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We analyze the restoration pattern of the members of the scalar and pseudoscalar meson nonets under
chiral O(4) and U(1), symmetries. For that purpose, we exploit QCD Ward identities (WI), which allow
one to relate susceptibilities with quark condensates, as well as susceptibility differences with meson
vertices. In addition, we consider the low-energy realization of QCD provided by U(3) chiral perturbation
theory (ChPT) at finite temperature to perform a full analysis of the different correlators involved. Our
analysis suggests U(1), partner restoration if chiral symmetry partners are also degenerated. This is also
confirmed by the ChPT analysis when the light chiral limit is reached. Partner degeneration for the I = 1/2
sector, the behavior of / = 0 mixing and the temperature scaling of meson masses predicted by WI are also
studied. Special attention is paid to the connection of our results with recent lattice analyses.
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I. INTRODUCTION

The nature of chiral symmetry restoration is an essential
ingredient of the phase diagram of QCD. Chiral restoration
is realized in lattice simulations and presumably in matter
formed after a Heavy Ion Collision. Most of its main
properties are well understood. Namely, a crossover-like
transition takes place in the physical case, i.e., for massive
quarks and Ny =2+ 1 flavors of masses m, = m,; =
m <K mg, at a transition temperature of about T, ~
155 MeV for vanishing baryon density [1-5]. The main
transition signals are the inflection of the light quark
condensate and the maximum of the scalar susceptibility.
As the system approaches the light chiral limit m/m; —
0", T, decreases, the light quark condensate reduces and
the scalar susceptibility peak increases at 7, [6], hence
approaching the phase transition regime characteristic of
two massless flavors [7,8].

In addition, the anomalous U(1), symmetry can be
asymptotically restored, driven by the vanishing of the
instanton density [9]. A crucial issue with important theo-
retical and phenomenological consequences but which
remains to be fully understood is whether the U(1),
symmetry can be restored close to the chiral transition.
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If the answer is affirmative, the restoration pattern would be
0(4) x U(1), instead of SU;(2) x SUR(2) = O(4) for
Ny = 2. Moreover, U(1) , restoration at the chiral transition
not only changes the chiral pattern universality class but it
also affects the order of the transition. It was already pointed
out in [7] that for Ny = 2 the chiral transition would be of
firstorderif U(1) , is effectively restored at T, and of second
order if it is not. This has been also confirmed by recent
effective model analysis [10]. The restoration of U(1),
would also affect the transition order for N, = 3 [11] as well
as the behavior near the critical end point at finite temper-
ature and baryon chemical potential [12]. Analyses of U(1),
restoration using effective theories for Ny = 3 have also
been carried out recently [13] reaching similar conclusions.

The particle spectrum would also be directly affected. In
particular, the physical states becoming chiral partners, i.e.,
those that degenerate at the transition, would be different
depending on the chiral pattern. This would also have a
direct consequence is the behavior of the associated
susceptibilities and screening masses. On the one hand,
within the scalar 07" and pseudoscalar 0~ meson nonets,
if the chiral group SU; (2) x SUg(2) is restored, the pion
and the 6/ f((500) are expected to degenerate [14—16]. On
the other hand, the restoration of the U(1), symmetry
would allow the pion to be degenerated with the a,(980);
i.e., the member of the scalar nonet with the same pion
quantum numbers but an opposite parity. In this context, it
is also natural to investigate the fate of the rest of the
members of the scalar and pseudoscalar nonet at chiral
restoration, i.e., the K(800) (or x) versus the kaon for
I =1/2, and the f((980) — f,(500) pair versus the n — '
for the I = 0 octet and singlet members.
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Regarding an effective low-energy description, if chiral
and U(1), restoration happen to be close, a proper
description of this regime will require the 7 (singlet) state
to be included formally as the ninth Goldstone boson
[17-19], which at T = Orelies on the large N . limit [ 17-20].
In fact, there is experimental evidence of the reduction of the
#' mass in the hot medium [21], which also points out to
U(1), restoration and confirms the early proposal in [22],
where phenomenological effects of the ' mass reduction on
the dilepton and diphoton spectra are analyzed.

However, U(1), restoration is meant to be reached only
asymptotically. Thus, it is important to clarify that by U(1) ,
restoration we will mean the approximate degeneration of
U(1), partners in comparison with O(4) partner degener-
ation. The idea that U(1) , partners can degenerate in an ideal
chiral restoring scenario was first suggested in [23] and
confirmed in [24] through an analysis of spectral properties
of the QCD quark propagator. Nevertheless, in the real world
with massive quarks, nontrivial gauge configurations make
in general a nonzero U(1), breaking to be present [25] even
though U(1), partners could still be approximately degen-
erate. The particle spectrum at finite temperature including
the U(1), anomaly has been studied within a linear sigma
model description in [26] and using renormalization-group
methods in [27]. Mesonic fluctuation effects on the strength
ofthe U(1), symmetry breaking has been recently studied in
[28] using functional renormalization group methods. In
addition, screening and pole masses at U(1), restoration
within the NJL model are studied in [29,30]. A recent work
intimately connected with our present analysisis [31], where
the O(4) and U(1), transitions are studied in terms of the
topological susceptibility.

The restoration of the U(1), symmetry also affects the
temperature dependence of the # — 7’ mixing. Since the
vanishing of the anomalous contribution to the #' mass
implies ideal mixing [32-34], i.e., the 5 and %’ states being
of pure light and strange quark content, respectively, one
would naturally expect that at temperatures where U(1), is
restored, the mixing angle should reach the ideal limit. This
is indeed a nontrivial statement since the 7 = O physical
mixing angle is far from the ideal one. The ideal limit at
asymptotically high temperatures has been confirmed by
recent analysis within the linear sigma model [35] and the
NJL model [30]. Similar results have been obtained in [36]
by studying the influence of quantum and thermal fluctua-
tions on the n — ' mixing angle.

The above aspects regarding chiral partners and patterns
are also of fundamental relevance to clarify the nature of the
scalar nonet, which has been a matter of debate over the
recent past [37-39]. Thus, the restoration pattern could help
to shed light on the nature of those states when compared to
the predictions based upon their gg assignment. Note that
the full restoration of the chiral SU (3) x SUR(3) x U(1),
symmetry would imply a complete degeneration of all
members of the two nonets. Hence, it is expected that it

would take place at a much higher temperature, since it
requires the vanishing of the (5s) condensate, which has a
much softer temperature dependence [4].

Many of the issues described above regarding chiral and
U(1), restoration have been recently analyzed also by
lattice collaborations. Nonetheless, the nature of the chiral
pattern is still subject to debate. On the one hand, for N, =
2 4 1 flavors and nonzero quark masses, it has been found
in [4,5] that the U(1), symmetry in terms of 7 — a, partner
degeneration is restored well above T, i.e., the chiral
transition temperature where 7 — o states degenerate. These
results are consistent with previous analysis of screening
masses by the same group [40]. Another lattice analysis
based on meson screening masses pointing towards U(1) ,
restoration taking place above T, is [41], for two flavors
and two colors. On the other hand, the lattice results in
[42-44] are consistent with U(1) , restoration taking place at
the chiral transition or very close above it. These simulations
are performed in the chiral limit for two flavors. In addition,
in the recent analysis [45], results compatible with U(1),
being restored at the chiral transition are also reported for
two flavors and massive quarks. The influence of U(1),
restoration on the phase diagram, the tricritical point and the
transition order has also been investigated in the lattice in
[46,47], while degeneration of parity partners for nucleons
in the lattice have been analyzed recently in [48].

Aiming to provide as much theoretical information as
possible, we will carry out here a detailed analysis of chiral
and U(1), symmetry restoration for the scalar and pseu-
doscalar nonets based on the fruitful combination of Ward
identities (WI) and U(3) chiral perturbation theory (ChPT).
Our present analysis extends in a nontrivial way the SU(2)
study performed in [49], where WI played a crucial role to
describe the degeneration of ¢ — 7 states, and in [50], where
U(3) WI relating quark condensates and pseudoscalar
susceptibilities were derived and checked within U(3)
ChPT. In a recent work [51], we have exploited WI to reach
useful conclusions about U(1), and chiral restoration and
derived new WI connecting two and three point functions.

For the sake of completeness, we will also include here
the detailed derivation of all the relevant WI analyzed in
[51] and we will discuss their main consequences for chiral
and U(1), restoration. The main novelties of the present
manuscript with respect to [51] are the following: we will
show that new scalar WI provide a good description of the
scaling of lattice screening masses in the scalar I = 1/2
sector, thus extending the analysis in [49,50], and we will
perform a full analysis within the framework of U(3)
ChPT. On the one hand, ChPT is needed to provide a
specific realization of WI for hadronic states, since WI are
formally derived from QCD, and therefore they may be
subject to renormalization ambiguities. On the other hand,
our ChPT analysis will provide support for our results in
[51] regarding partner degeneration. It will also allow us to
analyze carefully the behavior near the chiral limit within a
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model-independent approach. Such model independency is
the main advantage of the ChPT framework.

The paper is organized as follows: in Sec. II, we will
provide the general derivation of the WI considered. The
consequences of one-point WI for the different isospin
sectors of the two nonets will be discussed in Sec. III,
which includes new analyses of isospin-breaking, the role
of connected and disconnected susceptibilities and screen-
ing masses. Section IV will be devoted to the analysis of
two-point WI. The effective field theory analysis based on
U(3) ChPT will be presented in Sec. V, where we will
provide a model-independent and renormalizable hadron
realization of the WI analyzed in previous sections. In
addition, we will also analyze the ChPT predictions for the
temperature behavior of the relevant observables for chiral
and U(1) 4 restoration. Actually, the explicit expressions for
the scalar susceptibilities in this formalism are derived here
for the first time and collected in the Appendix. Our ChPT
results, albeit limited at temperatures well below the
transition, will essentially capture and confirm the main
results obtained formally from the analysis of WI. They
will be particularly useful in the chiral limit and will
provide new insights on this problem for future lattice and
theoretical analysis. Finally, in Sec. VI, we will present our
main conclusions.

II. GENERAL WARD IDENTITIES

In order to clarify partner degeneration in terms of
different symmetry restoration patterns, we consider the
pseudoscalar P* = iyysA%y and scalar S¢ = wA%y quark
bilinears, with y a three-flavor fermion field with compo-
nents v, 4, A1 the SU(3) Gell-Mann matrices and
A0 = ,/2/31. The starting point for our analysis is the
expected value of a local operator O(x, ..., x,) from the
QCD generating functional

(Ot ccooxy)) = 27! J/‘[d<}}hia4[amu]c><xl,...,xn>eSQc»,

(1)

where G4 is the gluon field, Z = [ [dG][dy][dy]eSecr is the
partition function and Socp = i [ d*xLocp in Minkowski
spacetime, where the fermion QCD Lagrangian in the light
quark sector is:

1 v .
Locp = _ZGZDGZ +w(iy*D, — M)y, (2)

with D, = 0, + igG,, G, = G{(4,/2), g the QCD cou-
pling constant, Gy, = 9,G; —9,Gj — gfabCGﬁGﬁ and
M = diag(m,, my4, my) the quark mass matrix.

