is

olJ] = (O;U(ub, ) Uy (uF . 1) F (1) o)
+ O(ad ™) + O(ui / QIT). (1)

Here |py) is a statistical state representing the hard

scattering, calculated at order af*B, where af is the order
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of the Born hard scattering process. The hard scattering
statistical state |pH) includes subtractions, as in a normal
N¥LO perturbative calculation. Then F (uZ) is an operator
on the statistical space that multiplies by appropriate parton
distribution functions and a parton luminosity factor.

The next operator in Eq. (1),

i dy?
Uy (pf, ) = Texp </ ﬂ—@Sv(Mz)) (2)

I

is a process independent operator on the statistical space
that leaves the number of partons unchanged and provides
perturbative corrections needed to keep the measured cross
section correct to order a‘*B. This factor also sums
threshold logarithms associated with the hard scattering
statistical state. The threshold logarithms are an essential
part of the construction. As we will discuss, they are
included in DEDUCTOR, but they are not part of other
leading order shower generators. We presented an earlier
formulation of threshold summation in a leading order
shower in Ref. [32]. This formulation turned out to have
certain flaws. In a companion paper [33], we exhibit the
practical effects of the threshold summation according to
Eq. (1) (but with |p,,) evaluated at leading order only).
The next operator in Eq. (1),

i) = Tewp | ”ﬁi—’fswz)), )

Hi

is a process independent operator that creates more partons
in a parton shower. In the first order case, k = 1, this is a
rather standard parton shower if we average over spins and
take the leading color approximation. In general, the
splitting generator S(u?) consists of terms that are of order
o’ with 1 < n < k. The shower starts at a hardness scale uZ
appropriate for the hard scattering and ends at smaller
hardness scale u? that should be large enough so that
perturbation theory at this scale can still be trusted.

The final operator in Eq. (1), O, specifies the infrared
safe measurement that one wants to make on the parton
state after the shower. The hardness scale associated with
this measurement is Q[J]?. Finally, (1] is an instruction to
integrate over all of the parton variables.

The cross section o[J] is then correct to order af*8
and includes a version of the cross section beyond this
order, within the approximations of a parton shower.
Notice that the property that the cross section including
showering, ¢[J], is correct to order af*? means that the
shower is matched to an order a2 perturbative calculation
of ¢[J]. This matching is an intrinsic part of the shower
formulation.

We discuss a very general formulation of parton showers.
However, we want to keep the notation simple, so, without
loss of generality, we use Higgs boson production as an

TABLE I. New and old notation.
New Old
Sl()le,r([» H?ert

0.1

Séen) _Gpert
[F o S1O)F-! 1%
S - sy Hy -V
S 480 V-8

example. We use five flavors of quarks. In practical
applications, one uses a variable flavor number scheme
in which nonzero values of m, and m_. appear. However,
this creates complications, especially if we want to work at
an arbitrary order of perturbation theory. Thus in this paper
we set my = m, = 0.

We have found it useful to change some of the notation
that we used in our previous papers in order to address a
much more general problem. We hope that this does not
cause confusion. We provide a translation in Table 1.

Following this brief overview, we include a brief Sec. III
on factorization, which plays an important role in the
conceptual development. Then we devote Sec. IV to
partons and the spin and color density operator, which
we use to define the statistical space. This leads us describe
the perturbative cross section and the infrared sensitive
operator D(4?) in Sec. V. Then in Sec. VI we manipulate
the perturbative cross section to define the parton shower.
Section VII presents a summary and outlook.

There are four appendices. Appendix A presents a toy
model for the operators used in the construction. We hope
that this concrete model will prove instructive. Appendix B
discusses the definition of parton distribution functions
needed for a shower. Appendix C discusses how certain
scale parameters can be chosen dynamically instead of
statically, as in the main text. Appendix D discusses the
relation of MS renormalization to the definition of the
parton shower.

III. FACTORIZATION

We consider a hard scattering process in the collisions of
two high energy hadrons, A and B. The hadrons carry
momenta P, and Pg. The hadron energies are high enough
that we can simplify the equations describing the collision
kinematics by treating the colliding hadrons as being
massless. Then with a suitable choice of reference frame,
the hadron momenta are

P, = (P£,0,0), Pg = (0, Pg,0). (4)

Here we use momentum components (p*, p~,p ) with
pT = (p°+ p*)/v2. We then imagine a parton level
process in which a parton from hadron A, with flavor a
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and momentum p, = n,P, collides with a parton from
hadron B, with flavor » and momentum py, = #,Pg.

We will be interested in an inclusive cross section to
create some hard state, for instance, a Z boson plus possibly
jets, or just jets. We will use the production of a Higgs
boson, A + B — H 4 QCD partons as our principle exam-
ple. At the Born level, it is produced via the partonic
process g + g — H. We treat the Higgs boson as being
stable and on shell. We denote the momentum of the Higgs
boson by

pu= () 0m + 93 ) /2. €00+ 93 ) 2.8 )-

(5)
The collision also produces QCD partons with flavors f;
and momenta p;, with i =1,...,m. In this paper, we

consider the QCD partons to be massless. Each final state
parton has rapidity y; and transverse momentum p; |, SO
that the components of its momentum are

pi=(enfpi /2 e o /2p). (6

Itis up to us to decide what we want to measure about the
final state of our process. We can consider many cases at
once by simply saying that we are interested in a cross
section o[J] to measure an observable quantity J, leaving
the definition of J unspecified. We will see in the following
subsection how o[J] can be specified for a general
observable J. Then parton distribution functions relate
c|J] to an analogous cross section 6[J] for the collision
of two partons. In its briefest form, the relation is

a1 Y [ dn [ dnfuntres) ot i), ()

A. Infrared safety

We demand that the observable J be infrared safe. To
specify what that means, we write Eq. (7) in more detail:

do,
G[J]Z/ddeyOJO(pH)
H
dGl

———Ji(pw:p
dyydy,dp; | l( ! 1)

+/ddeyldpl,L

1
+5/ dyydydy,dp, dp, |

d02
X J
dyudy dy,dp; 1 dp, |

2 Pusp1sp2) o (8)

Here we start with the cross section to produce the Higgs
boson plus m partons with momenta

{p}m:{pH’plv“-?pm}' (9)

We multiply the cross section by a function J,,({p},,) that
specifies the measurement that we want to make on the final
state partons. These functions are taken to be symmetric
under interchange of the QCD momentum arguments
{p1s---» Pm}- Accordingly, we divide by the number m!
of permutations of the QCD parton labels. We integrate
over the momenta of the final state partons. The transverse
momentum of the Higgs boson and the needed momentum
fractions for the incoming partons are determined by
momentum conservation. Finally, we sum over the number
m of final state QCD partons.

Infrared safety is a property of the functions J,, that
relates each function J,.;({p},.;) to the function
J.({p},,) with one fewer parton. There are two require-
ments needed for J to be infrared safe.

First, consider the limit in which partons m + 1 and m
become collinear:

Pm+1 = ZDms Pm — (l_z)i’m- (10)
Here p,, is a lightlike momentum and 0 < z < 1. We can
concentrate on just partons with labels m + 1 and m
because the functions J are assumed to be symmetric
under interchange of the parton labels. In order for J to be
infrared safe, we demand that

Jms1({Pu. P1+ - Pets Pins Pms1 })
= Jn({Pus P1 s Pinets P }) (11)

in the collinear limit (10).
Second, consider also the limit in which parton m + 1
becomes collinear to one of the beams,

Pmt1 = EP, (12)

or

Pmi1 — EPg. (13)

Here 0 < &. When & = 0, parton m + 1 is simply becoming
infinitely soft. In order for J to be infrared safe, we demand
that

Jm+1({pH’ Pis--s Pmo> pm+1}) - Jm({pl-b Pis s pm})
(14)

in either limit (12) or (13).

Briefly, then, infrared safety means that the result of the
measurement is not sensitive to whether or not one parton
splits into two almost collinear partons and it is not
sensitive to any partons that have very small momenta
transverse to the beam directions.
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B. A more quantitative view of infrared safety

We now discuss infrared safety a little more quantita-
tively. Consider, as above, two final state partons that are
nearly collinear. This is modeled in a parton shower
algorithm as a splitting of a parton with momentum p,,
into two partons with momenta p,, and p,.,. We can
measure how close we are to the collinear limit by
calculating3

V0%

—_— 2, 15
Em + Em+1 (pm + pm+l) ( )

2
lusplit -

Here Qy is a momentum vector that describes the hard
scattering, for instance the momentum py; of the produced
Higgs boson in our example. We define the parton energies
in the rest frame of Q. The limit expressed in Eq. (10)
is ,ufpht - 0.

Alternatively, we can consider a splitting of an initial
state parton as modeled in a parton shower algorithm. It
suffices to consider the splitting of an initial state parton in
hadron A. The initial state parton with momentum p,
becomes a new initial state parton with momentum p, and a
new final state parton with momentum p,, +1.4 We can
measure how close we are to the collinear limit by
calculating

2
@(pa = Pus1) (16)

2
Hplie = —
P Ea - Em+1

Again, the limit expressed in Eq. (12) is ﬂ?pm - 0.

We now suppose that we measure the cross section o[J]
corresponding to an infrared safe measurement function J,
using Eq. (8). When ,ufpm = 0 in either example, applica-
tion of Eq. (8) gives a cross section that we can call 6[/]. In
applying Eq. (8), we can use the term with m + 1 final state
partons, with parton m + 1 exactly collinear with either
parton m or parton “a.”” Equivalently, we can use the m
parton state before the splitting. Because of Eq. (11) or
Eq. (14), the result is exactly the same. Now, when ﬂfpm is
small but not zero, we get a slightly different result, o[J].
Let 66[J| = o0¢[J] — o[J]. We assume that J,,. | ({p},.11) is
a smooth function of the parton momenta, at least near the
soft or collinear limits. Then we will have do[J] — 0 as
Hop = 0. A typical case is 66[J] o uy; as pZy; — 0. Then
we can define a scale Q?[J] that is characteristic of the
observable by

*One could choose other hardness measures 4. This one is
based on the parton shower formulation in [21,29].

This is in the “backwards evolution” picture. Going forward
in time, the parton with momentum p, splits.

<56m> olJ] 7

:ugplit S0 ]

The ratio in Eq. (17) can be sensitive to the parton
configuration, so we average over all configurations with
the same ,ufpm. The scale Q*[J] measures how sensitive the

Cross section is to parton splittings.

An example may be helpful. Let ¢[J] measure the one-
jet-inclusive cross section for jet transverse momentum Pj
at small rapidity, using the anti-ky jet algorithm with radius
parameter R. Consider a very narrow jet in which one
parton splits into two, one of which is soft. Then a simple
estimate using the definitions above is

o) I RE (18

Here N measures how fast the jet cross section falls with
increasing Py:

PJ dO'(PJ)

N:
U(PJ) dPJ

(19)

This is a fairly large number, so that the effective scale
Q°J] for the jet measurement is smaller than P}.
Additionally, R is typically chosen to be less than one.
The smaller R is, the smaller Q?[J] is.

We see that we can understand infrared safety in terms of
measurements that we might make in a parton shower
simulation of a high energy scattering event. As the shower
progresses, there are splittings. The corresponding values
of l'lgplit get smaller and smaller. If we measure ¢[J] at each
stage of the shower, we will see that ¢[J] changes as the
shower develops, but the changes get smaller and smaller
according to

2
ﬂsplit

Q*[J]

This leads us to a limit on the possible accuracy of a
perturbative approach to calculating ¢[J]. When the parton
shower has evolved to a 1 GeV scale, then we have reached
the limits of perturbation theory. The fractional uncertainty
associated with one more splitting is then

do[J]

olJ]. (20)

~%am. (21)

The accuracy of the perturbative calculation can never be
better than this.

So[J]

C. Factorization

We can now state how one calculates the cross section
for whatever observable J we want—as long as J is infrared
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safe. The formula we use was stated in Eq. (7) and we
restate it here in a slightly more detailed form [109]:

olJ] = Z/dna/dnbfa/A(na,ﬂz)fb/g(nb,/f)
a,b

X 84l o 1% J] + O([m/ Q") (22)

The intuitive basis for this is very simple. The factor
faa(as u?)dn, represents the probability to find a parton
of flavor a in a hadron of flavor A. For the other hadron, the
corresponding probability is £,z (1, #*)dny. Then &[J] is
the cross section to obtain the observable J from the
scattering of these partons, as given in Eq. (8). Naturally,
this parton level cross section depends on the parton
variables a, b, n,, n,. Here the differential cross sections
to produce m final state partons contain delta functions that
relate the momentum fractions #, and 7, to the final state
parton momenta. The parton distributions depend on a scale
u. This is often called the factorization scale up and
distinguished from the argument of a, and other running
couplings, which is called the renormalization scale pg. In
order to keep our notation simple, we set yup = g = U.

The cross section 6[J] has a perturbative expansion in
powers of a,(u?). That is

. (0
apMas i pJ] = 62$;[na,nb,u2;l]

2

ags\H A(1

+ {—é )]Gi,Z[na,nb,uz;J]
T

2y72
ag(U e
- {%n)] 651,1)7[’7av’7b,ﬂ2;J] 4o,

(23)

Here we do not display the factors of a; or a.,, that appear
in the Born level cross section (). Perturbative calcula-
tions can be at lowest order (LO), corresponding to one
term in the expansion, next-to-lowest order (NLO) with two
terms, sometimes NNLO, and, in general, NALO.

One useful property is that the dependence of the
calculated cross section on y? diminishes as we go to
higher orders. Indeed, the cross section in nature, ¢[J], does
not depend on 2. Thus if we calculate to order af, the
derivative of the calculated cross section with respect to p?
will be of order a**!.

