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Jaume Tarrús Castellà1,* and Gastão Krein2,†
1Grup de Física Teòrica, Dept. Física and IFAE-BIST,

Universitat Autònoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain
2Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz,

271 - Bloco II, 01140-070 São Paulo, SP, Brazil

(Received 26 March 2018; published 23 July 2018)

We develop an effective field theory approach for the S-wave quarkonium-nucleon system. We adopt a
natural power counting equivalent to Weinberg’s power counting in nucleon-nucleon effective field theories
and compute the quarkonium-nucleon potential, scattering length and effective range up to Oðm3

π=Λ3
χÞ

accuracy, including the full light-quark mass dependence. We compare our results with lattice QCD studies
of quarkonium-nucleon system, obtain an estimation of the leading order quarkonium-nucleon contact term
and determine the J=ψ and ηc chromopolarizabilities.
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I. INTRODUCTION

The confirmation [1] by the LHCb collaboration at the
CERN Large Hadron Collider (LHC) of its earlier finding
[2] of the pentaquark states Pþ

c ð4380Þ and Pþ
c ð4450Þ has

sparked off renewed interest in the low-energy quarko-
nium-nucleon system. These pentaquark states appear as
intermediate resonant states in the weak decay process
Λ0
b → J=ΨpK−, have valence quark content Pþ

c ¼ c̄cuud,
and lie close to several charmonium-baryon thresholds [3].
Like with the plethora of X,Y,Z exotic hadrons [4,5], the
underlying QCD dynamics governing the internal structure
of these pentaquark states is not understood—see Ref. [6]
for a recent review.
Early interest in low-energy quarkonium-nucleon inter-

action was motivated by the fact that it can probe the mass
distribution inside a nucleon. The amplitude for quarko-
nium-nucleon forward scattering at low energies has been
described [7–12] as a product of the quarkonium-gluon
interaction, parametrized in terms of the quarkonium
chromopolarizability [13–18], and a matrix element of
gluon fields inside the nucleon that can be obtained by
using the trace anomaly, a quantum anomaly in the trace of
the QCD energy-momentum tensor [19–21].
The interest in quarkonium-nucleon systems is further

motivated by upcoming experiments at the Facility for Ion

Research (FAIR) aiming at the determination of cross
sections of quarkonium propagation in nuclear matter,
which are crucial for disentangling cold matter from
deconfinement effects in experiments of relativistic heavy-
ion collisions at the Relativistic Heavy Ion Collider (RHIC)
and the LHC [22].
Quarkonium-nucleon systems have no valence quarks in

common and their dynamics appears to be dominated by
multigluon van der Waals interactions [8,23–25]. These
interactions are not expected to be repulsive at short
distances, a feature that led to the interesting conjecture
[23] that quarkonium states, like the charmonia J=Ψ and ηc,
can form exotic nuclear bound states. Since this earlier
conjecture, many different methods have been used to
investigate the possible existence of such exotic states and a
large literature on the subject has accumulated along the
years—for a recent review, see Ref. [26]. There is scarce
experimental information on quarkonium-nucleon interac-
tion at low energies and practically all of our knowledge on
the interaction comes from lattice simulations [27–33],
although new, but preliminary experimental results by the
GlueX collaboration at the Thomas Jefferson National
Accelerator Facility (JLAB) have been communicated
recently [34]. The lattice results, obtained for fairly large
pion masses, find that indeed the charmonium-nucleon
interaction does not contain a repulsive core, being attrac-
tive but not very strong. Another recent lattice QCD
simulation [25] found that charmonia can form nuclear
bound states, with large binding energies, much larger than
phenomenological expectations [26,35], a feature that
possibly is due to the very large pion mass used in that
simulation. Regarding charmonium-nucleon bound states,
while the lattice simulation of Ref. [25] finds deeply bound
nuclear states, a more recent simulation [32] using a smaller
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pion mass, finds very small binding, of the order of the
deuteron binding energy.
The development of a theoretical framework built on

controllable approximations that can be systematically
improved is essential for the understanding of the quarko-
nium-nucleon system. Van der Waals forces have been
studied in an effective field theory (EFT) framework for
QED in Ref. [36] and for quarkonium-quarkonium systems
in Ref. [18]. In the present paper we aim at the construction
of a nonrelativistic chiral EFT for the J=ψ and ηc interactions
with nucleons, which we name quarkonium-nucleon EFT,
QNEFT. We restrict the discussion to S-wave quarkonia but
higher states can be treated similarly. QNEFT is constructed
by coupling an S-wave quarkonium field with a nucleon
doublet and a pion triplet according to chiral symmetry,
heavy-quark spin symmetry, andCPT symmetry.We adopt a
counting scheme analogous to Weinberg’s counting for
nucleon-nucleon EFT [37,38], that is, the natural power
counting based on dimensional analysis. The nucleon-
quarkonium dynamics takes place at a lower energy scale
than the pionmass. Therefore, it is convenient to integrate out
the dynamics at the E ∼mπ scale and match QNEFT to a
lower energy EFT, which we call potential quarkonium-
nucleon EFT, pQNEFT, in which the S-wave quarkonium
interacts through contact and potential interactions. We have
put special emphasis on obtaining the light-quark mass
dependence of all the matching coefficients. Within
pQNEFTwe obtain the expressions for the scattering length
and effective range as a function of the light-quark mass. We
then compare with studies on the lattice of the potential and
effective range expansion (ERE) parameters which allows us
to test our assumptions on the counting and determine the
J=ψ and ηc chromopolarizabilities. Finally, the EFT frame-
work allowsus to discuss the compatibility of the results from
the different lattice simulations.
The paper is organized as follows. In Sec. II we detail the

nonrelativistic EFT for nucleon and S-wave quarkonium
(QNEFT) interacting at energies of the order of the pionmass
E ∼mπ . In Sec. III we introduce the lower-energy EFT,
E ∼m2