The relevant transformations to study the restoration of
the chiral and U(1), symmetries are those of the parity-
changing U,4(3) group, i.e., the infinitesimal transforma-

tions oy = iaj;%“ysz;/ and oy = iaj{z/‘/%ys. Note that a

SUy(3) transformation would always allow one to rotate
between members of the same octet, i.e., without change of
parity. Under such axial transformations, the expectation
value of an operator Op in (1) in terms of the transformed
fields leads to the following generic WI [50,51]

= —<(’)7>(x1, ...,xn)lp(x){ﬂ;,/\/l}ysw(x»

5a0
4+ i—=(Op(x1,...,x,)A(x)), 3
\/6< p(x) JA(x)) (3)
where
3¢ -
A()C) :@TI'CG}WG” s (4)

is the anomalous divergence of the U(1), current [52-54],
Oyt = 2ip My + A(x), (5)

with J5 = @ysy*y. Generally speaking, applying (3) to an
n-point operator Op gives an identity relating correlators of
n and n + 1 points.

In the same way, considering now an isovector trans-
formation oy = ia‘(,%“l//, oy = —iojy %“, the expectation
value of a scalar operator Og in (1) in terms of the
transformed fields leads to the WI:

(P58l (O[5 M) ).
©

The analysis to follow in the next sections exploits the
above two classes of WI for particular choices of the
operators Op and Og. In particular, the choices Op = P“ in
(3) and Og = §* in (6) will lead to identities between
different combinations of quark condensates and suscep-
tibilities, whereas choosing Op = P4S? in (3) will allow
one to relate differences of correlators of degenerated
partners with three-point functions related to physical
interaction processes.

Those identities will involve P and S correlators and
their corresponding susceptibilities, defined as

() = [ aTroro). o)

(1) = /TdX[<TS"(X)S”(0)> = (S9)S")]. (8)
where [, dx = [} dr [ d®% at finite temperature T =1/
and (7 ---) denotes the time-ordered vacuum expectation

value in Minkowski spacetime, which corresponds to a
thermal average in Euclidean spacetime. Note that in the
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scalar case, the subtraction of the quark-bilinear expect-
ation values (5%)(S”), which are nonzero for a, b = 0, 8,
allows one to express the susceptibilities )?gb(T) as mass
derivatives of the corresponding quark condensate, as used
customarily within the ChPT framework [55-57] and also
to analyze the critical behavior [8]. However, the study of
partner degeneration in the lattice is formally investigated
through the analysis of unsubtracted scalar susceptibilities
[4]. In the following, we will denote by 7 the subtracted
susceptibilities and by y¢ the unsubtracted ones.

III. IDENTITIES INVOLVING SUSCEPTIBILITIES
AND QUARK CONDENSATES

A. I=0, 1 sector: Partners and chiral pattern

Let us first consider quark bilinears with / = 0, 1 in the
pseudoscalar and scalar sectors. Following the notation
considered in the lattice [4,43,45], for the I = 1 channel,
we define

Pa=1,2.3),
Sa=1,2.3), (9)

=y ystiy; =
o =gty =

with y; the light quark doublet with components y, ;. The
above light states correspond physically, as long as their
quark model assignment is concerned, to the pion and to the
ay(980) resonance.

For I = 0, we consider the pseudoscalar %% = P%% and
the scalars 6% = $98_ as well as their combinations #; ; and
015, which form the basis of states:

. 1
= Wysy, = %(\/EPO + P8,

L(ﬂso +58),

Ul:lpl‘//l:\/g
1
55 = (1 50 s8> (10)
o,=5s=—|—=S5"-5%).
V3\V2

Note that the 7; and 5, (or 79 g) mix to give the physical 5
and #7'. In the same way, the mixing of the ¢, and o (or 6 g)
generates the f((500) and f,(980) resonances. We remark
that #; coincides with the physical ; state in the so-called
n — 1 ideal mixing angle ¢ = — arcsin(y/2/3), which is
achieved when the anomalous contribution from the oper-
ator A(x) in (5) vanishes. This limit is reached for N. — oo
or when the U(1), symmetry is restored and it will play an
important role in our discussion below.

The correlators of the above bilinears, which enter in the
susceptibilities in (8), are defined as

(Ta(x)n"(0)) =8P ra(x),  (T5(x)6"(0)) =5 S55(x),
(T (x)n,(0)) = Py (x), (To1(x)0,(0)) = Su(x),
(Tni(x)n,(0)) = Pys(x), (To/(x)o,(0)) =S (x),
(Tn(x)ns(0)) = Pyy(x), (To5(x)0,(0)) =S (x).

They form a basis of eight correlators involved in this
sector, where from (10) the light X, strange X,, and
crossed correlators X;, can be expressed in terms of
Xoo = (7 Xo(x)X(0)), Xgg = (T Xz(x)X3(0)) and Xo3 =
(TXo(x)Xg(0)), with X = S, P:

1
Xy = 3<X88+ Xoo — \/_Xos) (11)

1
Xy = 3 (Xss 4 2X¢0 + 2\/§X08)7 (12)

1 1
5 | —Xgs + Xoo ——=Xos |- 13
3 ( 88 00 /2 os) (13)

Recall that the crossed Xy3 and X, correlators are, in
general, nonzero due to mixing. Let us give also here, for
completeness, the variation of the X% bilinears under pure
SU4(2) transformations, which will be of use later:

P8 (y) /b (x) = =/ 1/38(x — y)5°(x),
6P°(y)/daf (x) = —/2/38(x = y)5(x),
88%(y)/dai(x) = /1/38(x — y)a(x).
88°(y)/dai(x) = /2/38(x — y)n(x). (14)

with a =1, 2, 3.
In particular, chiral axial transformations mix 7 — ¢; and
0 —n; states, namely,

Xls =

1 () /804 (x) = —8,56(x = y)oy(x),
80,(y)/day (x) = 8(x — y)z" (x),
56%(y)/da ( ) = Sap0(x = y)m;(x),
Sii(y)/ 0 (x) = —8(x — y)8"(x)
with a,b=1,2,3. (15)

The above transformations imply then a formal degen-
eration of the bilinears z/c and #,/46 if the chiral symmetry
SU(2)y x SU(2), ~O(4) was completely restored. In
other words, these bilinears would become chiral partners.
In addition, 7, and o, fields are invariant under SU 4 (2), as
one can see from their definition (10) and the trans-
formations of the octet and singlet fields (14). In this
way, P, and S), transform into (n,) and (7o), respec-
tively, which should vanish by parity conservation. More
details about particular choices of chiral rotations that
implement these transformations are given in [51].

. o4 .
We will use the symbol ) to denote the above chiral
partner equivalence. As commented in the introduction, this
would actually be an exact equivalence only for two massless
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flavors at the phase transition. For Ny =2 + 1 flavors and
physical masses, it would become approximate near the
crossover transition, although the equivalence is expected
to be more accurate as the light chiral limit 72 — 07 is
approached. Summarizing, at exact chiral restoration, one has

0(4)

0(4)
Prm’ ~ Sllv Pll

~ S55,

) ) =
SPY(y) /805 (x) = —+/2/38(x — y)S°(x), opP°
55 (3)/3dy(x) = V/2/30(x — V)PP (x),  oS®
88°(y) /6y (x) = \/2/38(x = y)P°(x), 88"

which allow one to mix 7 — 6 and ¢ — # states:

6n(y)/das(x) = —d(x — y)&(x),
86%(y)/day(x) = 6(x — y)m®(x),
Soy(y)/Say(x) = 8(x — y)n(x).
oni(y)/daa(x) = —8(x — y)oy(x),

with ay = +/1/3a8 + \/2/3a5. (18)

Therefore, 7 — 6 and ¢ —#n would become degenerate
partners if the U(1), symmetry was restored. Similarly, in a
fully restored U(1), scenario, the U(1), rotations in (17)
and (18) allow one to degenerate all pseudoscalar corre-
lators into their scalar partners [51]. As explained in the
introduction, such restoration is only asymptotic and in
general is not fully achieved in a physical Ny =2 + 1
scenario. Nevertheless, here we are concerned with U(1),
restoration understood as approximate partner degeneration

and in that sense, we will use the symbol vy "
Thus, under U(1), restoration the following relations
hold,

U,

p, L (1)

U u()
Sss. Py ~'Sy, Py ~

P s NASIS’
(19)

which leaves again four independent correlators, for in-
stance P,,, P;, Py, P; or their corresponding scalar
partners.

Therefore, if U(1), restoration is effective at the chiral
transition, i.e., if O(4) x U(1), is the restoration pattern,
the four states 7 —d — o; —#n; would degenerate at the
transition. Thus, the O(4) and U(1), partner equivalences
in (16) and (19) combine to P, ~ Sss ~ S; ~ Py, which
are the correlators usually analyzed in lattice works.

—~~ o~ ~

and so on for their corresponding susceptibilities. Therefore,
the full O(4) nonet partner-degeneration picture given by the
four conditions in (16), leave four independent not degen-
erated correlators (or susceptibilities) in this pattern, namely
P;zm Pll’ Pss and SSS'

On the other hand, under octet and singlet axial rotations,
i, a}® #0, I =0 states transform as

v)/8af(x) = =v/1/35(x = y) (V28 = $(x)),

¥)/da (x) = —\/2/35(x - y)$*(x),

v)/8ai(x) = \/1/38(x = y)(V2Py = P8 (x))

v)/8ai(x) = \/2/35(x — y) P (), (17)

|
Moreover, the relation P, ~ S, becomes an additional
signal to be analyzed. Hence, since the crossed /s corre-
lators vanish (16), there are only two independent corre-
lators in the O(4) x U(1), pattern.

The parameter customarily used in lattice works to
parameterize the O(4) x U(1), degeneracy is

FsalT) = 3 W5(T) 24T (20)

which vanishes at O(4) x U(1), restoration and is directly
related to the topological susceptibility [4], i.e., the corre-
lator of the anomaly operator (4) encoding the U(1),
breaking

1

FuplT) = =328 (T) =

3‘6/ d(TAXAQ). (1)

Actually, as we are about to see, the connection between
Xs5.disc and yop 18 @ consequence of the WI analyzed here.'
Furthermore, in a fully SU(3) restored scenario, not only
o) but also o transformations would allow one to
degenerate 7 and 6 bilinears, hence leading to the degen-
eration of all other members of the scalar and pseudosca-
lar octet.

More precise conclusions can be drawn from the WI in
(3). The simplest choice is Op = P%. Taking Op = #°, ,,
n, one arrives to the following WI relating pseudoscalar
susceptibilities and quark condensates analyzed in [50,51],

'"The normalization factor in (21) is chosen so that Xtop
coincides with [4]. It comes from our normalization of A(x) in
(4) and our definition of Euclidean gauge fields [50]. Note also
that the definition of susceptibilities in [4] carries a 1/2
normalization factor with respect to our definitions (7)—(8).
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() = -4 22)

G, om
A = - e . )
LU /L . — LT SR 7Y

myg 4\/§mv (ﬁ’l - ms)

where (Gq), = (W) and we denote y% = 59y%. The
identities (22) and (24) have been recently checked in the
lattice [4]. In the case of (24), the term proportional to 5
can be ignored since it is suppressed by a /71/m correction.
Nevertheless, it would be interesting to have a lattice check
of the other WI found in [50,51] as well as those from the
present work that we will discuss below. In particular, WI
involving crossed Is correlators, I = 1/2 states and three-
point functions. For the WI (23), although the crossed y%*
correlator is not measured in the lattice either, we will show
below that this identity can be indirectly examined in the
lattice with currently measured observables.

