
 

What is a parton shower?

Zoltán Nagy*

DESY, Notkestrasse 85, 22607 Hamburg, Germany

Davison E. Soper†

Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403-5203, USA

(Received 9 November 2017; published 25 July 2018)

We consider idealized parton shower event generators that treat parton spin and color exactly, leaving
aside the choice of practical approximations for spin and color. We investigate how the structure of such a
parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting
functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a
shower that is defined at any perturbative order. To support this argument, we present a formulation for a
parton shower at order αks for any k. Since some of the input functions needed are specified by their
properties but not calculated, this formulation does not provide a useful recipe for an order αks parton
shower algorithm. However, in this formulation we see how the operators that generate the shower are
related to operators that specify the infrared singularities of QCD.
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I. INTRODUCTION

Parton shower event generators for hadron collisions,
such as HERWIG [1], PYTHIA [2], and SHERPA [3], perform
calculations of cross sections according to an approxima-
tion to the standard model or its possible extensions. They
are essential for the analysis of experiments at the Large
Hadron Collider. The main ideas behind these generators
were developed in the 1980s [4–6]. There has been
extensive development of the algorithms since then
[7–16]. The successor programs [1–3,17–23], are quite
sophisticated. Useful reviews of the field can be found in
[24,25]. One of the available successor programs is our
own, DEDUCTOR [15,21,26–33]. This paper concerns the
perturbative part of these parton shower generators, leaving
aside models for the underlying event and hadronization.
Furthermore, we consider an idealized version of a parton
shower generator in which one accounts exactly for spin
and color. Approximations for spin and color are a separate
issue, which we do not discuss here.
Our aim in this paper is to investigate how the structure

of a shower that treats spin and color exactly is related to
the structure of QCD. In particular, we ask whether a

shower with splitting functions proportional to αs can be the
leading order approximation to something that is defined at
any order in αs. We find an affirmative answer to this
question. Specifically, we find that there is a construction
for defining a parton shower that generalizes current
showers at any order of perturbation theory. We find also
that the problem of relating the structure of a parton shower
to the structure of QCD is not as straightforward as one
might have naively guessed. First, the construction makes
use of functions analogous to the Catani-Seymour dipole
splitting functions [34] that specify the infrared behavior of
QCD, but beyond leading order the shower splitting
functions are not related to the functions that specify the
infrared behavior of QCD by anything so simple as just
changing their sign. Second, the formulas for the shower
automatically includes factors that sum threshold loga-
rithms [35–80]. These factors are not included in current
parton shower generators at even leading order, except for
DEDUCTOR [32,33]. Third, the formulas automatically
include matching of the parton shower to a perturbative
calculation beyond leading order of the hard scattering that
starts the shower. This is fairly straightforward [81–103] for
a leading order shower, but not for a shower beyond
leading order.
We believe that is important to understand that a lowest

order parton shower generator can represent the lowest
order in a systematically improvable approximation.
However, the construction in this paper is not a useful
recipe for actually creating a parton shower algorithm
beyond the leading order: some of the components of
the recipe are specified by their properties but not explicitly
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constructed. A complete construction will require specify-
ing such choices as a shower ordering variable and
momentum mappings. Such a specification will require
considerable effort, which lies beyond the scope of this
paper.
The papers [104–108] present treatments of a parton

shower at order α2s. Reference [106] attempts to extend the
dipole splittings often used in a leading order shower to a
higher order analogue for the case of eþe− annihilation.
This approach is similar in spirit to what we do in this
paper. An alternative approach [104,105,107,108], concen-
trates on the next-to-leading order (NLO) Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) kernel for the
evolution of parton distribution functions. Although the
parton evolution kernels play a role in our formalism, it is
not a central role.

II. OVERVIEW

The construction of a parton shower at any perturbative
order, presented in Sec. VI, is rather abstract. In this
section, we attempt to provide an overview of what the
later mathematics is intending to do.
In our view, it is most useful to think of a parton shower

algorithm as beginning with the theorem [109] that allows us
to write a cross section for an infrared safe observable as a
convolution of a hard scattering factor with parton distri-
bution functions. Then the parton shower fills in more detail
by using the renormalization group. The parton shower
develops with decreasing values of a parameter that is a
measure of the hardness of interactions.1 The essential
insight is that the scattering process appears differently
depending on the hardness scale at which one examines
it. At the hardest scale, the scale of the hard interaction, there
are just a few partons (typically quarks and gluons). Then, as
the hardness scale at which we examine the process
decreases, these partons split, making more partons in a
parton shower.2 At any stage, a certain amount of structure
has emerged, while softer structure remains unresolved.
In this paper, we start with the principle that a parton

shower should fully reflect the infrared singularity structure
of Feynman graphs for QCD and also the role of parton
distribution functions in absorbing initial state singularities.
Thus, we start with the infrared sensitive operator asso-
ciated with the parton distributions and with a perturbative
operator Dðμ2Þ that represents the infrared singularities of
QCD Feynman diagrams. We connect Dðμ2Þ to both the
shower splitting kernels and to the subtractions [110–117]
needed to calculate a perturbative cross section beyond the
leading order (LO). We work at arbitrary perturbative order.

That is, we consider a hard scattering cross section
calculated, with subtractions, at NkLO and a parton shower
with Nk−1LO splitting functions. (This counts a LO shower
as having splitting functions proportional to αs.)
The construction that we present is based on the operator

Dðμ2Þ. This operator is to contain the infrared singularity
structure of Feynman graphs for QCD. There is no unique
recipe for constructing the αns contribution, DðnÞðμ2Þ, to
Dðμ2Þ. As described in Sec. V, one needs to specify a
definition of hardness associated with the integrations in
graphs, one needs a momentum mapping, and one needs to
specify the form of the functions used as one moves away
from the strict soft and collinear limits. At first order, we
have made these choices, so that dDð1Þðμ2Þ=d logðμ2Þ is
part of DEDUCTOR. At higher orders, we do not attempt to
construct the DðnÞðμ2Þ. Rather, we provide formulas for
what to do once one has DðnÞðμ2Þ for n ≤ k.
The formalism uses another operator Vðμ2Þ. This oper-

ator is obtained from Dðμ2Þ and factors associated with the
parton distributions but it is obtained by integrating over all
of the parton splitting variables, so that it is infrared finite.
In a standard first order parton shower, the Sudakov
exponent is quite directly related to the part of Vðμ2Þ that
comes from one real parton emission. There is some
freedom in setting the color and spin structure of Vðμ2Þ.
Thus we leave Vðμ2Þ partly unspecified.
The parton shower defined here needs to respect the

structure of quantum field theory. Thus it includes quantum
interference and maintains an exact accounting for the
quantum spins and colors of the partons in the shower. The
formulation is based on what we call the statistical space,
introduce in Ref. [15]. It consists of states that describe the
momenta, flavors, colors, and spins of any number of
partons. The colors and spins are treated as fully quantum
mechanical. This means that the statistical states are density
matrices in the quantum color and spin space. We review
the statistical space in Sec. IV.
Using the statistical space, we maintain an exact

accounting for the quantum spins and colors. It is not
known how to make this practical in computer code,
particularly for color. Thus one needs separate approxima-
tions, such as the LCþ approximation for color that is used
in DEDUCTOR. We view the issue of approximations for
spin and color as separate from the construction of the
shower with exact spin and color. We do not discuss spin
and color approximations in this paper.
The final result of the construction, presented in

Eq. (134), is

σ½J� ¼ ð1jOJUðμ2f ; μ2HÞUVðμ2f ; μ2HÞF ðμ2HÞjρHÞ
þOðαkþBþ1

s Þ þOðμ2f =Q½J�2Þ: ð1Þ

Here jρHÞ is a statistical state representing the hard
scattering, calculated at order αkþB

s , where αBs is the order

1HERWIG then rearranges the ordering of splittings in its
shower so that larger angle splittings come first.

2Thus, with respect to initial state partons, the shower
evolution starts from the hard interaction and moves backward
in time to softer initial state interactions.
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of the Born hard scattering process. The hard scattering
statistical state jρHÞ includes subtractions, as in a normal
NkLO perturbative calculation. Then F ðμ2HÞ is an operator
on the statistical space that multiplies by appropriate parton
distribution functions and a parton luminosity factor.
The next operator in Eq. (1),

UVðμ2f ; μ2HÞ ¼ T exp
�Z

μ2H

μ2f

dμ2

μ2
SVðμ2Þ

�
; ð2Þ

is a process independent operator on the statistical space
that leaves the number of partons unchanged and provides
perturbative corrections needed to keep the measured cross
section correct to order αkþB

s . This factor also sums
threshold logarithms associated with the hard scattering
statistical state. The threshold logarithms are an essential
part of the construction. As we will discuss, they are
included in DEDUCTOR, but they are not part of other
leading order shower generators. We presented an earlier
formulation of threshold summation in a leading order
shower in Ref. [32]. This formulation turned out to have
certain flaws. In a companion paper [33], we exhibit the
practical effects of the threshold summation according to
Eq. (1) (but with jρHÞ evaluated at leading order only).
The next operator in Eq. (1),

Uðμ2f ; μ2HÞ ¼ T exp

�Z
μ2H

μ2f

dμ2

μ2
Sðμ2Þ

�
; ð3Þ

is a process independent operator that creates more partons
in a parton shower. In the first order case, k ¼ 1, this is a
rather standard parton shower if we average over spins and
take the leading color approximation. In general, the
splitting generator Sðμ2Þ consists of terms that are of order
αns with 1 ≤ n ≤ k. The shower starts at a hardness scale μ2H
appropriate for the hard scattering and ends at smaller
hardness scale μ2f that should be large enough so that
perturbation theory at this scale can still be trusted.
The final operator in Eq. (1), OJ, specifies the infrared

safe measurement that one wants to make on the parton
state after the shower. The hardness scale associated with
this measurement is Q½J�2. Finally, ð1j is an instruction to
integrate over all of the parton variables.
The cross section σ½J� is then correct to order αkþB

s
and includes a version of the cross section beyond this
order, within the approximations of a parton shower.
Notice that the property that the cross section including
showering, σ½J�, is correct to order αkþB

s means that the
shower is matched to an order αkþB

s perturbative calculation
of σ½J�. This matching is an intrinsic part of the shower
formulation.
We discuss a very general formulation of parton showers.

However, we want to keep the notation simple, so, without
loss of generality, we use Higgs boson production as an

example. We use five flavors of quarks. In practical
applications, one uses a variable flavor number scheme
in which nonzero values of mb and mc appear. However,
this creates complications, especially if we want to work at
an arbitrary order of perturbation theory. Thus in this paper
we set mb ¼ mc ¼ 0.
We have found it useful to change some of the notation

that we used in our previous papers in order to address a
much more general problem. We hope that this does not
cause confusion. We provide a translation in Table I.
Following this brief overview, we include a brief Sec. III

on factorization, which plays an important role in the
conceptual development. Then we devote Sec. IV to
partons and the spin and color density operator, which
we use to define the statistical space. This leads us describe
the perturbative cross section and the infrared sensitive
operator Dðμ2Þ in Sec. V. Then in Sec. VI we manipulate
the perturbative cross section to define the parton shower.
Section VII presents a summary and outlook.
There are four appendices. Appendix A presents a toy

model for the operators used in the construction. We hope
that this concrete model will prove instructive. Appendix B
discusses the definition of parton distribution functions
needed for a shower. Appendix C discusses how certain
scale parameters can be chosen dynamically instead of
statically, as in the main text. Appendix D discusses the
relation of MS renormalization to the definition of the
parton shower.

III. FACTORIZATION

We consider a hard scattering process in the collisions of
two high energy hadrons, A and B. The hadrons carry
momenta PA and PB. The hadron energies are high enough
that we can simplify the equations describing the collision
kinematics by treating the colliding hadrons as being
massless. Then with a suitable choice of reference frame,
the hadron momenta are

PA ¼ ðPþ
A; 0; 0Þ; PB ¼ ð0; P−

B; 0Þ: ð4Þ

Here we use momentum components ðpþ; p−; p⊥Þ with
p� ¼ ðp0 � p3Þ= ffiffiffi

2
p

. We then imagine a parton level
process in which a parton from hadron A, with flavor a

TABLE I. New and old notation.

New Old

Sð1;0Þ
pert Hpert

I

Sð0;1Þ
pert −Spert

½F ∘ S̄ð1;0Þ�F−1 V

Sð1Þ − Sð0;1Þ
iπ HI − V

Sð1Þ
V þ Sð0;1Þ

iπ V − S
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and momentum pa ¼ ηaPA collides with a parton from
hadron B, with flavor b and momentum pb ¼ ηbPB.
We will be interested in an inclusive cross section to

create some hard state, for instance, a Z boson plus possibly
jets, or just jets. We will use the production of a Higgs
boson, Aþ B → Hþ QCD partons as our principle exam-
ple. At the Born level, it is produced via the partonic
process gþ g → H. We treat the Higgs boson as being
stable and on shell. We denote the momentum of the Higgs
boson by

pH ¼
�
eyH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H þ p2H;⊥Þ=2
q

; e−yH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H þ p2H;⊥Þ=2
q

; pH;⊥
�
:

ð5Þ

The collision also produces QCD partons with flavors fi
and momenta pi, with i ¼ 1;…; m. In this paper, we
consider the QCD partons to be massless. Each final state
parton has rapidity yi and transverse momentum pi;⊥, so
that the components of its momentum are

pi ¼
�
eyi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i;⊥=2

q
; e−yi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i;⊥=2

q
; pi;⊥

�
: ð6Þ

It is up to us to decide what we want to measure about the
final state of our process. We can consider many cases at
once by simply saying that we are interested in a cross
section σ½J� to measure an observable quantity J, leaving
the definition of J unspecified. We will see in the following
subsection how σ½J� can be specified for a general
observable J. Then parton distribution functions relate
σ½J� to an analogous cross section σ̂½J� for the collision
of two partons. In its briefest form, the relation is

σ½J� ≈
X
a;b

Z
dηa

Z
dηbfa=Aðηa; μ2Þfb=Bðηb; μ2Þσ̂½J�: ð7Þ

A. Infrared safety

We demand that the observable J be infrared safe. To
specify what that means, we write Eq. (7) in more detail:

σ½J�¼
Z

dyH

dσ0
dyH

J0ðpHÞ

þ
Z

dyHdy1dp1;⊥
dσ1

dyHdy1dp1;⊥
J1ðpH;p1Þ

þ 1

2!

Z
dyHdy1dy2dp1;⊥dp2;⊥

×
dσ2

dyHdy1dy2dp1;⊥dp2;⊥
J2ðpH;p1;p2Þþ���: ð8Þ

Here we start with the cross section to produce the Higgs
boson plus m partons with momenta

fpgm ¼ fpH; p1;…; pmg: ð9Þ

We multiply the cross section by a function JmðfpgmÞ that
specifies the measurement that wewant to make on the final
state partons. These functions are taken to be symmetric
under interchange of the QCD momentum arguments
fp1;…; pmg. Accordingly, we divide by the number m!
of permutations of the QCD parton labels. We integrate
over the momenta of the final state partons. The transverse
momentum of the Higgs boson and the needed momentum
fractions for the incoming partons are determined by
momentum conservation. Finally, we sum over the number
m of final state QCD partons.
Infrared safety is a property of the functions Jm that

relates each function Jmþ1ðfpgmþ1Þ to the function
JmðfpgmÞ with one fewer parton. There are two require-
ments needed for J to be infrared safe.
First, consider the limit in which partons mþ 1 and m

become collinear:

pmþ1 → zp̃m; pm → ð1 − zÞp̃m: ð10Þ

Here p̃m is a lightlike momentum and 0 < z < 1. We can
concentrate on just partons with labels mþ 1 and m
because the functions J are assumed to be symmetric
under interchange of the parton labels. In order for J to be
infrared safe, we demand that

Jmþ1ðfpH; p1;…; pm−1; pm; pmþ1gÞ
→ JmðfpH; p1;…; pm−1; p̃mgÞ ð11Þ

in the collinear limit (10).
Second, consider also the limit in which parton mþ 1

becomes collinear to one of the beams,

pmþ1 → ξPA ð12Þ

or

pmþ1 → ξPB: ð13Þ

Here 0 ≤ ξ. When ξ ¼ 0, partonmþ 1 is simply becoming
infinitely soft. In order for J to be infrared safe, we demand
that

Jmþ1ðfpH; p1;…; pm; pmþ1gÞ → JmðfpH; p1;…; pmgÞ
ð14Þ

in either limit (12) or (13).
Briefly, then, infrared safety means that the result of the

measurement is not sensitive to whether or not one parton
splits into two almost collinear partons and it is not
sensitive to any partons that have very small momenta
transverse to the beam directions.
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B. A more quantitative view of infrared safety

We now discuss infrared safety a little more quantita-
tively. Consider, as above, two final state partons that are
nearly collinear. This is modeled in a parton shower
algorithm as a splitting of a parton with momentum p̃m
into two partons with momenta pm and pmþ1. We can
measure how close we are to the collinear limit by
calculating3

μ2split ¼
ffiffiffiffiffiffiffi
Q2

H

p
Em þ Emþ1

ðpm þ pmþ1Þ2: ð15Þ

Here QH is a momentum vector that describes the hard
scattering, for instance the momentum pH of the produced
Higgs boson in our example. We define the parton energies
in the rest frame of QH. The limit expressed in Eq. (10)
is μ2split → 0.
Alternatively, we can consider a splitting of an initial

state parton as modeled in a parton shower algorithm. It
suffices to consider the splitting of an initial state parton in
hadron A. The initial state parton with momentum p̃a
becomes a new initial state parton with momentum pa and a
new final state parton with momentum pmþ1.