π=Λ χ , termed pQNEFT, and work out the matching
coefficients. The scattering amplitude, scattering length and
effective range in pQNEFTare computed up to next-to-next-
to-next-to-leading order (N3LO) including the full light-
quarkmass dependence in Sec. IV.We compare our result for
the quarkonium-nucleon potential and the scattering length
and effective range with the HAL QCD method and lattice
determinations in Sec. VI and in Sec. V respectively. We
present a discussion of our results and conclusions in
Sec. VII. In Appendix we detail the calculation of the
quarkonium-nucleon potential in coordinate space.

II. QUARKONIUM-NUCLEON EFT

We consider an EFT of QCD containing as degrees of
freedom S-wave quarkonia, nucleons and pions at energies
of order mπ, much below Λ χ ∼ 1 GeV, the scale of

dynamical chiral symmetry breaking. Since the masses
of the nucleon and S-wave quarkonia are close or aboveΛ χ ,
a nonrelativistic formulation for both fields is convenient
[39]. In the following, we write the Lagrangian density
necessary for nucleon-S-wave quarkonium scattering up to
terms of Oðm3

π=Λ3
χÞ, consistent with chiral symmetry, C

and P invariance and rotational symmetry (and Lorentz
invariance in the Goldstone boson sector).
As a basic building block we use the unitary matrixUðxÞ

to parametrize the Goldstone boson fields:

u2 ¼ U ¼ eiΦ=F; Φ ¼
�

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
: ð1Þ

At leading order, F may be identified with the pion decay
constant Fπ ¼ 92.419 MeV. The most convenient choice
of fields for the construction of the effective Lagrangian is
given by uμ ¼ ifu†; ∂μug and χ� ¼ u† χu† � uχ†u, where
χ ¼ 2Bm̂1, with B being related to the vacuum quark
condensate and m̂ is the average of the u and d quark
masses. Wework in the isospin limit,mu ¼ md ≡ m̂; in this
limit, the pion mass is m2

π ¼ 2Bm̂ ≈ ð135 MeVÞ2. The
Lagrangian density for the Goldstone boson sector at
leading order is given by

Lπ ¼ F2

4
ðhuμuμi þ hχþiÞ; ð2Þ

where h� � �i means trace over flavor. We are interested only
in the S-wave color-singlet quarkonia states. These can be
spin singlet or spin triplet. Since the spin-dependent
interactions are suppressed by the heavy quark mass and
are beyond the accuracy we are aiming for, these two states
can be taken as degenerate and we will represent them both
with a 0−þ field ϕ. The kinetic part of the ϕ Lagrangian
density is

Lϕ ¼ ϕ†
�
i∂0 þ

∇2

2m̂ϕ

�
ϕ: ð3Þ

Since the ϕ field is scalar under chiral symmetry, the ϕ-pion
interactions are described by

Lϕ−π ¼ F2

4
ϕ†ϕðcd0hu0u0i þ cdihuiuii þ cmhχþiÞ; ð4Þ

where the low-energy constants cd0, cdi, and cm can be
determined by using the QCD trace anomaly [18] for
sufficiently compact quarkonia:

cd0¼−
4π2β

b
κ1; cdi¼−

4π2β

b
κ2; cm¼−

12π2β

b
: ð5Þ

with β the chromopolarizability of the S-wave quarkonium
state, b is the first coefficient of the QCD beta function,
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b ¼ ð11Nc − 2NfÞ=3, where Nc ¼ 3 and Nf ¼ 3 are the
number of colors and of active flavors at the quarkmonium
state scale, respectively, and κ1 ¼ 2 − 9κ=2, κ2 ¼ 2þ
3κ=2. Here, κ is a parameter that can be obtained from
pionic transitions of quarkonium states. We will use the
value κ ¼ 0.186ð9Þ, extracted from ψ 0 → J=ψπþπ− decays
[40]. The expressions in Eq. (5) are valid up to corrections
of OðαsÞ [41] stemming from considering higher order
terms in the QCD beta function appearing in the trace of
the QCD energy-momentum tensor.
The nucleons form an isospin doublet. The nucleon

sector, including couplings to pions, is described by a
Lagrangian density that reads [42,43]

LN ¼ N†
�
iD0 þ

D2

2m̂N

�
N −

gA
2
N†u · σN: ð6Þ

The covariant derivative acting on the nucleon fields is
defined as [42] DμN ¼ ∂μN þ ΓμN, with Γμ ¼ 1

2
½u†; ∂μu�.