There is an error term in Eq. (22). No matter how many
terms are included in 6, there are contributions that are left
out. These terms are suppressed by a power of m ~ 1 GeV
divided by a large scale parameter Q that characterizes the
hard scattering process to be measured. These contributions
arise from the approximations needed to derive Eq. (22).
For instance if a loop momentum / flows through the wave
function of quarks in a proton, we have to neglect [
compared to the hard momenta, say the transverse

momentum of an observed jet. Not much is known about
the general form of the power corrections for hadron-
hadron collisions. In the rest of this paper, we will assume

that the power n in Eq. (22) is n = 2 and we use /Q?*[J]
from Eq. (20) for Q. However, even if we lack a good
estimate of the power corrections, it is important that they
are there. If Q is of order 100 GeV, then the power
corrections are completely negligible. However, if Q is
of order 5 GeV, then we ought not to claim 1% accuracy in
the calculation of o[J], no matter how many orders of
perturbation theory we use.

IV. PARTONS AND THE DENSITY OPERATOR

We will describe perturbative calculations of cross
sections, how these are connected to the parton shower
description of these same cross sections, and how this is
connected to factorization. We begin in this section with
definitions that we need to describe the evolution of a
parton shower. We follow the framework of Ref. [15].

A. Amplitudes and the density operator
in spin and color

In a perturbative calculation of a cross section, one
constructs an amplitude |M({p,f},)). This amplitude
depends on the momenta and flavors of two initial state
partons, whatever outgoing electroweak partons there are,
and m outgoing QCD partons. For our example of Higgs
boson production, the momentum and flavor observables
are

{p’f}m = {nma?r]b’b’pH’plvflv ""pm’fm}' (24)

The partons carry spin and color, so the amplitude is a
vector in the partonic spin and color space for m final state
QCD partons plus the two incoming partons, as indicted by
the representation of the amplitude as a ket vector
IM({p,f},)) We use basis vectors |{s},,) for the partonic
spin space and basis vectors |{c},,) for the partonic color
space.” To describe the evolution of a parton shower, it is
useful to use quantum statistical mechanics, keeping the
full quantum nature of the colors and spins. Thus we use the
density operator in the color and spin space. The density
operator is a linear combination of basis operators
I{s,c},)({s", c'},,]- Thus to describe the system at a certain
stage of evolution, we use a function p of the number m of
final state QCD partons and of the momenta and flavors
{p,f},» Where the value of p is a color-spin density
operator. That is

>The spin basis vectors can be chosen in a very simple way, but
it is not so trivial to choose useful basis vectors for the color
space. The choice that we make for DEDUCTOR is specified in
Ref. [15]. With this choice, the color basis vectors are not exactly
normalized and the basis vectors for different colors are not
exactly orthogonal.
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ppfIn) = )

{s.5".c.c'},n

X [{s.c}) ({s' bl (25)

pUp.fs.5¢.c'},)

The interpretation of this is that the differential probability
dP for there to be m final state QCD partons with momenta
and flavors {p, f},, times the expectation value of an
operator O on the color and spin space, is

dP x (0) = [d{p},] > p(p.f.s.5c.c'},)
{s.5',c.c'},
x ({s". '}l Os. c}). (26)
where

dip
[d{p},] = g 276, (ph — mi
e ddl’i
X H{W 2ﬂ5+(p12)}d7]ad’7b

x (27)%6 <pa + Po = Pu— i pi> . (27)

i=1

Here we use dimensional regularization with d = 4 — 2e.

The set of all such functions p constitutes a vector space,
which we call the statistical space. We represent the vector
p as a ket vector, |p). The rounded end of the ket is meant to
distinguish a vector in the statistical space from a vector in
the quantum spin @ color space.

Notice that we use the symbol p for four different but
related concepts. First, for each choice of m and
{p.f,s,s",¢.c'},s PP, fos,8,¢,c'},,) is a complex
number. Second, for each choice of m and {p,f},,
p({p,f},,) is a linear operator on the quantum spin ®
color space for the m + 2 partons. Third, p is a linear map
from m and {p, f},, to the space of operators on the
quantum spin ® color p) is this linear map
considered as an element of a vector space, the statistical
space. This may seem complicated, but in the end we use
almost entirely the statistical vectors |p). This then gives us
what we think is a compact and powerful notation.

We can define basis vectors [{p, f,s,s',¢,c'},,) in the
statistical space in such a way that

{p. 1.5 e.c'Ylp) = p(p. fos.5" ¢.¢yy). - (28)

The completeness relation for the basis vectors is

1:;%/&1{1%2 S loufsshendh

{3 {s.s"e.c'}y
x({p.fos.s' c.c'hyl.

(29)

B. Making an inclusive measurement

There is a special vector (1| defined by

(IKp. fos.8" e, ¢'}) = {8 hul{s, et (30)

With this definition,

(1) = 3 [ bl
xS lipfissiec),)

{3 {s.s'e.c}

x ({s", " hul{s, c}) (31)

is the total probability associated with the statistical state
lp) as defined in Eq. (26) with O = 1.

With this notation, we begin with perturbatively calcu-
lated amplitudes |M ({p, f},,)) for just a few partons. Thus
we begin with a perturbatively calculated vector |p) in the
statistical space. Then we use perturbative operations that
are represented as linear operators on the statistical space.
Similarly, the measurement J in Sec. III A is represented as
a linear operator on the statistical space. Finally, multipli-
cation by (1] allows us to obtain the expectation value of the
measurement operator.

C. Scales

The formalism also uses a reference vector Qy and
several scales: a renormalization scale u%, a factorization
scale uZ, and an ultraviolet cutoff scale x2. For simplicity,
all of these scales are set to a single scale . The vector Qy
is used to set the value % of the common scale associated
with the hard state |p,,), defined later in Eq. (58): & = Q%.
A parton shower needs a measure of hardness of parton
splittings. We also use Qy as a vector to help define one
possible measure of hardness, A defined in Eq. (55). For
this purpose, Qy should be roughly in the direction of p, +
Py 1in an imagined initial hard scattering. The simplest way
to define Qy is to use the hard core part of the intended
measurement. For instance, if we are looking for the cross
section to produce a Higgs boson with rapidity near zero,
we can take Q% = mj with zero rapidity and zero trans-
verse part for Q. We will mention another, more dynamic,
way to define Qy later, in Appendix C.

D. Multiplying by parton distribution functions

In order to turn matrix elements into cross sections, we
divide by a parton luminosity factor® n(a)ng(a)n.(b)
ng(b)4p, - py. Here the color counting factor is n.(f)=3
for a quark flavor f and n.(f) = 8 for f =g The spin
counting factor is ny(f) =2 for a quark flavor f and

®We have noticed that this factor was too small by a factor 2 in
Eq. (3.15) of [15].
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ny(f) =2(1 —¢) for f =g when we work in 4 —2¢
dimensions in order to regularize infrared divergences.
Then we need to multiply by a parton distribution factor

) forpmp?)- - (32)
K= )J /B> K

Fa.b(nav 'Ib,ﬂz) = fa/A(’/[av

The parton distribution functions here could be the five
flavor MS parton distribution functions, or they could have
a different definition. We combine the two parton distri-
bution functions as one operator JF(u?) that acts on the
statistical space:

FW){p.f.s.5"c.c'}y)

Fa b(nw nb7/‘2) / /
= : p,f.s.s',¢c,c'},).
ne(@ (@ (B)n,(B)dps py n)

(33)

We sometimes need a more general parton factor in which
the parton distributions are convolved with a function that
is also a matrix in the parton flavors. For instance, the
evolution equation for the product of parton distribution
functions is

d
H _Fa,b(’/]a”/lb’ﬂz) - F;,h(r]a’ nb’luz)’ (34)

2
du?

where the prime denotes differentiation and F’ is given by
the convolution product of F with an evolution kernel P,

F'=FoP. (35)

The precise definition is’

F (1o 1o, 12)
Ldz dzy,
/ a/ fFa b (Ma/ Zas 1o/ 25 1)
Ihl 0
X Pa,a’,b,h’(za» anuz)' (36)

The evolution kernel for the product of parton distributions
is the sum of parton evolution kernels for each of the two
parton distribution functions:

Pa,a’,b,h’ (Za» Zb»ﬂz)
= Pa,a’ (Za7ﬂ2)5b,b’6(zb - 1) +5a,a’5(za - l)Pb,b’ (Zbuuz)'

(37)
This gives us an operator F'(u?) defined by

"Based on the order of the flavor indices, it would be more
conventional to write this as P o F, but we believe that the
notation in Eq. (35) better expresses the physics in the context of
this paper.

F' W ){p. f.s.5'c.c'}y)

Fl (112 s %)
— a, p.f.s.s' ¢, '}
ne(a)ns(@)ne (6)ns (0)aps - oy )

(38)

In place of F'(u?
that F, , (14, 1. p

), we use a notation that directly displays
2) is constructed according to Eq. (36),

F'(u?) = [F(u?) o P(u?)]. (39)

The circle indicates the convolution and the square brackets
[- - -] indicate what is included in the convolution.

V. THE PERTURBATIVE CROSS SECTION

We now consider the cross section for some hard
process. We can use any hard process that can lead to
an infrared safe cross section, but the details of the notation
depend on what hard process we consider. In order to keep
the notation simple, we consider a specific process, the
cross section make a Higgs boson plus QCD partons,
calculated at NLO. We let J represent an infrared safe
measurement of interest as in Sec. III A. The hardest scale
associated with this measurement is 4. The scale Q*[J]
introduced in Eq. (17) could be much smaller, as long as it
is large compared to 1 GeV?. In that case, the sort of fixed
order calculation discussed in this section is not so useful
because there are large logarithms, log(u%/Q?[J]). Thus in
this section, it may be helpful to imagine that Q?[J] is not
very different from 2.

A. The Born cross section

Let us begin at the Born level. We call the statistical state
corresponding to the Born level matrix element [p(*0) (4?)).
The measurement J can be represented as an operator O;.
To make a cross section, we need a luminosity factor and
parton distribution functions. We define an operator
Fiis(W?) as in Eq. (33) by

FasW){p. f.5.5.c.c'},)

MS 2\ £MS 2
~ Sapa 1) Fyyp Ut 1) .
= me@n(@n(B)ns (BYp, -y LT )

(40)

We use MS parton distributions for five flavors. Then the
cross section for measurement operator O; is

olJ] = (1| Fyzs(u?) 04100 (u?)). (41)
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B. The higher order cross section
Now we consider higher orders of perturbation theory.
We define a, and the parton distribution functions that we
start with using MS renormalization, as reviewed in
Appendix D. Including terms up to order af, the NKLO
cross section can be written as

ol7]=([Fizs (W) o Zr()]Oslp(u?) + Oas™). (42)

Here we convolve Fygs(u?) with the renormalization factor

Zp(u?) for five flavor MS parton distribution functions.®
This factor is just 1 at order af. Its higher order contribu-
tions are defined by working in 4 —2e¢ dimensions and
consist of the 1/€" pole terms needed to remove the
ultraviolet poles from the renormalized operator that
defines parton distributions. Equation (42) is a perturbative
formula. We are to expand all of the factors up to the
desired order ¥ and neglect the remainder, indicated by the
error estimate O(af*!).

The statistical state |p(u?)) has a perturbative expansion

06 =106 + 3 42 o) + 0t ).

n=1

(43)

The order n contribution to the statistical state is a sum of
9
terms,

Z Z (g + ny = n)[ptem)(12)).  (44)

np=0 ny=|

In [p{"")(4?)), there are n, final state partons and n,
virtual loops. This is for Higgs boson production as the
Born process. If we had chosen two jet production as the
Born level hard process, then there would be 2 + n; partons
in the final state.

The n, virtual loops in |p("="™)(4?)) can each produce
1/€ and 1/€* poles. The n, partons in the final state can
give soft and collinear singularities. The statistical state
vector is singular when any of these partons become soft or

$This is for massless partons. Conceptually, Z(u?) should be
understood as the inverse, in the sense of convolutions, of the
product of two parton-in-a-parton distribution functions with on-
shell massless incoming parton states. Then this factor removes
infrared poles from the cross section. At the level of bare

operators, fg‘}‘be(f) = 5,0(1 — £). Convolving the renormalized

parton-in-a-parton distribution functions with Z gives the bare
dlstrlbutlon functions, leading to Eq. (42). See Apgendlx D.

It may be helpful to note that we define [p") ) using on-
shell matrix elements |M({p, f},,)) and their complex conju-
gates, including the factors needed to make |M({p, f},,)) into an
S-matrix element. Then the right-hand side of Eq. (43) is invariant
under changes of the renormalization scale 2 up to order af*!.

collinear with the beam directions or collinear with each
other. In the case of a Born process that has final state QCD
partons, there are also singularities when any of the ng
additional partons becomes collinear with starting final
state partons. In these singular regions, the infrared safe
measurement operator O, sees the partons that are collinear
to a given direction as equivalent to a single parton and it
does not see partons that are soft or collinear to the beam
directions at all. Thus, it is as if we had a completely
inclusive measurement as defined by left multiplying by
(1]. Then we again get 1/¢ and 1/€e? poles. Many of the
poles cancel between real and virtual graphs. There are,
however, some poles associated with momenta that are
collinear with the initial state parton momenta. These
cancel the poles in Z(u?). We are left with a finite result.