In particular, the above identities imply that ys g in (20)
can be written as

m, 1

Xs.dise(T) = —mxiA(T) = Wﬂ(mp(ﬂa (25)

>

where we have used the relation between y%' and y4*
derived in [50], i.e., from the W1 in (3) taking Op = A, the
anomaly operator in (4). The relation (25) between ys g
and y,p, also mentioned in [4], allows one to express ys gis
as a pure anomalous contribution, confirmed by the
cancellation of the quark condensate contributions in the
x5 =y difference in (22)—(23).

Actually, since both ys 4is. and y,,, are measured in the
lattice, although with great difficulty in the case of the
topological susceptibility [4,58,59], checking the relation
between them in (25) is an indirect way to check the WI
(23), or, more precisely, the combination of that identity
with (22) (also checked in the lattice) and the identity
connecting %' and y4* in [50], namely,

= =3VEE . (26)

N

Such verification of (25) is actually performed in [4] and
it holds reasonably well taking into account the difficulty to
MEasure Jop.

Now, let us turn to a very interesting relation regarding
the chiral pattern, already discussed in [51], which can be
obtained by analyzing the mixed Is correlators in the
pseudoscalar sector. Using (13) and the relations obtained
in [50] for the susceptibilities x5, y% and %, we get

R
2/3 1 — my

which combined with (25), implies

x5 (T) X (T), (27)

P 2

Xp (T) - zmSXS,dlsc(T) - mmsltop(T)' (28)

The importance of the above relation is that it connects a
quantity vanishing at O(4) degeneration, y;, according to
(16), with y5 gic and yop, signaling O(4) x U(1), degen-
eration. Therefore, (16) and (28) imply that if O(4) partners
are degenerated, so there must be the O(4) x U(1), ones.
In other words, the chiral pattern should be O(4) x U(1),

if exact chiral symmetry holds. Recall that y, o )O in(16)is
a consequence of the § —; O(4) degeneration [51]. Thus,
more precisely,

0(4)

0(4) 0(4)
Z% N)(g = Xs.disc ~ 0,

Xiop ™~ 0. (29)

Several additional comments are in order here: first, the
previous conclusion (29) is valid in the ideal chiral
restoration regime, since it relies on the O(4) partner
degeneration on the lhs. Nevertheless, it can be understood
also in a weaker sense, as a consequence only of § —
degeneration, which might take place approximately in a
Crossover scenario.

Second, although the light chiral limit 7 — 0T would
certainly favor exact O(4) degeneration at 7. and hence the
realization of (29), one must not be misled by the apparent
vanishing of the ys ;s term in (28) when 7z — 07 for any T.
This is an incorrect statement, consequence of the singular
behavior of y5 4. with 7iz. Namely, at 7 = 0 the results in [50]
show that y%! has a finite limit for 7z — 0T, which together
with (25) imply ys gise ~ 1/7 and yo, ~ /it away from T'.
The latter behavior for y,, is actually supported in the recent
work [31], where it is argued that y,,, ~ 7i(gq), in the chiral
limit. More discussion about the chiral limit of the different
susceptibilities will be carried out within ChPT in Sec. V.

Therefore, the vanishing of x5 4 and yop in (29) are true
consequences of chiral restoration. Similar conclusion can
be drawn considering other bilinear rotations. Namely,
since A is invariant under a SU4(2) transformation, the
rotation y$' — ¥ suggests y3! to vanish at exact chiral
restoration by parity. Consequently, through (25), ¥s gisc
and y,, should also vanish in this limit.

The same conclusion about the vanishing of y,, for any
temperature above chiral restoration has been reached in
[31]. The main argument in [31] relies on the identity

1l _ (gq)(T) 4
)(P(T) - _T - ﬁ)ftop(T)v (30)
which is nothing but the combination of (23), (26), and
(21). In turn, note that (24) gives for the pure strange

contribution
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(b) Scalar and pseudoscalar pure strange susceptibilities.

%_#Ztopav’ (31)

xp(T) = =
which corresponds the one-flavor version of the same
identity [31].

Let us now comment in detail how the previous ideas are
realized in present lattice simulations. As explained in the
introduction, there is still some controversy regarding the
chiral pattern and its nature. In Fig. 1(a), we show
the behavior of the four susceptibilities corresponding to
the 7 — ¢ — & — 1, correlators discussed above for the lattice
data in [4]. In that work, the O(4) partner degeneration
corresponding to the first two equations in (16) is approx-
imately realized at 7, ~ 160 MeV (corresponding to chiral
restoration signaled by the peak in ;(ISZ) while the degener-
ation of the four correlators which would favor the O(4) x
U(1), pattern according to (19) takes place asymptotically
at higher temperatures. At this point it is worth mentioning
that in a previous work [49], 7 — ¢ chiral partner degener-
ation in the light sector was also identified exploiting the W1
(22) by analyzing available lattice data for the (subtracted)
quark condensate and for the scalar susceptibility.

In addition, regarding U(1), partner degeneration, the ss
correlators given by the third equation in (19) are also
compared with the lattice data of [4] in Fig. 1(b). We see
that the degeneration of those U(1), partners is reached
also asymptotically, consistently with (19) and Fig. 1(a). As
for the s correlators, there are no direct available data at the
moment, as far as we are concerned.

Nevertheless, as already mentioned in the Introduction,
there is currently no full agreement in the lattice regarding
partner degeneration and the corresponding chiral pattern.
In [45], the difference between z and 6 screening masses
are found to be compatible with zero at the chiral transition,
hence pointing out to a O(4) x U(1), pattern even for
massive light quarks. Since the screening masses are
extracted from the two-point correlators, their degeneracy
is a consequence of partner degeneration. In the chiral limit,

3.0 ooo xe(7T) (b) H
AAA XS(T) E
[m]
25 o A
N> ]
) 0 A 4
>
2.0 O A
O
A
1.5
A
140 150 160 170 180 190
T (MeV)

Different susceptibilities combinations from the lattice data in [4] for 323 x 8 lattice size. (a) The four light susceptibilities.

the O(4) x U(1), pattern is also supported in the analysis
of [43], which suggests 7 — 0 — ¢ — 1; degeneration close
to the chiral transition through the analysis of the corre-
lators for those states in the overlap fermion lattice
formulation. A recent analysis by the same group [44]
confirms this result, showing U(1),, restoration in the chiral
limit just above the transition.

At this point one may wonder about the compatibility of
our result (29) with these lattice results. Naively, one would
conclude that we are consistent with the results in [43—45]
but not with [4]. However, some considerations should be
taken into account. The analysis in [4] includes Ny = 2 + 1
flavors and nearly physical light quark masses, which may
enhance U(1), breaking effects and distort the ideal partner
degeneration given in (29). Moreover, our result (29) relies
explicitly on & —n; degeneration at chiral restoration.
However, examining in detail the numerical results in
[4], one actually observes that the difference y% — 5 is
much less reduced near 7', than y7 — )(fg’ as it can be seen in
Fig. 1(a). In particular, from the data in Table IV in [4]

WE(Te) = 25(TV/ b (To) = x§(To)] ~ 0.2,
Wb (Te) = 25(Te)l/ lep(To) = x5(To)] ~ 8.1,

with Ty = 139 MeV, the lowest temperature available in
[4]. The error bars for the latter difference are also quite
large, making this quantity compatible with zero for the
whole temperature range considered. Nevertheless, the
central values of y% — 5 remain sizable up to the region
where the U(1), is approximately restored, i.e., where y%
and )(‘; almost degenerate. In this sense, the numerical
results in [4] are at odds with the expected chiral partner
degeneration picture.

On the one hand, the reasons above could explain
numerically the apparent discrepancy between (29) and
the results in [4]. On the other hand, the absence of the
strange quark corrections in the N, =2 lattice analysis
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[43-45] may explain why the O(4) x U(1), pattern is
more clearly seen in those works, even for a finite pion
mass as in [45]. A quantitative measure of the departure of
the results in [4] from the prediction (29) can be achieved
by comparing the temperature scaling of ys g, with a
typical chiral-restoring order parameter. Actually, as we
have commented above, the analysis in [31] supports ys s
to scale with T as the (subtracted) quark condensate. Thus,
in Fig. 2, we plot ys 4. normalized to its lowest value,
versus the subtracted condensate

(qq),(T) -2
(@9)/(To) =27 (55)(To)

which is free of lattice finite-size divergences (g;q;)~
m;/a’, with a the lattice spacing, and it is one of the
typical order parameters used in lattice simulations. We can
see in the plot a clear correlation between the scaling of
both quantities, especially near the critical region. For
comparison, we have also represented the scaling /A,
which is motivated as follows: the WI (22) is compatible
with the formal scaling 7 ~ \/—(gq),G;'(p = 0)// [51],
which together with (56), to be derived in Sec. IV, and (28),
would lead to such square root scaling if the pion self-
energy dependence with temperature is considered smooth
compared to that of the quark condensate.

AZS(T; TO) =

. (32)

B. Chiral partners and mixing angles

We will explore here two interesting limits related to the
mixing of the Py/Pg and S,/Sy states, namely the vanish-
ing-mixing and ideal-mixing angles. As we will see, these
two limits are also intimately connected to the discussion of
chiral partners. The mixing angle is formally defined at
leading order as:

1.01@
O
o ooo Xs.disc (T)
0.8 8 Xs.disc (To)
A O
A
0.6 g ©
m] O
0.4 A
O
O
02 000 ,[ N5 (T; To) A e}
o O
AdA D(TTo) A N
0.0
140 150 160 170 180 190
T (MeV)

FIG. 2. Comparison between the scaling of ys g and the
subtracted condensate A (T;T,) in (32), with respect to the
reference temperature 7, = 139 MeV. Data are taken from [4]
for 323 x 8 lattice size and 7i1/m; = 0.088. We include also the
comparison with \/ATS for the reasons explained in the main text.

n = ngcosBp —ngsinbp,

7 = ngsin@p + 1y cos Op, (33)

and so on in the scalar sector with the replacements
Op — 05, n = [4(500), ' = f¢(980). The mixing angle
is defined to cancel the crossed 771’ terms in the Lagrangian,
so that the correlator

P,,m/ :%(ng _P00> Sin20P+P08 COSZ@P :O, (34)
where both, the correlators and the mixing angle, are
temperature dependent. Let us remark that higher-order
corrections introduce further mixing terms, which require
additional mixing angles to be canceled. For instance
at NLO in U(3) ChPT two mixing angles are required
[32-34]. Nevertheless, the simplified picture above is
enough for our present purposes.