4 We can
measure how close we are to the collinear limit by
calculating

μ2split ¼ −
ffiffiffiffiffiffiffi
Q2

H

p
Ea − Emþ1

ðpa − pmþ1Þ2: ð16Þ

Again, the limit expressed in Eq. (12) is μ2split → 0.
We now suppose that we measure the cross section σ½J�

corresponding to an infrared safe measurement function J,
using Eq. (8). When μ2split ¼ 0 in either example, applica-
tion of Eq. (8) gives a cross section that we can call σ0½J�. In
applying Eq. (8), we can use the term withmþ 1 final state
partons, with parton mþ 1 exactly collinear with either
parton m or parton “a.” Equivalently, we can use the m
parton state before the splitting. Because of Eq. (11) or
Eq. (14), the result is exactly the same. Now, when μ2split is
small but not zero, we get a slightly different result, σ½J�.
Let δσ½J� ¼ σ0½J� − σ½J�. We assume that Jmþ1ðfpgmþ1Þ is
a smooth function of the parton momenta, at least near the
soft or collinear limits. Then we will have δσ½J� → 0 as
μ2split → 0. A typical case is δσ½J� ∝ μ2split as μ

2
split → 0. Then

we can define a scale Q2½J� that is characteristic of the
observable by

�
δσ½J�
μ2split

�
¼ σ½J�

Q2½J� : ð17Þ

The ratio in Eq. (17) can be sensitive to the parton
configuration, so we average over all configurations with
the same μ2split. The scale Q

2½J� measures how sensitive the
cross section is to parton splittings.
An example may be helpful. Let σ½J� measure the one-

jet-inclusive cross section for jet transverse momentum PJ
at small rapidity, using the anti-kT jet algorithm with radius
parameter R. Consider a very narrow jet in which one
parton splits into two, one of which is soft. Then a simple
estimate using the definitions above is

Q2½J� ≈
ffiffiffiffiffiffiffi
Q2

H

p
PJ

ðRPJÞ2
N

: ð18Þ

Here N measures how fast the jet cross section falls with
increasing PJ:

N ¼
				 PJ

σðPJÞ
dσðPJÞ
dPJ

				: ð19Þ

This is a fairly large number, so that the effective scale
Q2½J� for the jet measurement is smaller than P2

J .
Additionally, R is typically chosen to be less than one.
The smaller R is, the smaller Q2½J� is.
We see that we can understand infrared safety in terms of

measurements that we might make in a parton shower
simulation of a high energy scattering event. As the shower
progresses, there are splittings. The corresponding values
of μ2split get smaller and smaller. If we measure σ½J� at each
stage of the shower, we will see that σ½J� changes as the
shower develops, but the changes get smaller and smaller
according to

δσ½J� ∼ μ2split
Q2½J� σ½J�: ð20Þ

This leads us to a limit on the possible accuracy of a
perturbative approach to calculating σ½J�. When the parton
shower has evolved to a 1 GeV scale, then we have reached
the limits of perturbation theory. The fractional uncertainty
associated with one more splitting is then

δσ½J� ∼ ð1 GeVÞ2
Q2½J� σ½J�: ð21Þ

The accuracy of the perturbative calculation can never be
better than this.

C. Factorization

We can now state how one calculates the cross section
for whatever observable J wewant—as long as J is infrared

3One could choose other hardness measures μ2. This one is
based on the parton shower formulation in [21,29].

4This is in the “backwards evolution” picture. Going forward
in time, the parton with momentum pa splits.
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safe. The formula we use was stated in Eq. (7) and we
restate it here in a slightly more detailed form [109]:

σ½J� ¼
X
a;b

Z
dηa

Z
dηbfa=Aðηa; μ2Þfb=Bðηb; μ2Þ

× σ̂a;b½ηa; ηb; μ2; J� þOð½m=Q�nÞ: ð22Þ

The intuitive basis for this is very simple. The factor
fa=Aðηa; μ2Þdηa represents the probability to find a parton
of flavor a in a hadron of flavor A. For the other hadron, the
corresponding probability is fb=Bðηb; μ2Þdηb. Then σ̂½J� is
the cross section to obtain the observable J from the
scattering of these partons, as given in Eq. (8). Naturally,
this parton level cross section depends on the parton
variables a, b, ηa, ηb. Here the differential cross sections
to produce m final state partons contain delta functions that
relate the momentum fractions ηa and ηb to the final state
parton momenta. The parton distributions depend on a scale
μ. This is often called the factorization scale μF and
distinguished from the argument of αs and other running
couplings, which is called the renormalization scale μR. In
order to keep our notation simple, we set μF ¼ μR ¼ μ.
The cross section σ̂½J� has a perturbative expansion in

powers of αsðμ2Þ. That is

σ̂a;b½ηa; ηb; μ2; J� ¼ σ̂ð0Þa;b½ηa; ηb; μ2; J�

þ


αsðμ2Þ
2π

�
σ̂ð1Þa;b½ηa; ηb; μ2; J�

þ


αsðμ2Þ
2π

�
2

σ̂ð2Þa;b½ηa; ηb; μ2; J� þ � � � :

ð23Þ

Here we do not display the factors of αs or αew that appear
in the Born level cross section σ̂ð0Þ. Perturbative calcula-
tions can be at lowest order (LO), corresponding to one
term in the expansion, next-to-lowest order (NLO) with two
terms, sometimes NNLO, and, in general, NkLO.
One useful property is that the dependence of the

calculated cross section on μ2 diminishes as we go to
higher orders. Indeed, the cross section in nature, σ½J�, does
not depend on μ2. Thus if we calculate to order αks , the
derivative of the calculated cross section with respect to μ2

will be of order αkþ1
s .

There is an error term in Eq. (22). No matter how many
terms are included in σ̂, there are contributions that are left
out. These terms are suppressed by a power of m ∼ 1 GeV
divided by a large scale parameter Q that characterizes the
hard scattering process to be measured. These contributions
arise from the approximations needed to derive Eq. (22).
For instance if a loop momentum l flows through the wave
function of quarks in a proton, we have to neglect l
compared to the hard momenta, say the transverse

momentum of an observed jet. Not much is known about
the general form of the power corrections for hadron-
hadron collisions. In the rest of this paper, we will assume
that the power n in Eq. (22) is n ¼ 2 and we use

ffiffiffiffiffiffiffiffiffiffiffi
Q2½J�

p
from Eq. (20) for Q. However, even if we lack a good
estimate of the power corrections, it is important that they
are there. If Q is of order 100 GeV, then the power
corrections are completely negligible. However, if Q is
of order 5 GeV, then we ought not to claim 1% accuracy in
the calculation of σ½J�, no matter how many orders of
perturbation theory we use.

IV. PARTONS AND THE DENSITY OPERATOR

We will describe perturbative calculations of cross
sections, how these are connected to the parton shower
description of these same cross sections, and how this is
connected to factorization. We begin in this section with
definitions that we need to describe the evolution of a
parton shower. We follow the framework of Ref. [15].

A. Amplitudes and the density operator
in spin and color

In a perturbative calculation of a cross section, one
constructs an amplitude jMðfp; fgmÞi. This amplitude
depends on the momenta and flavors of two initial state
partons, whatever outgoing electroweak partons there are,
and m outgoing QCD partons. For our example of Higgs
boson production, the momentum and flavor observables
are

fp; fgm ¼ fηa; a; ηb; b; pH; p1; f1;…; pm; fmg: ð24Þ

The partons carry spin and color, so the amplitude is a
vector in the partonic spin and color space for m final state
QCD partons plus the two incoming partons, as indicted by
the representation of the amplitude as a ket vector
jMðfp; fgmÞi. We use basis vectors jfsgmi for the partonic
spin space and basis vectors jfcgmi for the partonic color
space.5 To describe the evolution of a parton shower, it is
useful to use quantum statistical mechanics, keeping the
full quantum nature of the colors and spins. Thus we use the
density operator in the color and spin space. The density
operator is a linear combination of basis operators
jfs; cgmihfs0; c0gmj. Thus to describe the system at a certain
stage of evolution, we use a function ρ of the number m of
final state QCD partons and of the momenta and flavors
fp; fgm, where the value of ρ is a color-spin density
operator. That is

5The spin basis vectors can be chosen in a very simple way, but
it is not so trivial to choose useful basis vectors for the color
space. The choice that we make for DEDUCTOR is specified in
Ref. [15]. With this choice, the color basis vectors are not exactly
normalized and the basis vectors for different colors are not
exactly orthogonal.
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ρðfp; fgmÞ ¼
X

fs;s0;c;c0gm
ρðfp; f; s; s0; c; c0gmÞ

× jfs; cgmihfs0; c0gmj: ð25Þ

The interpretation of this is that the differential probability
dP for there to bem final state QCD partons with momenta
and flavors fp; fgm, times the expectation value of an
operator O on the color and spin space, is

dP × hOi ¼ ½dfpgm�
X

fs;s0;c;c0gm
ρðfp; f; s; s0; c; c0gmÞ

× hfs0; c0gmjOjfs; cgmi; ð26Þ

where

½dfpgm�≡ ddpH

ð2πÞd 2πδþðp
2
H −m2

HÞ

×
Ym
i¼1

�
ddpi

ð2πÞd 2πδþðp
2
i Þ


dηadηb

× ð2πÞdδ
�
pa þ pb − pH −

Xm
i¼1

pi

�
: ð27Þ

Here we use dimensional regularization with d ¼ 4 − 2ϵ.
The set of all such functions ρ constitutes a vector space,

which we call the statistical space. We represent the vector
ρ as a ket vector, jρÞ. The rounded end of the ket is meant to
distinguish a vector in the statistical space from a vector in
the quantum spin ⊗ color space.
Notice that we use the symbol ρ for four different but

related concepts. First, for each choice of m and
fp; f; s; s0; c; c0gm, ρðfp; f; s; s0; c; c0gmÞ is a complex
number. Second, for each choice of m and fp; fgm,
ρðfp; fgmÞ is a linear operator on the quantum spin ⊗
color space for the mþ 2 partons. Third, ρ is a linear map
from m and fp; fgm to the space of operators on the
quantum spin ⊗ color space. Fourth, jρÞ is this linear map
considered as an element of a vector space, the statistical
space. This may seem complicated, but in the end we use
almost entirely the statistical vectors jρÞ. This then gives us
what we think is a compact and powerful notation.
We can define basis vectors jfp; f; s; s0; c; c0gmÞ in the

statistical space in such a way that

ðfp; f; s; s0; c; c0gmjρÞ ¼ ρðfp; f; s; s0; c; c0gmÞ: ð28Þ

The completeness relation for the basis vectors is

1 ¼
X
m

1

m!

Z
½dfpgm�

X
ffgm

X
fs;s0;c;c0gm

jfp; f; s; s0; c; c0gmÞ

× ðfp; f; s; s0; c; c0gmj: ð29Þ

B. Making an inclusive measurement

There is a special vector ð1j defined by

ð1jfp; f; s; s0; c; c0gmÞ ¼ hfs0; c0gmjfs; cgmi: ð30Þ

With this definition,

ð1jρÞ ¼
X
m

1

m!

Z
½dfpgm�

×
X
ffgm

X
fs;s0;c;c0gm

ρðfp; f; s; s0; c; c0gmÞ

× hfs0; c0gmjfs; cgmi ð31Þ

is the total probability associated with the statistical state
jρÞ as defined in Eq. (26) with O ¼ 1.
With this notation, we begin with perturbatively calcu-

lated amplitudes jMðfp; fgmÞi for just a few partons. Thus
we begin with a perturbatively calculated vector jρÞ in the
statistical space. Then we use perturbative operations that
are represented as linear operators on the statistical space.
Similarly, the measurement J in Sec. III A is represented as
a linear operator on the statistical space. Finally, multipli-
cation by ð1j allows us to obtain the expectation value of the
measurement operator.

C. Scales

The formalism also uses a reference vector QH and
several scales: a renormalization scale μ2R, a factorization
scale μ2F, and an ultraviolet cutoff scale μ2s . For simplicity,
all of these scales are set to a single scale μ2. The vectorQH

is used to set the value μ2H of the common scale associated
with the hard state jρHÞ, defined later in Eq. (58): μ2H ¼ Q2

H.
A parton shower needs a measure of hardness of parton
splittings. We also use QH as a vector to help define one
possible measure of hardness, Λ2 defined in Eq. (55). For
this purpose,QH should be roughly in the direction of pa þ
pb in an imagined initial hard scattering. The simplest way
to define QH is to use the hard core part of the intended
measurement. For instance, if we are looking for the cross
section to produce a Higgs boson with rapidity near zero,
we can take Q2

H ¼ m2
H with zero rapidity and zero trans-

verse part for QH. We will mention another, more dynamic,
way to define QH later, in Appendix C.

D. Multiplying by parton distribution functions

In order to turn matrix elements into cross sections, we
divide by a parton luminosity factor6 ncðaÞnsðaÞncðbÞ
nsðbÞ4pa · pb. Here the color counting factor is ncðfÞ¼3
for a quark flavor f and ncðfÞ ¼ 8 for f ¼ g. The spin
counting factor is nsðfÞ ¼ 2 for a quark flavor f and

6We have noticed that this factor was too small by a factor 2 in
Eq. (3.15) of [15].
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nsðfÞ ¼ 2ð1 − ϵÞ for f ¼ g when we work in 4 − 2ϵ
dimensions in order to regularize infrared divergences.
Then we need to multiply by a parton distribution factor

Fa;bðηa; ηb; μ2Þ ¼ fa=Aðηa; μ2Þfb=Bðηb; μ2Þ: ð32Þ

The parton distribution functions here could be the five
flavor MS parton distribution functions, or they could have
a different definition. We combine the two parton distri-
bution functions as one operator F ðμ2Þ that acts on the
statistical space:

F ðμ2Þjfp; f; s; s0; c; c0gmÞ

¼ Fa;bðηa; ηb; μ2Þ
ncðaÞnsðaÞncðbÞnsðbÞ4pa · pb

jfp; f; s; s0; c; c0gmÞ:

ð33Þ

We sometimes need a more general parton factor in which
the parton distributions are convolved with a function that
is also a matrix in the parton flavors. For instance, the
evolution equation for the product of parton distribution
functions is

μ2
d
dμ2

Fa;bðηa; ηb; μ2Þ ¼ F0
a;bðηa; ηb; μ2Þ; ð34Þ

where the prime denotes differentiation and F0 is given by
the convolution product of F with an evolution kernel P,

F0 ¼ F ∘ P: ð35Þ

The precise definition is7

F0
a;bðηa; ηb; μ2Þ

¼
X
a0;b0

Z
1

0

dza
za

Z
1

0

dzb
zb

Fa0;b0 ðηa=za; ηb=zb; μ2Þ

× Pa;a0;b;b0 ðza; zb; μ2Þ: ð36Þ

The evolution kernel for the product of parton distributions
is the sum of parton evolution kernels for each of the two
parton distribution functions:

Pa;a0;b;b0 ðza;zb;μ2Þ
¼Pa;a0 ðza;μ2Þδb;b0δðzb−1Þþδa;a0δðza−1ÞPb;b0 ðzb;μ2Þ:

ð37Þ

This gives us an operator F 0ðμ2Þ defined by

F 0ðμ2Þjfp; f; s; s0; c; c0gmÞ

¼ F0
a;bðηa; ηb; μ2Þ

ncðaÞnsðaÞncðbÞnsðbÞ4pa · pb
jfp; f; s; s0; c; c0gmÞ:

ð38Þ

In place of F 0ðμ2Þ, we use a notation that directly displays
that F0

a;bðηa; ηb; μ2Þ is constructed according to Eq. (36),

F 0ðμ2Þ ¼ ½F ðμ2Þ ∘ Pðμ2Þ�: ð39Þ

The circle indicates the convolution and the square brackets
½� � �� indicate what is included in the convolution.

V. THE PERTURBATIVE CROSS SECTION

We now consider the cross section for some hard
process. We can use any hard process that can lead to
an infrared safe cross section, but the details of the notation
depend on what hard process we consider. In order to keep
the notation simple, we consider a specific process, the
cross section make a Higgs boson plus QCD partons,
calculated at NkLO. We let J represent an infrared safe
measurement of interest as in Sec. III A. The hardest scale
associated with this measurement is μ2H. The scale Q2½J�
introduced in Eq. (17) could be much smaller, as long as it
is large compared to 1 GeV2. In that case, the sort of fixed
order calculation discussed in this section is not so useful
because there are large logarithms, logðμ2H=Q2½J�Þ. Thus in
this section, it may be helpful to imagine that Q2½J� is not
very different from μ2H.

A. The Born cross section

Let us begin at the Born level. We call the statistical state
corresponding to the Born level matrix element jρð0;0Þðμ2ÞÞ.
The measurement J can be represented as an operator OJ.
To make a cross section, we need a luminosity factor and
parton distribution functions. We define an operator
FMSðμ2Þ as in Eq. (33) by

FMSðμ2Þjfp; f; s; s0; c; c0gmÞ

¼ fMS
a=Aðηa; μ2ÞfMS

b=Bðηb; μ2Þ
ncðaÞnsðaÞncðbÞnsðbÞ4pa · pb

jfp; f; s; s0; c; c0gmÞ:

ð40Þ

We use MS parton distributions for five flavors. Then the
cross section for measurement operator OJ is

σ½J� ¼ ð1jFMSðμ2ÞOJjρð0;0Þðμ2ÞÞ: ð41Þ

7Based on the order of the flavor indices, it would be more
conventional to write this as P ∘ F, but we believe that the
notation in Eq. (35) better expresses the physics in the context of
this paper.
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B. The higher order cross section

Now we consider higher orders of perturbation theory.
We define αs and the parton distribution functions that we
start with using MS renormalization, as reviewed in
Appendix D. Including terms up to order αks , the NkLO
cross section can be written as

σ½J�¼ ð1j½FMSðμ2Þ ∘ZFðμ2Þ�OJjρðμ2ÞÞþOðαkþ1
s Þ: ð42Þ

Here we convolve FMSðμ2Þ with the renormalization factor
ZFðμ2Þ for five flavor MS parton distribution functions.8

This factor is just 1 at order α0s. Its higher order contribu-
tions are defined by working in 4 − 2ϵ dimensions and
consist of the 1=ϵn pole terms needed to remove the
ultraviolet poles from the renormalized operator that
defines parton distributions. Equation (42) is a perturbative
formula. We are to expand all of the factors up to the
desired order αks and neglect the remainder, indicated by the
error estimate Oðαkþ1

s Þ.
The statistical state jρðμ2ÞÞ has a perturbative expansion

jρðμ2ÞÞ ¼ jρð0Þðμ2ÞÞ þ
Xk
n¼1



αsðμ2Þ
2π

�
n

jρðnÞðμ2ÞÞ þOðαkþ1
s Þ:

ð43Þ

The order n contribution to the statistical state is a sum of
terms,9

jρðnÞðμ2ÞÞ ¼
Xn
nR¼0

Xn
nV¼0

θðnR þ nV ¼ nÞjρðnR;nVÞðμ2ÞÞ: ð44Þ

In jρðnR;nVÞðμ2ÞÞ, there are nR final state partons and nV

virtual loops. This is for Higgs boson production as the
Born process. If we had chosen two jet production as the
Born level hard process, then there would be 2þ nR partons
in the final state.
The nV virtual loops in jρðnR;nVÞðμ2ÞÞ can each produce

1=ϵ and 1=ϵ2 poles. The nR partons in the final state can
give soft and collinear singularities. The statistical state
vector is singular when any of these partons become soft or

collinear with the beam directions or collinear with each
other. In the case of a Born process that has final state QCD
partons, there are also singularities when any of the nR

additional partons becomes collinear with starting final
state partons. In these singular regions, the infrared safe
measurement operatorOJ sees the partons that are collinear
to a given direction as equivalent to a single parton and it
does not see partons that are soft or collinear to the beam
directions at all. Thus, it is as if we had a completely
inclusive measurement as defined by left multiplying by
ð1j. Then we again get 1=ϵ and 1=ϵ2 poles. Many of the
poles cancel between real and virtual graphs. There are,
however, some poles associated with momenta that are
collinear with the initial state parton momenta. These
cancel the poles in ZFðμ2Þ. We are left with a finite result.