The last pieces of the effective Lagrangian are contact
terms with nucleons and S-wave quarkonium, which we
write as

Lϕ−N ¼ −c0N†Nϕ†ϕ − dmhχþiN†Nϕ†ϕ

− d1∇ðN†NÞ · ∇ðϕ†ϕÞ − d2ðN†D
↔
NÞ · ðϕ†∇

↔
ϕÞ

− d3DN† · DNϕ†ϕ − d4N†N∇ϕ† · ∇ϕ; ð7Þ

with ∇↔ ¼ ∇⃖ − ∇⃗ and analogously for D
↔
. There are further

next-to-leading order (NLO) terms coupling ϕ − N and
pions but we only display the ones that do not vanish in the
vacuum configuration (u ¼ 1).
We adopt a standard chiral counting, with ∂0 ∼ ∂i ∼mπ ,

and low-energy constants of OðΛ4−k
χ Þ where k is the

dimension of the accompanying operator. Thus, the scaling
of low-energy constants in Eq. (7) is c0 ∼ 1=Λ2

χ , and dm as
well as di, i ¼ 1;…; 4, scale as dm, di ∼ 1=Λ4

χ . This power
counting setup is equivalent to Weinberg’s power counting
in nucleon-nucleon EFT. Moreover, we will count the
quarkonium and nucleon mass as mN ∼mϕ ∼ Λ χ . A more
refined counting, taking into account Λ χ ∼mN < mϕ, is
not required at the precision we aim for.

III. POTENTIAL QUARKONIUM-NUCLEON EFT

The QNEFT introduced in Sec. II describes the inter-
action of nucleons and S-wave quarkonia with relative
momentum ∼mπ. However, the quarkonium-nucleon
dynamics occurs at the energy scale E ∼m2

π=Λ χ . For
energies E ∼m2

π=Λ χ ≪ mπ , the pion fields can be inte-
grated out. This integration produces quarkonium-nucleon
potentials and redefinitions of the low-energy constants.
The Lagrangian density for pQNEFT reads as follows

LpQNEFT ¼ N†
�
i∂0 þ

∇2

2mN

�
N þ ϕ†

�
i∂0 þ

∇2

2mϕ

�
ϕ

− C0N†Nϕ†ϕ −D1∇ðN†NÞ · ∇ðϕ†ϕÞ
−D2ðN†∇

↔
NÞ · ðϕ†∇

↔
ϕÞ −D3∇N† · ∇Nϕ†ϕ

−D4N†N∇ϕ† · ∇ϕ

−
Z

d3rN†Nðt; x1ÞVðx1 − x2Þϕ†ϕðt; x2Þ; ð8Þ

with r ¼ x1 − x2.
The nucleon and S-wave quarkonium masses receive

contributions from operators proportional to the quark masses
as well as from pion loop contributions. These matching
contributions can be found in Refs. [44] and [18] for the
nucleon and S-wave quarkonium masses respectively. Up to
contributions of Oððmπ=Λ χÞ3Þ, they are given by1

mN ¼ m̂N − 4c1m2
π −

3g2Am
3
π

32πF2
; ð9Þ

mϕ ¼ m̂ϕ − F2cmm2
π: ð10Þ

The matching contributions to the quarkonium-nucleon
contact terms and potential up to next-to-next-to-leading
order (N2LO) are shown in Fig. 1. The LO contribution is
formed by the contact term proportional to c0 from the
Lagrangian (7), diagram (a) in Fig. 1. The NLO contribu-
tion is given by the operators proportional to dm and di,
i ¼ 1;…; 4, as well as the one-pion exchange between the
nucleon legs, diagram (b) in Fig. 1. The ultraviolet
divergence in diagram (b) can be renormalized in the
MS scheme by

dm → dm þ 9g2Ac0
256π2F2

λ;

λ ¼ 2=ð4 − dÞ þ 1 − γE þ log 4π; ð11Þ

with γE being the Euler’s constant. The N3LO terms
correspond to the two-pion exchange diagram in Fig. 1.
Diagram (c) cancels due to the isospin structure of the
vertices: the two-pion-ϕ vertex requires both pions to carry
the same isospin while the two-pion-nucleon vertex has the
two pions necessarily with different isospin.
Diagram (d) generates a potential interaction as well as

local terms. We separate the local and nonlocal contribu-
tions of diagram (d) using a dispersive representation, the
details of which can be found in the Appendix and assign
the local terms to the contact interactions. The matching
reads:

1The nucleon and quarkonium masses in Refs. [18,44] are
computed to higher accuracy, we reproduce only those terms that
will be needed in this work.
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C0 ¼ c0 þ 4m2
πdm þ 9g2Am

2
πc0

64π2F2

�
log

m2
π

ν2
þ 2

3

�

þ 3g2Am
3
π

64πF2
ð5cdi − 3cmÞ; ð12Þ

D1 ¼ d1 þ
g2Amπ

256πF2
ð23cdi − 5cmÞ; ð13Þ

Dj ¼ dj for j ¼ 2; 3 and 4; ð14Þ

VðrÞ ¼ 3g2A
128π2F2r6

e−2mπrfcdi½6þmπrð2þmπrÞ
× ð6þmπrð2þmπrÞÞ� þ cmm2

πr2ð1þmπrÞ2g;
ð15Þ

with ν being the renormalization scale. Expanding the
potential for long distances, r ≫ ð2mπÞ−1, we obtain the
expression

VðrÞ ¼ 3g2Am
4
πðcdi þ cmÞ

128π2F2

e−2mπr

r2
: ð16Þ

The e−2mπr=r2 falloff was obtained previously in the large
Nc limit in the context of a chiral soliton model [45,46].
Nevertheless, to our knowledge, our derivation of Eq. (16)
is the first model-independent determination within a first-
principles EFT framework.