Consider first a vanishing-mixing scenario, i.e.,
Ops = 0. In the pseudoscalar sector, this occurs in the
pure SU(3) limit, i.e., when myg = m,, but keeping fixed
M, the anomalous contribution to the 7' mass [32-34].
In that limit, m} — m2 and mi, — m2 + M3. From (34),
0p — 0 asymptotically would imply then Pyg — 0, and so
on for the scalar sector. It is important to remark that the
reverse is not necessarily true. If Pyg — 0 in a certain
regime, we can only conclude that it implies 8p — 0 if Py,
and Pgg remain not degenerate. According to (13), that
means P, # 0. Translating these conditions to the lattice
basis we conclude that in a regime of vanishing mixing
angle the following conditions must hold:

0p—0 Op=0 05=0 05=0
Pls ~ Pll _2PSS 7L 0, Sls ~ Sll _2Sss 7(' 0. (35)

In the pseudoscalar sector, we can translate this result to the
susceptibilities. Using (23), (24), (25), and (28) we have

28 (T) = xp(T) + x3(T)
— @) (1) == 55)(7)
5 (m— ms)n(g + 2ms))(5,dm(T)
= g (1) = ()
+%(ﬁ1_m5)n(? £ ), (36)

A

where in the second line the WI (22) has been used. This
equation vanishes in the SU(3) degenerate limit, i.e., when
my; — i and (5s) — (gq),/2. This is consistent with our
previous comment since in that limit 8, — 0 and Pog — O.
In addition, taking only the leading order in the M << m;
expansion, the rhs of (36) becomes
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FIG. 3. Different susceptibility combinations from the lattice data in [4] for 32° x 8 lattice size, related to the analysis of the 5 — 7’

mixing angle. (a): Susceptibility combination related to the vanishing of the 7 — ' mixing angle with /i2/m; = 0.088 [4], where we also
plot —¢/s according to (28). (b): Partner degeneration in the scenario of small X, and X3 with X = P, § discussed in the text, according

to (39).
Jim [2¢(T) —H(T) + £(7)
= (@) (1)~ (55)(T) ~£H(T). (37)

Since (gq), is small around the chiral transition, —(5s) is
positive and smoothly decreasing with 7 and % is positive
and increasing, it is plausible to expect that (36) might be
small or even vanish near the chiral transition, although it is
unclear that it should remain asymptotically small for higher
temperatures. In addition, as we have commented above, the
vanishing-mixing scenario requires P;, # 0 as well, which
from (28) can be directly linked to O(4) x U(1), restora-
tion. In a scenario where the chiral O(4) pattern is well
separated from U(1), restoration, for instance in [4], it
would be then possible to find an intermediate region,
roughly between chiral restoration and the U(1), one,
where the pseudoscalar mixing-angle vanishes.

In Fig. 3(a), we plot the susceptibility combination in the
lhs of (36), signaling a vanishing of @p, from the lattice
analysis [4], where we have used the WI in (28) for ;(fg .In
addition, we plot in the same figure —y;, = mﬂ X5.dise> Which

according to (35) should remain nonzero to guarantee that
this is a region where @p ~ 0. Unfortunately, there is no way
to check an analogous behavior for the scalar sector as long
as y% data are not provided by lattice collaborations.
Consistently with our previous arguments, we see a clear
signal of the vanishing of the mixing angle, which happens
to be very close to chiral restoration for those lattice data.
Qualitatively, from the simplified /1 < m expression (37),
the positive —2(5s)/m, term dominates for low temper-
atures. As T increases, )(fé grows, as shown in Fig. 1(a),
until it compensates the strange condensate contribution.
The decreasing/increasing rate of (5s) and y} changes for
higher temperatures, so that this susceptibility combination

starts to grow again from around 7 ~ 165 MeV, where it
develops a minimum. Presumably, after that point the
mixing angle changes from zero to the ideal one, which
should be reached asymptotically at O(4) x U(1), resto-
ration, consistently with the vanishing of 2;’% Xs.disc(T), as

explained below.

Consider now the ideal mixing limit 6= "¢ =
—arcsin(y/2/3), which implies that 5~ 1 ~ /2,
and so on for the scalar f,(500)/f((980) sector. In a
recent model analysis [30], it has been suggested that this
limit can be reached from the transition temperature
onwards, with a more dramatic effect for the  — i’ sector
than for the scalar one. In that work, the scalar mixing
remains close to ideal one for almost the entire tempera-
ture range. In the pseudoscalar sector, ideal mixing is
reached when M, the anomalous contribution to the 7’
mass, vanishes [32-34]. In that limit, m, — m, and
my — 2my —my. Thus, this limit is linked to O(4) x
U(1), restoration, where the = degenerates with the #; ~ 7,
e.g., through the vanishing of ys 4. The strong reduction
of the 77 mass observed experimentally at finite temperature
[21] supports that this limit is reached.

From (34) and (13), we can see that 8, — 0 implies
P, — 0 and S, = 0. However, as before, P;; ~0 and
S;s ~0 are necessary but not sufficient conditions to
have ideal mixing. Inserting P;;, =0 in (34) leads to
(sin26p — 2v/2 cos 20p)Pops =0, so one recovers Op =
0'd for sinfp <0 and cos@p >0 only if Pyg # 0.
Therefore, in a ideal mixing regime, the following con-
ditions must hold:

6P=6i‘,’
P11_2Pss 7(’ Pls

05=01

0p=0%
Sll _ZSSS 76 Sls

70, g

~*0.
(38)
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In the pseudoscalar case, P, ~ 0 is expected at O(4) x
U(1), restoration from (28), provided that chiral partners
are ideally degenerated (formally in the chiral limit). Unlike
the vanishing mixing scenario discussed above, which can
be reached locally around some given temperature, ideal
mixing would be reached at O(4) x U(1), restoration and
will remain like that asymptotically. Thus, ideal mixing is
another signal of the O(4) x U(1), pattern. In addition,
(19) implies that both the scalar and pseudoscalar mixings
become ideal asymptotically. Note that as long as U(1),, is
not fully restored, €, and ¢ can take different values.

Considering now the lattice results in [4], according to
our previous argument the vanishing of ys 4. in Fig. 2
signals the ideal mixing regime. In this regard, although
one would expect to find a @p ~0 region around O(4)
restoration, the mixing angle should turn into the ideal one
as T increases towards the O(4) x U(1), regime.

However, it is worth mentioning that in that work the
combination (36) [blue squares in Fig. 3(a)] still remains
numerically small for the temperature range explored,
compared with the typical values reached by y% and x4
in that combination (see Figs. 1(a) and 1(b), respectively).
Thus, as (f/my)ys. 4. becomes negligible, the relation
P, ~ 2P, still holds approximately. Moreover, this con-
dition can be combined with Pj ~ Ss5, holding at O(4)
restoration. Note however that, as we discussed in
Sec. III A, the latter equivalence is not so accurately
satisfied in [4]. In conclusion, the following two additional
partner degeneration conditions would be satisfied approx-
imately in the intermediate region between O(4) and U(1),
restoration:

Pll ~ 2Pss ~ Séﬁv Sll ~ zsss ~ sz' (39)

Near U(1), restoration, the four correlators 2P, ~ Sss ~
28,5 ~ P, would become degenerate. In Fig. 3(b), we check
the degeneration (39), which holds reasonably well given the
approximations considered and the lattice uncertainties. In
fact, if the susceptibility combination in Fig. 3(a) would
keep on growing for higher 7, the degeneration in Fig. 1(d)
would not be maintained.

The scenario depicted in Fig. 3 is clearly a consequence
of the O(4) and U(1), neat separation in that particular
lattice analysis. However, for a O(4) x U(1), chiral
pattern, as that observed in [43-45], there would be no
room for a vanishing mixing region since U(1) , restoration
is already activated around the O(4) transition, where the
ideal mixing would be operating.

C. Including isospin breaking: Connected
and disconnected scalar susceptibilities

In this section, we derive additional results in the form of
WI, which become useful for the discussion of the role of
the connected and disconnected parts of the scalar suscep-
tibilities regarding chiral partners and patterns. For that

purpose, let us consider the general isovector Wl in (6) with
a scalar operator O = S” satisfying

fora,b,c =1,2,3.

8O (y)/das,(x) = 8(x = y)e*™ S,

If we also take into account isospin breaking effects
m, # my, in the quark mass matrix, i.e.,

1 1
M=—=(m, +my—2my)lg +—=(m, +my+ my)A
2\/5( d )8 \/6( d )0
1
) (m, —mg)as,

the WI in (6) becomes after integration in the Euclidean
spacetime

(it — dd)(T) = %x‘?h(ﬂ, (40)

where the charged 23" = 4V = ¥ differs in general from

the neutral )( if m, # m,. Nevertheless, even though

25" = ¥ = 4% in the isospin limit, the identity in (40) is

(au—dd) —dd) ;é 0 [56]

nontrivial when m; — m,, since lim,,, _,,, prys
In fact, it allows one to relate the present analy51s with the
standard decomposition of the subtracted scalar suscep-
tibility into its quark-diagram connected and disconnected
contributions, which are relevant for lattice studies [4,6].

Assuming m, # m, one has [56]

él _ 2)(c0n 4 4)(dls

7S5 =xy
1 O{iu — dd)
meon _ _ (muu | >dd sud _ 41
xs 25+)(s))( a(dmu’()
where
ZT) = [ (T w00 = ) )
i,j=u,d.
In this way, comparing with (40), one gets
x5(T) = 275(T) + O(my — m,). (42)

consistently with recent lattice studies [4]. The relation (42)
is also consistent with the SU(3) ChPT isospin-breaking
analysis in [56]. Our current WI derivation is completely
general and then it is also valid for the U(3) scenario, which
will be analyzed in Sec. V. Actually, combining (42) with
(41) allows one to obtain the connected and disconnected
parts from 7Y and x4, quantities which can be directly
derived from the ChPT Lagrangian formulation.
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In principle, the connected part of the scalar suscep-
tibility is expected to have a softer T-dependence than the
disconnected one in the relevant temperature range studied
here. This is observed for instance in the lattice analysis in
[4] and is confirmed in SU(3) ChPT, where one finds 73 ~
T/m, and 7" ~T?/m} [56]. That is, the infrared (IR)
m, — 0T part of ;?lsl is carried only by its disconnected part,
which is the perturbative counterpart of the chiral transition
peak observed in the lattice for this quantity. Conversely,
the growth of the connected piece is controlled by the
heavier scale m,% coming from 7% mixing and KK loops.

However, it is important to remark that the above picture
may change if the U(1), symmetry is restored close to the
O(4) transition. First, since y grows with 7 and x%
decreases like (gg); from (22), their degeneration would
give rise to a maximum for x4 at U(1), restoration. Such
possible maximum is not really seen from Fig. 1(a), since
higher T data points in [4] would be needed to appreciate
correctly that region. However, going back to earlier papers
of the same collaboration, the observed maximum of 7§ =
)(‘g /2 at around 190 MeV [3] can be understood in this way.

Another signal of this behavior would be a minimum of
the screening mass in the o channel (see our discussion
about screening masses in Sec. III D). Such minimum is
clearly observed for instance in [45] and it takes place at
chiral restoration. Note that the O(4) and U(1), transition
almost coexist in [45]. A minimum for the screening mass
in the 6-channel is also seen in an earlier work [40]. In this
work, which we will refer to in Sec. III D, the full SU(3)
degeneration is also visible at higher temperatures, where
all the screening masses for different octet channels become
degenerate.