C. Introduction of the infrared sensitive operatorDðμ2Þ
The formula (42) is not completely practical because

each term jρðnR;nVÞðμ2ÞÞ generates infrared singularities or
poles. Only at the end of a calculation, which includes some
complicated integrations that include the measurement
function, do the poles produced by the infrared singularities
cancel. To make this more practical, we define a certain
operator Dðμ2Þ and insert a factor Dðμ2ÞD−1ðμ2Þ into
Eq. (42), giving

σ½J� ¼ ð1j½FMSðμ2Þ ∘ ZFðμ2Þ�Dðμ2ÞD−1ðμ2ÞOJjρðμ2ÞÞ
þOðαkþ1

s Þ: ð45Þ

The operator Dðμ2Þ depends on the dimensional regulari-
zation parameter ϵ, but we do not display this dependence
explicitly. It depends on a second scale μ2s along with μ2,
but we set μ2 ¼ μ2s .
The idea behind Dðμ2Þ is that a contribution to jρðμ2ÞÞ

has poles from virtual loops and has singularities when
some of its external lines become collinear or soft. This is
illustrated in Fig. 1. It is simplest to think of the graphs
depicted as being in a physical gauge. There are two hard
subgraphs, represented as yellow blobs, one for the
amplitude and one for the conjugate amplitude. The sub-
graphs can be tree graphs or can contain virtual loops. We
suppose that everything inside the hard subgraphs is harder
than a reference scale μ2hard. That is, all of the internal
propagators are far off shell. Two initial state lines and m
final state parton lines emerge from the hard subgraph.
Here m ¼ 3. Then there are additional interactions. Some
number nR of additional partons are emitted and nV parton
lines are exchanged. Here nR ¼ 1 and nV ¼ 1. The external
parton momenta are labeled fp̂gmþnR

. There is an infrared
divergence when the virtual gluon becomes soft and there
are singularities when the real gluon momentum becomes
soft or collinear to the antiquark line while the virtual gluon
momentum is becoming soft.

8This is for massless partons. Conceptually, ZFðμ2Þ should be
understood as the inverse, in the sense of convolutions, of the
product of two parton-in-a-parton distribution functions with on-
shell massless incoming parton states. Then this factor removes
infrared poles from the cross section. At the level of bare
operators, fbarea=b ðξÞ ¼ δabδð1 − ξÞ. Convolving the renormalized
parton-in-a-parton distribution functions with ZF gives the bare
distribution functions, leading to Eq. (42). See Appendix D.

9It may be helpful to note that we define jρðnÞðμ2ÞÞ using on-
shell matrix elements jMðfp; fgmÞi and their complex conju-
gates, including the factors needed to make jMðfp; fgmÞi into an
S-matrix element. Then the right-hand side of Eq. (43) is invariant
under changes of the renormalization scale μ2 up to order αkþ1

s .
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We want to capture the structure of these infrared
singularities, as illustrated in Fig. 2. We note that near the
singularities, the partons emerging from the hard subgraphs
are nearly on shell and their momenta lie in the directions of
the external parton momenta. The momenta carried by lines
internal to the hard subgraphs are almost unchanged.
Therefore, we can approximate the graph by letting the
momenta fpgm of the partons emerging from the hard
subgraphs be exactly on shell. Their momenta are given as
functions of the momenta fp̂gmþnR

of the external partons.
Here, we need to define a momentum mapping fp̂gmþnR

→
fpgm. Thenwe can approximate the original graph by a hard
part ðfp; f; s; s0; c; c0gmjρhardðμ2ÞÞ and a singular factor. We
call the singular factor ðfp̂; f̂; ŝ; ŝ0; ĉ; ĉ0gmþnR

jDðμ2Þjfp;
f; s; s0; c; c0gmÞ. The singular factor is derived just from the
singular part of the graph. It is independent of what is in the
hard part.

We thus assert that any such set of poles and singularities
can be organized into a hard subgraph, jρhardðμ2ÞÞ, con-
volved with a singular factor:

ðfp̂; f̂; ŝ; ŝ0; ĉ; ĉ0gmþnR
jρðμ2ÞÞ

∼
1

m!

Z
½dfpgm�

X
ffgm

X
fs;s0;c;c0gm

× ðfp̂; f̂; ŝ; ŝ0; ĉ; ĉ0gmþnR
jDðμ2Þjfp; f; s; s0; c; c0gmÞ

× ðfp; f; s; s0; c; c0gmjρhardðμ2ÞÞ: ð46Þ

The division between singular and hard factors depends on
the singularity to be examined. In the hard factor, the
external momenta fpgm and any internal loop momenta are
to be hard at some scale that we can call μ2hard. This means
that they are not closely collinear to each other or soft at
scales softer than μ2hard.
The singular factor is typically represented as separate

factors labeled soft and jeti, where soft can include
Glauber exchanges and two of the jets are in the beam
directions. However, we do not need to separate the
singular factor into separate subfactors. An early and
instructive analysis of the singularities of QCD was given
by Libby and Sterman [118]. An extensive modern analysis
can be found in Collins [119]. For one real gluon emission,
an example of Dðμ2Þ can be defined from the Catani-
Seymour dipole splitting functions [34]. The operators Sp
of Catani, de Florian, and Rodrigo [120] are also closely
related to Dðμ2Þ for certain cases. At one loop, our version
of dDðμ2Þ=d log μ2 is implemented in DEDUCTOR.
The operator Dðμ2Þ has a perturbative expansion

Dðμ2Þ ¼ 1þ
Xk
n¼1



αsðμ2Þ
2π

�
n

DðnÞðμ2Þ þOðαkþ1
s Þ: ð47Þ

The order n contribution, DðnÞðμ2Þ, is a sum of infrared
sensitive operators,

DðnÞðμ2Þ ¼
Xn
nR¼0

Xn
nV¼0

θðnR þ nV ¼ nÞDðnR;nVÞðμ2Þ: ð48Þ

Acting on a state jfp; f; s; s0; c; c0gmÞ with m final state
QCD partons, DðnR;nVÞðμ2Þ produces a state with mþ nR

final state QCD partons with momenta fp̂gmþnR
. There are

integrations over the loop momenta fl1;…;lnV
g of nV

virtual loops.
The operator Dðμ2Þ depends on a hardness scale μ2s that

defines an infrared sensitive region Rðμ2s Þ in the space of
the momenta fp̂gmþnR

and fl1;…;lnV
g. We can think of

μ2s as being comparable to the scale μ2hard of jρhardðμ2ÞÞ. The
infrared sensitive region Rðμ2s Þ surrounds the leading
singularity, at which each of the momenta fp̂gmþnR

and

FIG. 1. An infrared singular diagram. Each yellow blob
represents a graph, possibly with loops, in which everything is
harder than the scale μ2hard.

FIG. 2. The diagram in Fig. 1 after separating the hard diagram
from Dðμ2Þ.
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fl1;…;lnV
g is soft or collinear to one of the input

momenta fpgm. In the case of the output momenta
fp̂gmþnR

, this means that, at the leading singularity, these
momenta form m infinitely narrow jets with momenta
fpgm. Of course, if we look just a little bit away from the
limit of infinitely narrow jets, we see that the jets can have
subjets. The singularity structure of the subjets, including
both real and virtual momenta, is included in Dðμ2Þ.
We need the infrared sensitive region Rðμ2s Þ because,

when we formDðμ2Þ by making approximations that apply
near the leading singularity, we necessarily simplify the
behavior away from this singularity. We introduce cuts such
that DðnR;nVÞðμ2Þ gets contributions only from inside Rðμ2s Þ.
The leading singularity is inside the region for any μ2s, but
for larger μ2s , the region is larger. Of course, there is more
than one way to introduce μ2s .
For simplicity, we set the renormalization and factori-

zation scale μ2 equal to μ2s .
We will say more about the DðnÞðμ2Þ later, although we

do not construct them. For now we simply assume that they
are available and investigate how they can be used to
construct subtractions for a fixed order calculation and
splitting functions for a parton shower. See Appendix A for
an example of the operators DðnÞðμ2Þ in a toy model.

D. Subtractions for the perturbative cross section

Given Dðμ2Þ, we can construct

D−1ðμ2Þ ¼ 1 −
Xk
n¼1



αsðμ2Þ
2π

�
n

D̃ðnÞðμ2Þ þOðαkþ1
s Þ: ð49Þ

The perturbative coefficients D̃ðnÞðμ2Þ are defined by

D−1ðμ2ÞDðμ2Þ ¼ 1: ð50Þ
This gives, for instance,

D̃ð1Þðμ2Þ ¼ Dð1Þðμ2Þ;
D̃ð2Þðμ2Þ ¼ Dð2Þðμ2Þ −Dð1Þðμ2ÞDð1Þðμ2Þ; ð51Þ

or for the higher orders

D̃ðnÞðμ2Þ ¼ DðnÞðμ2Þ −
Xn−1
k¼1

DðkÞðμ2ÞD̃ðn−kÞðμ2Þ: ð52Þ

The order n contribution, D̃ðnÞðμ2Þ, is a sum of operators,

D̃ðnÞðμ2Þ ¼
Xn
nR¼0

Xn
nV¼0

θðnR þ nV ¼ nÞD̃ðnR;nVÞðμ2Þ: ð53Þ

Acting on a state jfp; f; s; s0; c; c0gmÞ with m partons,
D̃ðnR;nVÞðμ2Þ produces a state with mþ nR partons while
integrating overnV virtual loops.One constructs D̃

ðnR;nVÞðμ2Þ
using Eq. (50).

The operatorD−1ðμ2Þ is very useful. In Eq. (45), we have
the factorD−1ðμ2ÞOJjρðμ2ÞÞ. We are to expand this product
in powers of αs, keeping the terms up to order αks. The factor
OJjρðμ2ÞÞ has infrared singularities and poles, but the
operator D−1ðμ2Þ removes them. The simple argument is
that Dðμ2Þjfp; f; s; s0; c; c0gmÞ contains the infrared singu-
larities and poles produced by QCD from a hard parton
state jfp; f; s; s0; c; c0gmÞ but, according to Eq. (50), when
we applyD−1ðμ2Þ to this state, the poles and singular terms
are cancelled. That is, D−1ðμ2Þ provides the subtraction
terms that we need to remove the singularities and poles
from an NkLO perturbative calculation.
To understand what the operator D−1ðμ2Þ does, it is

helpful to examine the familiar case of an NLO calculation.
At this order, Eq. (45) becomes

σ½J� ¼ ð1j½FMSðμ2Þ ∘ ZFðμ2Þ�Dðμ2Þ
�
OJjρð0;0Þðμ2ÞÞ

þ αsðμ2Þ
2π

½OJjρð0;1Þðμ2ÞÞ−Dð0;1Þðμ2ÞOJjρð0;0Þðμ2ÞÞ�

þ αsðμ2Þ
2π

½OJjρð1;0Þðμ2ÞÞ−Dð1;0Þðμ2ÞOJjρð0;0Þðμ2ÞÞ�



þOðα2s Þ: ð54Þ
We have defined Dð0;1Þðμ2Þ so that it leaves the number of
partons unchanged and so that it has infrared poles.
Furthermore, the poles in Dð0;1Þðμ2Þjρð0;0ÞÞ should directly
cancel those of jρð0;1Þðμ2ÞÞ. We have defined Dð1;0Þðμ2Þ so
that, acting on the state jρð0;0Þðμ2ÞÞ, it adds one parton and so
that when this parton is soft or nearly collinear with one of
the existing partons (in our example, the initial state partons)
Dð1;0Þðμ2ÞOJjρð0;0Þðμ2ÞÞ approaches OJjρð1;0Þðμ2ÞÞ. In a
standard application, one performs the integrations over
the momentum of the emitted parton numerically. The
integrand in the subtraction cancels the integrand in
jρð1;0Þðμ2ÞÞ in the infrared region, so that one obtains a
convergent integration. Having subtracted the operators
Dð1;0Þ and Dð0;1Þ, we add them back as part of D. Now, in
a standard application, all of the integrations corresponding
to the first line of Eq. (54) are performed analytically. All of
the 1=ϵ2 and 1=ϵ poles cancel and we are left with a
completely finite order αs contribution to the cross section.
Note that the contribution from the first line beyond just the
parton distribution functions is infrared finite, but it is not
zero. It forms a significant part of the NLO calculation. In
Eq. (54),we have a product of one infrared finite object times
another, each expanded to order αs. In the customary NLO
calculation, one expands the product to order αs and drops
the α2s term, but one could keep the α2s term if desired.
We note that if we had wanted to useDðμ2Þ for the single

purpose of defining subtractions for the hard scattering,
jρðμ2ÞÞ, we could have used a fixed scale. We need an
adjustable scale μ2s to use Dðμ2Þ in a shower algorithm
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because the hardness scale of the shower changes as the
shower progresses.

E. Properties of the infrared sensitive operator

We can now say a little more about the infrared sensitive
operatorDðμ2Þ, without giving a detailed specification. This
operator is decomposed into operators DðnR;nVÞðμ2Þ accord-
ing to Eqs. (47) and (48). Acting on a state jfp; f; s; s0;
c; c0gmÞ with m partons, DðnR;nVÞðμ2Þ produces a state with
mþ nR partons while adding nV virtual loops. The resulting
state can be expanded in basis states for mþ nR partons,
jfp̂; f̂; ŝ; ŝ0; ĉ; ĉ0gmþnR

Þ. There is then an invertible mapping
between the new momenta fp̂gmþnR

and the starting
momenta fpgm together with a set of splitting variables
ζpðnRÞ. One can choose what this mapping is.
To make this a little more concrete, consider Dð1;0Þðμ2Þ

with one parton emitted. There is one term in the emission
probability for each final state parton l ∈ f1;…; mg and one
for each initial state parton l ∈ fa; bg. We think of l as the
emitting parton and let the emission probability be singular
when p̂mþ1 becomes collinear with p̂l. The emission
probabilities are also singular in the limit in which p̂mþ1

becomes soft, p̂mþ1 → 0. DEDUCTOR uses something sim-
ilar to the Catani-Seymour [34] dipole splitting functions to
construct Dð1;0Þðμ2Þ. The splitting variables ζp are taken to
be an azimuthal angle ϕ, a momentum fraction z, and a
measure of the hardness of the splitting. In DEDUCTOR, the
hardness variable is the virtuality of the splitting divided by
the energy of the mother parton,

Λ2 ≡ 2p̂l · p̂mþ1

2pl ·QH
Q2

H; ð55Þ

where the vector QH is defined globally as described in
Sec. IV C. Alternatively, it can be defined dynamically as
described in Appendix C.
There is freedom to choose the functional form of

Dð1;0Þðμ2Þ away from the limits of soft and collinear
emissions.
There is also freedom to choose the momentum map-

ping. The simplest case is a splitting of a parton l into two
partons l and mþ 1. Then we cannot have pl be the same
as p̂l þ p̂mþ1 with p2

l ¼ p̂2
l ¼ p̂2

mþ1 ¼ 0, so the momen-
tum mapping has to take a some momentum from the other
partons and supply it to p̂l þ p̂mþ1. In DEDUCTOR, we use a
global mapping, taking a small amount of momentum from
each of the other partons. A second possibility beyond a
simple splitting is interference between emission of a gluon
mþ 1 from parton lL in the ket state and emission from
another parton lR in the bra state. In this case, Dð1;0Þðμ2Þ in
DEDUCTOR is a linear combination of contributions that use
the momentum mappings for a splitting of parton lL and for
a splitting of parton lR. The coefficients in the linear
combination are a “dipole partitioning” function A0 that is
specified in DEDUCTOR.

The operator Dð1;0Þðμ2Þ, acting on a state jfp; f; s; s0; c;
c0gmÞ, produces a state with one more parton, partonmþ 1.
It is crucial that there be an ultraviolet cutoff for p̂mþ1. The
cutoff is specified by a parameter that we call μ2s . In
DEDUCTOR, we use Λ2 as given in Eq. (55) to define the
cutoff. In Dð1;0Þðμ2Þ, we require

Λ2 < μ2s : ð56Þ
A similar cutoff applies inside the integration for a virtual

loop in Dð0;1Þðμ2Þ. Defining this cutoff is more involved
than we can review here. The calculations are described in
Refs. [32,33].

VI. FROM THE PERTURBATIVE CROSS SECTION
TO A PARTON SHOWER

In this section, we begin with Eq. (45) for the perturba-
tive cross section. We set the scale to μ2H, which we take to
be equal to Q2

H. Here Q2
H is defined in Sec. IV C to be a

fixed vector, although we can use a dynamical definition as
described in Appendix C. We now seek a more powerful
formulation that will enable us to use more general
measurement operators OJ for which a perturbative expan-
sion of the cross section might contain large logarithms of
the generic form αns log2nðk2=Q2Þ. Often, a parton shower
can approximately sum such logarithms.
As just stated, we set the scale μ2 in Eq. (45) to μ2H. In our

example in which the Born process is Higgs boson
production, we might choose μ2H ¼ m2

H. This affects the
scale at which αs and the parton distribution functions are
evaluated. It also affects the upper cutoff on the scale of
emissions in the subtraction terms in D−1ðμ2HÞ and in the
parton shower that we will discuss below. However, in the
multiparton matrix elements in jρðμ2HÞÞ, the partons can
have any momenta. Parton emissions with small transverse
momenta need subtractions, but parton emissions with very
large transverse momenta do not need subtractions. If we
work at order αks , then we can have up to k high transverse
momentum jets in addition to the Higgs boson in jρðμ2HÞÞ.10

A. Moving the measurement operator

The first step toward a more general formulation is to
interchange the order of the measurement operator OJ and
the operatorsD−1ðμ2HÞ andDðμ2HÞ. This does not change the
result, since DD−1 ¼ 1 and OJ commutes with 1. With the
OJ moved, we have

10If we are limited to a k ¼ 1 shower, then Higgs plus one jet is
LO in jρðμ2HÞÞ. Then one might want define a lower cutoff on the
PT of the jet and use a calculation with pþ p → H þ J as the
Born process, calculated at NLO. In that case, one has two
calculations and one may want to define a procedure to merge
them. If a k ¼ 2 shower is available, then jρðμ2HÞÞ can include
inclusive Higgs production at NNLO and Higgs plus one jet at
NLO. Then merging different calculations is less needed.
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σ½J� ¼ ð1j½FMSðμ2HÞ ∘ ZFðμ2HÞ�OJDðμ2HÞjρHÞ þOðαkþ1
s Þ:

ð57Þ

Here we have denoted

jρHÞ ¼ D−1ðμ2HÞjρðμ2HÞÞ; ð58Þ

where the product is expanded to NkLO using Eqs. (43),
(44), (49), and (53):

jρHÞ ¼
Xk
n¼0



αsðμ2HÞ
2π

�
n Xn
nR¼0

Xn
nV¼0

θðnR þ nV ¼ nÞjρðnR;nVÞ
H Þ

þOðαkþ1
s Þ; ð59Þ

where

jρðnR;nVÞ
H Þ¼ jρðnR;nVÞðμ2HÞÞ

−
XnR

r¼0

XnV

l¼0
rþl>0

D̃ðr;lÞðμ2HÞjρðnR−r;nV−lÞðμ2HÞÞ: ð60Þ

These quantities jρðnR;nVÞ
H Þ are finite without dimensional

regularization.