C. Introduction of the infrared sensitive operator D(u?)

The formula (42) is not completely practical because
each term |p"="v)(4?)) generates infrared singularities or
poles. Only at the end of a calculation, which includes some
complicated integrations that include the measurement
function, do the poles produced by the infrared singularities
cancel. To make this more practical, we define a certain
operator D(u?) and insert a factor D(u*)D~!(u?) into
Eq. (42), giving

olJ] = (1 [Fys(U?) o Zr(®)|D(u?) D~ (u*) Oylp(u?))
+ O(a’S‘H). (45)

The operator D(u?) depends on the dimensional regulari-
zation parameter ¢, but we do not display this dependence
explicitly. It depends on a second scale 2 along with y?,
but we set yu> = u2.

The idea behind D(u?) is that a contribution to |p(u?))
has poles from virtual loops and has singularities when
some of its external lines become collinear or soft. This is
illustrated in Fig. 1. It is simplest to think of the graphs
depicted as being in a physical gauge. There are two hard
subgraphs, represented as yellow blobs, one for the
amplitude and one for the conjugate amplitude. The sub-
graphs can be tree graphs or can contain virtual loops. We
suppose that everything inside the hard subgraphs is harder
than a reference scale ,uﬁard. That is, all of the internal
propagators are far off shell. Two initial state lines and m
final state parton lines emerge from the hard subgraph.
Here m = 3. Then there are additional interactions. Some
number 7, of additional partons are emitted and n, parton
lines are exchanged. Here ny = 1 and n, = 1. The external
parton momenta are labeled {p},,, . There is an infrared
divergence when the virtual gluon becomes soft and there
are singularities when the real gluon momentum becomes
soft or collinear to the antiquark line while the virtual gluon
momentum is becoming soft.
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FIG. 1. An infrared singular diagram. Each yellow blob
represents a graph, possibly with loops, in which everything is
harder than the scale u, ;.

We want to capture the structure of these infrared
singularities, as illustrated in Fig. 2. We note that near the
singularities, the partons emerging from the hard subgraphs
are nearly on shell and their momenta lie in the directions of
the external parton momenta. The momenta carried by lines
internal to the hard subgraphs are almost unchanged.
Therefore, we can approximate the graph by letting the
momenta {p}, of the partons emerging from the hard
subgraphs be exactly on shell. Their momenta are given as
functions of the momenta {p},,,, of the external partons.
Here, we need to define a momentum mapping {p},,,, —
{p},,- Then we can approximate the original graph by a hard
part ({p, f,s,s', ¢, c'},n|Pnara(#*)) and a singular factor. We
call the singular factor ({p.f.5.5".¢.¢'},, [D(?)|{p.
f.s,5, ¢c,c'},,). The singular factor is derived just from the
singular part of the graph. It is independent of what is in the
hard part.

FIG. 2. The diagram in Fig. 1 after separating the hard diagram
from D(u?).

We thus assert that any such set of poles and singularities
can be organized into a hard subgraph, |pp.q(4?)), con-
volved with a singular factor:

({p.F.3.5. 8. Y lp (W)

L)Y

(T (550" b
X ({p.f.3.8.8,8}pin IDWP){p. fo5.8' c.',y)
x ({p. f.s.5" c.c'} | Phara(W?))- (46)

The division between singular and hard factors depends on
the singularity to be examined. In the hard factor, the
external momenta { p},, and any internal loop momenta are
to be hard at some scale that we can call y2, ;. This means
that they are not closely collinear to each other or soft at
scales softer than pZ, .

The singular factor is typically represented as separate
factors labeled soft and jet;, where soft can include
Glauber exchanges and two of the jets are in the beam
directions. However, we do not need to separate the
singular factor into separate subfactors. An early and
instructive analysis of the singularities of QCD was given
by Libby and Sterman [118]. An extensive modern analysis
can be found in Collins [119]. For one real gluon emission,
an example of D(u?) can be defined from the Catani-
Seymour dipole splitting functions [34]. The operators Sp
of Catani, de Florian, and Rodrigo [120] are also closely
related to D(p?) for certain cases. At one loop, our version
of dD(u?)/dlog u? is implemented in DEDUCTOR.

The operator D(u?) has a perturbative expansion

D) =143 {%‘)] "D (2) + O, (47)
n=1

The order n contribution, D (4?), is a sum of infrared
sensitive operators,

S S bl D), a8

ng=0 ny,=0

Acting on a state |[{p, f,s,s',c,c'},) with m final state
QCD partons, D) (42) produces a state with m + ny
final state QCD partons with momenta {p},,,, . There are
integrations over the loop momenta {¢,...,7, } of n,
virtual loops.

The operator D(u?) depends on a hardness scale y? that
defines an infrared sensitive region R(u?) in the space of
the momenta {p},,,, and {7},....Z, }. We can think of
u? as being comparable to the scale yZ, ; Of |ppaa(#%)). The
infrared sensitive region R(u?) surrounds the leading
singularity, at which each of the momenta {p},, and
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{¢\,....¢,} is soft or collinear to one of the input
momenta {p},. In the case of the output momenta
{P}min,» this means that, at the leading singularity, these
momenta form m infinitely narrow jets with momenta
{p}.n Of course, if we look just a little bit away from the
limit of infinitely narrow jets, we see that the jets can have
subjets. The singularity structure of the subjets, including
both real and virtual momenta, is included in D(u?).

We need the infrared sensitive region R(u2) because,
when we form D(u?) by making approximations that apply
near the leading singularity, we necessarily simplify the
behavior away from this singularity. We introduce cuts such
that D) (42) gets contributions only from inside R (u2).
The leading singularity is inside the region for any y2, but
for larger u2, the region is larger. Of course, there is more
than one way to introduce 2.

For simplicity, we set the renormalization and factori-
zation scale y” equal to u2.

We will say more about the D) (4?) later, although we
do not construct them. For now we simply assume that they
are available and investigate how they can be used to
construct subtractions for a fixed order calculation and
splitting functions for a parton shower. See Appendix A for
an example of the operators D) (4?) in a toy model.

D. Subtractions for the perturbative cross section

Given D(u?), we can construct

k 2\ n
D) =1-3 [asz(ﬂ )} DIV 2) + O, (49)
n=1

T

The perturbative coefficients D" (4?) are defined by

D' (W?)D(u?) = L. (50)

This gives, for instance,

DO (?) = DV (),

DR (u?) = DO (u?) - DY (@)D (W?),  (51)

or for the higher orders
DY) DR, (52)

The order n contribution, f)(")(ﬂz), is a sum of operators,

ZZ (ng 4 ny = n)Dmm) (42), (53)

ng=0 ny=0

Acting on a state |{p,f,s,s’,c,c'},) with m partons,
D) (42) produces a state with m + ny, partons while

integrating over n, virtual loops. One constructs D«") (1?)
using Eq. (50).

The operator D! (4?) is very useful. In Eq. (45), we have
the factor D! (1?)O,|p(u?)). We are to expand this product
in powers of a, keeping the terms up to order aX. The factor
O,|lp(4?)) has infrared singularities and poles, but the
operator D~!(u?) removes them. The simple argument is
that D(u?){p., f,s,s",c,c'},,) contains the infrared singu-
larities and poles produced by QCD from a hard parton
state |{p, f,s,s, ¢, c'},,) but, according to Eq. (50), when
we apply D! (4?) to this state, the poles and singular terms
are cancelled. That is, D~!(4?) provides the subtraction
terms that we need to remove the singularities and poles
from an NXLO perturbative calculation.

To understand what the operator D~!'(4?) does, it is
helpful to examine the familiar case of an NLO calculation.
At this order, Eq. (45) becomes

olJ] = (1| Fagg () o zF<u2>1D<u2>{o,p<°’°> )
o, (42)

)

+

D) 0,0 (u?))]

10,1019 (2)) —17(1'0)(ﬂz)Ojlp(O’O)(ﬂz))]}

2 (54)

We have defined D! (4?) so that it leaves the number of
partons unchanged and so that it has infrared poles.
Furthermore, the poles in DOV (42)|p(%9) should directly
cancel those of |p(®))(4?)). We have defined D) (42) so
that, acting on the state |p(®%)(4?)), it adds one parton and so
that when this parton is soft or nearly collinear with one of
the existing partons (in our example, the initial state partons)
DO (u?) O, |p " (u?)) approaches O, |0 (4?)). In a
standard application, one performs the integrations over
the momentum of the emitted parton numerically. The
integrand in the subtraction cancels the integrand in
|p1"0(4?)) in the infrared region, so that one obtains a
convergent integration. Having subtracted the operators
D19 and DOV, we add them back as part of D. Now, in
a standard application, all of the integrations corresponding
to the first line of Eq. (54) are performed analytically. All of
the 1/€*> and 1/e poles cancel and we are left with a
completely finite order a, contribution to the cross section.
Note that the contribution from the first line beyond just the
parton distribution functions is infrared finite, but it is not
zero. It forms a significant part of the NLO calculation. In
Eq. (54), we have a product of one infrared finite object times
another, each expanded to order «,. In the customary NLO
calculation, one expands the product to order «, and drops
the a? term, but one could keep the a? term if desired.
We note that if we had wanted to use D(u?) for the single
purpose of defining subtractions for the hard scattering,
lp(1?)), we could have used a fixed scale. We need an
adjustable scale y? to use D(u?) in a shower algorithm

(0416 42)) - DO

27
+ é
O(a
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because the hardness scale of the shower changes as the
shower progresses.

E. Properties of the infrared sensitive operator

We can now say a little more about the infrared sensitive
operator D(u?), without giving a detailed specification. This
operator is decomposed into operators D) (1?) accord-
ing to Egs. (47) and (48). Acting on a state |{p, f,s, s,
c,c'},,) with m partons, D) (4?) produces a state with
m + ng partons while adding n,, virtual loops. The resulting
state can be expanded in basis states for m + ny partons,
{p.f.5.8.2,.¢}, +n,)- There is then an invertible mapping
between the new momenta {p},,, and the starting
momenta {p},, together with a set of splitting variables
¢, (ng). One can choose what this mapping is.

To make this a little more concrete, consider D) (42)
with one parton emitted. There is one term in the emission
probability for each final state parton/ € {1, ..., m} and one
for each initial state parton / € {a,b}. We think of / as the
emitting parton and let the emission probability be singular
when p,,.; becomes collinear with p;,. The emission
probabilities are also singular in the limit in which p,,
becomes soft, p,,.; = 0. DEDUCTOR uses something sim-
ilar to the Catani-Seymour [34] dipole splitting functions to
construct D19 (4?). The splitting variables ¢, are taken to
be an azimuthal angle ¢, a momentum fraction z, and a
measure of the hardness of the splitting. In DEDUCTOR, the
hardness variable is the virtuality of the splitting divided by
the energy of the mother parton,

2P P

2p;- On
where the vector Qy is defined globally as described in
Sec. IV C. Alternatively, it can be defined dynamically as
described in Appendix C.

There is freedom to choose the functional form of
DU (42) away from the limits of soft and collinear
emissions.

There is also freedom to choose the momentum map-
ping. The simplest case is a splitting of a parton [ into two
partons [ and m + 1. Then we cannot have p, be the same
as p;+ Py with p? = p7 = p2 | =0, so the momen-
tum mapping has to take a some momentum from the other
partons and supply it to p; + p,,, ;. In DEDUCTOR, we use a
global mapping, taking a small amount of momentum from
each of the other partons. A second possibility beyond a
simple splitting is interference between emission of a gluon
m + 1 from parton /; in the ket state and emission from
another parton Iy in the bra state. In this case, D10 (4?) in
DEDUCTOR is a linear combination of contributions that use
the momentum mappings for a splitting of parton /; and for
a splitting of parton [g. The coefficients in the linear
combination are a “dipole partitioning” function A’ that is
specified in DEDUCTOR.

A? 0% (55)

The operator D(19)(4?), acting on a state |{p, f.s. s, c,
¢'},.), produces a state with one more parton, parton m + 1.
It is crucial that there be an ultraviolet cutoff for p,, ;. The
cutoff is specified by a parameter that we call u2. In
DEDUCTOR, we use A? as given in Eq. (55) to define the
cutoff. In DU (42), we require

A? < . (56)

A similar cutoff applies inside the integration for a virtual
loop in DV (4?). Defining this cutoff is more involved
than we can review here. The calculations are described in
Refs. [32,33].

VI. FROM THE PERTURBATIVE CROSS SECTION
TO A PARTON SHOWER

In this section, we begin with Eq. (45) for the perturba-
tive cross section. We set the scale to 2, which we take to
be equal to Qf. Here Q7 is defined in Sec. IV C to be a
fixed vector, although we can use a dynamical definition as
described in Appendix C. We now seek a more powerful
formulation that will enable us to use more general
measurement operators O, for which a perturbative expan-
sion of the cross section might contain large logarithms of
the generic form a log?"(k*/Q?). Often, a parton shower
can approximately sum such logarithms.

As just stated, we set the scale 2 in Eq. (45) to 2. In our
example in which the Born process is Higgs boson
production, we might choose uj = m3. This affects the
scale at which o and the parton distribution functions are
evaluated. It also affects the upper cutoff on the scale of
emissions in the subtraction terms in D~!(x3) and in the
parton shower that we will discuss below. However, in the
multiparton matrix elements in |p(uZ)), the partons can
have any momenta. Parton emissions with small transverse
momenta need subtractions, but parton emissions with very
large transverse momenta do not need subtractions. If we
work at order a, then we can have up to k high transverse
momentum jets in addition to the Higgs boson in |p(42))."