From the ChPT point of view, the connected suscep-
tibility peak, linked to U(1), restoration, can be naively
understood by taking the m, — m, limit. This case is
reached only when the anomalous part of the #' mass
vanishes, corresponding parametrically to U(1), restora-
tion [32-34]. This m, — m, limit generates an IR behavior
for m, — 07, which will discussed in more detail in Sec. V
within the U(3) ChPT framework.

with a,c =4,....,7 and b =1, 2, 3. Since there are
nonvanishing d ;. coefficients for those a, b values and
c=4,...,7,both SU(2) and U(1), transformations would
make the 7 = 1/2 S/P octet partners degenerate.

We will now obtain more quantitative statements
studying the WI of this sector. On the one hand, starting
with a one-point pseudoscalar operator, i.e., O° = P’ with

Finally, as pointed out in [4], from (20), (41), and (42)
one finds

XS,disc(T)—~dls( )+ WH(T) = 75(T)]
t3 V?(T) —xp(T)]. (43)

Since the second and third terms in the rhs of (43) should
vanish at exact O(4) restoration, then, if U(1), is also
restored ys giie =0 = ;(d“ = 0, which is an apparent con-
tradiction with the peak for j Ndls observed in the lattice.
However, there are two poss1ble complementary ways to
address this argument: first, from the theoretical point of
view, in an ideal restoration regime only the total subtracted
scalar susceptibility 7 should be divergent at the O(4)
transition [8]. Thus, 1t may happen that the peak of the
connected contribution at the O(4) x U(1), transition
discussed above could compensate an absent peak in the
disconnected part. Second, in an approximate scenario
where O(4) and U(1), restoration are close but still
separated by a finite gap, the third term in (43) may remain
small while both ys5 4. and )(d“ keep a peaking behavior
scaling as (T —T.)™"/m, in the light chiral limit, with y
some critical exponent [6]. However at U(1), restoration
the divergent parts of ¥ ”d“ and )( !/4 [second term in the
rhs of (43)] may cancel which is compatible with a
vanishing ys gi.c. We will actually obtain a explicit reali-
zation of this second scenario in Sec. V in the IR limit
m, — 07, where the gap between O(4) and U(1), is also
vanishing with m,.

D. I=1/2: WI, partner degeneration
and lattice screening masses

Consider now transformations of the / = 1/2 compo-
nents of the octets, i.e., P? =K% and S =«k? with
a =4, ...,7, which correspond to the kaon (pseudoscalar)
and the k (scalar), respectively. Following similar steps as
before, under SU4(2) and U(1), transformations we have:

55”()/) (X) 5(X y)dabcP ( )

88(y)/bay(x) = /2/38(x — y)P*(x
|
b =4,...,7, both sides of (3) vanish but for a =4, ...,7,

for which one gets [50]
—(h +my)xp(T) = (qq),(T) +2(5s)(T),  (44)

already obtained in [50]. On the other hand, considering the
isovector Wlin (6) with O” =5 (b=4,...,7) and taking into
account that 5O”(y)/das,(x) =8(x—y) f“h"Sc, we obtain:
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, (45)

2T = (aq),(T) —_2ﬁ§'S>(T)

mg

where we have considered the isospin limit, i.e., m, = my; =
i and (S*) = (uu) — (dd) = 0, and x> = y55°.

This new identity (45) has interesting consequences and
provides a first hint towards the fate of / = 1/2 partners at
chiral restoration, which has not been explored yet in lattice
analysis. Actually, the combination of (44) and (45) gives
rise to [51]:

AT =20 = ——
(46)

which states that in the strict light chiral limit, i.e., for a
second-order chiral phase transition with m =0 and
(@q); =0 but my#0 and (5s) #0, K and k become
degenerate partners. Moreover, in the real crossover sce-
nario where the light quark mass and condensate are not
zero, (46) provides a measure of the I = 1/2 partner
degeneracy since

X5(T) =xp(T)
15(0)=x5(0)

[\

@) =200/m) (D) o

(44)1(0)=2(s/m,)(55)(0)

(47)

with A, defined in (32) and, as explained above, very well
determined in the lattice. Roughly speaking, lattice predicts
A (T;0) ~ 0.5 at the chiral transition [3]. Hence, accord-
ing to (47), in the physical case K and x would only be
degenerate around 50% of their 7 = 0 value at the O(4)
transition. This result provides then a way to extract
information on K — k degeneration from lattice data with-
out measuring directly the corresponding correlators. It is
important to remark that K — « correlators also degenerate
at U(1), restoration [51] and then, according to the results
above, they do so at O(4) x U(1), restoration. A con-
firmation of the previous results will be obtained also in our
ChPT analysis in Sec. V.

The other important consequence of the identity (45) is
that it allows one to explain the behavior of lattice screening
masses in the x channel, in a similar way as it was done in
[50] for the 7, K and §s ones. Actually, the only available
lattice data of correlators in this sector are the results for K
and « screening masses in [40]. This result shows that both
screening masses degenerate beyond the chiral transition,
consistently with our previous result based on (46). The

observed asymptotic degeneration would be a consequence
of the U(1), asymptotic restoration.

Following the analysis in [50], the lattice result for the
screening mass in [40] can also be used to check the WI in
(45). If we assume a smooth temperature dependence for
the residue of the x correlator as well as for the ratio
between pole and screening masses, we can use the WI in
(45) to obtain a prediction for the T scaling of the (spatial
screening) mass ratio,

ME(T) E’;(m] 2 [<aq>z<o>
70 (aa):(T)

since the susceptibilities correspond to zero momentum
correlators and hence to inverse square masses [50].

To test the scaling law in (48), together with those for the
7, K, and §s channels analyzed in [50], we take lattice data
for screening masses and quark condensates from the same
lattice group. As mentioned above and to the best of our
knowledge, the more recent available results for screening
masses in the I = 1/2 sector are those in [40]. The
corresponding condensate data of the same group with
the same lattice conditions (p4 action, N, = 6, m, = 10/1)
are given in [60]. Nevertheless, as pointed out in [50] and in
Sec. IIT A, lattice results for quark condensates are affected
by finite size divergences of the type (g;q;) ~ m;/a’. Thus,
in order to check (48), we have to consider subtracted
condensates free of lattice divergences. Following [3,50],
we replace (7q),(T) — (q4)/(T) = (34),(0) + (gq)}*" and
(55)(T) = (55)(T) = (55)(0) + (55)'/2, where (gq)}"
and (5s)™ are reference values, corresponding typically
to the lattice values at 7 = 0 in the chiral limit [3]. We
proceed as in [50] and consider (gg)'*" and (5s)™ as fit
parameters, used to minimize the squared difference
between the relative screening masses and subtracted
condensates. We remark that we cannot just take the
reference value provided in [3] since we are taking older
lattice results with very different lattice conditions. Thus,
with only two free parameters, we can test the validity of
our scaling laws based on WIs using lattice data in the four
channels. In addition, we use for the condensates the
dimensionless quantity 7}(gq), where r; ~0.31 fm is
defined in lattice analysis to set the physical scale
[3,60]. An important difference when including the «
channel is that in [60] the data are not given relative to
their T = 0 value. Therefore, we have taken the lowest
temperature point 7, as the reference value for the screen-
ing masses in that channel, so that, according to (48), we
define

2(55)(0)]1/2
265)(T)|

(48)

Ak‘(T; TO)

(49)
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FIG. 4. Comparison of pseudoscalar screening mass ratios and
subtracted condensates for the four channels 7, K, 55 and x with
reference values 3 (gq)"" = 0.750, r3 (5s)™ = 1.061. The lattice
data are taken from [40] (masses) and [60] (condensates) with the
same lattice action and resolution, T, = 145 MeV, T,
196 MeV and r; ~0.31 fm used in [60].

and then we should compare M (T)/Mi(T,) with
A(T;Ty)™V2.

In Fig. 4, we show our results for the four channels. The
definitions of A;, Ag, and A are given in [50] and
correspond to the subtracted condensate combinations
predicted by the WI with respect to the 7 = 0 values. It
is important to point out that we have not included in the fit
the points above T in the x channel. We do not expect that
the smoothness assumptions we are using to justify the
scaling law can be maintained above T.. In particular, the
deviations between pole and screening masses can be
sizable, as commented in [50] and confirmed by recent
model analysis [30]. Nevertheless, we include those points
in the plot to emphasize the minimum around 7. exhibited
by the k screening mass. The results below 7, show an
excellent agreement with the predicted WI scaling, the
maximum deviation being of 5.2% (second point in the k
channel). Moreover, the reference values (gq)™, (5s)" are
very similar to those obtained in [50] for a three-channel fit.
In addition, we remark that the scaling law in (48) explains
qualitatively the observed minimum of M{‘ near the
transition, which arises from the relative behavior of
(subtracted) light and strange condensates. Near the chiral
transition the inflection point of (gq), signals an abrupt
decreasing with respect to (3s), which remains smoothly
decreasing.

IV. IDENTITIES RELATING CORRELATOR
DIFFERENCES WITH THREE-POINT
VERTICES

A.1=0,1

Further relations can be obtained from the axial Wl in (3)
when two-point field operators are chosen. In particular, the

evaluation of (3) with O’(y) = o,(y)x
8" (y)n;(0) gives rise to the identities

b(0) and OF =

Por(y) = Suly) = / dx(Toy(y)a(x)a(0)).  (50)

Puly) = Sisly) = i / (T8 (0)). (1)

These are particular combinations of the operators
O(y) = §*(y)=(0) and O(y) = P*(y)5(0), which using
(14) yield

Prm'<y) - SSS(y) - \/ESSO(y)

— V3 / AT (1)a(0)x(0)),  (52)

Prr(y) = Soo(y) = \/2508()
\/> /dx (TS°(y

Pyg(y) — Ss5(y) + V2Pgo(y)

_ A / dx(TP (y)n(x)5(0)),  (54)

7(x)7(0)), (53)

Poo(y) = Sss(y) + \/%Pso()’)

_ \/gm /T dx(TPY(y)x

Note that, due to the 5 —# mixing, the above WIs
contain the nonzero 08 correlator, albeit it disappears in the
light sector Wl in (51). Moreover, eliminating in (52)—(55),
the 66 and zz correlators, we get two new WIs,

(x)5(0))- (55)

Pu0) =5 [ aTa()aa©). (50

Su0) = =3 [ dx(Toaa0). (57

which as we have seen in Secs. Il A and III B, play a
crucial role for the discussion of the chiral pattern, partner
degeneration and mixing angles.