B. Introducing shower oriented parton
distribution functions

We can do a little more by introducing an operatorF ðμ2HÞ
that multiplies by parton distribution functions fa=Aðηa;
μ2Þfb=Bðηb; μ2Þ and a luminosity factor. However, these are
not the five-flavor MS parton distribution functions that we
used in FMSðμ2Þ. Rather, they are adapted to the choice of
the definition for Dðμ2Þ that we use.
The shower oriented parton operator F ðμ2Þ is related to

FMSðμ2Þ by factor Kðμ2Þ,

FMSðμ2Þ ¼ ½F ðμ2Þ ∘ Kðμ2Þ�: ð61Þ

This is a rather compact notation, so it is worthwhile to
write it in more detail. The left-hand side is defined by

FMSðμ2Þjfp; f; s; s0; c; c0gmÞ ¼
fMS
a=Aðηa; μ2ÞfMS

b=Bðηb; μ2Þ
ncðaÞnsðaÞncðbÞnsðbÞ4pa · pb

jfp; f; s; s0; c; c0gmÞ: ð62Þ

The right-hand side is

½F ðμ2Þ ∘ Kðμ2Þ�jfp; f; s; s0; c; c0gmÞ ¼
X
a0;b0

Z
1

0

dza
za

Z
1

0

dzb
zb

fa0=Aðηa=za; μ2Þfb0=Bðηb=zb; μ2Þ
ncðaÞnsðaÞncðbÞnsðbÞ4pa · pb

× KðaÞ
a;a0 ðza; μ2; fp; fgmÞKðbÞ

b;b0 ðzb; μ2; fp; fgmÞjfp; f; s; s0; c; c0gmÞ: ð63Þ

Here we take the kernel K to be a product, so that each of
the two parton distributions is transformed separately. We
allow each kernel to depend on the momentum and flavor
variables of the parton state to which ½F ðμ2Þ ∘ Kðμ2Þ� is
applied. The kernels each have a perturbative expansion
beginning with

KðaÞ
a;a0 ðz; μ2; fp; fgmÞ

¼ δa;a0δð1 − zÞ þ αsðμ2Þ
2π

Kða;1Þ
a;a0 ðz; μ2; fp; fgmÞ þOðα2s Þ:

ð64Þ

The choice of Kðμ2Þ defines the shower-oriented parton
distribution functions. The evolution of these parton dis-
tribution functions needs to be matched to the parton
splitting functions introduced in the following sections.
In particular, the choice of Kðμ2Þ is largely determined by

the definition of the cutoff μ2s that we use for the shower.
We provide an example in Appendix B.
The parton operatorsFMSðμ2Þ andF ðμ2Þ obey evolution

equations

μ2
d
dμ2

F ðμ2Þ ¼ ½F ðμ2Þ ∘ Pðμ2Þ�;

μ2
d
dμ2

FMSðμ2Þ ¼ ½FMSðμ2Þ ∘ PMSðμ2Þ�: ð65Þ

Using Eq. (61), we see that the evolution kernels are
related by

Pðμ2Þ ¼ ½Kðμ2Þ ∘ PMSðμ2Þ ∘ K−1ðμ2Þ�

−

�

μ2
d
dμ2

Kðμ2Þ
�

∘ K−1ðμ2Þ
�
: ð66Þ

With the transformation from FMSðμ2Þ to F ðμ2Þ, we
write
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½FMSðμ2Þ ∘ ZFðμ2Þ� ¼ ½F ðμ2Þ ∘ Kðμ2Þ ∘ ZFðμ2Þ�: ð67Þ

Thus our cross section is

σ½J�¼ð1j½F ðμ2HÞ∘Kðμ2HÞ∘ZFðμ2HÞ�OJDðμ2HÞjρHÞþOðαkþ1
s Þ:
ð68Þ

We will introduce F ðμ2Þ into another place in the formal-
ism shortly.

C. Changing the scale of the subtraction operators

Next, we would like to change the scale of the operators
in Eq. (68) from a large scale μ2H to something smaller. We
let μ2I be an “intermediate” size scale that is much smaller
than the scale Q2½J� associated with the operator OJ but is
nevertheless large compared to 1 GeV2 and is certainly
large enough to allow the use of perturbation theory in
αsðμ2I Þ. We can change the parton factor to be evaluated at
scale μ2I because this factor is a renormalization group
invariant:

½F ðμ2HÞ ∘ Kðμ2HÞ ∘ ZFðμ2HÞ� ¼ ½F ðμ2I Þ ∘ Kðμ2I Þ ∘ ZFðμ2I Þ�:
ð69Þ

The operator Dðμ2Þ is not invariant under changes of
scale. However, we can write

Dðμ21Þ ¼ Dðμ22ÞUpertðμ22; μ21Þ; ð70Þ

where

Upertðμ22; μ21Þ ¼ D−1ðμ22ÞDðμ21Þ: ð71Þ

Here we note that Dðμ21Þ generates 1=ϵ poles and infrared
singularities, but D−1ðμ22Þ provides the proper subtractions
to remove the poles and infrared singularities when we
expand the product of operators to a fixed order of
perturbation theory. Thus we can evaluate Upertðμ22; μ21Þ
in four dimensions instead of 4 − 2ϵ dimensions. The
perturbative evolution operator Upertðμ2; μ02Þ obeys the
differential equation

μ2
d
dμ2

Upertðμ2; μ02Þ ¼ −Spertðμ2ÞUpertðμ2; μ02Þ; ð72Þ

where

Spertðμ2Þ ¼ D−1ðμ2Þμ2 d
dμ2

Dðμ2Þ: ð73Þ

Since Upertðμ22; μ21Þ is infrared finite, so is Spertðμ2Þ. We can
write the solution of Eq. (72) as

Upertðμ2; μ02Þ ¼ T exp

�Z
μ02

μ2

dμ2

μ2
Spertðμ2Þ

�
; ð74Þ

where T indicates μ2 ordering of the exponential with
smaller μ2 to the left. Working to order αs with use of
Eqs. (47) and (48), we have

Spertðμ2Þ ¼
αsðμ2Þ
2π

Sð1;0Þ
pert ðμ2Þ þ

αsðμ2Þ
2π

Sð0;1Þ
pert ðμ2Þ þOðα2s Þ;

ð75Þ

where αsðμ2Þ is the running coupling in the four dimen-
sional theory and

Sð1;0Þ
pert ðμ2Þ ¼ μ2

d
dμ2

Dð1;0Þðμ2Þ;

Sð0;1Þ
pert ðμ2Þ ¼ μ2

d
dμ2

Dð0;1Þðμ2Þ: ð76Þ

Recall that μ2 ¼ μ2s . Thus Sð1;0Þ
pert ðμ2Þ is the derivative of

(approximated) real emission graphs with respect to the

ultraviolet cutoff that we impose. Similarly, Sð0;1Þ
pert ðμ2Þ is the

derivative of approximated one loop virtual graphs with
respect to the ultraviolet cutoff. The subscript “pert”
emphasizes that only perturbative Feynman diagrams are

used to obtain Sð1;0Þ
pert ðμ2Þ and Sð0;1Þ

pert ðμ2Þ.
With these changes, we have

σ½J�¼ð1j½F ðμ2I Þ∘Kðμ2I Þ∘ZFðμ2I Þ�
×OJDðμ2I ÞUpertðμ2I ;μ2HÞjρHÞþOðαkþ1

s Þ: ð77Þ

Now we note that very soft or collinear splittings at
scales much smaller than Q½J�2 are not resolved by the
measurement operator OJ. The operator Dðμ2I Þ generates
splittings at scales μ2I and smaller. Since we have chosen
μ2I ≪ Q½J�2, the operator OJ commutes with Dðμ2I Þ to a
good approximation, with an error of order μ2I =Q½J�2. Thus
Eq. (68) can be written as

σ½J�¼ð1j½F ðμ2I Þ∘Kðμ2I Þ∘ZFðμ2I Þ�
×Dðμ2I ÞOJUpertðμ2I ;μ2HÞjρHÞþOðαkþ1

s ÞþOðμ2I =Q½J�2Þ:
ð78Þ

D. The inclusive infrared finite operator Vðμ2Þ
We now introduce an operator Xðμ2Þ defined by

Xðμ2Þ ¼ ½F ðμ2Þ ∘ Kðμ2Þ ∘ ZFðμ2Þ�Dðμ2ÞF−1ðμ2Þ: ð79Þ

Using Xðμ2Þ, Eq. (78) is more compact:
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σ½J� ¼ ð1jXðμ2I ÞF ðμ2I ÞOJUpertðμ2I ; μ2HÞjρHÞ þOðαkþ1
s Þ

þOðμ2I =Q½J�2Þ: ð80Þ

The operator Xðμ2Þ involves parton distribution functions
and purely perturbative operators. If we evaluate the
perturbative operators at order zero, we get simply
F ðμ2ÞF−1ðμ2Þ. Thus

Xðμ2Þ ¼ 1þOðαsÞ: ð81Þ

The operator Xðμ2Þ, when expanded in powers of αs,
creates partons, up to k partons at order αks.
The operator Xðμ2Þ is infrared sensitive. When we apply

Xðμ2Þ to a state jfp; f; s; s0; c; c0gmÞ, we get a state
Xðμ2Þjfp; f; s; s0; c; c0gmÞ containing poles 1=ϵ and sin-
gularities when the partons that Xðμ2Þ creates become soft
or collinear with other partons or with each other. In that
sense, Xðμ2Þ is like Dðμ2Þ. However, Xðμ2Þ contains the
parton factor ½F ðμ2Þ ∘ Kðμ2Þ ∘ ZFðμ2Þ�. This factor gives
Xðμ2Þ a property not shared by Dðμ2Þ. If we integrate over
the momenta of the partons created by Xðμ2Þ and sum over
their colors and flavors by forming the inclusive sum
ð1jXðμ2Þjfp; f; s; s0; c; c0gmÞ, then the singularities cancel
and we obtain a finite result.
In fact, we need to ensure that ð1jXðμ2Þjfp; f; s; s0;

c; c0gmÞ is not only finite after dimensional regularization is
removed but that it vanishes in the limit μ2 → 0. For
example, if this quantity arises from an integration

ð1jXðμ2Þjfp; f; s; s0; c; c0gmÞ ¼
Z

μ2

0

dk2

k2
Gðk2Þ; ð82Þ

then, with subtractions included, Gðk2Þ needs to be a
smooth function that is well enough behaved for k2 → 0
that the integral is convergent. This property is needed later
in Eq. (133).
Suppose for a moment that we worked in a modified

theory, denoted by subscripts M, in which partons carried
only momenta and flavors, but not color and spin. Then
from the inclusive sum ð1jXMðμ2Þjfp; fgmÞ we could
define another operator VMðμ2Þ that leaves the number
of partons, their momenta and flavors unchanged:

VMðμ2Þjfp; fgmÞ ¼ λðfp; fgmÞjfp; fgmÞ: ð83Þ

Then λðfp; fgm; μ2Þ ¼ ð1jVMðμ2Þjfp; fgmÞ. We define
VMðμ2Þ by Eq. (83) and

ð1jVMðμ2Þjfp; fgmÞ ¼ ð1jXMðμ2Þjfp; fgmÞ: ð84Þ

Now return to QCD. With spin and color, we can define
an operator Vðμ2Þ that satisfies ð1jVðμ2Þ ¼ ð1jXðμ2Þ.
However, its structure is more complex. The operator
Xðμ2Þ can be expanded in powers of αs:

Xðμ2Þ ¼ 1þ
Xk
n¼1



αsðμ2Þ
2π

�
n

X ðnÞðμ2Þ þOðαkþ1
s Þ: ð85Þ

The order n contribution, X ðnÞðμ2Þ, is a sum of infrared
sensitive operators,

X ðnÞðμ2Þ ¼
Xn
nR¼0

Xn
nV¼0

θðnR þ nV ¼ nÞX ðnR;nVÞðμ2Þ: ð86Þ

Acting on a state jfp; f; s; s0; c; c0gmÞ with m final state
partons, X ðnR;nVÞðμ2Þ produces a state with mþ nR final
state partons with momenta and flavors fp̂; f̂gmþnR

. There
are integrations over the loop momenta fl1;…;lnV

g of nV

virtual loops.
We need to understand the color and spin structure of

X ðnR;nVÞðμ2Þ. Suppose that we have constructed a basis of
operators that act on the quantum spin ⊗ color space and
create a quantum spin ⊗ color state for nR more partons.
We label the basis operators by an index i. A convenient
choice would be

i ¼ fm; fŝ; ĉgmþnR
; fs; cgmg: ð87Þ

Then we could let

σðnRÞ
i jfs0; c0gm0 i

¼
� jfŝ; ĉgmþnR

i m ¼ m0 & fs; cgm ¼ fs0; c0gm
0 otherwise

:

ð88Þ
Using these basis operators, we can expand X ðnR;nVÞðμ2Þ as

X ðnR;nVÞðμ2Þ ¼
X
i;j

X ðnR;nVÞ
i;j ðμ2ÞσðnRÞ

i ⊗ σðnRÞ†
j : ð89Þ

Here X ðnR;nVÞ
i;j ðμ2Þ is still an operator on the momentum and

flavor part of the statistical space, which has basis vectors
jfp; fgmÞ. In the case nR ¼ 0, this operator adds no partons
and leaves the parton momenta and flavors fp; fgm
unchanged.
Now we wish to define another operator Vðμ2Þ with an

expansion

Vðμ2Þ ¼ 1þ
Xk
n¼1



αsðμ2Þ
2π

�
n

VðnÞðμ2Þ þOðαkþ1
s Þ: ð90Þ

The order n contribution is to add no partons and leave the
parton momenta and flavors fp; fgm unchanged, but it still
can be a nontrivial operator on the spin ⊗ color space

VðnÞðμ2Þ ¼
X
i;j

VðnÞ
i;j ðμ2Þσð0Þi ⊗ σð0Þ†j : ð91Þ
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Here VðnÞ
i;j ðμ2Þ is still an operator on the momentum and

flavor part of the statistical space. We want Vðμ2Þ to be
related to Xðμ2Þ by

ð1jVðμ2Þ ¼ ð1jXðμ2Þ: ð92Þ

Thus we want

�
1j
X
i;j

VðnÞ
i;j ðμ2Þσð0Þi ⊗ σð0Þ†j jfp; f; s; s0; c; c0gm

�

¼
Xn
nR¼0

X
i;j

ð1jX ðnR;n−nRÞ
i;j ðμ2ÞσðnRÞ

i ⊗ σðnRÞ†
j

× jfp; f; s; s0; c; c0gmÞ: ð93Þ

This is the same as

X
i;j

hfs0; c0gmjσð0Þ†j σð0Þi jfs; cgmið1jVðnÞ
i;j ðμ2Þjfp; fgmÞ

¼
Xn
nR¼0

X
i;j

hfs0; c0gmjσðnRÞ†
j σðnRÞ

i jfs; cgmi

× ð1jX ðnR;n−nRÞ
i;j ðμ2Þjfp; fgmÞ: ð94Þ

This needs to work for any choice ofm-parton spin ⊗ color
states hfs0; c0gmj and jfs; cgmi, so we need an identity of
spin ⊗ color operators,

X
i;j

σð0Þ†j σð0Þi ð1jVðnÞ
i;j ðμ2Þjfp; fgmÞ

¼
Xn
nR¼0

X
i;j

σðnRÞ†
j σðnRÞ

i ð1jX ðnR;n−nRÞ
i;j ðμ2Þjfp; fgmÞ: ð95Þ

The right-hand side of Eq. (95) is an operator on the spin ⊗
color space for m final state partons. On the left-hand side,

the operators σð0Þi form a basis for this space of operators, as

do the operators σð0Þ†j , so the operators σð0Þ†j σð0Þi span this
space and are, in fact, over-complete. That is, one can

always find coefficients ð1jVðnÞ
i;j ðμ2Þjfp; fgmÞ so that we

match the operator on the right-hand side. However, the
choice is not unique. At order n ¼ 1, we have made a
simple choice in DEDUCTOR. It is beyond our scope here to
investigate what choices might be best at NLO, n ¼ 2.
Since ð1jXðμ2Þ is infrared finite, Eq. (92) tells us that

Vðμ2Þ is infrared finite.

E. A more sophisticated shower evolution operator

Using Eq. (92), Eq. (80) becomes

σ½J� ¼ ð1jVðμ2I ÞF ðμ2I ÞOJUpertðμ2I ; μ2HÞjρHÞ þOðαkþ1
s Þ

þOðμ2I =Q½J�2Þ: ð96Þ

Since Vðμ2I ÞF ðμ2I Þ does not change the number, momenta,
or flavors of partons, it commutes with OJ. Thus

σ½J� ¼ ð1jOJVðμ2I ÞF ðμ2I ÞUpertðμ2I ; μ2HÞjρHÞ þOðαkþ1
s Þ

þOðμ2I =Q½J�2Þ: ð97Þ
Now we can define the shower evolution operator that

we need,

Uðμ22; μ21Þ ¼ Vðμ22ÞF ðμ22ÞUpertðμ22; μ21ÞF−1ðμ21ÞV−1ðμ21Þ:
ð98Þ

With this definition, the cross section is

σ½J� ¼ ð1jOJUðμ2I ; μ2HÞVðμ2HÞF ðμ2HÞjρHÞ þOðαkþ1
s Þ

þOðμ2I =Q½J�2Þ: ð99Þ
This moves F next to jρHÞ so that at the hard interaction we
have the proper factors to make a cross section. It also
moves V next to jρHÞ. We will see later what the conse-
quences of this are.
In Eq. (99), we use a scale μ2I that was left undefined

except that it should be small compared to Q2½J� (which
was the scale of OJ) and should be large enough to allow
the use of perturbation theory with coupling αsðμ2I Þ. Our
cross section is independent of the value of μ2I . Let us now
fix on a standard choice near the lower end of this range.
We take μ2I → μ2f , where μ

2
f is on the order of 1 GeV2. Then

σ½J� ¼ ð1jOJUðμ2f ; μ2HÞVðμ2HÞF ðμ2HÞjρHÞ þOðαkþ1
s Þ

þOðμ2f =Q½J�2Þ: ð100Þ

We can write Uðμ22; μ21Þ in a simpler form. We note that,
using Eqs. (71) and (79),

Uðμ22; μ21Þ ¼ Vðμ22ÞF ðμ22ÞD−1ðμ22ÞDðμ21ÞF−1ðμ21ÞV−1ðμ21Þ
¼ Vðμ22ÞX−1ðμ22Þ½F ðμ22Þ ∘ Kðμ22Þ ∘ ZFðμ22Þ�
× ½F ðμ21Þ ∘ Kðμ21Þ ∘ ZFðμ21Þ�−1Xðμ21ÞV−1ðμ1Þ:

ð101Þ

Since the operator ½F ðμ2Þ ∘ Kðμ2Þ ∘ ZFðμ2Þ� is indepen-
dent of scale, this is

Uðμ22; μ21Þ ¼ Vðμ22ÞX−1ðμ22ÞXðμ21ÞV−1ðμ1Þ: ð102Þ

F. Probability preservation in Uðμ22; μ21Þ
The operator Uðμ22; μ21Þ has an important property, which

we now derive. From Eq. (102), we have

ð1jUðμ22; μ21Þ ¼ ð1jVðμ22ÞX−1ðμ22ÞXðμ21ÞV−1ðμ21Þ: ð103Þ

Then using Eq. (92) twice, we have
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ð1jUðμ22; μ21Þ ¼ ð1j: ð104Þ

Multiplying any statistical state jρÞ by ð1j gives the total
probability associated with that state. Thus Eq. (104) says
that shower evolution as represented in Uðμ22; μ21Þ is
probability preserving. Current parton shower algorithms
are typically constructed to have this property. Here
probability preservation is a derived property.