IV. EFFECTIVE RANGE EXPANSION
PARAMETERS

In pQNEFT we can compute the S-wave nucleon-
quarkonium scattering amplitude. For this we will need
the contribution of the n-bubble diagrams for theC0 contact
interaction, which are given by

An−bubble ¼ −C0

�
−
iμpC0

2π

�
n
; ð17Þ

where μ ¼ mϕmN=ðmϕ þmNÞ is the reduced mass of the
system, and p ¼ ffiffiffiffiffiffiffiffiffi

2μE
p

and E are the center of mass (c.m.)
momentum and energy. The S-wave scattering amplitude2

to N3LO reads

Að0Þ
S ¼ −C0; ð18Þ

Að1Þ
S ¼ −C0

�
−
iμpC0

2π

�
; ð19Þ

Að2Þ
S ¼ −2ðD1 þD2Þp2 − C0

�
−
iμpC0

2π

�
2

; ð20Þ

Að3Þ
S ¼ −C0

�
−
iμpC0

2π

�
3

− ṼSðpÞ; ð21Þ

where the superscript (k) in AðkÞ
S indicates the suppression

relative to the leading order amplitude in powers of
ðmπ=Λ χÞk, and ṼSðpÞ is the projection of the potential
in momentum space on the S-wave channel:

ṼSðpÞ¼
3g2Am

3
π

32πF2

���
mπ

p
þ 2p
3mπ

�
ðcdi−cmÞ

þ
�

2p
3mπ

þ 4p3

5m3
π

�
cdi

�
arctan

p
mπ

þ 1

30

m2
π

p2
ð5cm−7cdiÞ log

�
1þ p2

m2
π

�

−
1

60

�
46þ67p2

m2
π

�
cdiþ

5

12

�
2þ p2

m2
π

�
cm

�
: ð22Þ

For ðmπ=Λ χÞ4 precision, we would need higher order
contact terms in the QNEFT Lagrangian in Eq. (7),
with four derivatives or pion mass insertions; additional
2-pion loop diagrams, analogous to the diagram (c) of
Fig. 1, with NLO pion-nucleon vertices instead of LO ones;
and the contributions to the nucleon and quarkonium
masses up to the aforementioned order. Corrections to
the pion-nucleon axial vector coupling and to higher order
two-pion-quarkonium vertices contribute only starting at
order ðmπ=Λ χÞ5. Four-pion exchanges appear at most at
ðmπ=Λ χÞ5 precision. Two-kaon and two-η exchanges are
suppressed by two mechanisms: diagram (d) in Fig. 1 is not
allowed because the nucleon cannot emit a meson with
strangeness unless it transitions into a hyperon and diagram
(c) vanishes at leading order in an analogous way as for
pion exchanges. Furthermore, the two-kaon and two-η
exchange contributions are suppressed by powers of
(mπ=mK) and (mπ=mη) respectively.

(a) (b) (c) (d)

FIG. 1. Diagrams contributing to nucleon-S-wave quarkonium scattering. Double, single, and dashed lines correspond to quarkonium,
nucleon and pions respectively.

2The partial-wave decomposition of the scattering amplitude is
defined as AlðpÞ ¼ 1

2

Rþ1
−1 dxPlðxÞAðp; xÞ.
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The effective range expansion (ERE) parametrizes the
low-energy scattering amplitudes. To fix the convention,
let us write the on-shell S-matrix for a particular partial
wave l as:

AERE
l ¼ 2π

μ

1

p cot δl − ip
; ð23Þ

where δl is the phase shift. The ERE is defined as

p2lþ1 cot δl ¼ −
1

al
þ 1

2
rlp2 þ � � � : ð24Þ

We expand the S-wave ERE amplitude for small p

AERE
S ¼ −

2π

μ
a0 þ

2π

μ
a20ðipÞ þ

2π

μ

�
a30 −

1

2
r0a20

�
p2 þ � � � ;

ð25Þ

and match it to the pNQEFT amplitude of Eqs. (18)–(21) to
obtain the scattering length and effective range [47]:

a0 ¼
μ

2π

�
c0 þ 4dmm2

π þ
9g2Am

2
πc0

64π2F2

�
log

m2
π

ν2
þ 2

3

�

þ 3g2A
64πF2

m3
πð5cdi − 3cmÞ

�
; ð26Þ

r0 ¼
8π

μc20

�
ðd1 þ d2Þ þ

g2A
256πF2

mπð23cdi − 5cmÞ
�
: ð27Þ

Note that the reduced mass is in terms of the physical
quarkonium and nucleonmasses, which also carry a depend-
ence on mπ , that needs to be taken into account for chiral
extrapolations. This dependence can be found in Eqs. (9) and
(10) up to the accuracy required in Eqs. (26) and (27).