These identities can be translated to WIs for suscep-
tibilities, once the integration in the y variable is performed
(p = 0 in Fourier space):

ro—rl = / dxdy(To,(y)a(x)a(0).  (58)

A= =m /T dxdy /T dx(T5(y)m(x)n;

0)), (59
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2 =i [ dsdy(Tn ()a(o0)).  (60)

v == [ dxdy(To,()a(0m(0). (61

which can be also checked in the lattice or using different
model analysis in terms of the p = 0 three-point functions.
Note that in the 7 — o, case, (58) can be obtained also from
(qq); = —ry™ using that

[ avar(Ta0)a()(0) = =in s + [ dxtaa)ie

The WIs in (50)—(51) and (56)—(57) parametrize the
degeneration of chiral partners in terms of three-point
functions. If SU4(2) is exactly restored, i.e., in the light
chiral limit and for a vanishing light-quark condensate, the
rhs of these equations should vanish and, hence, the
analysis of those three-point correlators provide alternative
ways to study chiral symmetry restoration. More precisely,
according to (28) and (56),

Fsase = =g, [ dvdy(Tn,()x(3(0). (62
The importance of the WIs (50)-(51) and (56)—(57) is
that they provide precise and direct information about the
relevant interaction vertices and physical processes respon-
sible for the breaking of the degeneracy in (16) in the finite
mass case and 7 < T .. In this way, the analysis of the mass
and temperature dependence of the three-point functions in
the rhs would be very relevant to analyze the evolution
towards degeneration. In particular, (50) and (51) imply
that z/o; and #;/5 partner degeneration are driven by the
orrr and agynny; vertices, respectively, whereas ayzn, and
oz vertices enter in the crossed correlators (56)—(57).
We could also construct W1 relating three point functions
in the rhs of (50)-(51) and (56)—(57) with four-point
pseudoscalar operators. This would be a much manageable
scenario within an effective theory description (like ChPT),
and it would not require to introduce explicitly the
f0(500)/(6) degree of freedom in the Lagrangian.
Looking in more detail at the isoscalar case, the o; and
o, bilinears in (50) couple to the scalar source s(x) in the
QCD Lagrangian [61], which on the meson Lagrangian
translates into a contribution from the zz, KK and 5y
channels at leading order. Therefore, the rhs of the identity
(50) is directly related to zz — zz scattering in the [ =
J = 0 (o) channel, as well as to KK — 7z and ny — 7,
where the ¢/fy(500) resonance can also be generated.
Thus, this identity states that the o/f,(500) resonance
produced in zz scattering plays a fundamental role for the
O(4) degeneration of partners. This is fully consistent with
the recent analysis in [49], where it is shown that the critical

crossover behavior of 7! can be achieved including the
thermal pole of the ¢/f((500), as generated in unitarized
zr scattering [62]. Similarly, the ¢ bilinear translates into a
contribution from the 77 and KK channels. In this way, the
ths of (51) connects with the ay(980) resonance, which is
produced in 757 — 2 and KK — 7y scattering and moti-
vates a future finite temperature analysis of this resonance.

Furthermore, at first glance, the identities (50)—(51) and
(56)—(57) suggest the degeneration conditions in (16) once
the light chiral limit 72z — O is taken, albeit this could be
only possible at temperatures close to 7'... In fact, at 7 = 0,
(@q); is O(1) in the light chiral limit and the scalar and
pseudoscalar susceptibilities satisfy y% = O(in~!) > 7 =
O(log ) [8,57], hence in contradiction with partner
degenerations. Similarly, for the 6 — 7, identity (59), )(2 =
O(1) at T = 0 [56] while y} diverges at least as O(/m~"!)
(23). Thus, the three-point functions in the rhs of (50)—(51)
and (56)—(57) should scale as 1/7/ at T = 0 in the light
chiral limit. As T increases, y% drops proportionally to
(Gq), as given by (22) while 7% increases. Hence, they will
eventually match consistently with partner degeneration
around 7. According to (50) such degeneration, expressed
in term of two-point correlators, is driven by the oz z vertex,
which becomes the physically relevant interaction. The
same happens in the & channel, where )(% drops, hence
tending to match with x3, driven by agzn interaction
through (51).

Further identities can be derived considering diagonal
rotations @}. On the one hand, considering O"(y) =
7’ (y)5¢(0) and O(y) = o(y)n;(0) in (3), one gets for
a=0,

Pon(y) = S55(y) = / (T a(y)5(0)i(x).  (63)

where

77]()6) = ﬁ"]l(x) + msns(x) + —A()C). (65)

On the other hand, from the transformation in (14),
taking the combinations O = P895%0 one obtains

(TP(y)P0(0)) = (T5%(y)$%0(0))

- / dx(T PO(y) S50 (0)i(x)). (66)

The identities (66) can also be combined to give for the
s and ss correlators:
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Like in the previous discussion, the above identities
show the different vertices responsible for the symmetry
breaking of the expected U(1), degenerated patterns, i.c.,
7 — 06 and 5, — 0, degeneration, which are now related
with additional three-point vertices. Compared to the
previous identities (50)—(57), there are two new terms.
Namely, one proportional to m, and an anomalous term
proportional to A(x) in (65). The latter corresponds to the
U(1), breaking contributions in (5).

Recall that the A(x) operator couples to the U(1),
anomalous-source 6(x), which in the meson sector and
at leading order is given by M2, with 5 the pseudoscalar
singlet field and M3 a constant giving the anomalous part of
the 77, mass. All this will be discussed in detail within the
U(3) ChPT formalism in Sec. V. Moreover, as discussed
above, the octet 7g and singlet 7, fields mix to give the
physical n — 7 states. In this way, the identity (63) can be
expressed in terms of zn(n') = an(y') and KK — an(n’)
processes in the a(980) channel, whereas (64), (67), and
(68) refer to n(n')n(n') — am, n(n')n(n') — KK and
n(n")n(') = n(')n(n') in the o channel.

B.I1=1/2
Further relations for the K and x correlators can be
obtained taking the two-point operator O”¢ = P?(y)S5¢(0).
Considering a SU4(2) transformations in (3), i.e., taking
a =1, 2, 3, one obtains for the KK and xx correlators:

dabC[PKK(y) - SKK(y)]
= ﬁi/de<TKb(y)KC(x)ﬂ“(0)>,
(a=1,23, bc—4,..7), (69)

where we denote (PYPP) = 5Py and (S°SP) = 59 P,
fora,b=4,...,7.

The above identity provides information of the physical
processes responsible for such degeneration. The possible
values for d,,. = +1/2 account for the different combi-
nations of allowed k — K= processes, which, within a pure
light or NGB theory, are Kz — Kz and Kn — Kz. Hence,
(69) highlights the relevant role of the controversial x
resonance at finite 7" for the chiral symmetry restoration in
the I = 1/2 channel.

Finally, we will also consider the effect of U(1),
transformations in this sector. Taking O”¢ as before but
now with a = 0, (3) gives

in—%w=£MUMW@W» (70)

which corresponds to k — K5 and k — K#' decays includ-
ing the anomalous contribution, or Kn(y') —» Kz and
Kn(n') = Kn(n') meson scattering processes in the «
channel. Note that the lhs of (69) and (70) are the same
except for the d,,. = +1/2 factor, which allows one to
connect the different scattering processes involved.

Thus, the vanishing of the rhs of Egs. (69) and (70)
would be consistent with the K — x degeneration at chiral
and U(1), transitions described in Sec. III D.

V. EFFECTIVE THEORY ANALYSIS WITHIN
U(3) CHIRAL PERTURBATION THEORY

The WI studied in this work have been derived within the
QCD generating functional. Thus, in principle, they are
subject to renormalization ambiguities related to the fields
and vertices involved [63,64]. It is therefore important to
provide a specific low-energy realization of WI and the
observables entering them, such as the scalar and pseudo-
scalar susceptibilities that we have been analyzing in
previous sections. We will carry out such analysis in this
section, where we provide a thorough ChPT U(3) analysis,
hence extending the work in [50] to include the relevant
chiral and U(1) 4 partners. As we are about to see, this study
will confirm our previous findings based on WI and
symmetry arguments.

The U(3) ChPT formalism provides a consistent frame-
work for calculating low-energy physical processes related
to the pseudoscalar nonet. With respect to standard SU(3)
ChPT, where pions, kaons and the octet 73 state are the
pseudo-Goldstone bosons, it incorporates also the singlet 7,
as a ninth pseudo-Goldstone boson. However, due to the
U, (1) anomaly, the mass of the 7, is too heavy to be
included in the standard chiral power counting in terms of
meson masses, energies and temperatures. Nevertheless,
the axial anomaly vanishes in the N, — oo limit, in which
the singlet field 7, would become the ninth Goldstone
boson in the chiral limit. For that sake, the large N limit
framework must be considered [17-19], so that the chiral
counting is extended to include the 1/N, counting. In this
way, the expansion is performed in terms of a parameter §
such that M2, E?, T?, in, m; = O(8) and 1/N, = O(5),
where M, E are typical meson masses and energies. In this
counting, the tree-level pion decay constant F2 = O(N,) =
O(1/8), which hence suppresses loop diagrams. The
counting of the different low-energy constants (LECs),
according to their O(N,.) trace structure, is given in detail in
[18,32-34].

In [50], one-point WI involving pseudoscalar suscep-
tibilities and quark condensates were verified within U(3)
ChPT and the explicit expressions for those susceptibilities
and condensates were given up to NNLO in the § counting.
Here, we will extend that work to the scalar sector, which
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will allow us to check our previous results based on WI for
the nonet partners under O(4) and U(1), restoration. For
that purpose, we consider the Lagrangian up to NNLO,
namely £ = Ly + L5+ L5 in the notation of [32-34].
Besides, the n—#' mixing angle has to be properly
incorporated. The explicit expressions for Lagrangians,
self-energies, and the mixing angle up to the relevant order
we are considering here can be found in [33].

Within this U(3) framework and including scalar sources
in the effective Lagrangian as dictated by chiral symmetry
[18,19,32-34], we have calculated all the scalar suscep-
tibilities involved in our present analysis, namely 7%(T),
T(T), y5(T), x5(T) and y5(T) up to the NNLO O(&°).
Their explicit expressions are collected in the Appendix.
With those expressions, we have checked that the WI (45)
holds to the order considered. Therefore, together with the
analysis in [50] of the identities (22)—(24) and (44), we
complete the check of all the one-point WI. Recall that the
LO O(572) vanishes for the scalar susceptibilities (it
contributes to the pseudoscalar ones). Note also that, since
we work within the Dimensional Regularization scheme,
the differences 7% — y!! and 7% — »% formally vanish as
5(°)(0) in the ChPT calculation.

As in the SU(3) calculation of scalar susceptibilities
[55,57], our present calculation involves tree level terms, as
well as one-loop corrections. Temperature effects show up
on three type of topologies:

(1) Tadpole contributions coming from the Euclidean

tree-level propagator G;(x = 0), whose finite part
reads

2

2
mg; mg:
(T) = 0i 1 0i
ﬂl( ) 3271'2F2 0og #2 +

“30 L

where i = &, K, n, ', my; are the tree level masses
and p is the renormalization scale.

(2) Contributions arising from Wick contractions of two
pairs of meson fields at different spacetime points,
proportional to

gl(mon T)
2F%

(71)

N M/T (72)

e’ —1 ’

[ viGior = - o

whose finite part can be written in terms of

Gi(x=0), (73)

() = P-4y = |1+ 10 gt
i = dm(z)iﬂz 3022 0g /"
_ 92(mg;, T)

s (74)

$(M,T) =

1 & 1 1
/ dx— . (73)
47 myr xet—1

(3) Loop contributions coming from mixed contribu-
tions of the type:

/TdeGi(x)Gj(x)— 7—3(Gi(x=0)-G;(x=0)].