A. Moving the measurement operator

The first step toward a more general formulation is to
interchange the order of the measurement operator O, and
the operators D~ (%) and D(p?). This does not change the
result, since DD~! = 1 and O, commutes with 1. With the
O, moved, we have

"I we are limited to a k = 1 shower, then Higgs plus one jet is
LO in |p(uZ)). Then one might want define a lower cutoff on the
Pt of the jet and use a calculation with p + p - H + J as the
Born process, calculated at NLO. In that case, one has two
calculations and one may want to define a procedure to merge
them. If a k = 2 shower is available, then [p(43)) can include
inclusive Higgs production at NNLO and Higgs plus one jet at
NLO. Then merging different calculations is less needed.
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olJ] = (1|[Fyswd) © Zr(u)]OsD(ui)lpw) + O(ag™).
(57)
Here we have denoted
low) = D71 (i) lp (i) (58)

where the product is expanded to NLO using Egs. (43),
(44), (49), and (53):

VM—ZH }}:z;%+m_mwww

n= ng=0ny
+ O(ak), (59)
where
Iplie™)) = [plem) ()
=3 BRI (). (60)
r=0 1=0
r+I1>0

o (s 1) £ (s 1°)

These quantities |pHR V)) are finite without dimensional
regularization.

B. Introducing shower oriented parton
distribution functions

We can do a little more by introducing an operator JF (u?)
that multiplies by parton distribution functions f,/ (7,
W) f b/8(1b> #?) and a luminosity factor. However, these are
not the five-flavor MS parton distribution functions that we
used in Fyzs(4?). Rather, they are adapted to the choice of
the definition for D(u?) that we use.

The shower oriented parton operator F (u?
Fis(u?) by factor K(u?),

) is related to

Fas(h?) = [F(u2) o K(?)]. (61)

This is a rather compact notation, so it is worthwhile to
write it in more detail. The left-hand side is defined by

Fas (.o c.¢}y) = A IR 5.5, (62)
The right-hand side is
2 . 2 ;o ldz, lebfa/A ’7 /20 %) [ 8 (o/ 20 17
[f<ﬂ ) ’C(ﬂ )”{pvas,s ,C,C}m) - Z b// / Z nc a n, a)nc(b)ns(b)4pa‘pb
X K (20 b2 AP ) Ky (2o 24D, 1)l P £o508 00 €b,). (63)

Here we take the kernel K to be a product, so that each of
the two parton distributions is transformed separately. We
allow each kernel to depend on the momentum and flavor
variables of the parton state to which [F(u?) o K(u?)] is
applied. The kernels each have a perturbative expansion
beginning with

K™ (22 p. 1)

= éa,a/

2
51— 2) + B KD 42 (. f),) + Ola?).

(64)

The choice of K(u?) defines the shower-oriented parton
distribution functions. The evolution of these parton dis-
tribution functions needs to be matched to the parton
splitting functions introduced in the following sections.
In particular, the choice of /C(u?) is largely determined by

the definition of the cutoff x2 that we use for the shower.
We provide an example in Appendix B.

The parton operators Fys (4*) and F () obey evolution
equations
d
w7 F ) = 1) 0 PG,
d
ﬂzd—ﬂzfm(ﬂz) = [Fas(w?) o Py (65)

Using Eq. (61), we see that the evolution kernels are
related by

Pp?) = [K(4?) o Pys(u?®) o K7 (4?)]

- () o0 0

With the transformation from Fyg(u
write

2) to F(u?), we
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[Fais(W?) o Zp(?)] = [F(u?) o K(u?) o Zp(u?)].  (67)

Thus our cross section is

olJ]=(1[F (ui) oK) © Zr (ki) |0 D (i) Ipu) + Ol ).

(68)

We will introduce F (4?) into another place in the formal-
ism shortly.

C. Changing the scale of the subtraction operators

Next, we would like to change the scale of the operators
in Eq. (68) from a large scale uZ to something smaller. We
let u? be an “intermediate” size scale that is much smaller
than the scale Q?[J] associated with the operator O, but is
nevertheless large compared to 1 GeV? and is certainly
large enough to allow the use of perturbation theory in
ay(u?). We can change the parton factor to be evaluated at
scale p? because this factor is a renormalization group
invariant:

[F(uf) o K(g) o Zp(ui)] = [F(ui) o K(ut) o Zp(ui)]-
(69)

The operator D(u?) is not invariant under changes of
scale. However, we can write

D(u7) = D(u3)Uper (43, 47 (70)

where

Uper (13, 17) = D~ (u3)D(ui). (71)

Here we note that D(u?) generates 1/e poles and infrared
singularities, but D~!(43) provides the proper subtractions
to remove the poles and infrared singularities when we
expand the product of operators to a fixed order of
perturbation theory. Thus we can evaluate Uper (43, u7)
in four dimensions instead of 4 —2e¢ dimensions. The
perturbative evolution operator U (4, u'*) obeys the
differential equation

d
MZ d—ﬂzupen (ﬂz’ M/2> = _Spert<ﬂ2)upen(,u27 //2)’ (72)

where

Spnli?) = DA DGR). ()
u

Since Upper (443, 1) is infrared finite, 50 is Sper(1?). We can
write the solution of Eq. (72) as

” 2

u
upen(#2»ﬂl2> = Texp (/2 ﬂ_2Spert(ﬂ2)>’ (74)
u

where T indicates u? ordering of the exponential with
smaller y? to the left. Working to order a with use of
Egs. (47) and (48), we have

Qg 2 Qg 2
Snls) = S 51002) 1+ ) 5002) 1 (a2,

(75)

where a,(4?) is the running coupling in the four dimen-
sional theory and

d
SEV(12) = p? —— DI (),

dy?
d
Spen (1) = 3 5DV (2). (76)

Recall that y?> = p2. Thus SI(,L;?) (1?) is the derivative of

(approximated) real emission graphs with respect to the
ultraviolet cutoff that we impose. Similarly, 85,2;? (1?) is the
derivative of approximated one loop virtual graphs with
respect to the ultraviolet cutoff. The subscript “pert”

emphasizes that only perturbative Feynman diagrams are
used to obtain Sf,i,’r?) (1?) and S[()%r{)(yz).
With these changes, we have

olJ]=(1[F (u?) o K(u?) o 2 (ui)]
< Oy D(pf Uner (i ) low) +Oas*!). - (77)
Now we note that very soft or collinear splittings at
scales much smaller than Q[J]> are not resolved by the
measurement operator O,. The operator D(u?) generates
splittings at scales u? and smaller. Since we have chosen
u? < QlJ)?, the operator O; commutes with D(u?) to a

good approximation, with an error of order x?/Q[J]>. Thus
Eq. (68) can be written as

olJ]=(U[F (ui) o K(uf) o Zp(ui)]
X D(uf ) O U per (pif 15) |1 +O () + Ot / Q[T]?).
(78)

D. The inclusive infrared finite operator V(u?)

We now introduce an operator X'(u?) defined by
X(u*) = [F(u?) o K(p?) o Zp(u®)|D(*)F~' (u?).  (79)

Using X (u?), Eq. (78) is more compact:
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olJ] = (X (u?)F (17 ) O Upert (it p17) | ) + O(al™)
Oui [ Q). (80)

The operator X'(4?) involves parton distribution functions
and purely perturbative operators. If we evaluate the
perturbative operators at order zero, we get simply
F(u*)F~1(4?). Thus

X(p) =1+ O(ay). (81)

The operator X(u?), when expanded in powers of a,
creates partons, up to k partons at order aX.

The operator X (u?) is infrared sensitive. When we apply
X(u?) to a state |{p,f.s.s'.c.c'},), we get a state
X(u)|{p.f.s.s' c,c'},) containing poles 1/¢ and sin-
gularities when the partons that X'(u?) creates become soft
or collinear with other partons or with each other. In that
sense, X (u?) is like D(u?). However, X (4?) contains the
parton factor [F(u?) o K(p?) o Zp(u?)]. This factor gives
X(u?) a property not shared by D(u?). If we integrate over
the momenta of the partons created by X'(4) and sum over
their colors and flavors by forming the inclusive sum
(X)) p. f.s,s',c,c'},,), then the singularities cancel
and we obtain a finite result.

In fact, we need to ensure that (1|X(u?)|{p,f.s,s',
¢, c'},,) is not only finite after dimensional regularization is
removed but that it vanishes in the limit y?> — 0. For
example, if this quantity arises from an integration

w dk?

(1|X(ﬂ2)|{l7’f’s9s/’c»cl}m):A FG(kz), (82)

then, with subtractions included, G(k?) needs to be a
smooth function that is well enough behaved for k> — 0
that the integral is convergent. This property is needed later
in Eq. (133).

Suppose for a moment that we worked in a modified
theory, denoted by subscripts M, in which partons carried
only momenta and flavors, but not color and spin. Then
from the inclusive sum (1|Xy(u?)|{p,f},) we could
define another operator Vy(u?) that leaves the number
of partons, their momenta and flavors unchanged:

Ym){p. f1n) =2 p 1) {p. f1a). (83)

Then /?’({pvf}mvﬂz) = (1|VM(M2)|{p’f}m)' We  define
Vm(u?) by Eq. (83) and

AVm@){p. 1) = XM {p. f1)- (84)

Now return to QCD. With spin and color, we can define
an operator V(u?) that satisfies (1|V(u?) = (1|X(u?).
However, its structure is more complex. The operator
X(u?) can be expanded in powers of ag:

k
X(/ﬂ) =1+ Z |:as<::t:)
n=1

2 aewge) o, ss)

The order n contribution, X (?), is a sum of infrared
sensitive operators,

X0G2) = 303 0+ my = AR GR). (36)

ng=0 ny,=0

Acting on a state |{p,f,s,s,c,c'},) with m final state
partons, X" (42) produces a state with m -+ n, final
state partons with momenta and flavors {p, f},, +n,- There
are integrations over the loop momenta {#, ..., %, } of n,

virtual loops.

We need to understand the color and spin structure of
Xmon) (42). Suppose that we have constructed a basis of
operators that act on the quantum spin ® color space and
create a quantum spin @ color state for n; more partons.
We label the basis operators by an index i. A convenient
choice would be

= {3,852 ). (87)

Then we could let

" {5 )
_ { {3‘,6’ m+nk>
0

m=m & {s.c}, = {s'.c'},
otherwise '

(83)

Using these basis operators, we can expand X" (4?) as

X("R'”V)(ﬂz) _ ZXEZR,nV)(HZ)GSnR) ® Gﬁnk)T. (89)
i.j

Here X l(-f;-“’”V) (14?) is still an operator on the momentum and
flavor part of the statistical space, which has basis vectors
{p,f},) Inthe case ny = 0, this operator adds no partons
and leaves the parton momenta and flavors {p,f},,
unchanged.

Now we wish to define another operator V(i?) with an
expansion

k a. 2\ n
Vi) =1+ {%} VO () + O(ak). - (90)
n=1

The order n contribution is to add no partons and leave the
parton momenta and flavors { p, f},, unchanged, but it still
can be a nontrivial operator on the spin ® color space

VO (2) =3 Vel @ o (91)
ij
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Here VEZ) (u?
flavor part of the statistical space. We want V(u
related to X (u?) by

(1[V(u?) = (X (). (92)

) is still an operator on the momentum and
2) to be

Thus we want

(1|ZV§3)(ﬂ2)GEO) ® O'E-O)THP,f, 5.5, c. C/}m)

_ZZ 1|X"R” ny) ) ( )®O..E_’1R)T
X I{p,f,s,s e ). (93)

This is the same as

> s Yl

O, ) (1A (42
i,j

=D 3D WICRTH Ll

ne=0 1i,j
X (127" (1) {p, f1). (94)
This needs to work for any choice of m-parton spin ® color

states ({5, c'},,| and |{s, c},,), so we need an identity of
spin @ color operators,

ZGMHVMWﬂm
—ZZ“R

The right-hand side of Eq. (95) is an operator on the spin ®
color space for m final state partons. On the left-hand side,

the operators 61(0)

p.f1n)

o™ |{s,c},)

DA G2 P fh). (95)

form a basis for this space of operators, as

do the operators o@T, so the operators PP

i ; 0, span this
space and are, in fact, over-complete. That is, one can
always find coefficients (1|Vf';) (W){p, f},) so that we

match the operator on the right-hand side. However, the
choice is not unique. At order n = 1, we have made a
simple choice in DEDUCTOR. It is beyond our scope here to
investigate what choices might be best at NLO, n = 2.

Since (1|X(y?) is infrared finite, Eq. (92) tells us that
V(u?) is infrared finite.

E. A more sophisticated shower evolution operator
Using Eq. (92), Eq. (80) becomes

olJ] = (1|V</‘1) (//‘ )Olupert(ﬂl’/'tHHpH) + O(a +1)
Oui / QUIT). (96)

Since V(u?)F (u?) does not change the number, momenta,
or flavors of partons, it commutes with O;. Thus

alJ] = (O V(ui) F (i Wperd (17, i) [ow) + O(akH)
O(ut/ Q1) (97)

Now we can define the shower evolution operator that
we need,

U3, 13) = V(U3)F (13 Uper (13, 153) FH )V (13).

(98)
With this definition, the cross section is

olJ] = (HOUu?. i)V (i) F (i) low) + Olas™)
Ot/ QIP). (99)

This moves F next to |p,) so that at the hard interaction we
have the proper factors to make a cross section. It also
moves V next to |py). We will see later what the conse-
quences of this are.

In Eq. (99), we use a scale y? that was left undefined
except that it should be small compared to Q?[J] (which
was the scale of ;) and should be large enough to allow
the use of perturbation theory with coupling a(u?). Our
cross section is independent of the value of y?. Let us now
fix on a standard choice near the lower end of this range.
We take uf — p?, where y? is on the order of 1 GeV2. Then

olJ] = (O Ui, i) V(ud) F (ui) lpu) + Olas™)
+ O(u2/ Q).