V. COMPARISON WITH THE SCATTERING
LENGTH FROM LATTICE QCD

The S-wave quarkonium-nucleon scattering lengths have
been studied in the lattice using Lüscher’s phase-shift
formula in the quenched approximation in Refs. [27,29]
and in full QCD in Ref. [28].
In Ref. [27] the scattering lengths of charmonia (ηc and

J=ψ ) with light hadrons (π, ρ and N) were studied in
quenched lattice QCD at three different lattice volumes
using Lüscher’s phase-shift formula. The full Phase Shift
Formula (PSF) as well as a Leading Large L (LLE)
expansion were employed to extract the scattering lengths
from the energy shifts of the system with respect to the sum
of the quarkonium and hadron masses. Three different
hopping parameters for the light hadrons were used,
corresponding to three different pion (and nucleon) masses.
Nevertheless, no appreciable light-quark mass dependence
was found for the values of the energy shifts in the
quarkonium-nucleon channels. A possible explanation
for this behavior, aside from the fact that the simulations

are carried out in a quenched approximation, can be derived
from our result for the scattering length in Eq. (26); at
leading order the scattering length has no light-quark mass
dependence and the expected size of the light-quark mass
dependent subleading contributions to the scattering length
is much smaller than the size of the uncertainties of the
lattice simulations. Thus, we compare our leading order
scattering length with the results extrapolated in to the
physical point presented in Ref. [27] and extract the value
of c0. The results can be found in the first entry of Table I.
Note that we have adjusted the sign of the scattering lengths
to match our convention in Eq. (24).
The authors in Ref. [29] report the values of the

scattering length of charmonia (ηc and J=ψ) with nucleons
in the second entry of Table I with an error of the order of
25%. The uncertainties are in this case also larger than the
expected size of the subleading contributions to the
scattering length, thus only the value of c0 can be estimated,
which may explain why in Ref. [29] also no dependence on
the light-quark mass of the scattering lengths was observed.
Using the lowest pion mass results in that reference, mπ ¼
0.64 GeV (mN ¼ 1.43 GeV), we obtain the values for c0
presented in Table I. A value of 1 fm for the effective range
was also reported in Ref. [29] for both channels with ∼50%
uncertainty. Using our leading order expression for the
effective range we arrive at the estimates d1 þ d2 ¼
13 GeV−4 for the ηc channel and d1 þ d2 ¼ 26 GeV−4

for the J=ψ channel with about 60% uncertainty.

TABLE I. Summary of the estimates of the low-energy con-
stants c0 and dm discussed in the text. In the upper panel,
estimates from lattice determinations of the S–wave scattering
lengths a0, and in the lower panel, estimates from the model in
Ref. [12] with the J=Ψ polarizability β as in that reference (upper
value) and taken from our fit of the potential in Eq. (29) (lower
value). In quenched lattice simulations the value of dm can not be
determined. The values for the scattering lengths for the Ref. [28]
entry correspond to the extrapolation to the physical point of our
own fit, see Fig. 2. The scattering lengths for the J=ψ channels
correspond always to spin averaged values.

Reference Channel a0 [fm] c0 [GeV−2] dm [GeV−2]

[27]
PSF

ηc −0.70ð66Þ −31ð29Þ
Quenched

J=ψ −0.71ð48Þ −31ð21Þ
LLE

ηc −0.39ð14Þ −17ð6Þ
J=ψ −0.39ð14Þ −17ð6Þ

[29]
ηc −0.25ð5Þ −8ð2Þ

Quenched
J=ψ −0.35ð6Þ −12ð3Þ

[28]
ηc −0.18ð9Þ −9.7ð1.2Þ 14.7(4.8)
J=ψ −0.40ð80Þ −12ð18Þ −100ð80Þ

[12]
βJ=ψ [GeV−3]

2 −0.37 −16.5
0.24 −0.05 −2.0
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The scattering lengths of charmonia (ηc and J=ψ) with
light hadrons (π, ρ and N) in full QCD were computed in
Ref. [28]. The Fermilab formulation was used for charm
quarks, domain-wall fermions for the light-quarks and
staggered sea quarks. Four different light-quark masses were
used. We fit our expression up to NLO for the scattering
length of Eq. (26) to the lattice data for the ηc-N and J=ψ-N
channels. The fit is obtained byminimizing a χ2 distribution.
At NLO the scattering lengths receive contributions from

the light-quark mass dependence of the quarkonium and
nucleon masses. For the nucleon mass we have used the
parameters from fit I of Ref. [44], m̂N ¼ 0.891ð4Þ GeV,
c1 ¼ −0.79ð5Þ GeV−1. We use the values of β from
Eq. (29). The quarkonia bare masses are fixed by imposing
that Eq. (10) reproduces the PDG values [48] (mηc ¼
2.9834 GeV, mJ=ψ ¼ 3.0969 GeV) at the physical pion
mass (mπ ¼ 0.135 GeV). We plot the fits in Fig. 2. The
values we obtain are in the third entry of Table I. The
uncertainties are estimated as the range of values of a
parameter that keeps χ2d:o:f < 1 while keeping the other
fixed. We can see that the data does not allow to mean-
ingfully constrain the value of dm.
The contact interaction c0 can also be estimated using the

model calculation of Ref. [12]. In this reference the low-
energy interaction of the J=ψ with nucleons was estimated
assuming the multipole expansion for quarkonium interac-
tion with soft gluons and the soft gluon coupling to the
nucleon was determined by the anomaly in the trace of the
QCD energy-momentum tensor up to an unknown constant
C ≥ 1. If we identify the scattering amplitude of Ref. [12]
(with a nonrelativistic normalization) to our leading order
amplitude we obtain the following estimate for the contact
interaction

c0 ¼ −
4π2

9
ð1þ CÞβJ=ψmN: ð28Þ

In the lower panel of Table I we give the value of c0 using
Eq. (28) with C ¼ 1 as suggested in Ref. [12]. We use two
values for the J=ψ polarizability, the first is the one used in