(76)

which reduces to (73) for m} — m7.

An important consistency check of our calculation is
that all the results are finite and scale independent. Together
with the yp susceptibilities already calculated in [50],
these results will allow us to examine how our previous
results on partner degeneration are realized within ChPT.
Although the ChPT framework is limited to a low temper-
ature description, we are going to see that the thermal
extrapolation of the ChPT curves provides useful model-
independent results confirming our previous analysis for
partner degeneration. In addition, this framework will allow
us to examine the chiral limit consistently.

Let us start by analyzing in U(3) ChPT the susceptibil-
ities in Sec. III A regarding the O(4) versus O(4) x U(1),
pattern and the corresponding partner degeneration in the
I =0, 1 sector. The results for the four susceptibilities
involved are plotted in Fig. 5 for the physical value of the
pion mass. The numerical values of the LECs involved are
taken from [33] and the bands in the figure cover the
uncertainties of those LEC quoted also in [33]. We consider
the values of the NNLOFit-B fit in [33], which is their
best fit to lattice predictions of # and 7’ masses. All the
susceptibilities are propomonal to BY =mg, /(4m?),
where, due to the presence of #' loops, By is the renor-
malized U(3) version of the SU(3)B, constant.

Let us define T, as the (pseudocritical) O(4) restoration
temperature for which degeneration of the chiral partner
states o/ takes place, i.e., y5(T.) = y(T.). Note that this
temperature is more advisable than the standard definition
in terms of the vanishing quark condensate, since the latter
is meant to remain nonzero at the chiral transition for
physical masses. Recall that throughout this section, what
we really mean by degeneration of partners is the matching
of their corresponding susceptibilities, since ChPT is not
able to reproduce neither a true degeneration, nor a cross-
over or a phase transition behavior. Numerically, for the
physical pion mass and for the LECs in [33], we obtain
T.~?264 MeV and T~ 1.09 MeV (for the central values
in Fig. 5) where T is defined as (gq),(T,) = 0. We stress
that the particular numerical value for T'.. is not important;
i.e., the ChPT expansion is limited at low temperatures so it
is not supposed to provide a quantitative description of the
transition. Nevertheless, as we are about to see, the main
qualitative features in terms of partner degeneration and the
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FIG. 5.

1 sector. Right: 7 = 1/2 sector susceptibilities.

relation between different pseudocritical temperatures
obtained from the extrapolation of the ChPT results are
consistent with lattice and with our previous WI analysis.

In addition, the results in Fig. 5 show that y7% matches )(g
above T,.. This crossing point can be considered as an
estimate of U(1), degeneration with a critical temperature
T, defined as y%(T.,) = x3(T). Using physical pion
masses one finds 7,, ~ 1.07T, (for the central values) i.e.,
quite close to T'.. Nevertheless, the numerical difference
lies within the ChPT uncertainty range, as seen in the
figure. The behavior of y%(T) shown in Fig. 5 is not so
reliable as the other susceptibilities. In this case the O(8°)
ChPT corrections at 7 = 0 turn out to be of the same order
as the leading O(5~") ones. This effect is worsened as T
increases. Nevertheless, taking this caveat in mind, we can
still see that the difference between x%(T) and ¥ (T) does
vanish close to (and above) T'.,. Once more, this value can
be taken as the pseudocritical temperature characteristic of
O(4) x U(1), restoration, which according to (20) we
define as ys gisc(7c3) = 0. In the physical case depicted in
Fig. 5, we get T' .3 ~ 1.13T .. As a summary, from the results
plotted in Fig. 5, we conclude that the U(3) ChPT analysis
yields O(4) x U(1), partner degeneration close and above
O(4). Recall that we may have different pseudocritical
temperatures in terms of partner degeneration, both for
O(4) and for U(1), partners, in the physical mass case.

In Fig. 5, we also show the K and « susceptibilities for
[ = 1/2. They match at y& (T .4) = y5(Tey) with Ty = T 5.
This behavior is compatible with the pattern predicted in
Sec. IIID; i.e., K — k degeneration takes place at U(1),
restoration. Furthermore, as we will see below, this temper-
ature approaches O(4) restoration in the chiral limit,
consistently with (46).

More revealing results are obtained from our ChPT
expressions when we approach the chiral limit. In that
regime, we would expect that the two pseudocritical
temperatures corresponding to the chiral transition, T,

0.20

0.15

XA(TI(BY)?
ot0p NN N\

005! T e

0.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Susceptibilities calculated in U(3) ChPT to NNLO for the physical pion mass. Left:The four susceptibilities of the 7 = 0,

and T, should tend to coincide. In addition, from the
analysis in Sec. III A, we would also expect the U(1), and
0O(4) x U(1), pseudocritical temperatures to approach the
chiral O(4) ones. This is indeed what we obtain, as it is
shown in Fig. 6, where the hierarchy T3 > Ty > T, > T.
is maintained as the chiral limit is approached.

As explained above, Ty > T, is expected from chiral
restoration arguments, while we expect 7., > T.and T3 >
T. since U(1), partners are meant to degenerate after O(4)
ones. Itis also natural that T .; > T, since the restoration of
5.disc Tequires the vanishing of both y% — x5 and ¥ — x%. In
any case, from our present ChPT approach, given the
decreasing behavior obtained for % in Fig. 5, the condition
T.3 > T, clearly holds. Finally, there is no a priori reason
on how T or T, should be related to T,

As for the I = 1/2 K — k matching, we see from Fig. 6
that T ., remains almost identical to T 5 for all values of m,,
approaching the other restoration temperatures in the chiral
limit. This is consistent with what we expect from the
WI (46).

1.15 T
000 = x&(To)=<Gq>(To)=0 U(3) ChPT
‘ o
T02 T O O
AAA — Xp(To2)=x5(Tc2)
1.10 Te 0
O
T O
000 = X5,disc(T03)=0 O O
T. & Y
O O &
1.05 2 &
@ XE(TC):Xg(Tc)
¢ OO0 Lo X
100l ® I T, XP(Tea)=X5(Tca)
0 10 30 50 70 90 110 130
my (MeV)

FIG. 6. Different partner degeneration temperatures as the light
chiral limit m, — 0" is approached.
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Moreover, the leading order in the chiral limit for the
susceptibilities is actually quite useful for our present
purposes. We obtain from the expressions in the Appendix:

T
)?.ISI(T) = a(B(r))Z_ + O(lOg mﬂ)?
212 T? m,T
] _ r\2 i
A = 05 v (1) + |+ Ot

T2
cy m_%) + O(m,),

2>+(’)( )

241) = (B (<o -

ﬁm—()@ﬁ%T (77)

my

where a, b, ¢y, ¢, dy and d; are positive dimensionless

constants independent of 7" and m,. One has a = %, b=

g f>§ | and Tgo =24/ ~ 238 MeV  the chiral limit
0

value for Ty, with (gq)? the light quark condensate in
the chiral limit at 7 = 0. The analytic expressions of the
other constants depend on different LECs, masses and
mixing parameters and are too long to be displayed here.
Their numerical values in the chiral limit are ¢y ~ 0.0025,
c1~0.78, dy=~0.029 and d; ~0.26. The asymptotic
expansions in (77) arise from:

T2 TM
g(M,T)=——-—+4O(M*logM),
12 4z
T
M, T)=—— logM
0(M.T) = 1+ Oflog M), (78)

while exponentially suppressed contributions of order
exp(—mg/T) have been neglected.

From the previous expressions and the definitions of
pseudocritical temperatures explained before, we get

T2
TO = TOch 2b‘(}):2h my; + 0( 7 IOg mﬂ)’
aT(z)ch
4bf2

T.=Ty— m, + O(m2logm,),

aT?
T,=T. —|—4b(}‘2hm + O(m2log m,)

domK + dl T% h 2

=Ty ——— 55 LToepmz + O(m3),

4bfim% 4 4

ClT%ch - Com%
4bf,2,m%(

Tc3 = TO + T()chmgz + O(m;r)’ (79)

which is consistent with the numerical results showed in
Fig. 6 and with the T3 > Tq > T, > T, hierarchy. In
addition, the gap between the U(1), pseudocritical temper-
atures T3 and T, is O(m2), which is also the gap between
them and T,. On the contrary, the gap between T, T, or

T, and the O(4)T . is O(m,), i.e., larger in the chiral limit
expansion.

The chiral expansion of the U(3) ChPT results is also
particularly useful to disentangle the behavior of the
connected and disconnected parts of the scalar susceptibil-
ity, which we have discussed in a general context in
Sec. I C. The ChPT expansion, by construction, is not
able to generate a peak for the scalar susceptibility as
T — T.. However, we can learn about the critical behavior
of the different susceptibilities involved by examining their
infrared (IR) chiral limit m, — O behavior, for which
ChPT does capture the expected behavior for condensates
and susceptibilities [6,8].

Thus, consider the behavior of the different susceptibil-
ities involved in the relation (43) in the chiral limit at O(4)
and O(4) x U(1), restoration, i.e., at T.. and T3. On the
one hand, we have at T =T,

T
~dis T.) = a(B~ 2 ¢
75°(T.) = a(By) am

T

+ O(log m,,),

. 1 ¢, +d)T?
Zsane(T2) = 75(7.) + Ly ITe Ly
4 mx
T O(my).
T2
xan»—<>(%+dl )+O<>
K
T2
ﬂan==wam )+0<> (80)
mK
which stem from (77) and (79) with 795 =17 — 4%]

according to the discussion in Sec. III C Therefore, at
T. the IR divergent behavior of ys ;s in the lhs of (43) is
carried entirely by 74 in the rhs. Note that the second term
in the rhs of (43) vamshes by definition at 7', and the third
term in the rhs is regular in the IR limit.

On the other hand, at T = T .5 one finds

T,
a(36)24—3

4

)?glg(ch%) =
)?fgl( 03) = 4)((1“( 63) +X§(Tc3) + O<mﬂ>’

AT = (852 (do+ 152 + Oy

+ O(logm,,),

(81)
myg
Note that T.; is defined as the temperature for which
X5 dle(TC ) _)(g(T ) )(lfg<T(‘3> = 0. This vanishing is
compatible with the fact that 73(7'3) in the rhs of (43)
is IR divergent, as given by (81). Namely, such divergence
is exactly cancelled by that of —7%(T.;)/4. The remaining
terms in (43) are IR regular and their sum vanishes exactly.

As a summary, it is perfectly compatible from a ChPT
point of view to have a divergent ¥ 795 and a vanishing ys_gisc
at T.; while both diverge at T, w1th Ti—T.=0O(m,).
These features can be appreciated in Fig. 7, where we
plot those susceptibilities very close to the chiral limit.
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FIG. 7. Behavior of susceptibilities in the decomposition (43)
close to the chiral limit in U(3) ChPT.