G. Factorization

Let Q2½J� be the smallest scale associated with the
measurement operator OJ in Eq. (100), as discussed in
Sec. III A. If Q2½J� us close to the scale μ2H of the hard
process with which we start the shower, then measuring
σ½J� does not make use of the full power of a parton shower.
Suppose now that Q2½J� ≫ 1 GeV2 but that Q2½J� ≪ μ2H.
Then perturbation theory for σ½J� is still applicable, but
there may be large logarithms, logðμ2H=Q2½J�Þ in the
perturbative expansion of σ½J�. In many cases, a parton
shower is useful for summing such logarithms. It takes a
dedicated analysis to show that a given parton shower
algorithm does sum the logarithms associated with a given
operator OJ, but there is at least a chance that if we use a
parton shower we will do better than if we simply use fixed
order perturbation theory. Thus we consider this sort of
measurement operator and examine how factorization
works when Q2½J� ≪ μ2H.
We argued in Sec. III A that shower splittings at scale μ2

can change the measurement by a fraction μ2=Q2½J�. We
can neglect these modifications as long as μ2 is small
enough, say

μ2 < ϵsQ2½J�: ð105Þ

Wewant ϵs to be small enough that we can regard fractional
errors of order ϵs as negligible. However, we may want
logð1=ϵsÞ not to be large.
We can use our knowledge of the scale of OJ by writing

Uðμ2f ; μ2Þ ¼ Uðμ2f ; ϵsQ2½J�ÞUðϵsQ2½J�; μ2HÞ: ð106Þ

Then writing

OJUðμ2f ; ϵsQ2½J�Þ ≈ Uðμ2f ; ϵsQ2½J�ÞOJ ð107Þ

results in a negligible error. With this substitution,
Eq. (100) becomes

σ½J� ¼ ð1jUðμ2f ;ϵsQ2½J�ÞOJUðϵsQ2½J�;μ2HÞVðμ2HÞF ðμ2HÞjρHÞ
þOðαkþ1

s Þ þOðϵsÞ: ð108Þ

Now, factorization for the cross section measured by OJ

requires that splittings at scales smaller than ϵsQ2½J� not
affect the cross section. Thus we need

σ½J� ¼ ð1jOJUðϵsQ2½J�; μ2HÞVðμ2HÞF ðμ2HÞjρHÞ þOðαkþ1
s Þ

þOðϵsÞ: ð109Þ

This follows by using Eq. (104) to obtain ð1jUðμ2f ;
ϵsQ2½J�Þ ¼ ð1j.
We should emphasize that in order to measure the cross

section corresponding to the infrared safe operator OJ with
scale Q2½J�, it is not necessary to cut off the shower at scale
ϵsQ2½J� as in Eq. (109). Rather, one simply runs the shower
down to μ2f and measures OJ on the final state produced
by the full shower, as in Eq. (100). When we do that, we
are setting ϵs ¼ μ2f =Q

2½J�, so the error estimate OðϵsÞ
becomes Oðμ2f =Q2½J�Þ.

H. The shower evolution equation

Using its definition Eq. (98), we see that the shower
evolution operator Uðμ2; μ02Þ obeys an evolution equation
of the form

μ2
d
dμ2

Uðμ2; μ02Þ ¼ −Sðμ2ÞUðμ2; μ02Þ: ð110Þ

Thus

Uðμ2; μ02Þ ¼ T exp

�Z
μ02

μ2

dμ2

μ2
Sðμ2Þ

�
: ð111Þ

Since, according to Eq. (104), ð1jUðμ2; μ02Þ ¼ ð1j, we have

ð1jSðμ2Þ ¼ 0: ð112Þ

Using Eqs. (98) and (72), we see that the shower
generator S in Eq. (110) is

Sðμ2Þ ¼ Vðμ2ÞF ðμ2ÞSpertðμ2ÞF−1ðμ2ÞV−1ðμ2Þ

−
�
μ2

d
dμ2

Vðμ2ÞF ðμ2Þ
�
F−1ðμ2ÞV−1ðμ2Þ

¼ Vðμ2ÞF ðμ2ÞSpertðμ2ÞF−1ðμ2ÞV−1ðμ2Þ

− Vðμ2Þ
�
μ2

d
dμ2

F ðμ2Þ
�
F−1ðμ2ÞV−1ðμ2Þ

−
�
μ2

d
dμ2

Vðμ2Þ
�
V−1ðμ2Þ: ð113Þ

It is convenient to define

SVðμ2Þ ¼ V−1ðμ2Þμ2 d
dμ2

Vðμ2Þ: ð114Þ

Also, we can use Eq. (65) for the evolution of F ðμ2Þ and
we can note that since Vðμ2Þ does not change the number of
partons or their momenta or flavors, Vðμ2Þ commutes with
F ðμ2Þ. Then
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Sðμ2Þ¼Vðμ2ÞF ðμ2ÞSpertðμ2ÞF−1ðμ2ÞV−1ðμ2Þ
− ½F ðμ2Þ ∘Pðμ2Þ�F−1ðμ2Þ−Vðμ2ÞSVðμ2ÞV−1ðμ2Þ:

ð115Þ

The operator Vðμ2Þ here has a perturbative expansion
beginning with

Vðμ2Þ ¼ 1þ αsðμ2Þ
2π

Vð1Þðμ2Þ þ � � � : ð116Þ

Then also

SVðμ2Þ ¼
αsðμ2Þ
2π

Sð1Þ
V ðμ2Þ þ � � � : ð117Þ

A sensible procedure for determining Sðμ2Þ is to expand it
perturbatively to whatever order is known, e.g., order αks ,

Sðμ2Þ ¼ αsðμ2Þ
2π

Sð1Þðμ2Þ þ � � � : ð118Þ

It is of interest to see how this works out at order αs.
Since Spertðμ2Þ and SV are already order αs, we can simply
replace Vðμ2Þ by 1 in the first and third terms of Eq. (115).
Then we have

Sð1Þðμ2Þ ¼ F ðμ2ÞSð1Þ
pertðμ2ÞF−1ðμ2Þ

− ½F ðμ2Þ ∘ Pð1Þðμ2Þ�F−1ðμ2Þ−Sð1Þ
V ðμ2Þ: ð119Þ

Let us multiply by ð1j and use ð1jSð1Þðμ2Þ ¼ 0. In Ref. [32],

we found that ð1jSð1;0Þ
pert ðμ2Þ has a simple form,

ð1jF ðμ2ÞSð1;0Þ
pert ðμ2ÞF−1ðμ2Þ

¼ ð1j½F ðμ2Þ ∘ S̄ð1;0Þðμ2Þ�F−1ðμ2Þ; ð120Þ

where S̄ð1;0Þ
pert ðμ2Þ leaves the number of partons, their

momenta and their flavors unchanged but has a nontrivial

color structure.11 We also divide Sð0;1Þ
pert ðμ2Þ into two pieces

Sð0;1Þ
pert ðμ2Þ ¼ Sð0;1Þ

iπ ðμ2Þ þ Sð0;1Þ
Re ðμ2Þ: ð121Þ

Here Sð0;1Þ
iπ ðμ2Þ is the contribution from the virtual graphs

that is proportional to iπ, while Sð0;1Þ
Re ðμ2Þ is the remaining

part. We note that [32]

ð1jSð0;1Þ
iπ ðμ2Þ ¼ 0: ð122Þ

This gives us

ð1jSð1Þ
V ðμ2Þ¼ð1jf½F ðμ2Þ∘ S̄ð1;0Þðμ2Þ�F−1ðμ2ÞþSð0;1Þ

Re ðμ2Þ
− ½F ðμ2Þ∘Pð1Þðμ2Þ�F−1ðμ2Þg: ð123Þ

All of the operators here leave the parton state unchanged
except for being operators on the color and spin space. We

define Sð1Þ
V ðμ2Þ to have the color and spin structure of the

right-hand side of the equation, so that

Sð1Þ
V ðμ2Þ ¼ ½F ðμ2Þ ∘ S̄ð1;0Þðμ2Þ�F−1ðμ2Þ þ Sð0;1Þ

Re ðμ2Þ
− ½F ðμ2Þ ∘ Pð1Þðμ2Þ�F−1ðμ2Þ: ð124Þ

This result also gives us12

Sð1Þðμ2Þ ¼ F ðμ2ÞSð1;0Þ
pert ðμ2ÞF−1ðμ2Þ

− ½F ðμ2Þ ∘ S̄ð1;0Þðμ2Þ�F−1ðμ2Þ þ Sð0;1Þ
iπ ðμ2Þ:

ð125Þ

Compare this to the more general Eq. (D27) in Appendix D.
To use Sð1Þðμ2Þ, one solves Eq. (110) in the form

Uðμ22; μ21Þ ¼ N ðμ22; μ21Þ þ
Z

μ2
1

μ2
2

dμ2

μ2
Uðμ22; μ2ÞF ðμ2Þ

×
αsðμ2Þ
2π

Sð1;0Þ
pert ðμ2ÞF−1ðμ2ÞN ðμ2; μ21Þ; ð126Þ

where

N ðμ22; μ21Þ

¼ T exp

�Z
μ2
1

μ2
2

dμ2

μ2
αsðμ2Þ
2π

× f−½F ðμ2Þ ∘ S̄ð1;0Þðμ2Þ�F−1ðμ2Þ þ Sð0;1Þ
iπ ðμ2Þg

�
:

ð127Þ

Here the Sudakov factorN is the exponential of the part of
S that does not change the number of partons or their
momenta or flavors. Normally its spin and color structure is
simplified and the iπ contribution is not included. The

splitting operator F ðμ2ÞSð1;0Þ
pert ðμ2ÞF−1ðμ2Þ adds one parton.

Its spin and color structure is also normally simplified.
Then Eq. (126) is implemented by solving it iteratively, so
that there are some number of splittings interleaved with
Sudakov factors.

11The operator ½F ðμ2Þ ∘ S̄ð1;0Þðμ2Þ�F−1ðμ2Þ was called V in
Ref. [32], but here we are letting V denote a different operator.

12In Ref. [32], we neglected the iπ term and we averaged over
spin. Then the right-hand side of Eq. (125) was called HI − V.
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I. The structure of Vðμ2Þ
In Eq. (100), there is a factor Vðμ2HÞ that multipliesF ðμ2HÞ

and jρHÞ. We can write this operator as

Vðμ2HÞ ¼ Vðμ2f ÞUVðμ2f ; μ2HÞ; ð128Þ

where

UVðμ22; μ21Þ ¼ V−1ðμ22ÞVðμ21Þ: ð129Þ

The operator UVðμ2; μ02Þ obeys the evolution equation

μ2
d
dμ2

UVðμ2; μ02Þ ¼ −SVðμ2ÞUVðμ2; μ02Þ; ð130Þ

where SVðμ2Þ was defined in Eq. (114). Thus

UVðμ2f ; μ2HÞ ¼ T exp

�Z
μ2H

μ2f

dμ2

μ2
SVðμ2Þ

�
: ð131Þ

To use Eq. (131), we apply UVðμ2f ; μ2HÞ to a statistical state
jfp; f; s; s0; c; c0gmÞ that contributes to jρHÞ. We expand
SVðμ2Þ in powers of αsðμ2Þ with factors involving the
running parton distributions F ðμ2Þ. The available scales
other than μ2 come from jρHÞ, so the relevant matrix
elements involve μ2=μ2H. Since Vðμ2Þ is an infrared finite
operator, the perturbative coefficients in SVðμ2Þ will then
be proportional to μ2=μ2H, possibly times logarithms of
μ2=μ2H. Thus the low μ2 end of the integration is power
suppressed. However, it is important that there is a lower
bound μ2f on the integration. That is because the running
coupling αsðμ2Þ and the running parton distributions F ðμ2Þ
are not well defined for very small μ2.
We are left with a factor

Vðμ2f Þ ¼ 1þOðαsðμ2f ÞÞ: ð132Þ

We can expand this perturbatively in powers of αsðμ2f Þ,
using parton distributions F ðμ2f Þ. The coefficients of
αns ðμ2f Þ for n ≥ 1 are then proportional to μ2f =μ

2
H, possibly

times logarithms of μ2f =μ
2
H. Since μ2f ≪ μ2H, we can safely

neglect all of the higher order terms and simply replace

Vðμ2f Þ → 1: ð133Þ

Thus we make the replacement Vðμ2HÞ → UVðμ2f ; μ2HÞ in
Eq. (100), giving us

σ½J� ¼ ð1jOJUðμ2f ; μ2HÞUVðμ2f ; μ2HÞF ðμ2HÞjρHÞ
þOðαkþ1

s Þ þOðμ2f =Q½J�2Þ: ð134Þ

The factor UVðμ2f ; μ2HÞ does two things. First, it provides
perturbative corrections to the hard scattering state jρHÞ,

which we need in order to calculate the cross section correct
to NkLO. For this purpose, it would suffice to expand the
exponential in UVðμ2f ; μ2HÞ to the desired perturbative order.
The second function of UVðμ2f ; μ2HÞ is to sum threshold
logarithms. For this purpose, it is important that UVðμ2f ; μ2HÞ
is an exponential.
To understand the relation of the operator UVðμ2f ; μ2HÞ to

threshold logarithms, it is instructive to look at it at order αs
with Λ ordering for the shower. It is structurally the same as
the operator introduced in Ref. [32], which concerned the
summation of threshold logarithms.13 The analysis in
Ref. [32] simply averaged over spins, so we leave out spin
here. The operator SVðμ2Þ in Ref. [32] contains several
terms. Rather than listing them all, we simply recall the
most important terms:

SVðμ2Þjfp; f; c; c0gmÞ

¼ αs
2π

Z
1

1=ð1þμ2=μ2HÞ
dz


�
1−

fa=Aðηa=z;μ2Þ
fa=Aðηa;μ2Þ

�
2Ca

1− z

þ
�
1−

fb=Bðηb=z;μ2Þ
fb=Bðηb;μ2Þ

�
2Cb

1− z

�
½1 ⊗ 1�jfp; f; c; c0gmÞ

þ � � � ; ð135Þ

where Ca ¼ CF when a is a quark flavor and Cg ¼ CA. The
operator ½1 ⊗ 1� is the unit operator in the color space. Note
that when μ2 ≪ μ2H, the range of the z integration shrinks to
just a tiny region near z ¼ 1. Thus, this contribution might
seem unimportant. However, in Eq. (135) there is a factor
1=ð1 − zÞ. This multiplies a factor involving the parton
distribution functions. The result is that UVðμ2f ; μ2HÞ is
substantially different from 1 when the parton distribution
functions are falling quickly as the momentum fraction
grows. This gives a “threshold logarithm” effect that we can
sum in a leading approximation by using UVðμ2f ; μ2HÞ.
The form of SVðμ2Þ depends on the definition of the

infrared sensitive operator Dðμ2Þ. In particular, shower
evolution uses parton distributions F ðμ2Þ that are related to
the MS parton distributions according to Eq. (61). This
relation is discussed in Appendix B. Briefly, MS parton
distributions are defined by removing ultraviolet divergen-
ces using MS renormalization, while the ultraviolet region
of shower splittings is removed with a cutoff at scale μ2s as
defined inDðμ2Þ. See Sec. V C. The evolution kernelPðμ2Þ
for the parton distributions reflects the definition of F ðμ2Þ.
This evolution kernel appears in SVðμ2Þ, Eqs. (124) and
(D26). Thus the choice of shower oriented parton

13In Ref. [32], an approximate version of UVðμ22; μ21Þ was used
to sum threshold logarithms, but it appeared between each pair of
parton splittings at scales μ21 and μ22 and also between the initial
hard interaction and the first splitting. This caused problems,
which were alleviated by inserting an artificial cut in SVðμ2Þ.
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distribution functions affects how the summation of thresh-
old logarithms appears in the overall result (134) for the
cross section: part of the summation of threshold logarithms
appears as UVðμ2f ; μ2HÞ and part appears as the redefinition of
the parton distributions, F ðμ2Þ in Eq. (134). This is
described in Sec. (9.4) of Ref. [32]. If one uses kT ordering
instead of Λ ordering for the shower, then the shower
oriented parton distributions are very close to theMS parton
distributions and all of the leading threshold logarithms
appear in UVðμ2f ; μ2HÞ. On the other hand, in the factorization
scheme in Refs. [96,97], a different definition of factoriza-
tion results in the leading threshold corrections being
absorbed into the parton distribution functions.