Ref. [12], and the second the one obtained in our fit of
the potential in Eq. (29). It should be noted that the
quarkonium polarizability in Eq. (28) cannot be straightfor-
wardly identified with the one appearing in Eq. (5). In
general, the quarkonium polarizability depends on the
momentum, for distances larger than the inverse of intrinsic
energy scale of the quarkonium, i.e., the binding energy, the
polarizability can be approximated by the zero momentum
case (usually called static polarizability in electromagnetic
systems), which is the case assumed for the polarizability in
Eq. (28) and fitted in Sec. VI. However, at shorter distances,
such as in the case considered in Ref. [12], the momentum
dependence may produce values of the polarizability differ-
ent from the one fitted in Sec. VI.
It is interesting to compare the results, in Table I, for c0 and

dm obtained from the comparison with the different lattice
references. There is amoderately large variation in the values
obtained forc0, nevertheless the larger values also have larger
uncertainties. Due to these uncertainties the different values
for c0 are not in strong contradiction. From naive dimen-
sional analysis we expect c0 ∼ Λ−2

χ ∼ 1.2 GeV−2, which is
compatible, within the uncertainties, with the values in
Table I, albeit these lay in the upper range of the natural
size. The natural size for d1 þ d2 ∼ 3 GeV−4 is smaller than
our only estimate from a lattice determination of the effective
range, this however carry even larger uncertainties than the
scattering length ones. If values for the low-energy constants
exceeding by an order ofmagnitude the dimensional analysis
estimates are confirmed by future more precise lattice
studies, a different power counting should be adopted.
Enhanced contact interactions can be accommodated using
the PDS scheme of Refs. [47,49] or by the explicit intro-
duction of nonscattering quarkonium-nucleon states as
degrees of freedom as in Refs. [50,51].

VI. COMPARISON WITH THE HAL QCD
METHOD POTENTIAL

The ηc- and J=ψ-nucleon potential has been calculated in
the HAL QCD method. In this approach the potential is

FIG. 2. Fits of the NLO scattering lengths (blue line) as a function of the light-quark mass to the lattice data from Ref. [28] (black
dots). Left- and right-hand panels correspond to the ηc-N and spin averaged J=ψ-N channels respectively.
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computed in the lattice from the equal-time Bethe-Salpeter
amplitude through the effective Schrödinger equation. The
lattice simulations were performed in quenched [29] and
unquenched [30,31]. We will focus in the unquenched
results since those are the ones that most directly corre-
spond to our potential, however the authors in Ref. [30]
report that there is neither quantitative or qualitative
differences between the quenched and unquenched results
within statistical errors.
The unquenched simulations were carried out using

2þ 1-flavor gauge configurations generated by the
PACS-CS Collaboration on lattices of size 323 × 64 with
Iwasaki gauge action at β ¼ 1.9, which correspond to a
lattice spacing of a−1 ≈ 2.18 GeV, and the nonperturba-
tively OðaÞ improved Wilson fermions with cSW ¼ 1.715.
The lightest quark masses correspond to mπ ¼ 0.41 GeV
(mN ¼ 1.2 GeV) and the charmmass corresponds tomηc ¼
2.99 GeV and mJ=ψ ¼ 3.10 GeV.
The lattice data extends to fairly short distances of

about ∼0.2 fm, which correspond to momentum transfers
far beyond the applicability of our EFT approach, so
we will compare our potential in Eq. (15) only with data
at r≳ 0.4 fm corresponding to momentum transfers
jkj≲ 0.5 GeV. The value of the axial coupling and the
pion decay constants in the chiral limit are taken as
gA ¼ 1.2 and F ¼ 0.0862 GeV from Refs. [52,53] respec-
tively. We use the same value of the pion mass mπ ¼
0.410 GeV as the lattice simulations.
We use the expressions of the pion-quarkonium couplings

in Eq. (5) in the expression of the potential in Eq. (15) and
arrive to an expression with the polarizability β as the only
free parameter. We fit the potentials to the lattice data and
obtain the value for the polarizabilities. The fit is obtained by
minimizing a χ2 distribution where to the statistical errors of
the lattice we add the theoretical uncertainties. The values of
the polarizabilities from the fit vary depending on the range r
used, but stabilize for ranges with lower r cutoff of the order
of 0.50 fm. We consider the range 0.5 < r < 1.4 fm a good
compromise between using the most lattice data and
obtaining a stable fit. The values of the charmonium polar-
izabilities obtained are

βηc ¼ 0.17 GeV−3; χ2d:o:f ¼ 0.7;