AtT =T, % — 74 vanishes while y5 4. and 73 are both
large and of the same order, which arises from their 1/m,
behavior (compare with the typical numerical values of
susceptibilities in the physical case in Fig. 5). At T = T3,
Xsdisc vanishes and the large positive value of 74 is
compensated by the large negative contribution of-7% /4,
as discussed above.

In the above discussion, the connected susceptibility, i.e.,
= ;(‘g /2, remains regular in the chiral limit.
Nevertheless, as already discussed in Sec. III C, general
arguments indicate that 7$°" could actually peak near U(1),
restoration. A hint of that behavior can be seen also in U(3)
ChPT by taking simultaneously the limits m, — 0" and
M, — 0". Note that M, is the anomalous part of the 7’
mass, which should vanish in a U(1), restoring scenario.
The contributions to ys include mixed loop terms of the
form (76) with i = z, j = 5. In the My, — 0™ limit, we have
m, — m;, leading to

gl(mrp T)—g,(m,,T)

li
m;]l_]"I}nﬂ m’% - m,zr
1 d
= . dm 9 (mm T)
d
= 5 01 (mﬂ’ T) = _92(’”7!’ T)' (82)

dmz

which, according to (78), generates an additional IR
divergent term not present in the m, — 0" for a fixed
m,,. In more detail, in the m, — 0% and My, — 07 limit, we
obtain

34—~
m_—0F 1/ 20 T
A" (B 0

b

(logm,),

—conMom—~0* V62> +9 -3 T
s (30)27;+0(log m,),  (83)

with a = M,/m,. We see that the connected scalar sus-
ceptibility above contains an IR divergent part in this
combined limit, whose strength is parameterized by a. On
the one hand, taking @ — oo we recover in (83) the results
given in (77), corresponding to m, — 0" and M, # 0. On
the other hand, the @ — 0" limit would correspond to the
maximum U(A), restoration in this parameterization.
In Fig. 8, we plot the ratio 7§/7 at leading order in
T/m, as a function of a. We see that for a - 0" a
maximum finite value of 1/2 is reached for that ratio.
For reference, the value of a corresponding to the physical
values of m, and M| is a~5.99, which corresponds in
Fig. 8 to 75 /7% ~0.21.

Following the discussion in Sec. III A, let us
now compare the temperature scaling of ys gi..(7) and the
light quark condensate (gq),(T). In Fig. 9, we plot
Xs.aise(T)/X5.4is¢(0) and (gq),(T) /(@ q),(0) as the pion mass
is reduced. It is clear that their temperature scaling is almost
identical as the chiral limit is approached, consistently with
[31] and with our analysis in Sec. III A. The reason can be
understood again from the chiral limit expressions (77). In
the chiral limit, the #; contribution y% is parametrically
negligible with respect to %, so that their difference given by
Xs.disc 18 dominated by y%, which vanishes exactly like (g);
due to the WI (22).

Finally, we will analyze the behavior of the scalar and
pseudoscalar mixing angles. With the mixing angle defined
through (34), we solve for every T the equations

L ) — 051 sin20,, (7))

2

—|—;(9§S cos[20p 5(T)] = 0, (84)
using the U(3) ChPT expressions for the susceptibilities.
The result is showed in Fig. 10. First, as commented in
Sec. III B, the degeneration of the scalar and pseudoscalar
mixing angles takes place at about 7"~ 1.05T _, i.e., around

T T T T

0.5
04
037
0.2
017
0 5 10 15 20
a
FIG. 8. Ratio of connected to total scalar susceptibility in the

combined limits My — 0", m, — 0" with a = My/m,,.
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FIG. 9. Comparison of temperature scaling of ys 4. and (gq),(T) for different values of the pion mass.

0(4) x U(1), degeneration. In addition, they coincide in a
value close to the ideal mixing @ also consistently with
the discussion in Sec. III B. In the case of €, the variation
with respect to its 7 = 0 value is small and close to ideal
mixing. These findings are in fair agreement with the
results in [29] obtained within the framework of the
Polyakov-loop extended NJL model. Note that we do
not see in this U(3) ChPT analysis a region of vanishing
mixing, since that would require a larger gap between O(4)
and O(4) x U(1), restoration.

L e ———
e T 5o ——
"""""" 65(T)
12— exm
-14
0.0 02 0.4 0.6 0.8 1.0 12

T/Te

FIG. 10. Temperature dependence of scalar and pseudoscalar
mixing angles according to the definitions given in the main text.

VI. CONCLUSIONS

In this work, we have performed a detailed analysis
of the correlators and susceptibilities corresponding to
the scalar and pseudoscalar meson nonets, both from
general arguments in terms of Ward identities and from
the model-independent description provided by U(3) chiral
perturbation theory. Our main physical motivation has been
the study of partners and patterns of chiral and U(1),
restoration.

In particular, we have showed that in the limit of exact
O(4) restoration, understood in terms of & —# partner
degeneration, the WI analyzed yield also O(4) x U(1),
restoration in terms of 7 —# degeneration, i.e., from the
vanishing of ys 4;s.. Our analysis also provides a connection
between x5 gisc and the topological susceptibility y ., Which
is defined from the correlator of the anomaly operator. The
results we obtain using ChPT are consistent with this
analysis. Namely, one finds that the pseudocritical temper-
atures for restoration of O(4) and O(4) x U,(1) tend to
coincide in the chiral limit. In the real physical world with
massive quarks, our conclusions agree with N, = 2 lattice
results for partner degeneration. The large gap between
O(4) and O(4) x U(1), partner degeneration observed in
N; =2+ 1 simulations can be explained by the distortion
in 6 —#n degeneration, presumably induced by strange
quark mass effects. The large NLO corrections for the #;
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susceptibility that we obtain within U(3) ChPT support this
conclusion.

In addition, including isospin breaking m, # m, effects,
we have recovered the formal connection of the § and ¢
susceptibilities with the connected and disconnected scalar
ones, customarily measured in lattice analysis. The behav-
ior of the connected and disconnected contributions to the
scalar susceptibility have been studied within ChPT near
O(4) and O(4) and O(4) x U(1), restoration. In that
context, we have shown that a vanishing ys 4. at O(4) x
U(1), restoration is compatible with a divergent y3sc.
Moreover, the ChPT behavior for a vanishing M, (the
anomalous part of the 7' mass) is a hint towards a possible
peaking behavior of the connected y™.

Regarding scalar and pseudoscalar mixing angles, our
analysis shows that the WI are consistent with 8p ~ 05 ~
0'¢ degeneration around O(4) x U(1), restoration, where
0 is the ideal mixing angle. That conclusion is supported
also by the U(3) ChPT analysis, where 0 remains close to
ideal mixing for all temperatures, consistently with recent
analyses. In the N r= 2 + 1 lattice data, an intermediate
range between O(4) and O(4) x U(1), restoration, com-
patible with vanishing pseudoscalar mixing is present.

Our analysis shows also that in the / = 1/2 sector, the K
and « states degenerate both at exact O(4) and U(1),
restoration. Moreover, the degree of degeneracy of these
two patterns is directly determined by the subtracted
condensate A;; measured in the lattice. These results are
confirmed also within the U(3) ChPT analysis. In addition,
we have also showed in this sector that the temperature
behavior of the screening mass in the x channel measured in
the lattice can be explained with the corresponding WI
relating y% with the difference of light and strange quark
condensates, which we have checked in ChPT. Such
analysis extends a previous work for the z, K, # channels.
We have also showed that the four channels can be
simultaneously described with a two-parameter fit.

Our U(3) ChPT analysis allows one to obtain all the
nonet scalar susceptibilities up to NNLO in the chiral power
counting for finite temperature, thus completing previous
calculations of the pseudoscalar ones. The explicit expres-
sions for those scalar susceptibilities are also provided here.

In addition, we have discussed additional WI relating
two and three-point functions, which may become useful to
relate O(4) and U(1), partner degeneration quantities with
meson vertices and scattering amplitudes. A detailed
analysis of those WI is left for future investigation.

As a summary, our study provides new theoretical
insight for the understanding of the nature of the chiral
and U(1), transitions in terms of the degeneration of the
meson nonet states, which is meant to be useful for lattice,
phenomenological and experimental analyses. The picture
emerging both from a general Ward Identity framework and
from ChPT is robust and provides model-independent
conclusions that could guide future work on this subject.
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APPENDIX: ChPT RESULTS

In this appendix, we provide the explicit U(3) ChPT
expressions for the scalar susceptibilities 7%(T), 7%(T),
X5(T), x5(T) and x%(T). Up to NNLO in the § expansion,
one finds

1 1
2 =4Bp (—31/,, —vk =g (4= c3(3 = 7s3) — 4V2¢cys9(1 + 53))v, — 5 (4 + s3(4 = 753) — 4V 2¢psp(=2 + 53))vy

2F (2¢h = 2V2¢) 59 — 3¢352 + 24/ 2¢ys5 + 253) (uy,

- /“lr/)

2 _ 2
9 mg,, = mg,

8
o{ong 2+ S i)

1 1
X3 = 4By (—uK -9 (1433 +7s5) + 4\/509s9(2 - sg))uﬂ ) (14 55(10 — 7s3) — 4\/505@9(1 + sg))vn/

2F2 (2¢h — 2V2¢)s9 — 3chsh + 2/ 2¢qsh + 255) (uy

_ﬂr/>

2 _ >
9 mg, = mg,

16
+ 2<4Lg + 2L + Hj + ?C{9(4m%K - mgﬂ)))

1 1
xs =4Bp (—yk -5 (2 = Tcs3 —2v/2¢psp(1 = 253))v, — 5 (1=7s3(1 = 53) = 2V/2cpsp(1 — 253) vy

2F (2¢h = 2V2¢) 59 — 3¢3s2 + 2/ 2cys3 + 253) (4,

2 2
9 Mo, = My,

— . 2
i) 416 Lg =S Clyamd - i) ) ).
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2F? (¢ — 2V2¢qs0 + 257) (4 — 1) n 2F2 (25 + 2V2¢y59 + 55) (He = Hy)

) r2
Xs = 4B (‘VK+ 2 2
3 mg, — mg,

+4(2L; + H5 + 24c;9m3,,)> ,

2 2
3 me, — Mg,

3F(up —pg) | FP (3 + 4V 2cqs0 + 853) (kg — 1) N F2 (8¢ = 4V2cqs0 + 53) (k. — Hy)

K:23r2 +
“ °<m3,<—m3,, 3

+8(2Lg + H + 24Cigm5,<>),

2
my, — Mok

2 2
3 mon/ - mOK

(A1)

where the T-dependent loop functions y; and v; are defined in (72) and (75), respectively.
In addition, m, = 2B/ and myx = B{(7 + m,) stand for the LO pion and kaon masses, whereas the LO » and #’

masses are given by

2A2
\/Mg BTN

M
2 \/ M — 4 g A
m(z)”/ - 70 + m%K + 2 ) (A3)
with A% = m}, —m3_ and M the anomalous part of the 7, mass.
Finally, ¢y = cos8p and sy =sin8p, 0p is the n — ' mixing angle defined in (33), which to LO reads
3M —2A% + \/OM§ — 12MZA% + 36A%)%\ /2
sin9P:—<1—|—( 0 v 320A4 A )> . (A4)
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