We can write U(u3, 43) in a simpler form. We note that,
using Egs. (71) and (79),

(100)

Uz, u7) = V(u3)F (13) D (13)D(u7)
V(u3) X~ (u3)[F (u3)
X [F(ui) o K(ui) o Zp(ui)] ™' X (u7)V™

FH )V ()

o K(u3) o Zp(13)]
1(#1)-
(101)

Since the operator [F(u?) o K(u*) o Zp(u?)] is indepen-
dent of scale, this is

Ups, pu7) = V()X (@3) X (u) V- (wy). (102)

F. Probability preservation in U (u3, p?)

The operator U(p3, u?) has an important property, which
we now derive. From Eq. (102), we have

(HU(p3, 17) = AV (3) X" (13) X ()V 7 (1)

Then using Eq. (92) twice, we have

(103)
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(X (43, p13)

(1. (104)

Multiplying any statistical state |p) by (1| gives the total
probability associated with that state. Thus Eq. (104) says
that shower evolution as represented in U(u3,u?) is
probability preserving. Current parton shower algorithms
are typically constructed to have this property. Here
probability preservation is a derived property.

G. Factorization

Let Q?[J] be the smallest scale associated with the
measurement operator O; in Eq. (100), as discussed in
Sec. IIT A. If Q?[J] us close to the scale % of the hard
process with which we start the shower, then measuring
o[J] does not make use of the full power of a parton shower.
Suppose now that Q2[J] > 1 GeV? but that Q[J] < u.
Then perturbation theory for o[J] is still applicable, but
there may be large logarithms, log(ui/Q>[J]) in the
perturbative expansion of o[J/]. In many cases, a parton
shower is useful for summing such logarithms. It takes a
dedicated analysis to show that a given parton shower
algorithm does sum the logarithms associated with a given
operator O, but there is at least a chance that if we use a
parton shower we will do better than if we simply use fixed
order perturbation theory. Thus we consider this sort of
measurement operator and examine how factorization
works when Q?[J] < 2.

We argued in Sec. III A that shower splittings at scale y*
can change the measurement by a fraction u?/Q?*J]. We
can neglect these modifications as long as u? is small
enough, say

w < e Q. (105)
We want € to be small enough that we can regard fractional
errors of order €, as negligible. However, we may want
log(1/€,) not to be large.

We can use our knowledge of the scale of O; by writing

Ulp. p?) = U(pt. e, *LINU(e Q] 7). (106)
Then writing
OU(pi. e,Q*[J]) Ui, e,Q*[T))O;  (107)

results in a negligible error. With this substitution,
Eq. (100) becomes

olJ] = (Ut (i e;Q* [T O ;U (es QT i) V(i) F (ki) low)
+ O(at 1) + Oey). (108)
Now, factorization for the cross section measured by O,

requires that splittings at scales smaller than e,Q*[J] not
affect the cross section. Thus we need

olJ] = (1OU(eQ*[J]. ui) V(i) F (i) lpw) + O(al™)
+ O(ey). (109)

This follows by using Eq. (104) to obtain (1U(42,
e,0*l]) = (1.

We should emphasize that in order to measure the cross
section corresponding to the infrared safe operator O; with
scale Q%[J], it is not necessary to cut off the shower at scale
€,0?[J] as in Eq. (109). Rather, one simply runs the shower
down to u% and measures O; on the final state produced
by the full shower, as in Eq. (100). When we do that, we
are setting e, = pu2/Q?[J], so the error estimate O(e)
becomes O(u2/Q*J)).

H. The shower evolution equation

Using its definition Eq. (98), we see that the shower
evolution operator U (u?, u'*) obeys an evolution equation
of the form

d
WU 1) = =S U 1)

i (110)

Thus

) = Tewp | j"zi’j‘fsw). an

u

Since, according to Eq. (104), (1| (u?, 1) = (1|, we have
(118(:2) = 0. (112)

Using Egs. (98) and (72), we see that the shower
generator S in Eq. (110) is

S(u?) = V() F (1) Sper (1) F~ (1)V 7 (4?)
- (1L v ) ) 716V )
u
= V() F (1) Sper () F~ (1) V7! (u?)

= V() <M2 diﬂz}"(ﬂz))}"‘l WV )

d
- (1220 )16 (113)
o
It is convenient to define
2 iy 2 4 2
Sy(?) =V (@)’ —= V(). (114)

du

Also, we can use Eq. (65) for the evolution of F(u?) and
we can note that since V(u?) does not change the number of
partons or their momenta or flavors, V(?) commutes with
F(u?). Then
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S(u?) =V(?) F (u*)Spere (1) F~ () V7! (4?)
—[F(?) o P()|F 1 (u?) =V(u?)Sy (1) V' (u?).
(115)

The operator V(u?) here has a perturbative expansion
beginning with

V(p*) =1+ VU () + (116)
2w
Then also
2
s
S, =S¥ sy 4 )

A sensible procedure for determining S(p?) is to expand it
perturbatively to whatever order is known, e.g., order o,

S = 28D 52y 4 ..

> (118)

It is of interest to see how this works out at order «.
Since Sper (1?) and Sy, are already order a,, we can simply

replace V(%) by 1 in the first and third terms of Eq. (115).
Then we have

S () = F (1) Spen (1) F~ (1)
— [F(2) o PO F (02) = S (92). (119)

Let us multiply by (1] and use (1|/SV)(4?) = 0. In Ref. [32],
we found that (1|Sl(3:;r(t)> (4?) has a simple form,

(FE2)SE (1) F (12)

= (U[F@?) o SWOWF (W), (120)

where Sr(,le‘r?) (1?) leaves the number of partons, their
momenta and their flavors unchanged but has a nontrivial

color structure.'’ We also divide Sé(;;l)(ﬂz) into two pieces

SEV2) = SUV () + SV, (121)

Here Si(g’n (1?) is the contribution from the virtual graphs

that is proportional to iz, while Sg)él)(ﬂ2> is the remaining
part. We note that [32]
(1185 (#?) = 0. (122)

""The operator [F(u?) o SU0)(u2)]F~" (4?) was called V in
Ref. [32], but here we are letting V' denote a different operator.

This gives us

(1S3 (1) = (L{[F (12) 0 810 ()| F ' (12) + S ()
—[F(2) o PO (u2)] F (12)}. (123)

All of the operators here leave the parton state unchanged
except for being operators on the color and spin space. We

define SS)(,uZ) to have the color and spin structure of the
right-hand side of the equation, so that

SP(2) = [F(2) 0 819 ()] F~ (1) + SV ()

— [F(u?) o PD (u?)] F (1?). (124)

This result also gives us'>
SO(2) = F(2)Spen (W) F ™ (42)

— ) 0 SO F (2) + S )
(125)

Compare this to the more general Eq. (D27) in Appendix D.
To use S (u?), one solves Eq. (110) in the form

U3, 17) = N (3, 17) + /ﬂ:l i—/fu(ﬂ%vﬂz)f(ﬂz)

x asz(/::) Spex (WD) F W)IN (42 423). (126)
where
N3, 17)

2 d 2 2
:'ﬂ'exp(/ﬂ‘LZaS('“ )
w2 M 2

2

x {=[F(u?) o SO (u2)] F~ (1?) + Sf,?'”w})'
(127)

Here the Sudakov factor \V is the exponential of the part of
S that does not change the number of partons or their
momenta or flavors. Normally its spin and color structure is
simplified and the iz contribution is not included. The
splitting operator F (yz)Sl(,Lf )(42)F~ (42) adds one parton.
Its spin and color structure is also normally simplified.
Then Eq. (126) is implemented by solving it iteratively, so
that there are some number of splittings interleaved with
Sudakov factors.

In Ref. [32], we neglected the iz term and we averaged over
spin. Then the right-hand side of Eq. (125) was called H; — V.

014034-18



WHAT IS A PARTON SHOWER?

PHYS. REV. D 98, 014034 (2018)

I. The structure of V(u?)
In Eq. (100), there is a factor V() that multiplies F (p2)

and |p,). We can write this operator as

V() = V(i Uy (uf, pi), (128)

where

Uy(us, 1) = V' (13) V(). (129)

The operator Uy, (%, u'*) obeys the evolution equation

d
W —— Uy (2 ) = =Sy (U Uy (12, 1'%),

m (130)

where Sy (4?) was defined in Eq. (114). Thus

2

o) = Tesp ([
Hi

2
Yesi0). s
U
To use Eq. (131), we apply Uy (u?, u) to a statistical state
{p,f,s,s', c,c'},) that contributes to |p,). We expand
Sy(4?) in powers of a,(u?) with factors involving the
running parton distributions F(4?). The available scales
other than p? come from |py), so the relevant matrix
elements involve y?/u?. Since V(4?) is an infrared finite
operator, the perturbative coefficients in Sy(4?) will then
be proportional to u?/u%, possibly times logarithms of
u?/uZ. Thus the low u? end of the integration is power
suppressed. However, it is important that there is a lower
bound x? on the integration. That is because the running
coupling a,(u?) and the running parton distributions F (4?)
are not well defined for very small z2.
We are left with a factor

V(ug) =1+ O(a(uz))- (132)
We can expand this perturbatively in powers of a,(uf),
using parton distributions F(u?). The coefficients of
al(u?) for n > 1 are then proportional to y2/u%, possibly
times logarithms of u?/uz. Since u? < uz, we can safely
neglect all of the higher order terms and simply replace

V(u?) — 1. (133)

Thus we make the replacement V(ui) — Uy (u?, pu3) in
Eq. (100), giving us

olJ] = (O;U(u, wd) Uy (uF . 1) F (1) |pw)

+O0(as™) + O/ QUP). (134)

The factor Uy (u?, uz) does two things. First, it provides
perturbative corrections to the hard scattering state |p,),

which we need in order to calculate the cross section correct
to N*¥LO. For this purpose, it would suffice to expand the
exponential in Uy, (42, p3) to the desired perturbative order.
The second function of Uy (u?, u3) is to sum threshold
logarithms. For this purpose, it is important that 24, (43, y)
is an exponential.

To understand the relation of the operator Uy, (p?, u3;) to
threshold logarithms, it is instructive to look at it at order o
with A ordering for the shower. It is structurally the same as
the operator introduced in Ref. [32], which concerned the
summation of threshold logarithms.13 The analysis in
Ref. [32] simply averaged over spins, so we leave out spin
here. The operator S),(4?) in Ref. [32] contains several
terms. Rather than listing them all, we simply recall the
most important terms:

Sy(H){p.f.c.c'},)

_ & 1 dz |:<1 _fa/A(rla/Zw“z)) 2Ca
27 J1j(1 /) fu/A(navﬂz) 1-z

+ (1 _fb/B(Wb/Z’ﬂ2)> 2Cb
fb/B(r/bn“Z) 1—-z

] 1@ U{p.f.c.c'})

4, (135)
where C, = Cr when a is a quark flavor and Cy = C,. The
operator [1 ® 1] is the unit operator in the color space. Note
that when p?> < p, the range of the z integration shrinks to
just a tiny region near z = 1. Thus, this contribution might
seem unimportant. However, in Eq. (135) there is a factor
1/(1 —z). This multiplies a factor involving the parton
distribution functions. The result is that Uy (u?,u3) is
substantially different from 1 when the parton distribution
functions are falling quickly as the momentum fraction
grows. This gives a “threshold logarithm” effect that we can
sum in a leading approximation by using Uy (u?, u3).
The form of Sy(u?) depends on the definition of the
infrared sensitive operator D(y?). In particular, shower
evolution uses parton distributions JF (?) that are related to
the MS parton distributions according to Eq. (61). This
relation is discussed in Appendix B. Briefly, MS parton
distributions are defined by removing ultraviolet divergen-
ces using MS renormalization, while the ultraviolet region
of shower splittings is removed with a cutoff at scale u? as
defined in D(u?). See Sec. V C. The evolution kernel P(u?)
for the parton distributions reflects the definition of F (u?).
This evolution kernel appears in Sy(x?), Egs. (124) and
(D26). Thus the choice of shower oriented parton

"In Ref. [32], an approximate version of Uy, (42, u3) was used
to sum threshold logarithms, but it appeared between each pair of
parton splittings at scales 42 and u3 and also between the initial
hard interaction and the first splitting. This caused problems,
which were alleviated by inserting an artificial cut in Sy, (u?).
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distribution functions affects how the summation of thresh-
old logarithms appears in the overall result (134) for the
cross section: part of the summation of threshold logarithms
appears as Uy (u?, p) and part appears as the redefinition of
the parton distributions, F(u?) in Eq. (134). This is
described in Sec. (9.4) of Ref. [32]. If one uses kt ordering
instead of A ordering for the shower, then the shower
oriented parton distributions are very close to the MS parton
distributions and all of the leading threshold logarithms
appear in Uy, (43, p). On the other hand, in the factorization
scheme in Refs. [96,97], a different definition of factoriza-
tion results in the leading threshold corrections being
absorbed into the parton distribution functions.

VII. SUMMARY AND OUTLOOK

We began with an expression (42) for the cross section
o]J] for an infrared safe measurement J calculated at NLO.
The pieces in this expression are infrared divergent in four
dimensions, so that they are defined by working in 4 — 2¢
dimensions. Integrating over the phase space that is
unresolved by the measurement leads to some cancellations
of poles 1/¢. Other poles cancel after factorization of initial
state infrared sensitivity into parton distribution functions.
This leaves a result that is finite in four dimensions, even
though it consists of pieces that are divergent in four
dimensions. We introduced an infrared sensitive operator
D(u?) and an inclusive infrared finite operator V(u?) to
help organize the cancellations.