βJ=ψ ¼ 0.24 GeV−3; χ2d:o:f ¼ 0.7; ð29Þ

The corresponding values of the pion-quarkonium couplings
are shown in Table II. Note that the χ2d:o:f does not include the
theoretical uncertainty.
In Fig. 3 we compare the ηc-nucleon potential obtained

with the HAL QCD method with the potential in Eq. (15).
In Fig. 4 we show the analogous comparison with the
lattice J=ψ-nucleon potential. The light-blue band displays
the theoretical uncertainty, which we estimate by adding
or subtracting contributions suppressed by a factor ðrΛ χÞ−1
with respect to our potential. The discussion regarding the
subleading contributions can be found in Sec. III in the
paragraph following Eq. (22). The values of the polar-
izability obtained from the fit can be compared to the
perturbative (pNR)QCD calculation in Refs. [15,16,18].
The values of β from the fit are reproduced by the perturbative

TABLE II. Values of the pion-quarkonium couplings according
to the expressions in Eq. (5) for the values of the polarizabilities,
in Eq. (29), obtained from the fit of the potential to the lattice data
of Ref. [30].

cd0 [GeV−3] cdi [GeV−3] cm [GeV−3]

βηc ¼ 0.17 GeV−3 −0.83 −1.71 −2.24
βJ=ψ ¼ 0.24 GeV−3 −1.17 −2.42 −3.16

FIG. 3. Comparison of the ηc-nucleon potential obtained with
unquenched simulations from Ref. [30] (black dots) with our
result for the nonlocal part of the potential in Eq. (15) (blue line).
The light blue band displays the theoretical uncertainty due
higher order contributions suppressed by a factor of order
ðrΛ χÞ−1 with respect to the leading terms.

FIG. 4. Comparison of the J=ψ-nucleon potential obtained with
unquenched simulations from Ref. [30] (black dots) with our
result for the nonlocal part of the potential in Eq. (15) (blue line).
The light blue band displays the theoretical uncertainty due
higher order contributions suppressed by a factor of order
ðrΛ χÞ−1 with respect to the leading terms.
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QCD formula for the values αs ¼ 1.3 and αs ¼ 1.2 for the ηc
and J=ψ respectively.
In Fig. 5 we plot our potential for three pion masses,

mπ ¼ 0.410 GeV, mπ ¼0.275GeV, and mπ ¼ 0.545 GeV
together with the lattice data. We find that the variation
of the potential is small compared to the uncertainties of
the lattice data. In Refs. [29,30] it was noted that the
unquenched results for the potential showed small varia-
tions with the light-quark mass which is consistent with our
results. In Ref. [33] the progress on an improved determi-
nation of the quarkonium-nucleon potential, based also
HAL QCD method, in which ground state saturation is
more easily achieved, was reported. No significant differ-
ence with Refs. [29,30] was noted.

VII. CONCLUSIONS

We have developed an EFT description of the S-wave
quarkonium-nucleon system and obtained the quarkonium-
nucleon potential, scattering length and effective range up
toOðm3

π=Λ3
χÞ accuracy. We have compared our results with

lattice QCD studies of quarkonium-nucleon system. In
Sec. II we have constructed the quarkonium-nucleon EFT
(QNEFT), at energies of order E ∼mπ, much below Λ χ by
writing the most general Lagrangian with one quarkonium,
one nucleon and pions consistent with chiral symmetry, C
and P invariance and rotational symmetry (and Lorentz
invariance in the pion sector). We have adopted a power
counting given by dimensional analysis, equivalent to
Weinberg’s power counting in nucleon-nucleon EFTs.
We have noted that the quarkonium-nucleon dynamics
occurs at a lower energy scale E ∼m2

π=Λ χ . We have
integrated out the E ∼mπ modes and matched QNEFT
to a lower energy EFT which we called potential QNEFT

(pQNEFT) in Sec. III. In this EFT there are no longer
dynamical pion fields and its effects are taken into account
through potential interactions and redefinitions of the
low-energy constants. In Sec. IV we have computed the
quarkonium-nucleon S-wave scattering amplitude in
pQNEFT and obtained the expressions for the scattering
length and effective range including the light-quark mass
dependence.
In Sec. V we have compared our result for the scattering

length with the lattice QCD determinations of Refs. [27–29]
and extracted the value of the leading quarkonium-nucleon
contact term coefficient c0. There is significant dispersion
on the values of c0 obtained from the different sources of
lattice data, however results are consistent within uncertain-
ties. The most accurate determinations of c0 point to a value
of c0 ≈ 8 GeV−2 which is on the upper band of the size
range expected from dimensional analysis. Therefore,
Weinberg’s power counting seems to be consistent with
the lattice data but alternative power counting schemes
allowing for enhanced contact terms are not ruled out.
We have compared our results for the quarkonium-

nucleon potential obtained from the HAL QCD method in
Sec. VI. Fitting our potential to the data of Refs. [29,30] we
determine the value of the polarizability of the J=Ψ and the
ηc, βJ=ψ ¼ 0.24 GeV−3 and βηc ¼ 0.17 GeV−3 respectively.
Both in the comparisons of the potential and the scattering
lengthwehave found that the light-quarkmass dependence is
not appreciable with the current accuracy of the data.
Let us now comment on the implication of the results of