VII. SUMMARY AND OUTLOOK

We began with an expression (42) for the cross section
σ½J� for an infrared safe measurement J calculated at NkLO.
The pieces in this expression are infrared divergent in four
dimensions, so that they are defined by working in 4 − 2ϵ
dimensions. Integrating over the phase space that is
unresolved by the measurement leads to some cancellations
of poles 1=ϵ. Other poles cancel after factorization of initial
state infrared sensitivity into parton distribution functions.
This leaves a result that is finite in four dimensions, even
though it consists of pieces that are divergent in four
dimensions. We introduced an infrared sensitive operator
Dðμ2Þ and an inclusive infrared finite operator Vðμ2Þ to
help organize the cancellations.
After some analysis, we have represented the cross

section as Eq. (134). Here the separate factors are all finite
in four dimensions. If we expand this expression to order αks ,
we have the same cross section that we started with except
for a power suppressed contribution that we have dropped.
In Eq. (134), we have a hard scattering state jρHÞ and a

factor F ðμ2HÞ that supplies parton distribution functions and
a parton luminosity factor so that if we trace over colors and
spins, we have a differential cross section in the space of
parton number, flavors, and momenta. Then we have a
factor UVðμ2f ; μ2HÞ that supplies a summation of threshold
logarithms associated with the hard state and also part of
the NkLO perturbative corrections to the hard scattering
cross section. Next, we have a complete parton shower
generated by Uðμ2f ; μ2HÞ. The parton shower operator pre-
serves inclusive probabilities: ð1jUðμ22; μ21Þ ¼ ð1j. We have
ended the shower at a scale μ2f . After that, the factor ð1jOJ
represents the measurement that we want to make. We
suppose that this is an infrared safe measurement that is not
sensitive to soft or collinear parton splittings at the scale μ2f
or below. That means that the error in the calculation,
estimated by Oðμ2f =Q½J�2Þ, is small. With such an infrared
safe measurement, the result of the measurement is
not sensitive to hadronization. If we wanted to use a
measurement operator that is sensitive to hadronization,
then we would need to include a model of hadronization

before the measurement operator. It is then less certain what
a good error estimate is.
There is some temptation to imagine Eq. (134) as being

simpler than it is. In our Higgs boson example, if we
expand ð1jUVðμ2f ; μ2HÞF ðμ2HÞjρHÞ to order αks , it is the NkLO
inclusive cross section to make a Higgs boson. The operator
Uðμ2f ; μ2HÞ generates a probability preserving parton shower.
Thus it might seem that one takes the hard scattering cross
section and then distributes the probability across different
final states according to what the shower generates.
However, UVðμ2f ; μ2HÞF ðμ2HÞjρHÞ is not a cross section. It
is a statistical state, representing different numbers of final
state partons, which come with their own quantum color
and spin states. The shower operator acts separately on each
component of this statistical state. Then if we measure σ½J�
for an observable that is more complicated than just the
inclusive measurement of a Higgs boson, the separate
contributions are not sensible by themselves, but they
sum to give σ½J� correct to order αks with only a power
suppressed correction.
We have spoken of getting σ½J� correct to order αks , but, of

course, that is not the point of a parton shower. In applying
Eq. (134), onewould evaluate the splitting functionSðμ2Þ in
the exponent of Uðμ2f ; μ2HÞ to order αks , then retain Uðμ2f ; μ2HÞ
as an exponential. When the desired measurement operator
OJ contains widely different scales, the cross section will
contain large logarithms. ThenUðμ2f ; μ2HÞ has the potential to
sum these logarithms. After all, it exponentiates the soft and
collinear singularities of QCD at order αks. Unfortunately,
one needs to study the structure of Uðμ2f ; μ2HÞ as it relates to
the structure of OJ in order to check how well the shower
does in summing the logarithms.
One can wonder whether the formalism of this paper is

of any use for just a LO shower. We suggest that it is. If one
averages over spins and makes the leading color approxi-
mation, the shower operator Uðμ2f ; μ2HÞ generates a rather
conventional probability preserving dipole shower. WithΛ2

as the ordering variable, it is the leading color version of the
shower in DEDUCTOR. One can choose other ordering
variables. The operator UVðμ2f ; μ2HÞ generates threshold
corrections, as described in Ref. [32]. These corrections
are numerically important in some cases and could be
included in standard parton shower programs.
In fact, Eq. (134) has been useful in improving

DEDUCTOR. While working on our paper [32] on threshold
corrections, we did not have Eq. (134). The result was a
structure that had certain undesirable features that needed
to be controlled by means of an ad hoc cutoff. The current
more general formulation in Eq. (134) removes this
problem, although it does not much change the numerical
results. We present phenomenological results from the new
version of DEDUCTOR in a separate paper [33].
The formalism is based on an operator Dðμ2Þ that

encodes the infrared structure of QCD starting with a state
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with any numberm of final state partons. If we knowDðμ2Þ
up to order αks , then we generate, in an automatic way, the
subtraction terms for an NkLO perturbative calculation. See
the example of the toy model in Appendix A. This appears
to us to be simpler than constructing the subtraction terms
directly [110–117]. From Dðμ2Þ at order αks , we also
generate, in an automatic way, the shower splitting kernels
at order αks.
The perturbative contributions toDðμ2Þ are not simple in

full QCD. Furthermore, their form depends on choices like
the momentum mapping scheme and the choice of a
hardness ordering variable. At order α1s , we have made
the required choices, made suitable approximations, and
calculated the corresponding splitting functions Sðμ2Þ in
Refs. [32,33]. Similarly, from Dðμ2Þ we generate the
inclusive infrared finite operator Vðμ2Þ. In general, there
are some choices that one can make in defining Vðμ2Þ. At
order α1s , we have made the required choices, made suitable
approximations, and calculated SVðμ2Þ in Ref. [32,33].
In the first order DEDUCTOR shower, we need only

dDð1Þðμ2Þ=d logðμ2Þ, which is finite in four dimensions.
For subtractions and matching to the shower, one needs the
full integrated operator Dð1Þðμ2Þ. Techniques for this are
described in Ref. [95] and the earlier papers [121–123].
We leave it to future work to make suitable choices for a

momentum mapping scheme, a hardness ordering variable,
and definitions away from the strict soft and collinear limits
so as to construct order α2s contributions to Dðμ2Þ. With a
choice for color structure, we could then also construct
Vðμ2Þ. We thus hope that the formalism presented in this
paper might prove useful in developing a parton shower
with order α2s splitting functions.
We also hope that the formalism presented in this paper

might provide support for the view that a parton shower is
similar to a more straightforward perturbative calculation at
NkLO. In this view, the parton shower is an approximate
way to calculate cross sections, but the approximation is
systematically improvable by working at higher perturba-
tive order. In a practical program, there may be further
approximations with respect to color and spin. These need a
separate justification.
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APPENDIX A: A TOY MODEL FOR PARTON
SHOWER OPERATORS

The construction in this paper relies on an operator D
that contains the infrared singularities of statistical states
jρÞ that represent the color and spin density matrix elements
of QCD. The operators D can be used to construct both the
infrared subtractions needed for a perturbative calculation
of the cross section at NkLO and also the splitting kernels
needed to construct a parton shower at the corresponding
order, Nk−1LO. This construction has been quite abstract,
especially since we lack an example of D at N2LO, which
would correspond to an NLO shower.
In this Appendix, we illustrate some of the ideas of

the paper using a toy model that provides a concrete
example of jρÞ and D at N2LO. In this example, we
construct the splitting kernel Spert at NLO. The toy model
is very simple. There are no parton distributions. The
coupling αs does not run. The momenta are one dimen-
sional. There is no spin. There is quantum color, but the
color structure is vastly simplified compared to what one
has in real QCD.

1. Statistical states in the toy model

We use momentum states fp1; p2;…; pmg for m par-
tons, with each pi being a real number in the range
0 < pi < ∞. We use “color” represented by basis states
labeled by an index pair ðcR; cVÞ with cR ∈ f0; 1;…; mg,
cV ∈ f0; 1;…g. The statistical states have the form

jfpgm; ðcR; cVÞÞ ¼ jfp1; p2;…; pmg; ðcR; cVÞÞ: ðA1Þ

These are defined to be invariant under permutations of the
pi. The Born level cross section is jfg0; ð0; 0ÞÞ.
We will make use of color operators CR and CV that act

on the space of statistical states. These have the form

CR ¼ 1þA†
R;

CV ¼ 1þA†
V; ðA2Þ

where A†
R and A†

R are raising operators:

A†
Rjfpgm; ðcR; cVÞÞ ¼ jfpgm; ðcR þ 1; cVÞÞ;

A†
Vjfpgm; ðcR; cVÞÞ ¼ jfpgm; ðcR; cV þ 1ÞÞ: ðA3Þ
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The inclusive probabilities corresponding to our statistical states are defined by

ð1jfpgm; ðcR; cVÞÞ ¼
�

1

N2
c

�
cRþcV

: ðA4Þ

Here Nc ¼ 3 represents the number of colors. Thus keeping only cR ¼ cV ¼ 0 is analogous to the leading color
approximation.
We include an operator representing an observable. The observable depends only on the parton momenta, not on their

color state:

OJjfpgm; ðcR; cVÞÞ ¼
�
1þ p2

1 þ p2
2 þ � � �p2

m

Q2

�
jfpgm; ðcR; cVÞÞ: ðA5Þ

2. Perturbative hard scattering states

We take the perturbative hard scattering states in the toy model to have the form

jρÞ ¼ jρð0;0ÞÞ þ αsðjρð1;0ÞÞ þ jρð0;1ÞÞÞ þ α2s ðjρð2;0ÞÞ þ jρð1;1ÞÞ þ jρð0;2ÞÞÞ þOðα3s Þ: ðA6Þ

Here jρðnR;nVÞÞ represents a perturbative contribution with nR real partons emitted and nV virtual loops. The contributions are
defined to be

jρð0;0ÞÞ ¼ jfg0; ð0; 0ÞÞ;

jρð1;0ÞÞ ¼
Z

Q2

0

dp2
1

p2
1

�
p2
1

Q2

�
ϵ Q2

p2
1 þQ2

CRjfpg1; ð0; 0ÞÞ;

jρð0;1ÞÞ ¼ −
Z

∞

0

dk21
k21

�
k21
Q2

�
ϵ Q2

k21 þQ2
CVjfg0; ð0; 0ÞÞ;

jρð2;0ÞÞ ¼
Z

Q2

0

dp2
2

p2
2

�
p2
2

Q2

�
ϵ Z Q2

0

dp2
1

p2
1 þ 2p2

2

�
p2
1

Q2

�
ϵ Q2

p2
1 þ p2

2 þQ2
C2Rjfpg2; ð0; 0ÞÞ;

jρð1;1ÞÞ ¼ −
�Z

Q2

0

dp2
1

p2
1

�
p2
1

Q2

�
ϵ Z ∞

0

dk21
k21 þ 2p2

1

�
k21
Q2

�
ϵ Q2

k21 þ p2
1 þQ2

þ
Z

∞

0

dk21
k21

�
k21
Q2

�
ϵ Z Q2

0

dp2
1

p2
1 þ 2k21

�
p2
1

Q2

�
ϵ Q2

p2
1 þ k21 þQ2



CRCVjfpg1; ð0; 0ÞÞ;

jρð0;2ÞÞ ¼
Z

∞

0

dk22
k22

�
k22
Q2

�
ϵ Z ∞

0

dk21
k21 þ 2k22

�
k21
Q2

�
ϵ Q2

k21 þ k22 þQ2
C2Vjfg0; ð0; 0ÞÞ: ðA7Þ

The integrals here are regularized in the infrared by factors
ðp2=Q2Þϵ. The individual contributions jρðnR;nVÞÞ contain
singularities when parton momenta become small and 1=ϵ
poles that arise from integration from virtual parton
momenta. Furthermore, the contributions with real parton
emissions have different color states than the corresponding
contributions with virtual loops. However, when we cal-
culate the cross section ð1jOJjρÞ, we can use the fact that

ð1jCR ¼ ð1jCV; ðA8Þ

so that the color contributions from real emissions and
virtual loops match. Then, in fact, there are real − virtual

cancellations, with the result that ð1jOJjρÞ is infrared
finite.

3. The infrared sensitive operator

The infrared structure of this is fairly simple and can be
represented using the infrared sensitive operatorDðμ2s Þwith

Dðμ2s Þ ¼ 1þ αsðDð1;0Þðμ2s Þ þDð0;1Þðμ2s ÞÞ
þ α2s ðDð2;0Þðμ2s Þ þDð1;1Þðμ2s Þ þDð0;2Þðμ2s ÞÞ
þOðα3s Þ; ðA9Þ

with

ZOLTÁN NAGY and DAVISON E. SOPER PHYS. REV. D 98, 014034 (2018)

014034-22



Dð1;0Þðμ2s Þjfpgm; ðcR; cVÞÞ ¼
Z

μ2s

0

dp2
mþ1

p2
mþ1

�
p2
mþ1

Q2

�ϵ

CRjfpgmþ1; ðcR; cVÞÞ;

Dð0;1Þðμ2s Þjfpgm; ðcR; cVÞÞ ¼ −
Z

μ2s

0

dk21
k21

�
k21
Q2

�
ϵ

CVjfpgm; ðcR; cVÞÞ;

Dð2;0Þðμ2s Þjfpgm; ðcR; cVÞÞ ¼
Z

μ2s

0

dp2
mþ2

p2
mþ2

�
p2
mþ2

Q2

�ϵ Z μ2s

0

dp2
mþ1

p2
mþ1 þ 2p2

mþ2

�
p2
mþ1

Q2

�ϵ

C2Rjfpgmþ2; ðcR; cVÞÞ;

Dð1;1Þðμ2s Þjfpgm; ðcR; cVÞÞ ¼ −
�Z

μ2s

0

dp2
mþ1

p2
mþ1

�
p2
mþ1

Q2

�ϵ Z μ2s

0

dk21
k21 þ 2p2

mþ1

�
k21
Q2

�
ϵ

þ
Z

μ2s

0

dk21
k21

�
k21
Q2

�
ϵ Z μ2s

0

dp2
mþ1

p2
mþ1 þ 2k21

�
p2
mþ1

Q2

�ϵ

CRCVjfpgmþ1; ðcR; cVÞÞ;

Dð0;2Þðμ2s Þjfpgm; ðcR; cVÞÞ ¼
Z

μ2s

0

dk22
k22

�
k22
Q2

�
ϵ Z μ2s

0

dk21
k21 þ 2k22

�
k21
Q2

�
ϵ

C2Vjfpgm; ðcR; cVÞÞ: ðA10Þ

From Dðμ2s Þ we can construct D−1ðμ2s Þ,

D−1ðμ2s Þ ¼ 1 − αsðDð1;0Þðμ2s Þ þDð0;1Þðμ2s ÞÞ − α2s ðDð2;0Þðμ2s Þ þDð1;1Þðμ2s Þ þDð0;2Þðμ2s Þ −Dð1;0Þðμ2s ÞDð1;0Þðμ2s Þ
−Dð1;0Þðμ2s ÞDð0;1Þðμ2s Þ −Dð0;1Þðμ2s ÞDð1;0Þðμ2s Þ −Dð0;1Þðμ2s ÞDð0;1Þðμ2s ÞÞ þOðα3s Þ: ðA11Þ

4. Subtractions for the hard scattering states

We can now construct the subtracted statistical state including the measurement operator,

jρ̂Þ ¼ D−1ðμ2s ÞOJjρÞ: ðA12Þ

This has the expansion

jρ̂Þ ¼ jρð0;0ÞÞ þ αsðjρ̂ð1;0ÞÞ þ jρ̂ð0;1ÞÞÞ þ α2s ðjρ̂ð2;0ÞÞ þ jρ̂ð1;1ÞÞ þ jρ̂ð0;2ÞÞÞ þOðα3s Þ: ðA13Þ

At first order in αs, there are two terms. The first is

jρ̂ð1;0ÞÞ ¼ OJjρð1;0ÞÞ −Dð1;0Þðμ2s ÞOJjρð0;0ÞÞ: ðA14Þ

This is

jρ̂ð1;0ÞÞ ¼
Z

∞

0

dp2
1

p2
1

�
p2
1

Q2

�
ϵ
�
θðp2

1 < Q2Þ Q2

p2
1 þQ2

�
1þ p2

1

Q2

�
− θðp2

1 < μ2s Þ


CRjfpg1; ð0; 0ÞÞ: ðA15Þ

The first term is singular when p2
1 → 0, but the subtraction fromDð1;0Þðμ2s Þ eliminates the singularity. Then ð1jρ̂ð1;0ÞÞ is finite

at ϵ ¼ 0. The coefficient of αs that corresponds to virtual graphs is

jρ̂ð0;1ÞÞ ¼ OJjρð0;1ÞÞ −Dð0;1Þðμ2s ÞOJjρð0;0ÞÞ: ðA16Þ

This is

jρ̂ð0;1ÞÞ ¼ −
Z

∞

0

dk21
k21

�
k21
Q2

�
ϵ
�

Q2

k21 þQ2
− θðk21 < μ2s Þ



CVjfg0; ð0; 0ÞÞ: ðA17Þ

The first term has a 1=ϵ pole from k21 → 0, but the subtraction from Dð0;1Þðμ2s Þ eliminates the k21 → 0 singularity. Then
jρ̂ð0;1ÞÞ is finite at ϵ ¼ 0.
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At order α2s , there are three terms in jρ̂Þ. Let us look at the contribution from two real emissions:

jρ̂ð2;0ÞÞ ¼ OJjρð2;0ÞÞ −Dð2;0Þðμ2s ÞOJjρð0;0ÞÞ −Dð1;0Þðμ2s ÞOJjρð1;0ÞÞ þDð1;0Þðμ2s ÞDð1;0Þðμ2s ÞOJjρð0;0ÞÞ: ðA18Þ

This is

jρ̂ð2;0ÞÞ ¼
Z

∞

0

dp2
2

p2
2

�
p2
2

Q2

�
ϵ Z ∞

0

dp2
1

p2
1

�
p2
1

Q2

�
ϵ
�

p2
1

p2
1 þ 2p2

2



θðp2

2 < Q2Þθðp2
1 < Q2Þ Q2

p2
1 þ p2

2 þQ2

�
1þ p2

1 þ p2
2

Q2

�

− θðp2
2 < μ2s Þθðp2

1 < μ2s Þ
�
− θðp2

2 < μ2s Þ


θðp2

1 < Q2Þ Q2

p2
1 þQ2

�
1þ p2

1

Q2

�
− θðp2

1 < μ2s Þ
�


× C2Rjfpg2; ð0; 0ÞÞ: ðA19Þ

Each term here exhibits infrared singularities, but the singularities cancel. Then ð1jρ̂ð2;0ÞÞ can be evaluated at ϵ ¼ 0.
Specifically, for p2

2 → 0 at fixed p2
1, the first term cancels the third term and the second term cancels the fourth term. For

p2
1 → 0 with fixed p2

2, the first two terms are nonsingular, while the third term cancels the fourth term. When p2
2 → 0 and

p2
1 → 0, the first term cancels the second term and the third term cancels the fourth term.
The contribution to jρ̂Þ from two virtual emissions is similar. We have

jρ̂ð0;2ÞÞ ¼ OJjρð0;2ÞÞ −Dð0;2Þðμ2s ÞOJjρð0;0ÞÞ −Dð0;1Þðμ2s ÞOJjρð0;1ÞÞ þDð0;1Þðμ2s ÞDð0;1Þðμ2s ÞOJjρð0;0ÞÞ: ðA20Þ

This is

jρ̂ð0;2ÞÞ ¼
Z

∞

0

dk22
k22

�
k22
Q2

�
ϵ Z ∞

0

dk21
k21

�
k21
Q2

�
ϵ
�

k21
k21 þ 2k22



Q2

k21 þ k22 þQ2
− θðk22 < μ2s Þθðk21 < μ2s Þ

�

− θðk22 < μ2s Þ



Q2

k21 þQ2
− θðk21 < μ2s Þ

�

C2Vjfg0; ð0; 0ÞÞ: ðA21Þ

Each term here exhibits 1=ϵ poles, but the poles cancel. The pattern of cancellations is the same as for jρ̂ð2;0ÞÞ.
The contribution to jρ̂Þ from one real emission and one virtual emission is a little more complicated. We have

jρ̂ð1;1ÞÞ ¼ OJjρð1;1ÞÞ −Dð1;1Þðμ2s ÞOJjρð0;0ÞÞ −Dð1;0Þðμ2s ÞOJjρð0;1ÞÞ −Dð0;1Þðμ2s ÞOJjρð1;0ÞÞ
þDð1;0Þðμ2s ÞDð0;1Þðμ2s ÞOJjρð0;0ÞÞ þDð0;1Þðμ2s ÞDð1;0Þðμ2s ÞOJjρð0;0ÞÞ: ðA22Þ

We obtain

jρ̂ð1;1ÞÞ ¼
Z

∞

0

dp2
1

p2
1

�
p2
1

Q2

�
ϵ Z ∞

0

dk21
k21

�
k21
Q2

�
ϵ
�
−θðp2

1 < Q2Þ Q2

k21 þ p2
1 þQ2



k21

k21 þ 2p2
1

þ p2
1

p2
1 þ 2k21

��
1þ p2

1

Q2

�

þ θðp2
1 < μ2s Þθðk21 < μ2s Þ



k21

k21 þ 2p2
1

þ p2
1

p2
1 þ 2k21

�
þ θðp2

1 < μ2s Þ



Q2

k21 þQ2
− 2θðk21 < μ2s Þ

�

þ θðp2
1 < Q2Þθðk21 < μ2s Þ

Q2

p2
1 þQ2

�
1þ p2

1

Q2

�

CRCVjfpg1; ð0; 0ÞÞ: ðA23Þ

Each term here exhibits 1=ϵ poles and singularities but
the poles and singularities cancel. Then jρ̂ð1;1ÞÞ can be
evaluated at ϵ ¼ 0. Specifically, expanding the square
brackets gives us seven terms, Ti, i ϵ f1; ....; 7g. For the
singularity in the integrand at k21 → 0 with fixed p2

1, T2

cancels T7 and T6 cancels T4 þ T5 . For the singularity at
p2
1 → 0 with fixed k21, T1 cancels T5 and T6 cancels

T3 þ T7 . For the singularity when p2
1 → 0 and k21 → 0,

T1 cancels T3, T2 cancels T4, and T6 cancels T5 þ T7 .
We thus see that D−1ðμ2sÞ provides subtraction terms

that cancel all of the singularities of jρÞ at order αs and
α2s . If we had wanted to construct all of the subtraction
terms directly, it would have been somewhat difficult.
However, constructing Dðμ2sÞ for our toy model was quite
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simple. Then obtaining the subtraction terms was
automatic.
We also note that the perturbative states jρðnR;nVÞÞ have

nontrivial color structures in our toy model. Then the
operators DðnR;nVÞðμ2s Þ must reflect this color structure. If
they do not, the subtractions will not work.