After some analysis, we have represented the cross
section as Eq. (134). Here the separate factors are all finite
in four dimensions. If we expand this expression to order af,
we have the same cross section that we started with except
for a power suppressed contribution that we have dropped.

In Eq. (134), we have a hard scattering state |p,) and a
factor F(u) that supplies parton distribution functions and
a parton luminosity factor so that if we trace over colors and
spins, we have a differential cross section in the space of
parton number, flavors, and momenta. Then we have a
factor Uy (u?, ui;) that supplies a summation of threshold
logarithms associated with the hard state and also part of
the NFLO perturbative corrections to the hard scattering
cross section. Next, we have a complete parton shower
generated by U(u?, ). The parton shower operator pre-
serves inclusive probabilities: (1{U(u3, u3) = (1. We have
ended the shower at a scale u?. After that, the factor (1|0,
represents the measurement that we want to make. We
suppose that this is an infrared safe measurement that is not
sensitive to soft or collinear parton splittings at the scale y?
or below. That means that the error in the calculation,
estimated by O(u?/Q|[J)?), is small. With such an infrared
safe measurement, the result of the measurement is
not sensitive to hadronization. If we wanted to use a
measurement operator that is sensitive to hadronization,
then we would need to include a model of hadronization

before the measurement operator. It is then less certain what
a good error estimate is.

There is some temptation to imagine Eq. (134) as being
simpler than it is. In our Higgs boson example, if we
expand (1({Uy(u3, ud)F (1) |py) to order af, it is the NLO
inclusive cross section to make a Higgs boson. The operator
U(uz, U%) generates a probability preserving parton shower.
Thus it might seem that one takes the hard scattering cross
section and then distributes the probability across different
final states according to what the shower generates.
However, Uy (u?, p%) F (uZ)|py) is not a cross section. It
is a statistical state, representing different numbers of final
state partons, which come with their own quantum color
and spin states. The shower operator acts separately on each
component of this statistical state. Then if we measure o[J]
for an observable that is more complicated than just the
inclusive measurement of a Higgs boson, the separate
contributions are not sensible by themselves, but they
sum to give o[J] correct to order af with only a power
suppressed correction.

We have spoken of getting 6[J] correct to order o, but, of
course, that is not the point of a parton shower. In applying
Eq. (134), one would evaluate the splitting function S(u?) in
the exponent of U (u?, u3) to order a¥, then retain U (u?, i)
as an exponential. When the desired measurement operator
O; contains widely different scales, the cross section will
contain large logarithms. Then U (u?, 4% ) has the potential to
sum these logarithms. After all, it exponentiates the soft and
collinear singularities of QCD at order a. Unfortunately,
one needs to study the structure of U (,ul% u3) as it relates to
the structure of O, in order to check how well the shower
does in summing the logarithms.

One can wonder whether the formalism of this paper is
of any use for just a LO shower. We suggest that it is. If one
averages over spins and makes the leading color approxi-
mation, the shower operator U(u?, u3;) generates a rather
conventional probability preserving dipole shower. With A2
as the ordering variable, it is the leading color version of the
shower in DEDUCTOR. One can choose other ordering
variables. The operator Uy (u?, u%) generates threshold
corrections, as described in Ref. [32]. These corrections
are numerically important in some cases and could be
included in standard parton shower programs.

In fact, Eq. (134) has been useful in improving
DEbpucTOR. While working on our paper [32] on threshold
corrections, we did not have Eq. (134). The result was a
structure that had certain undesirable features that needed
to be controlled by means of an ad hoc cutoff. The current
more general formulation in Eq. (134) removes this
problem, although it does not much change the numerical
results. We present phenomenological results from the new
version of DEDUCTOR in a separate paper [33].

The formalism is based on an operator D(u?) that
encodes the infrared structure of QCD starting with a state
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with any number m of final state partons. If we know D(u?)
up to order o, then we generate, in an automatic way, the
subtraction terms for an NLO perturbative calculation. See
the example of the toy model in Appendix A. This appears
to us to be simpler than constructing the subtraction terms
directly [110-117]. From D(u?) at order af, we also
generate, in an automatic way, the shower splitting kernels
at order af.

The perturbative contributions to D(u?) are not simple in
full QCD. Furthermore, their form depends on choices like
the momentum mapping scheme and the choice of a
hardness ordering variable. At order a!, we have made
the required choices, made suitable approximations, and
calculated the corresponding splitting functions S(u?) in
Refs. [32,33]. Similarly, from D(u?) we generate the
inclusive infrared finite operator V(i?). In general, there
are some choices that one can make in defining V(u?). At
order !, we have made the required choices, made suitable
approximations, and calculated Sy, (4?) in Ref. [32,33].

In the first order DEDUCTOR shower, we need only
dDW (u?)/dlog(u?), which is finite in four dimensions.
For subtractions and matching to the shower, one needs the
full integrated operator D(!)(u?). Techniques for this are
described in Ref. [95] and the earlier papers [121-123].

We leave it to future work to make suitable choices for a
momentum mapping scheme, a hardness ordering variable,
and definitions away from the strict soft and collinear limits
so as to construct order a? contributions to D(u?). With a
choice for color structure, we could then also construct
V(u?). We thus hope that the formalism presented in this
paper might prove useful in developing a parton shower
with order a? splitting functions.

We also hope that the formalism presented in this paper
might provide support for the view that a parton shower is
similar to a more straightforward perturbative calculation at
NKLO. In this view, the parton shower is an approximate
way to calculate cross sections, but the approximation is
systematically improvable by working at higher perturba-
tive order. In a practical program, there may be further
approximations with respect to color and spin. These need a
separate justification.
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APPENDIX A: A TOY MODEL FOR PARTON
SHOWER OPERATORS

The construction in this paper relies on an operator D
that contains the infrared singularities of statistical states
|p) that represent the color and spin density matrix elements
of QCD. The operators D can be used to construct both the
infrared subtractions needed for a perturbative calculation
of the cross section at N¥LO and also the splitting kernels
needed to construct a parton shower at the corresponding
order, N¥~'LO. This construction has been quite abstract,
especially since we lack an example of D at N°’LO, which
would correspond to an NLO shower.

In this Appendix, we illustrate some of the ideas of
the paper using a toy model that provides a concrete
example of |p) and D at N?LO. In this example, we
construct the splitting kernel Sy, at NLO. The toy model
is very simple. There are no parton distributions. The
coupling @, does not run. The momenta are one dimen-
sional. There is no spin. There is quantum color, but the
color structure is vastly simplified compared to what one
has in real QCD.

1. Statistical states in the toy model

We use momentum states {py, ps, ..., p,,} for m par-
tons, with each p; being a real number in the range
0 < p; < c0. We use “color” represented by basis states

labeled by an index pair (cy, cy) with ¢y € {0, 1, ..., m},
cy € {0,1,...}. The statistical states have the form
|{p}m’ (CR9 CV)) = |{p1’p2’ LERE] pm}’ (CR’ CV))' (Al)

These are defined to be invariant under permutations of the
p;. The Born level cross section is [{},, (0,0)).

We will make use of color operators Cr and Cy that act
on the space of statistical states. These have the form

CR — 1 + AT 5
Cy =1+ Al (A2)
where A} and A} are raising operators:
A]TQHp}m’ (crsev)) = {phms (cr + 1cy)),
ATvHP}m, (crsev)) = Pt (. oy +1)). (A3)
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The inclusive probabilities corresponding to our statistical states are defined by

(A Phm (e ) = (Nl) (A4)

Here N, =3 represents the number of colors. Thus keeping only ¢z = ¢, =0 is analogous to the leading color

approximation.

We include an operator representing an observable. The observable depends only on the parton momenta, not on their
color state:

pi+pi+---py
Q2

O} (crocy)) = (1 T )|{p}m, (cur0))- (A3)

2. Perturbative hard scattering states

We take the perturbative hard scattering states in the toy model to have the form
p) = 1p0) + a(1p"0) + [pOV)) + & (|p>) + [p11) + 1pOD)) + O(ad). (A6)

Here | p("k'”v)) represents a perturbative contribution with n; real partons emitted and n,, virtual loops. The contributions are
defined to be

p©9) = [{}.(0.0)),

0? dp2 <p2>e Q2
<1,o>:/ (P clip),. (0.0)),
|p ) 0 p% Q2 p%+Q2 R|{p}l ( ))

o Jk2 2\ € 2
|p(0,1)) :_/ & ﬁ —CVH}O:(O,O)),
o Kk \Q*) kt+0Q°
9 dp; (p2>“/92 dp? <p2>" Q°
(2.0) :/ N 4 (P YT m 0.0
d P52, (U, 0)),
= P53 G) | wria\e) gl 0.0)
oy = [C () [ () e
o pt\Q*) Jo kK+2p}\Q*) ki+ pt+ Q?
wdk% k%)e 0? dp% <p%)€ Q2 }
T e\ =5 CxCyl{p},. (0.0)),
A ki <Q2 A pr+23\0%) pP+IE+ Q2 RCvl{p}1.(0.0))
odk: [K2\€¢ [ dk? K2\ € Qz
02))y = 2022 _aa (kA YT @ (0.0)). A
o75) A K3 <Q2> A k2 + 2k3 <Q2> 2+ 12+ 0 v[{}0(0,0)) (A7)

|
The integrals here are regularized in the infrared by factors  cancellations, with the result that (1/OQ,|p) is infrared
(p?/Q?)¢. The individual contributions |p("="™)) contain finite.
singularities when parton momenta become small and 1/e
poles that arise from integration from virtual parton 3. The infrared sensitive operator
momenta. Furthermore, the contributions with real parton
emissions have different color states than the corresponding
contributions with virtual loops. However, when we cal-
culate the cross section (1|O,|p), we can use the fact that

The infrared structure of this is fairly simple and can be
represented using the infrared sensitive operator D(u2) with

D(u3) = 1 4 a(D10 () + DOV ()
(11Cx = (1|Cy, (A8) + a3 (DO () + DD (i) + DO (1))
+0(ad), (A9)

so that the color contributions from real emissions and
virtual loops match. Then, in fact, there are real — virtual with
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w dp?, p2\¢
D(LO)(ﬂg”{p}m’(ckaCV)) = / Q—H < erl CR|{p}m+l’(CR’CV))’
0 Pmti 0

W2 di? ( >

D(O’l)(ﬂgﬂ{l’}m’(ck,cv)) = —[) k—% §>€CV|{P}W(0R’CV>)’

Rdpyo (Pna\© [#_ dpy, Prir )¢
DO () {phm (cx ) = / ( 12 / +1 1) 2 (DY (o 04)).

Pria \ O° Py +200.0 \ O

2dp? P> € fu? dk? K2\ ¢
DO 1 ) = [ () 7 (3
WP () = { [ Bt (P ) [ S (4
wdi> (k2N K dp? P2 \¢
)R @) e () Jeere e

Al (k3N [ dik3 K2\ €
DO2) (2 (e, :/ﬂ LY / 1 L) 2 (cn. ) Al0
(ﬂs)Hp}m (CR Cv)) A k% Q2 A k%—f—Zk% Q2 V|{p}m (CR Cv)) ( )

From D(u2) we can construct D! (u2),

D' (u2) = 1= a (DO (u2) + DOV (u2)) — a2(D20) (u2) + DIV (u2) + DOV (u2) — DO (u2) DO ()
= DO 2)DOD (u3) = DO (u3) DO () = DOV (1) DO (13)) + O(exd). (Al1)

4. Subtractions for the hard scattering states

We can now construct the subtracted statistical state including the measurement operator,
p) =D~ (43)O,lp). (A12)
This has the expansion
) = 1p0) + a(1p"0) + [pOV)) + &2 (1p>) + [p11) +1pOP)) + O(ad). (A13)
At first order in ay, there are two terms. The first is
p) = O,[pt ) = DO (3) O, |p ). (A14)

This is

© dp? 2\ € 2 2
o) = | pi(g—) {e<p%<Q2>pﬁQ2 (1+§)—e@%<uz>}cR|{p}l,<o,o>>. (ALS)

The first term is singular when p? — 0, but the subtraction from D(1:0) (412) eliminates the singularity. Then (1|p('?)) is finite
at € = 0. The coefficient of a, that corresponds to virtual graphs is

pOV) = 0,1p V) = DOV ()0, |p1 ). (Al6)
This is
R 0 dk2 k2 € QZ
o) == [“ B (5) (e Lo < fevla. 0.0 (a17)

The first term has a 1/e pole from k3 — 0, but the subtraction from D! (42) eliminates the k3 — O singularity. Then
|01 is finite at e = 0.
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At order a2, there are three terms in |p). Let us look at the contribution from two real emissions:
p29) = 0,[p29) = DY (2)0,[p09) = DIV (2)0,[p19) + DIV DI (2)0,p0%). (A1)

This is

) dp3 / = dp (ﬁ) ‘ { ri [ 0’ ( pi+ p%)
2.0)) — ap;y apy ( P1 2 2 2 2 1
=) A <Q2) o pi \@*/) \pi+2p3 Olp2 = 0)0lpi < 0 )p? I A

2
0003 < 210007 < )] - 0002 <) o007 < @)L s (1+2) -0t < 2]}

x Crl{r}2, (0.0)). (A19)

Each term here exhibits infrared singularities, but the singularities cancel. Then (1|p(>%)) can be evaluated at e = 0.
Specifically, for p% — 0 at fixed p%, the first term cancels the third term and the second term cancels the fourth term. For
p? — 0 with fixed p3, the first two terms are nonsingular, while the third term cancels the fourth term. When p3 — 0 and
p% — 0, the first term cancels the second term and the third term cancels the fourth term.