Sec. V in the possibility of the existence of quarkonium-
nucleon bound states. In order to poles to appear in the
scattering amplitude one would need to resum the scattering
amplitude in Eqs. (18)–(21) with respect to the LO result. Up
to N2LO the resumed amplitude is equivalent to the ERE
and the nonlocal two-pion exchange potential appears only at
N3LO. Therefore, the position of the pole is given at leading
order is ipb ∼ − 2π

μc0
, which for our best estimates of c0 takes

the value ipb ∼ 1 GeV far beyond the range of applicability
of our EFT. Finally, it is interesting to compare with the
bindingenergies in thequarkonium-nucleon systemobtained
in Ref. [32]. In this work the heavy-quark-antiquark static
potentials with a background hadron were obtained in a
lattice QCD simulation at a pion mass of about 223 MeV.
The authors report a binding energy between nucleon and
1S-charmonium of −2.4 MeV. This corresponds to relative
momentum pb ∼ 58 MeV, much smaller than our previous
estimate and corresponds to larger values of c0 than any
found in Table I.
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APPENDIX: POTENTIAL IN
COORDINATE SPACE

The two-pion exchange diagram (d) in Fig. 1 contains
both local and nonlocal (potential) contributions. A dis-
persive representation is a natural form to split the short-
and long-range contributions in momentum space, as well
as a convenient way to obtain a coordinate space repre-
sentation of a potential. Let p and p0 be the c.m. momenta of
the incoming and outgoing nucleon and k ¼ p − p0 the
momentum transfer. The amplitude corresponding to dia-
gram (d) in Fig. 1 is given by

AðdÞ ¼ −
3g2Am

3
π

32πF2

8<
:2cdi

�
1þ k2

4m2
π

�
− cm

þ
�
cdi

�
1þ k2

2m2
π

�
− cm

�

×

ffiffiffiffiffiffi
m2

π

k2

r �
1þ k2

2m2
π

�
arctan

ffiffiffiffiffiffiffiffiffi
k2

4m2
π

s 9=
;: ðA1Þ

Since the nonanalytic piece of the amplitude diverges as k3

for large k, we need a twice-subtracted dispersive repre-
sentation. In Ref. [18] such a method was employed to
extract the long-distance part of the low-energy ηb − ηb
interaction.
We set the subtraction points at 0. Using partial fraction-

ing we arrive at

AðsÞ¼Að0Þþ s
dA
ds

				
s¼0

−
s
π

Z
∞

4m2
π

ImAðs0Þ
ðs0Þ2 ds0

−
1

π

Z
∞

4m2
π

ImAðs0Þ
s0

ds0 þ 1

π

Z
∞

4m2
π

ImAðs0Þ
s0− s− iϵ

ds0; ðA2Þ

with s ¼ −k2. Setting s0 ¼ μ2 þ iϵ and using that

Im

�
1

ϵ − iμ
arctan

�
ϵ − iμ
2mπ

��
¼ π

2μ
θðμ − 2mπÞ; ðA3Þ

we obtain

−AðdÞ ¼
3g2Am

3
π

64πF2
ð5cdi − 3cm þ σ0Þ

þ g2Amπ

256πF2
ð23cdi − 5cm þ σ1Þk2

þ 3g2Am
3
π

64πF2

Z
∞

1

dx
½cdið1 − 2x2Þ − cm�ð1 − 2x2Þ

x2 þ k2

4m2
π

;

ðA4Þ

where

σ0 ¼ −4
Z

∞

1

dx
1

x
½cdið1 − 2x2Þ − cm�ð1 − 2x2Þ; ðA5Þ

σ1 ¼
16

3

Z
∞

1

dx
1

x4
½cdið1 − 2x2Þ − cm�ð1 − 2x2Þ; ðA6Þ

are the subtraction constants that can be reabsorbed in the
low-energy constants. The nonlocal part of the amplitude is
then obtained by subtracting the contact terms from the
original amplitude given in Eq. (A1), namely:

Along
ðdÞ ðk2Þ ¼ −

3g2Am
3
π

32πF2

��
cdi − cm þ cdi

k2

2m2
π

�

×

" ffiffiffiffiffiffi
m2

π

k2

r �
1þ k2

2m2
π

�
arctan

ffiffiffiffiffiffiffiffiffi
k2

4m2
π

s
−
1

2

#

− ðcdi − cmÞ
5k2

24m2
π

�
: ðA7Þ

The long-range part of the quarkonium-nucleon potential in
momentum space is then given by Ṽðk2Þ ¼ −Along

ðdÞ ðk2Þ.
The first two pieces in Eq. (A4) are matched into C0 and

D1 respectively, and the last term is used to obtain the
potential in coordinate space through

VðrÞ¼
Z

d3k
ð2πÞ3 e

ik·rṼðkÞ

¼ 3g2Am
5
π

64π2F2r

Z
∞

1

dxe−2mπrx½cdið1−2x2Þ−cm�ð1−2x2Þ:

ðA8Þ

Performing the integral in x we arrive at the result
in Eq. (15).
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(2010).
[52] T. R. Hemmert, M. Procura, and W. Weise, Phys. Rev. D 68,

075009 (2003).
[53] R. Baron et al. (ETM Collaboration), J. High Energy Phys.

08 (2010) 097.
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