5. The perturbative shower evolution operator

We are now in a position to construct the order αs and α2s
terms in the perturbative shower generating operator,
Eq. (73),

Spertðμ2s Þ ¼ D−1ðμ2s Þμ2s
d
dμ2s

Dðμ2s Þ: ðA24Þ

The operator Spert will have the expansion

Spertðμ2s Þ ¼ αsðSð1;0Þ
pert ðμ2s Þ þ Sð0;1Þ

pert ðμ2s ÞÞ
þ α2s ðSð2;0Þ

pert ðμ2s Þ þ Sð1;1Þ
pert ðμ2s Þ þ Sð0;2Þ

pert ðμ2s ÞÞ
þOðα3s Þ; ðA25Þ

where

Sð1;0Þ
pert ðμ2s Þ ¼ μ2s

d
dμ2s

Dð1;0Þðμ2s Þ;

Sð0;1Þ
pert ðμ2s Þ ¼ μ2s

d
dμ2s

Dð0;1Þðμ2s Þ;

Sð2;0Þ
pert ðμ2s Þ ¼ μ2s

d
dμ2s

Dð2;0Þðμ2s Þ−Dð1;0Þðμ2s Þμ2s
d
dμ2s

Dð1;0Þðμ2s Þ;

Sð1;1Þ
pert ðμ2s Þ ¼ μ2s

d
dμ2s

Dð1;1Þðμ2s Þ−Dð1;0Þðμ2s Þμ2s
d
dμ2s

Dð0;1Þðμ2s Þ

−Dð0;1Þðμ2s Þμ2s
d
dμ2s

Dð1;0Þðμ2s Þ;

Sð0;2Þ
pert ðμ2s Þ ¼ μ2s

d
dμ2s

Dð0;2Þðμ2s Þ−Dð0;1Þðμ2s Þμ2s
d
dμ2s

Dð0;1Þðμ2s Þ:

ðA26Þ

To use this, we first need the derivatives of DðnR;nVÞðμ2s Þ.
The derivatives of Dð1;0Þðμ2s Þ and Dð1;0Þðμ2s Þ are simple

μ2s
d
dμ2s

Dð1;0Þðμ2s Þjfpgm; ðcR; cVÞÞ

¼
�
μ2s
Q2

�
ϵ

CRjfp1;…; pm; μsg; ðcR; cVÞÞ;

μ2s
d
dμ2s

Dð0;1Þðμ2s Þjfpgm; ðcR; cVÞÞ

¼ −
�
μ2s
Q2

�
ϵ

CVjfpgm; ðcR; cVÞÞ: ðA27Þ

Here in the state jfp1;…; pm; pmþ1g; ðcR; cVÞÞ, we have
substituted μs for the real number pmþ1.
The derivative of Dð2;0Þðμ2s Þ is a little more complicated.

There are two terms. If we rename the integration variable
and permute the arguments of the statistical state to match
in the two terms, we obtain

μ2s
d
dμ2s

Dð2;0Þðμ2s Þjfpgm; ðcR; cVÞÞ

¼
�
μ2s
Q2

�
ϵ Z μ2s

0

dp2
mþ1

p2
mþ1

�
p2
mþ1

Q2

�ϵ

×



p2
mþ1

p2
mþ1 þ 2μ2s

þ μ2s
μ2s þ 2p2

mþ1

�

× C2Rjfp1;…; pm; pmþ1; μsg; ðcR; cVÞÞ: ðA28Þ

The derivative of Dð0;2Þðμ2s Þ is similar to the derivative of
Dð2;0Þðμ2s Þ:

μ2s
d
dμ2s

Dð0;2Þðμ2s Þjfpgm; ðcR; cVÞÞ

¼
�
μ2s
Q2

�
ϵ Z μ2s

0

dk21
k21

�
k21
Q2

�
ϵ



k21
k21 þ 2μ2s

þ μ2s
μ2s þ 2k21

�

× C2Vjfpgm; ðcR; cVÞÞ: ðA29Þ

The singularity at k21 → 0 gives us a 1=ϵ pole after
integration.
The derivative of Dð1;1Þðμ2s Þ is more complicated. After

combining terms, we obtain

μ2s
d
dμ2s

Dð1;1Þðμ2s Þjfpgm; ðcR; cVÞÞ

¼ −
�
μ2s
Q2

�
ϵ Z μ2s

0

dk21
k21

�
k21
Q2

�
ϵ



k21
k21 þ 2μ2s

þ μ2s
μ2s þ 2k21

�

× CRCVjfp1;…; pm; μsg; ðcR; cVÞÞ −
�
μ2s
Q2

�
ϵ

×
Z

μ2s

0

dp2
mþ1

p2
mþ1

�
p2
mþ1

Q2

�ϵ
 p2
mþ1

p2
mþ1 þ 2μ2s

þ μ2s
μ2s þ 2p2

mþ1

�

× CRCVjfpgmþ1; ðcR; cVÞÞ: ðA30Þ

In the first term, there is a pole from the integration region
k21 → 0, while in the second term there is a singularity
at p2

mþ1 → 0.
With the derivatives of DðnR;nVÞðμ2s Þ at hand, it is

straightforward to use Eq. (A26) to construct the shower
kernel Spertðμ2s Þ.

WHAT IS A PARTON SHOWER? PHYS. REV. D 98, 014034 (2018)

014034-25



The shower kernel at order αs is simple:

Sð1;0Þ
pert ðμ2s Þjfpgm; ðcR; cVÞÞ ¼ CRjfp1;…; pm; μsg; ðcR; cVÞÞ;

Sð0;1Þ
pert ðμ2s Þjfpgm; ðcR; cVÞÞ ¼ −CVjfpgm; ðcR; cVÞÞ: ðA31Þ

For the shower kernel for two real emissions, we find

Sð2;0Þ
pert ðμ2s Þjfpgm; ðcR; cVÞÞ

¼
�
μ2s
Q2

�
ϵ Z μ2s

0

dp2
mþ1

p2
mþ1

�
p2
mþ1

Q2

�ϵ

×



p2
mþ1

p2
mþ1 þ 2μ2s

þ μ2s
μ2s þ 2p2

mþ1

− 1

�

× C2Rjfp1;…; pm; pmþ1; μsg; ðcR; cVÞÞ: ðA32Þ

The subtraction removes the infrared singularity at
p2
mþ1 → 0, allowing us to set ϵ → 0. This gives

Sð2;0Þ
pert ðμ2s Þjfpgm; ðcR; cVÞÞ

¼
Z

μ2s

0

dp2
mþ1



1

p2
mþ1 þ 2μ2s

−
2

μ2s þ 2p2
mþ1

�

× C2Rjfp1;…; pm; pmþ1; μsg; ðcR; cVÞÞ: ðA33Þ

For the shower kernel for two virtual loops, we find a
result that is analogous to what we found above. The
subtraction removes the infrared singularity at k21 → 0 so
that we can set ϵ → 0, giving

Sð0;2Þ
pert ðμ2s Þjfpgm; ðcR; cVÞÞ

¼
Z

μ2s

0

dk21



1

k21 þ 2μ2s
−

2

μ2s þ 2k21

�
C2Vjfpgm; ðcR; cVÞÞ:

ðA34Þ

For the shower kernel with one real emission and one
virtual loop, we obtain

Sð1;1Þ
pert ðμ2s Þjfpgm; ðcR; cVÞÞ

¼ −
�
μ2s
Q2

�
ϵ Z μ2s

0

dk21
k21

�
k21
Q2

�
ϵ



k21
k21 þ 2μ2s

þ μ2s
μ2s þ 2k21

− 1

�

× CRCVjfp1;…; pm; μsg; ðcR; cVÞÞ

−
�
μ2s
Q2

�
ϵ Z μ2s

0

dp2
mþ1

p2
mþ1

�
p2
mþ1

Q2

�ϵ

×



p2
mþ1

p2
mþ1 þ 2μ2s

þ μ2s
μ2s þ 2p2

mþ1

− 1

�

× CRCVjfpgmþ1; ðcR; cVÞÞ: ðA35Þ

Again, the subtraction removes the infrared singularities.
Then we can set ϵ → 0, giving

Sð1;1Þ
pert ðμ2s Þjfpgm; ðcR; cVÞÞ

¼ −
Z

μ2s

0

dk21



1

k21 þ 2μ2s
−

2

μ2s þ 2k21

�

× CRCVjfp1;…; pm; μsg; ðcR; cVÞÞ

−
Z

μ2s

0

dp2
mþ1



1

p2
mþ1 þ 2μ2s

−
2

μ2s þ 2p2
mþ1

�

× CRCVjfpgmþ1; ðcR; cVÞÞ: ðA36Þ

Thus Eq. (A26) gives us a completely straightforward

way to calculate the operators SðnR;nVÞ
pert ðμ2s Þ. All of these

operators at order α1s and α2s are infrared finite.

6. The operator Vðμ2sÞ
We also construct an operator Xðμ2s Þ in Eq. (79). In our

toy model, which has no parton distributions, we have

Xðμ2s Þ ¼ Dðμ2s Þ: ðA37Þ

Then we define an operator Vðμ2s Þ using Eq. (92),

ð1jXðμ2s Þ ¼ ð1jVðμ2s Þ: ðA38Þ

In our toy model, at least up to the order that we have
defined it, the relation ð1jCR ¼ ð1jCV gives us

ð1jDðμ2s Þ ¼ ð1j: ðA39Þ

Thus

Vðμ2s Þ ¼ 1: ðA40Þ

Then according to the definition Eq. (98) (with F ¼ 1) we
have

Uðμ22; μ21Þ ¼ Upertðμ22; μ21Þ: ðA41Þ

The full shower operator U is the same as Upert.

APPENDIX B: TRANSFORMATION TO SHOWER
ORIENTED PARTON DISTRIBUTION

FUNCTIONS

In Sec. VI B, we introduced shower oriented parton
distribution functions that are adapted to the choice of the
cutoff μ2s used in the shower. The shower oriented parton
distributions fa=Aðηa; μ2Þ are related to the five-flavor MS

parton distribution functions fMS
a=Aðηa; μ2Þ by means of a

kernel K. Following the notation of Sec. VI B, the trans-
formation of the parton distribution for hadron A is
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fMS
a=Aðηa;μ2Þ¼

X
a0

Z
1

0

dz
z
KðaÞ

aa0 ðz;μ2;fp;fgmÞfa0=Aðηa=z;μ2Þ:

ðB1Þ

The kernel K depends on the flavor indices a0 and a, a
momentum fraction variable z and the scale μ2. We also
allow it to depend on the momenta and flavors fp; fgm of
the partonic statistical state. Then K has a perturbative
expansion beginning with

KðaÞ
aa0 ðz; μ2; fp; fgmÞ

¼ δaa0δð1 − zÞ þ αsðμ2Þ
2π

Kða;1Þ
aa0 ðz; μ2; fp; fgmÞ þOðα2s Þ:

ðB2Þ

In order to keep the presentation in this paper as simple
as possible, we set the masses of all five quarks d,u,s,c,b to
zero. In a more complete picture, one uses a variable flavor
number scheme. Then, even with MS evolution, we change
the renormalization scheme when the scale μ decreases past
the bottom quark mass and then the charm quark mass.
Thus the β function for αs evolution and the parton
evolution kernel change. For the shower oriented parton
distributions fa=Aðηa; μ2Þ and fb=Bðηb; μ2Þ, there is a differ-
ent dependence on the c- and b-quark masses in the
evolution kernels compared to what one uses in the variable
flavor number version of MS evolution.

There are various possible versions of KðaÞ
aa0 ðz; μ2;

fp; fgmÞ. The simplest is

Kða;1Þ
aa0 ðz; μ2; fp; fgmÞ

¼ δaa0



2zCa

1 − z
log

�
Q2

H

ð1 − zÞ2pa ·QH

��
þ

þ
X
â

Preg
aa0 ðzÞ log

�
Q2

H

ð1 − zÞ2pa ·QH

�

þ δaa0δð1 − zÞγa log
�

Q2
H

2pa ·QH

�
− PðϵÞ

aa0 ðzÞ: ðB3Þ

The first order MS DGLAP kernel is

PMS
aa0 ðzÞ ¼ δaa0



2zCa

1 − z

�
þ
þ Preg

aa0 ðzÞ þ δaa0δð1 − zÞγa: ðB4Þ

Here Ca ¼ CF and γa ¼ 3CF=2 when a is a quark flavor
and Cg ¼ CA, γg ¼ 11CA=6 − 2TRnf=3. The functions

Preg
aa0 ðzÞ and PðϵÞ

aa0 ðzÞ are

Preg
qq ðzÞ ¼ CFð1 − zÞ; PðϵÞ

qq ðzÞ ¼ CFð1 − zÞ;

Preg
gg ðzÞ ¼ 2CA

�
1 − z
z

þ zð1 − zÞ
�
; PðϵÞ

gg ðzÞ ¼ 0;

Preg
qg ðzÞ ¼ TRð1 − 2zð1 − zÞÞ; PðϵÞ

qg ðzÞ ¼ TR2zð1 − zÞ;

Preg
gq ðzÞ ¼ CF

�
zþ 2

1 − z
z

�
; PðϵÞ

gq ðzÞ ¼ CFz: ðB5Þ

The kernelKða;1Þ
aa0 ðz; μ2; fp; fgmÞ is a distribution in zwith a

singularity at z → 1. The singularity is represented by theþ
prescription in the first term of Eq. (B3) and by the term
proportional to δð1 − zÞ. The coefficient of δð1 − zÞ is
associated with how the virtual loop function Dð0;1Þðμ2Þ is
treated. We have here taken a simple choice based on what
is in Ref. [32], but other choices are possible.
The logarithms of Q2

H=½ð1 − zÞ2pa ·QH� in Eq. (B3)
come about as follows. We attempt to calculate ð1jXðμ2Þ
using the definition (79) of Xðμ2Þ. We look at emissions of
a parton in the initial state. Call the virtuality associated
with this splitting jk2j ¼ 2p̂a · p̂mþ1. We integrate over jk2j
and over the momentum fraction z. We use the hardness
variable Λ2, Eq. (55), used in DEDUCTOR. This means that
there is an upper bound for the integration over jk2j,

jk2j < 2pa ·QH

Q2
H

μ2s : ðB6Þ

There is an infrared divergence coming from the jk2j → 0
limit of the integration. This divergence is regularized by
integrating in 4 − 2ϵ dimensions. Now, dimensional regu-
larization effectively acts as an infrared cutoff on the
transverse momentum

jk2Tj ¼ ð1 − zÞjk2j: ðB7Þ

Thus we integrate over jk2Tj with an upper bound

jk2Tj <
2pa ·QH

Q2
H

ð1 − zÞμ2s : ðB8Þ

The 1=ϵ pole produced by the integration over jk2Tj is
removed by the factor ZFðμ2Þ in Xðμ2Þ. This leaves us with
a logðQ2

H=½ð1 − zÞ2pa ·QH�Þ, which multiplies the DGLAP
splitting kernel PaâðzÞ. This remaining contribution does
not have a 1=ϵ pole. It has a term logðμ2=μ2s Þ, where μ2s is
the scale that defines the upper cutoff in the momentum
integration and μ2 is the renormalization scale. We do not
see this logarithm because we set these scales equal to each
other. The Feynman rules for the splitting functions have
some explicit ϵ dependence, giving a function of the form
fðϵÞ=ϵ ¼ fð0Þ=ϵþ f0ð0Þ þOðϵÞ. The term f0ð0Þ gives us
the contributions PðϵÞ

aa0 ðzÞ.
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This calculation leaves us with an order αs contribution
to ð1jXðμ2Þ ¼ ð1jVðμ2Þ that we need to eliminate because
it does not vanish in the limit μ2 → 0. If we did not
eliminate this term, we would lose Eq. (133). The offending
contribution can be removed by the factor Kðμ2Þ in Xðμ2Þ
if we choose the definition (B3).
We also note that if we use k2T instead of Λ2, Eq. (55), as

the shower hardness variable, then there is no logð1 − zÞ.
Then by redefining μ2s by a factorQ2