The contribution to |p) from two virtual emissions is similar. We have

p10%) = 0,]p®%) = DO2(2)0,]p0%) = DON ()0, OD) + DOV ERIDION ()0, |00, (A20)
This is
w dk3 (k3 wdk? (k3 K2 Q?
p(02) = 1 —0(k3 < u2)0(k3 < 2
o= [ <Q2> 5 <Q2> {k?+2k%{k%+k%+Q2 = pjotr =)
QZ
- 005 < ) [r g =00 <48)| }G31{00. 0,00, (a21)

Each term here exhibits 1/e poles, but the poles cancel. The pattern of cancellations is the same as for [p(>9).
The contribution to |p) from one real emission and one virtual emission is a little more complicated. We have

pUD) = O,lp"V) = DD (u3)0,1pV) = DI () O, %) = DOV () O,1p)
(

+ DO () DOD (u3) 0,1 0V) + DOV (1) DO (43) O,1p ). (A22)
‘We obtain
o 2 2\ € de k2 2 k2 2 2
pry = [T () [ (ALY (ot < 0 T [ ] (14 2)
o pr1 \@ 0 0 ki +pi+ Q7 [k +2p7  pi+ 2k 0
+9(P%<ﬂ3)9(k%<ﬂg)[2k% = |+ 00t <2122 - 2006 < )]
’ Yk +2pF  pr 2k +0 ’
0? pi
#0007 < @008 <) %o (14 1) byl )1, 0.0), (a23)
1

I
Each term here exhibits 1/e poles and singularities but T3 + T5. For the singularity when p? — 0 and k? — 0,
the poles and singularities cancel. Then \f)(l’l)) can be T, cancels T5, T, cancels T,, and T4 cancels T5 + T.
evaluated at ¢ = 0. Specifically, expanding the square We thus see that D~'(42) provides subtraction terms
brackets gives us seven terms, T;, ie{l,....,7}. For the  that cancel all of the singularities of |p) at order o, and
singularity in the integrand at k% — 0 with fixed p%, T, a?. If we had wanted to construct all of the subtraction
cancels T and Ty cancels T, + T’s. For the singularity at ~ terms directly, it would have been somewhat difficult.
p% — 0 with fixed k%, T, cancels Ts and Ty cancels  However, constructing D(u2) for our toy model was quite
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simple. Then obtaining the subtraction terms was
automatic.

We also note that the perturbative states |p("=™)) have
nontrivial color structures in our toy model. Then the
operators D) (42) must reflect this color structure. If

they do not, the subtractions will not work.

5. The perturbative shower evolution operator

We are now in a position to construct the order o, and a?
terms in the perturbative shower generating operator,
Eq. (73),

d D(ﬂs)

Spert(/”g) =D (ﬂs) Sd/,tz (A24)

The operator S, will have the expansion

Spert(12) = ay(Sod (12) + S (12))
+ 2 (SEY (2) + S (12) + S (2))

+ O(a), (A25)
where
d
St (u3) = ﬂ.zd—ﬂzD“’O) (u3).
S
d
0,1
Sper (12) =2 5 DOV 1),
S
(2.0) d d
Spert’ (12) = p =D (u2) = DI (42) 2 — DI (u2),
pe s d/«tf s s d//l? S
11 d d
St (42) = 42 dﬂzD“")(ﬂS)—D(l’o)(ﬂg)ﬂZd—ﬂzD(o‘”(ﬂ?)
S S
d
= DOV ()t =D Gi),
T
02) 2 , d 0.2)(,,2 0,1)(,,2Y,,2 d 0,1)(,,2
Spert (ﬂs):ﬂsdiﬂzp ’ (ﬂs)_D ' (/"s)/’tsdiﬂzlp ’ (/"s)'

(A26)

To use this, we first need the derivatives of D) (42).
The derivatives of D9 (42) and D19 (42) are simple

d
ﬂ% d,u2 DY) (M%)Hp}m’ (crocy))

2
(Qz) Col{p1s oo P s} (ca €4):

24 pos

22D P (ex.0)

_ (”) Col{P s (o €0)): (A27)

Q2

Here in the state |[{pi, ..., P> Pms1}> (CrsCy)), We have
substituted yu for the real number p,, ;.

The derivative of D) (42) is a little more complicated.
There are two terms. If we rename the integration variable
and permute the arguments of the statistical state to match
in the two terms, we obtain

d
/f‘g d—MzD(Zm (ﬂg)Hp}ma (CR’ Cv))

)
Q2 0 P%H] Q2
X|:2p3n+1 2_’_2#52}
P 205 Hs 2P0,
X CRU{P1 s P> Pin1s s} (€ ).

(A28)

The derivative of D2 (42) is similar to the derivative of
DO (ud):

d
ﬂg WD(OQ) <ﬂ§>|{p}mv (CR7 Cv))

) [ et
Q) Jo k@) Lkt +28 " ik + 20

X C%,|{p}m, (CR’ CV))'

(A29)

The singularity at k — 0 gives us a 1/e pole after
integration.

The derivative of DU-!)(42) is more complicated. After
combining terms, we obtain

d
yEWD(LU(ME)Hp}W (crscv))

_ (s /Ml’k2 S K, _m
0’) Jo 0’ k%+2ﬂ§ 2+ 2k3

2\ €
X CRCu{P1s oos Pt} (ca 04) — (g—)

X/ﬂfdpi,ﬂ (p%n+1>s|: p72n+1 I 3 ]
0 Paa \ Q) ph 2w pE+2pk,

X CRCV‘{p}m+1’ (CRv CV))' (A3O)

In the first term, there is a pole from the integration region
k? — 0, while in the second term there is a singularity
at p%n 41— 0.

With the derivatives of D) (42) at hand, it is
straightforward to use Eq. (A26) to construct the shower
kernel Sper(12).
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The shower kernel at order « is simple:

SV WP Y s (s ev)) = CRILPL. oo Do s} (Crs €y)),
SV WP Y s (asey)) = =Cyl{p Y (crocy)). (A31)

For the shower kernel for two real emissions, we find

Sl )P (e )
— </’l_s) /ﬂ; dper] (p2m+l>e
0*) Jo pha \ @
an+1 /‘g 1
) ) 7t 202
pm+1 + Hs Hs + pm+1
XCIZQle’"'vpmvan—luus}a(CR,Cv))-

(A32)

The subtraction removes the infrared singularity at
p2. — 0, allowing us to set € — 0. This gives

SZO ) (P (o))

_/ﬂs ip? [ 1 2
0 e p%n+] +2M% M% +2p2m+1
XC12{|{p17""pm’pm+l»/’ts}’(CRvCV))' (A33)

For the shower kernel for two virtual loops, we find a
result that is analogous to what we found above. The
subtraction removes the infrared singularity at k% — 0 so
that we can set € — 0, giving

Spert UD){P e (cro 1)

:/ dk2[ ! 2_\e
0 K+ 2u2 p? + 2K

P} (crscv))
(A34)

For the shower kernel with one real emission and one
virtual loop, we obtain

Spert U2){P e (cro 1)

() ) [ e
\2*) Jo o’ k%+2u§ 12+ 213

XCRCVHPI""ﬂpmﬂ/’ts}’(CR7CV>)
— <’M§>€/MZ dppy (p3n+l>€
) Jo pha \ @

2 2

% |: pm+l Hs _ 1i|
Pl H2ut pE42p2,,
X CRCV|{P}m+l > (CR’ CV))'

Again, the subtraction removes the infrared singularities.
Then we can set ¢ — 0, giving

(A35)

Sl()ert (/’ls)|{p}m’ (CR’ CV))

s 1 2
:_/” dk%{z ) 2}
0 kY +2u5  ps + 2Ky

X CRCV‘{pl’ (L] pmn“s}’ (CR’ CV))

/us dp? { 1 2 }
0 Tk 2l W +2p

X CRCV‘{P}mM’ (Crscy)).

(A36)

Thus Eq. (A26) gives us a completely straightforward
ngnv (12). All of these
operators at order a! and a? are infrared finite.

way to calculate the operators S

6. The operator V(u?)

We also construct an operator X' (u?) in Eq. (79). In our
toy model, which has no parton distributions, we have

X(u3) = D(us). (A37)
Then we define an operator V(u?) using Eq. (92),
(X (3) = (1 (us). (A38)

In our toy model, at least up to the order that we have
defined it, the relation (1|Cgr = (1|Cy gives us

(1[DG2) = (1. (A39)

Thus

Vi2) = 1. (A40)

Then according to the definition Eq. (98) (with 7 = 1) we
have

U3, u7) (A41)

= uperl (M%’ /"%)

The full shower operator U is the same as U ey

APPENDIX B: TRANSFORMATION TO SHOWER
ORIENTED PARTON DISTRIBUTION
FUNCTIONS

In Sec. VIB, we introduced shower oriented parton
distribution functions that are adapted to the choice of the
cutoff y? used in the shower. The shower oriented parton
distributions f,/4(n,, 4*) are related to the five-flavor MS

parton distribution functions fa i A(na,

kernel K. Following the notation of Sec. VI B, the trans-
formation of the parton distribution for hadron A is

2) by means of a
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V2t Y far (2] 212,

a/A ’7&7” Z/

(B1)

The kernel K depends on the flavor indices @’ and a, a
momentum fraction variable z and the scale u>. We also
allow it to depend on the momenta and flavors {p, f},, of
the partonic statistical state. Then K has a perturbative
expansion beginning with

K (212, {p. 1)

2
5,501 - 2) L o)

2

K& @ {p. f 1) + O().
(B2)

In order to keep the presentation in this paper as simple
as possible, we set the masses of all five quarks d,u,s,c,b to
zero. In a more complete picture, one uses a variable flavor
number scheme. Then, even with MS evolution, we change
the renormalization scheme when the scale y decreases past
the bottom quark mass and then the charm quark mass.
Thus the p function for a, evolution and the parton
evolution kernel change. For the shower oriented parton
distributions [,/ (1,, #*) and f,/5 (17, 4*), there is a differ-
ent dependence on the c- and b-quark masses in the
evolution kernels compared to what one uses in the variable
flavor number version of MS evolution.

There are various possible versions of wa) (z, 1%,
{P,f},n)- The simplest is

KE:Z’I)(Z’”Z? {p’ f}m)
B 2zC, 0% ﬂ
_5aa’ |:1 _Z10g<(1 _Z)zpa'QH +
+ ZPreg 10 ( lei )
s 1- Z)Zpa : QH

Oi ) P
2pa On at (2)

+ 80 8(1 = 2)7, log( (B3)

The first order MS DGLAP kernel is

MS 2 Ca re;
P (2) = M[ < } + PE(2) 4+ 8,001 = 2)y,. (B4)

I—-z],

Here C, = Cg and y, = 3Cg/2 when a is a quark flavor
and C, = Cy, y, = 11C,/6 —2Tgn¢/3. The functions

P%(z) and P< >( ) are

Pi3(z) = Ce(1-2),  Pi(z) = Ce(l -2),
P (2) :2CA<] Sz —Z)>7 PE(z) =0,
Pyi(z) = Tr(1-22(1-2)),  Pi(z) = Tr2z(1 - 2),

I- €
=G+ 25), Alo-ca 69

The kernel K (2, 42, {p. f},,) is a distribution in z with a
singularity at z — 1. The singularity is represented by the +
prescription in the first term of Eq. (B3) and by the term
proportional to (1 —z). The coefficient of §(1 —z) is
associated with how the virtual loop function DV (4?) is
treated. We have here taken a simple choice based on what
is in Ref. [32], but other choices are possible.

The logarithms of Q%/[(1 —z)2p, - Q] in Eq. (B3)
come about as follows. We attempt to calculate (1| (u?)
using the definition (79) of X'(u?). We look at emissions of
a parton in the initial state. Call the virtuality associated
with this splitting |k?| = 2p, - P,us1. We integrate over ||
and over the momentum fraction z. We use the hardness
variable AZ, Eq. (55), used in DEDUCTOR. This means that
there is an upper bound for the integration over |k,

2pa . QH qu
on

k2| < (B6)

There is an infrared divergence coming from the |k*| — 0
limit of the integration. This divergence is regularized by
integrating in 4 — 2¢ dimensions. Now, dimensional regu-
larization effectively acts as an infrared cutoff on the
transverse momentum

k3| = (1-2)|k*|. (B7)
Thus we integrate over |k%| with an upper bound
pd Q
K] < === (1= ). (B8)
Of

The 1/e pole produced by the integration over |k%| is
removed by the factor Zg(u?) in X(u?). This leaves us with
alog(Q%/1(1 = 2)2p, - Oul), which multiplies the DGLAP
splitting kernel P,;(z). This remaining contribution does
not have a 1/e pole. It has a term log(u?/u?), where u? is
the scale that defines the upper cutoff in the momentum
integration and y? is the renormalization scale. We do not
see this logarithm because we set these scales equal to each
other. The Feynman rules for the splitting functions have
some explicit € dependence, giving a function of the form
fle)/e = f(0)/e + f'(0) + O(e). The term f'(0) gives us
the contributions Pfa), ().
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This calculation leaves us with an order a, contribution
to (1|X(u?) = (1|V(?*) that we need to eliminate because
it does not vanish in the limit y> — 0. If we did not
eliminate this term, we would lose Eq. (133). The offending
contribution can be removed by the factor C(4?) in X'(u?)
if we choose the definition (B3).