H=½2pa ·QH�, we obtain

Kða;1Þ
aa0 ðz; μ2; fp; fgmÞ ¼ −PðϵÞ

aa0 ðzÞ: ðB9Þ

That is, the shower oriented parton distribution functions
are close to the MS parton distribution functions. However,
they are not quite equal. That is because for the shower
oriented parton distribution functions we are imposing an
ultraviolet cutoff with a theta function, while with the MS
prescription we subtract a pole 1=ϵ.
We now turn to a construction that puts a different

cut on parton splitting, leading to a less simple kernel

KðaÞ
a;a0 ðz; μ2; fp; fgmÞ. We retain the ultraviolet cut (B6)

when μ2s is not too small. However, when μ2s is small, the
upper bound Eq. (B8) can be very small indeed. We can
relax this cut to

jk2Tj < max



2pa ·QH

Q2
H

ð1 − zÞμ2s ; m2⊥
�
; ðB10Þ

where m2⊥ is, say, 1 GeV2. Then the matching kernel that
defines the shower adapted parton distributions is

Kða;1Þ
a;a0 ðz; μ2; fp; fgmÞ

¼ δaâ



2zCa

1 − z
log

�
min



Q2

H

ð1 − zÞ2pa ·QH
;
μ2s
m2⊥

���
þ

þ
X
a0
Preg
aa0 ðzÞ log

�
min



Q2

H

ð1 − zÞ2pa ·QH
;
μ2s
m2⊥

��

þ δaâδð1 − zÞγa log
�
min



Q2

H

2pa ·QH
;
μ2s
m2⊥

��

− PðϵÞ
aâ ðzÞ: ðB11Þ

When m2⊥ ≪ μ2s , this reduces to our previous definition.
When μ2s < m2⊥Q2

H=2pa ·QH, this becomes, after using
Eq. (B4),

Kða;1Þ
a;a0 ðz; μ2; fp; fgmÞ ¼ log

�
μ2s
m2⊥

�
PMS
aâ ðzÞ − PðϵÞ

aâ ðzÞ:

ðB12Þ

If we write Eq. (B1) to first order as

fa=Aðηa; μ2Þ ¼ fMS
a0=Aðηa=z; μ2Þ

−
αs
2π

X
a0

Z
1

0

dz
z
Kða;1Þ

a;a0 ðz; μ2; fp; fgmÞ

× fMS
a0=Aðηa=z;m2⊥Þ ðB13Þ

and use Eq. (B12), recognizing that the MS kernel gen-

erates scale changes in fMS
a=Aðηa; μ2Þ, we find

fa=Aðηa; μ2Þ ¼ fMS
a=Aðηa; μ2Þ − ½fMS

a=Aðηa; μ2Þ − fMS
a=Aðηa; m2⊥Þ�

þ αs
2π

X
a0

Z
1

0

dz
z
PðϵÞ
aâ ðzÞfMS

a0=Aðηa=z;m2⊥Þ

¼ fMS
a=Aðηa; m2⊥Þ

þ αs
2π

X
a0

Z
1

0

dz
z
PðϵÞ
aâ ðzÞfMS

a0=Aðηa=z;m2⊥Þ:

ðB14Þ

That is, with this definition, for small values of the scale μ2,
the shower oriented parton distribution functions approx-
imately equal the MS parton distribution functions at scale
m2⊥. However, at larger scales, the shower oriented parton
distribution functions evolve differently from the MS ones.
DEDUCTOR uses a definition similar to this, except with
non-zero c and b quark masses and a corresponding
variable flavor number scheme.14

APPENDIX C: CHOOSING QH AND μ2

DYNAMICALLY

In Sec. IV C, we introduced a vector QH that is used to
set scales and to help define one measure of hardness, Λ2,
that can be used in the shower. [See Eq. (55).] We stated
that one can use the intended measurement operator to set
QH globally. There is another possibility: we can use the
statistical state jρHÞ that represents the hard scattering,
Eq. (58). This state has the expansion

jρHÞ ¼
X
m

1

m!

Z
½dfpgm�

X
ffgm

X
fs;s0;c;c0gm

jfp; f; s; s0; c; c0gmÞ

× ðfp; f; s; s0; c; c0gmjρHÞ: ðC1Þ

Our example process in this paper is Higgs boson pro-
duction. With this example, the Higgs boson momentum pH

is part of fp; f; s; s0; c; c0gm. We can set Q2
H ¼ m2

H and set
the rapidity of QH to be the rapidity of pH while letting the
transverse part of QH be zero. Another example would be
jet production, for which the Born process is the production
of two jets. In this case, we could use whatever infrared safe

14The contribution from PðϵÞ
aâ ðzÞ is ignored in DEDUCTOR.
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jet algorithm we like to find the two highest PT jets in
fpgm. Letting the momenta of these jets be P1 and P2, we
could set Q2

H ¼ ðP⃗2
1;T þ P⃗2

2;TÞ=2, set the rapidity of QH to
the rapidity of P1 þ P2, and set the transverse part of QH
to zero.
This procedure requires some additional definitions

since we have defined jρHÞ ¼ D−1ðμ2HÞjρðμ2HÞÞ, so that
we need QH and μ2H ¼ Q2

H to create jρHÞ, but we cannot
use these variables before they have been defined.
Let us see what is needed in the case of jet production,

for which the number of final state partons at the Born level
is m ¼ 2. We content ourselves with what happens with an
NLO hard cross section. We have

jρHÞ ¼


αsðμ2Þ
2π

�
2
�
jρð2;0ÞÞ

þ αsðμ2Þ
2π

½jρð2;1Þðμ2ÞÞ −Dð0;1Þðμ2Þjρð2;0ÞÞ�

þ αsðμ2Þ
2π

½jρð3;0ÞÞ −Dð1;0Þðμ2Þjρð2;0ÞÞ� þOðα2s Þ


:

ðC2Þ

We need to implement setting μ2 to μ2H. In the case of the
argument of αs, this is a simple replacement. For the Born
statistical state jρð2;0ÞÞ, there is nothing further to do. In the
terms jρð2;1Þðμ2ÞÞ and Dð0;1Þðμ2Þjρð2;0Þðμ2ÞÞ, there are can-
celling poles. Then from Dð0;1Þðμ2Þ there is a left over
log μ2 from the cutoff μ2s in the integration over the virtual
loop graph. We simply have to set μ2 ¼ μ2H here. In the term
jρð3;0ÞÞ, there is nothing further to do. In the term
Dð1;0Þðμ2Þjρð2;0ÞÞ, the momenta fpg3 determine the
momenta fpg2 in jρð2;0ÞÞ and also the splitting variables
k2, z, ϕ in Dð1;0Þðμ2Þ. Increasing the ultraviolet cutoff μ2s
provides an increased range for k2. As a result, the range in
fpg3 that is covered increases. Setting μ2 ¼ μ2H, we check
whether the point fpgm is inside the allowed range. If it is,
we multiply by 1. If it is not, we multiply by zero.
It seems clear that this procedure works beyond NLO,

although it becomes more complicated. We work term by
term in the expansion of jρHÞ. Once we have setQH and μ2H,
we set μ2 ¼ μ2H in the argument of αs and in all explicit logs
that come from virtual loop integrals. We check whether the
point fpgm is generated by a subtraction term with an
ultraviolet cutoff μ2H. If not, we omit this term. Our
description here has been algorithmic. To formulate this
in terms of operators on the statistical space requires
additional notation, which we omit.

APPENDIX D: RENORMALIZATION

In this paper we use MS renormalization. In particular,
this defines αs and the MS parton distributions that we start
with. In the parton shower algorithm that we obtain, each

element of the calculation is infrared finite and ultraviolet
finite in four dimensions. However, part of the cancellation
of infrared divergences is tied to the removal of ultraviolet
divergences by renormalization. For this reason, the details
of the ultraviolet renormalization scheme are significant. In
this Appendix, we gather the most important formulas that
we use, mostly following Ref. [119].

1. Renormalization of the QCD coupling

In the MS scheme, the renormalization of the coupling
is15

αbares Sϵ ¼ Zαðμ2Þμ2ϵαsðμ2Þ; ðD1Þ

where μ is the renormalization scale, αbares has mass
dimension 2ϵ, and

Sϵ ¼
ð4πÞϵ

Γð1 − ϵÞ : ðD2Þ

The renormalization constant of the strong coupling is
given as a sum,

Zαðμ2Þ ¼ 1þ
X∞
n¼1



αsðμ2Þ
2π

�
n Xn
k¼1

Z½n;k�
α

ϵk
: ðD3Þ

The scale independent coefficients of the singularities,

Z½n;k�
α , can be given in terms of the expansion parameters

of the βðαsÞ function by a recursion relation:

Z½n;kþ1�
α ¼−

1

n

Xn−1
l¼k

ðlþ1Þβn−lZ½l;k�
α ; Z½n;1�

α ¼−
1

n
βn: ðD4Þ

The running coupling obeys the evolution equation

μ2
dαsðμ2Þ
dμ2

¼ −αsðμ2Þðϵþ βðαsÞÞ

¼ −αsðμ2Þ
�
ϵþ

X∞
n¼1



αsðμ2Þ
2π

�
n

βn

�
; ðD5Þ

where the first two βi coefficients are

β1 ¼
11CA − 4TRnf

6
;

β2 ¼
17C2

A − 10CATRnf − 6CFTRnf
6

: ðD6Þ

15We find this definition useful for our purposes. Refer-
ence [119] uses a different strong coupling, α̃s, with αs ¼ Sϵα̃s.

WHAT IS A PARTON SHOWER? PHYS. REV. D 98, 014034 (2018)

014034-29



2. Renormalization of the parton distribution functions

The MS parton distribution functions enter the cross
section formula (42) in the form

½FMSðμ2Þ ∘ ZFðμ2Þ�jfp; f; s; s0; c; c0gmÞ

¼
X
a0;b0

Z
1

0

dza
za

Z
1

0

dzb
zb

fMS
a0=Aðηa=za; μ2ÞfMS

b0=Bðηb=zb; μ2Þ
ncðaÞnsðaÞncðbÞnsðbÞ4pa · pb

× ZFða; a0; za; αsðμ2ÞÞZFðb; b0; zb; αsðμ2ÞÞ
× jfp; f; s; s0; c; c0gmÞ: ðD7Þ

The renormalization factor ZF is a product, so that each of
the two parton distributions is transformed separately. The
renormalization kernel ZF relates the renormalized parton
distribution to the bare parton distribution:

fbarea=AðηÞ ¼
X
a0

Z
1

0

dz
z
ZFða; a0; z; αsðμ2ÞÞfMS

a0=Aðη=z; μ2Þ:

ðD8Þ

The kernel has a perturbative expansion

ZFða; a0; z;αsðμ2ÞÞ ¼ δa;a0δð1 − zÞ

þ
X∞
n¼1



αsðμ2Þ
2π

�
nXn
k¼1

Z½n;k�
a;a0 ðzÞ
ϵk

: ðD9Þ

It follows from the requirement that fbarea=AðηÞ is indepen-
dent of μ2 and fMS

a=Aðη; μ2Þ has no poles that the renormal-
ized parton distribution function obeys the DGLAP
evolution equation,

μ2
dfMS

a=Aðη; μ2Þ
dμ2

¼
Z

1

0

dz
z
Pa;a0 ðz; μ2ÞfMS

a0=Aðη=z; μ2Þ; ðD10Þ

where

Pa;a0 ðz; μ2Þ ¼
X∞
n¼1



αsðμ2Þ
2π

�
n

PðnÞ
a;a0 ðzÞ ðD11Þ

with

PðnÞ
a;a0 ðzÞ ¼ nZ½n;1�

a;a0 ðzÞ: ðD12Þ

The coefficients of 1=ϵ to higher powers are then deter-
mined by the recursion relation

Z½n;kþ1�
a;a0 ðzÞ ¼ 1

n

Xn−1
l¼k

Z
1

z

dx
x

X
c

Z½l;k�
a;c ðz=xÞ

× ½Pðn−lÞ
c;a0 ðxÞ − δc;a0δð1 − xÞlβn−l�: ðD13Þ

We can also write the evolution kernel as

Pa;a0 ðz; μ2Þ ¼ −
Z

1

z

dx
x

X
c

Z−1
F ða; c; z=x; αsðμ2ÞÞ

× μ2
dZFðc; a0; z; αsðμ2ÞÞ

dμ2
: ðD14Þ

The factors contain poles 1=ϵk, but the poles cancel.

3. Renormalization scale dependence

The physical states jρðμ2ÞÞ defined in Eq. (43) represent
the quantum density operator of the partonic scattering. It
is constructed from amplitudes jMðfp; fgmÞi and conju-
gate amplitudes hMðfp; fgmÞj. We include the proper
Lehmann-Symanzik-Zimmermann (LSZ) factors for the
incoming and outgoing partons so that the amplitudes are
S-matrix elements in the renormalized theory. With mass-
less partons and dimensional regularization in Feynman
gauge, this amounts to multiplying by field strength
renormalization factors Z−1=2

ψ or Z−1=2
A for each external

leg of an amputated graph. Then jρðμ2ÞÞ is independent of
the renormalization scale if calculated at all perturbative
orders. When we calculate it up to order αks as in Eq. (43),
we have

μ2
d
dμ2

jρðμ2ÞÞ ¼ Oðαkþ1
s Þ: ðD15Þ

Let us consider next the infrared sensitive operator
Dðμ2Þ. This operator depends on two scales, the renorm-
alization scale μ2 and shower scale μ2S . We have set these
scales to equal each other, but in this Appendix we
highlight their separate roles. Thus we write Dðμ2; μ2SÞ
with two arguments and let the operator with only one
argument denote

Dðμ2Þ ¼ Dðμ2; μ2Þ: ðD16Þ
For any basis state jfp; f; s; s0; c; c0gmÞ, the state
Dðμ2; μ2SÞjfp; f; s; s0; c; c0gmÞ is to be defined so as to have
the properties of a physical statistical state jρðμ2ÞÞ. It is
constructed in the renormalized theory and has the proper
field strength renormalization factors for its external
partons so that Dðμ2; μ2SÞ is independent of the renormal-
ization scale up to the order that we calculate. That is, if
Dðμ2; μ2SÞ is calculated up to order αks , we have

μ2
∂
∂μ2Dðμ2; μ2SÞ ¼ Oðαkþ1

s Þ: ðD17Þ

In order to calculate the parton shower generators
Spertðμ2Þ and Sðμ2Þ, we need the total derivative of
Dðμ2Þ with respect to the common scale. Since
Dðμ2; μ2SÞ is independent of μ2, this is actually the deriva-
tive with respect to μ2S:
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d
dμ2

Dðμ2Þ ¼ ∂
∂μ2Dðμ2; μ2SÞ

				
μ2S¼μ2

þ ∂
∂μ2S Dðμ2; μ2SÞ

				
μ2S¼μ2

¼ ∂
∂μ2S Dðμ2; μ2SÞ

				
μ2S¼μ2

þOðαkþ1
s Þ: ðD18Þ

The perturbative expansion of this is

μ2
d
dμ2

Dðμ2Þ ¼
Xk
n¼1



αsðμ2Þ
2π

�
n

μ2
∂
∂μ2S D

ðnÞðμ2; μ2SÞ
				
μ2S¼μ2

þOðαkþ1
s Þ: ðD19Þ

Using this, the generators of the perturbative shower
operator can be obtained from Eqs. (73) and (49) as

1

μ2
SðnÞpertðμ2Þ ¼


 ∂
∂μ2S D

ðnÞðμ2; μ2SÞ

−
Xn−1
k¼1

D̃ðkÞðμ2Þ ∂
∂μ2S D

ðn−kÞðμ2; μ2SÞ
�
μ2S¼μ2

:

ðD20Þ

This simplifies the shower generators. The operators
DðnÞðμ2; μ2SÞ always contains a theta function like θðΛ2 <
μ2SÞ or the equivalent constraint for the loop contributions.
The partial derivative turns one of these theta functions into
a Dirac delta function.
The inclusive infrared finite operator Vðμ2Þ is defined by

the condition (92). This operator is derived from the
infrared sensitive operator D and, just like D, depends
on both the renormalization and shower scales. Thus we
write Vðμ2; μ2SÞ with two arguments and let the operator
with only one argument denote

Vðμ2Þ ¼ Vðμ2; μ2Þ: ðD21Þ

Using Eqs. (79), (92), we have

ð1jVðμ2;μ2SÞF ðμ2Þ¼ð1j½F ðμ2Þ ∘Kðμ2Þ ∘ZFðμ2Þ�Dðμ2;μ2SÞ:
ðD22Þ

Recall that ½F ðμ2Þ ∘ Kðμ2Þ ∘ ZFðμ2Þ� is independent of μ2.
We have just seen that Dðμ2; μ2SÞ is independent of μ2 at
fixed μ2S . Recall from Sec. VI D that we fix the color and
spin content of Vðμ2; μ2SÞ to make Eq. (D22) work for

ð1jVðμ2; μ2SÞ. Once we have done that for one choice of μ2
at a given μ2S , we can keep the same operator Vðμ2; μ2SÞ for
other choices of μ2 and Eq. (D22) will continue to hold.
That is, we can define Vðμ2; μ2SÞF ðμ2Þ so that it is
independent of μ2 up to whatever order we calculate:

∂
∂μ2 ½Vðμ

2; μ2SÞF ðμ2Þ� ¼ 0þOðαkþ1
s Þ: ðD23Þ

This gives us

Vðμ2; μ2SÞ−1
∂
∂μ2 Vðμ

2; μ2SÞ

¼ −


d
dμ2

F ðμ2Þ
�
F−1ðμ2Þ þOðαkþ1

s Þ: ðD24Þ

The generator SVðμ2Þ of UVðμ22; μ21Þ is defined in
Eq. (114) as

1

μ2
SVðμ2Þ¼V−1ðμ2Þ


 ∂
∂μ2Vðμ

2;μ2SÞþ
∂
∂μ2SVðμ

2;μ2SÞ
�
μ2S¼μ2

:

ðD25Þ

This gives us

1

μ2
SVðμ2Þ¼V−1ðμ2Þ ∂

∂μ2SVðμ
2;μ2SÞ

				
μ2S¼μ2

−
dF ðμ2Þ
dμ2

F−1ðμ2Þ:

ðD26Þ

Here the first term represents the evolution of the pertur-
bative part of V and the second term gives the evolution of
the parton distribution functions. This generalizes Eq. (124)
for the first order contribution to SV .
Finally the generator of the probability preserving

shower evolution operator is given in Eqs. (115) and
(73). We can simplify this by using Eqs. (D18) and (D26)

1

μ2
Sðμ2Þ ¼ Vðμ2ÞF ðμ2ÞD−1ðμ2Þ ∂Dðμ2; μ2SÞ

∂μ2S
× F−1ðμ2ÞV−1ðμ2Þ

				
μ2S¼μ2

−
∂Vðμ2; μ2SÞ

∂μ2S V−1ðμ2Þ
				
μ2S¼μ2

: ðD27Þ
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