We also note that if we use k% instead of A2, Eq. (55), as
the shower hardness variable, then there is no log(1 — z).
Then by redefining y? by a factor Q% /[2p, - Oy, we obtain

Kol Ap. f),) = -Pi(2). (B9
That is, the shower oriented parton distribution functions
are close to the MS parton distribution functions. However,
they are not quite equal. That is because for the shower
oriented parton distribution functions we are imposing an
ultraviolet cutoff with a theta function, while with the MS
prescription we subtract a pole 1/e.

We now turn to a construction that puts a different
cut on parton splitting, leading to a less simple kernel

Kfle/(z, w2, {p, f}n). We retain the ultraviolet cut (B6)

when 2 is not too small. However, when 2 is small, the
upper bound Eq. (B8) can be very small indeed. We can
relax this cut to

] < max [ 201 -2 |, @10

H

where m? is, say, 1 GeV2. Then the matching kernel that
defines the shower adapted parton distributions is

K& @ Apfh)

2zC, . 0% Hs
s { log <m1n {(1 - Z)Zpa QH m¢]>}+
reg .
+ ZP 7) log (mm [(1 - Z)2pa O’ ml])

. Ox ﬂs
4+ 0420(1 = 2)y, 1o (mm {—,
U eralog \min |5 ot
- P(GA)(Z).

aa

(B11)

When m? l < u2, this reduces to our previous definition.

When u? < m3 Q%/2p, - Oy, this becomes, after using
Eq. (B4),

s Hs MS €
K22, {po ) = log( )P%S(@—P‘ag(z).

J_
(B12)

If we write Eq. (B1) to first order as

Faa(ina, 1?) = a/A(na/z )

/ K& @ {p. f1n)

Xfa/A(rla/Z?mL) (Bl?’)

and use Eq. (B12), recognizing that the MS kernel gen-
erates scale changes in f (1,, #°), we find

Faraaet®) = 385 (00 i) = [P35, (00 1) = £33, (7 m3)]
a ldz € MS >
+i;¢ ?Pad@) a’/A(rla/vaJ_>
Z‘/Z(na,mi)

a /A(rla\/Z mJ_)

Z/ dz
(B14)

That is, with this definition, for small values of the scale ,uz,
the shower oriented parton distribution functions approx-
imately equal the MS parton distribution functions at scale
mi However, at larger scales, the shower oriented parton
distribution functions evolve differently from the MS ones.
DEDUCTOR uses a definition similar to this, except with
non-zero ¢ and b quark masses and a corresponding
variable flavor number scheme."*

APPENDIX C: CHOOSING Qy AND p2
DYNAMICALLY

In Sec. IV C, we introduced a vector Qy that is used to
set scales and to help define one measure of hardness, A2,
that can be used in the shower. [See Eq. (55).] We stated
that one can use the intended measurement operator to set
Oy globally. There is another possibility: we can use the
statistical state |py) that represents the hard scattering,
Eq. (58). This state has the expansion

0 =Y o [Pk S lp st

('t {s:8"c.¢' Y

X ({p.f.s.5 e} ulow). (c1)
Our example process in this paper is Higgs boson pro-
duction. With this example, the Higgs boson momentum py
is part of {p, f,s,s",c,c'},,. We can set Q% = m} and set
the rapidity of Qy to be the rapidity of p, while letting the
transverse part of Qy be zero. Another example would be
jet production, for which the Born process is the production
of two jets. In this case, we could use whatever infrared safe

"“The contribution from Pifa) (z) is ignored in DEDUCTOR.
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jet algorithm we like to find the two highest Pr jets in
{p}- Letting the momenta of these jets be P, and P,, we
could set Q% = (P11 + P31)/2, set the rapidity of Qy to
the rapidity of P; + P,, and set the transverse part of Qy
to zero.

This procedure requires some additional definitions
since we have defined |py) = D' (ud)|p(uz)), so that
we need Qy and uf = Q% to create |py), but we cannot
use these variables before they have been defined.

Let us see what is needed in the case of jet production,
for which the number of final state partons at the Born level
is m = 2. We content ourselves with what happens with an
NLO hard cross section. We have

) = [ { e

+ B e 2)) Do) e0)
# 200 00 - D)) + Ofad)

(€2)

We need to implement setting 4 to 7. In the case of the
argument of a, this is a simple replacement. For the Born
statistical state |p(>?)), there is nothing further to do. In the
terms |p!(u?)) and DOV (42)[p9) (4?)), there are can-
celling poles. Then from D! (4?) there is a left over
log y? from the cutoff x2 in the integration over the virtual
loop graph. We simply have to set > = uZ here. In the term
|p30), there is nothing further to do. In the term
DO (42)|p20), the momenta {p}; determine the
momenta {p}, in [p>?) and also the splitting variables
k2, z, ¢ in D10 (4?). Increasing the ultraviolet cutoff y?
provides an increased range for k>. As a result, the range in
{p}; that is covered increases. Setting > = uZ, we check
whether the point {p},, is inside the allowed range. If it is,
we multiply by 1. If it is not, we multiply by zero.

It seems clear that this procedure works beyond NLO,
although it becomes more complicated. We work term by
term in the expansion of |p,;). Once we have set Qy and 2,
we set u*> = p? in the argument of a and in all explicit logs
that come from virtual loop integrals. We check whether the
point {p},, is generated by a subtraction term with an
ultraviolet cutoff pi. If not, we omit this term. Our
description here has been algorithmic. To formulate this
in terms of operators on the statistical space requires
additional notation, which we omit.

APPENDIX D: RENORMALIZATION

In this paper we use MS renormalization. In particular,
this defines o, and the MS parton distributions that we start
with. In the parton shower algorithm that we obtain, each

element of the calculation is infrared finite and ultraviolet
finite in four dimensions. However, part of the cancellation
of infrared divergences is tied to the removal of ultraviolet
divergences by renormalization. For this reason, the details
of the ultraviolet renormalization scheme are significant. In
this Appendix, we gather the most important formulas that
we use, mostly following Ref. [119].

1. Renormalization of the QCD coupling

In the MS scheme, the renormalization of the coupling

. 15
1S

ad™S, = Z,(u*)u*a,(u?). (D1)

where u is the renormalization scale, af™® has mass
dimension 2¢, and

(D2)

The renormalization constant of the strong coupling is
given as a sum,

e ST

The scale independent coefficients of the singularities,

4]
Zy
Z (D)

k=1

Z([f’k], can be given in terms of the expansion parameters
of the f3(a,) function by a recursion relation:

Zn 15 .
=N gz, 2 =g, (D)

I=k

The running coupling obeys the evolution equation

(12
MzM = —a,(1*) (e + f(ay))

du?
© 2\ n
_ 2 (1)
= —ay(u )<€+ ; {7} ﬂn>’ (D5)
where the first two f3; coefficients are
1 ICA - 4TRI’lf
6 )

17C2 = 10C, Tgny —
6

b=

/32 _ 6CFTRnf '

(D6)

We find this definition useful for our purposes. Refer-
ence [119] uses a different strong coupling, &, with a, = S.&.
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2. Renormalization of the parton distribution functions

The MS parton distribution functions enter the cross
section formula (42) in the form

[FM_S(/'l)OZF( 2) |{pfss CC}m)

B Z/l dza/l dzy f ,/A na/za, 2) 1355 1o/ 20, 1)

b b nc a)nc(b)ns(b)4pa * Po

xZp(a,d';z,, as(/'tz))ZF(b’ b'; 2y, as(4?))
x|{p.f.s.s" c.c'}y).

(D7)

The renormalization factor Z is a product, so that each of
the two parton distributions is transformed separately. The
renormalization kernel Z relates the renormalized parton
distribution to the bare parton distribution:

710 =2 [ s ) B 0120,

(D8)
The kernel has a perturbative expansion
Zp(a.d'sz,a(0)) = 8,,48(1 = 2)
0 n [n.k]
as(ﬂ2> ! Za,a’ (2)
LY [ B o)
n=1 T 1= €

It follows from the requirement that fgg/‘rj( ) is indepen-

dent of x> and fa A (1, 4*) has no poles that the renormal-

ized parton distribution function obeys the DGLAP
evolution equation,

dfis, (n, 1) /1 dz s
At =P,z 1 D10
0 |~ Paa (z.12) 38, (n/z.4%). (D10)
where
P /(z,,uz):f: %" p oy (D11
o n=1 2z
with
(M) (N — o]
Pa,a’(z) nZaa (Z) (DlZ)

The coefficients of 1/e to higher powers are then deter-
mined by the recursion relation

n— l/ deZaL z/x

x [P<"7’) (x) =8, 40(1 —

c,a

[n.k+1]
Za,a’ (

xﬂﬂn—l]‘ <D13)

We can also write the evolution kernel as

U dx
Pou(z.p?) = —/ YZZFI(‘Z’C;Z/X’ (1))
z c

dZp(c,d';z, a,(1%))
x ut —L a7 . (D14)

The factors contain poles 1/¢¥, but the poles cancel.

3. Renormalization scale dependence

The physical states |p(u?)) defined in Eq. (43) represent
the quantum density operator of the partonic scattering. It
is constructed from amplitudes |M({p, f},,)) and conju-
gate amplitudes (M({p, f},)]. We include the proper
Lehmann-Symanzik-Zimmermann (LSZ) factors for the
incoming and outgoing partons so that the amplitudes are
S-matrix elements in the renormalized theory. With mass-
less partons and dimensional regularization in Feynman
gauge, this amounts to multiplying by field strength
renormalization factors Zl,_,l/ * or Z;l/ ® for each external
leg of an amputated graph. Then |p(i?)) is independent of
the renormalization scale if calculated at all perturbative
orders. When we calculate it up to order o as in Eq. (43),
we have

2 o)) = Ot (D15)
g2 P(#) = Ola™).

Let us consider next the infrared sensitive operator
D(u?). This operator depends on two scales, the renorm-
alization scale y> and shower scale 2. We have set these
scales to equal each other, but in this Appendix we
highlight their separate roles. Thus we write D(u?, u2)
with two arguments and let the operator with only one
argument denote

D(u*) = D(*, u*).

For any basis state |{p,f,s,s,c,c'},), the state
D, 12)|{p.f.s.s'.c.c'},) is to be defined so as to have
the properties of a physical statistical state |p(u?)). It is
constructed in the renormalized theory and has the proper
field strength renormalization factors for its external
partons so that D(u?, u2) is independent of the renormal-
ization scale up to the order that we calculate. That is, if
D(u?, u2) is calculated up to order ¥, we have

(D16)

0
MZWD(/#,#?) = O(at™).
u

(D17)

In order to calculate the parton shower generators
Spert(#?) and S(u?), we need the total derivative of
D(u*) with respect to the common scale.
D(u?, u2) is independent of x>
tive with respect to p2:

Since
, this is actually the deriva-
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d 0 0
—D 2 =—7D 27 2
0P (1) o (u ”S)ﬂg:,,er@us D(? us) -
0
= o —— D, 13) +O(as™). (D1B)
=’
The perturbative expansion of this is
d e (@)]"
271) 2\ — S 27'D(”) 2’ 2
W g2 D) ;{ o ]M 92l ﬂs)ﬂgzﬂz
+ O(ak*). (D19)

Using this, the generators of the perturbative shower
operator can be obtained from Eqgs. (73) and (49) as

— s 2y = | Z_pn)
,bt2 pert(ﬂ ) [aﬂs (ﬂ ﬂs)
n—1 B a
- ZD(k) (ﬂz)w =) (2, pi3)
k=1 Hs w=p

(D20)

This simplifies the shower generators. The operators
D" (42, u2) always contains a theta function like (A% <
u2) or the equivalent constraint for the loop contributions.
The partial derivative turns one of these theta functions into
a Dirac delta function.

The inclusive infrared finite operator V(u?) is defined by
the condition (92). This operator is derived from the
infrared sensitive operator D and, just like D, depends
on both the renormalization and shower scales. Thus we
write V(u?, u2) with two arguments and let the operator
with only one argument denote

V(u?) = V(2 1)
Using Egs. (79), (92), we have

([F () o

(D21)

K(u?) o Zp(u?)|D(p? . 13).
(D22)

(V2. p3) F (u*) =

Recall that [F(4?) o K(u?) o Z¢(u?)] is independent of u>.
We have just seen that D(u?, u2) is independent of x? at
fixed u2. Recall from Sec. VID that we fix the color and
spin content of V(u?,u?) to make Eq. (D22) work for

(1|V(u?, u2). Once we have done that for one choice of y?
at a given u2, we can keep the same operator V(u?, u2) for
other choices of > and Eq. (D22) will continue to hold.
That is, we can define V(u?,u?)F(u?) so that it is
independent of x? up to whatever order we calculate:

0

o V(2 4$)F(@?)] = 0+ O(at!).  (D23)
This gives us
V(2 p3)™! a%zV(uz,u?)
— - | Fa) £ o). 2w

The generator Sy(u*) of Uy(u3, u3) is defined in
Eq. (114) as

1 0 0

—=Sy(u?) =V~ (1) [—V(/t H3) F V(W vﬂs)}

H ou* ous W=t
(D25)

This gives us

L o oy D dFG2) o,

qusv(ﬂ)—v (u )a s V(i 13) i 761# (1)
(D26)

Here the first term represents the evolution of the pertur-
bative part of )V and the second term gives the evolution of
the parton distribution functions. This generalizes Eq. (124)
for the first order contribution to Sy,.

Finally the generator of the probability preserving
shower evolution operator is given in Egs. (115) and
(73). We can simplify this by using Egs. (D18) and (D26)

2 2
L) = v 7 eyp ) PP
M Hs

V(W 13) ﬂs) V1 (2)

aﬂs

(D27)
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