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In the framework of the dense-dilute color glass condensate approach, we study fluctuations in the
multiplicity of produced particles in p − A collisions. We show that the leading effect that drives
the fluctuations is the Bose enhancement of gluons in the proton wave function. We explicitly calculate
the moment generating function that resums the effects of Bose enhancement. We show that it can be
understood in terms of the Liouville effective action for the composite field, which is identified with the
fluctuating density, or saturation momentum of the proton. The resulting probability distribution turns out to
be very close to the γ distribution. We also calculate the first correction to this distribution, which is due to
pairwise Hanbury Brown–Twiss correlations of produced gluons.
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I. INTRODUCTION

The study of correlations in p − A and p − p collisions
has been a very active area in the last years due to the
observation of the ridge correlations at the LHC. Since the
ridge signal is much more pronounced in high multiplicity
events, it is very important to understand the origin of the
multiplicity fluctuation and especially the high multiplicity
tail of the distribution; see Refs. [1–4] for the most recent
experimental studies.1

In the present paper, we address this question in the
framework of the color glass condensate (CGC) approach.
We calculate the multiplicity momentum generating func-
tion, using McLerran-Venugopalan (MV) model for the
projectile and assuming that the target is very dense. The
latter assumption allows us to employ the factorizable form
for the averages ofWilson lines, as explained in Ref. [9]. We
show that the main contribution to multiplicity fluctuations
arises form the Bose enhancement (BE) of gluons in the
projectile wave function (see Ref. [10], providing the
interpretation of the correlations in the projectile in terms
of BE; a related effect of Pauli blocking for quarks is

discussed in Ref. [11]). This effect produces fluctuations
that are not suppressed by the factor of the area of the
projectile. We are able to resum the BE contributions exactly
in the multiplicity generating function. The resulting dis-
tribution turns out to be γ distribution, which for large
moments practically coincides with the negative binomial
distribution.
The other important effect in correlated gluon production

is the Hanbury Brown–Twiss (HBT) effect. As discussed at
length in the recent literature [12], it is the leading cause for
the angular correlations of produced gluons in the CGC
approach. Its contribution to the total multiplicity, on the
other hand, is suppressed relative to that of BE, as the
correlated peak that it produces is very narrow. Nevertheless,
we identify the contributions to the multiplicity generating
function due to the HBTwithin our calculational framework
and calculate corrections induced by it.
We note that a calculation along similar lines was

undertaken some years ago in Ref. [13]; see also
Refs. [14–16] for numerical calculations and comparison
to experimental data and Ref. [17] for a higher-order
correction to a MV model. There are, however, significant
differences between our approach and that of Ref. [13]. In
particular, Ref. [13] treated both the projectile and the target
as dilute. It turns out that the large density effects of the
target suppress half of the contributions considered as
leading in Ref. [13]. Additionally, the HBT contributions
were included in the analysis of Ref. [13]. The resulting
multiplicity distribution we obtain is somewhat different
from that in Ref. [13].
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1See also Refs. [5–8] for the experimental and theoretical
studies of heavy flavor production in high multiplicity collisions
of small systems.
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The structure of this paper is the following. In Sec. II, we
lay out the general framework of the calculation and
perform the averaging over the projectile wave function
using the MV model. In Sec. III, we make a detour and
consider specifically the second moment of the multiplicity
distribution, also known as the inclusive two-gluon cross
section. We show explicitly that BE leads to the largest
contribution to this moment and that this contribution is not
suppressed by a power of area relative to the square of the
single inclusive cross section. The argument is very similar
to that in Ref. [13] except for the differences alluded to
above due to the dense nature of the target. A similar
observation was made also in Ref. [18]. In Sec. IV, we
calculate in closed form the momentum generating function
that resums all BE contributions. We also relate it to the
constrained effective potential approach proposed in
Ref. [19] and show that our result for the momentum
generating function is identical to the Liouville theory for
the “composite field” discussed in Ref. [19]. In Sec. V, we
consider the HBT corrections to the distribution and
provide a closed expression that resums the leading
correction. Finally, Sec. VI contains a short discussion
of our results.

II. GENERATING FUNCTION

Our calculations will be performed within the dense-
dilute CGC framework. In this approach, the number of
produced gluons for a given configuration of the projectile
(proton) and a target (nucleus) is given by [20–22]

dN
d2kdy

����
ρp;ρt

¼ 2g2

ð2πÞ3
Z

d2q
ð2πÞ2

d2q0

ð2πÞ2 Γðk; q; q
0Þρapð−q0Þ

× ½U†ðk − q0ÞUðk − qÞ�
ab
ρbpðqÞ; ð1Þ

where the square of Lipatov vertex is

Γðk; q; q0Þ ¼
�
q

q2
−

k
k2

�
·

�
q0

q02
−

k
k2

�
: ð2Þ

Here, ρp is a given configuration of the color charged
density in the projectile, and U is the eikonal scattering
matrix—the adjoint Wilson line—for scattering of a single
gluon on the target. The target Wilson lines depend on the
target color sources, ρt; we suppress this in our notation.
The single inclusive and double inclusive production in

this approach are given by

dN
d2kdy

¼
**

dN
d2kdy

����
ρp;ρt

+
p

+
t

ð3Þ

and

d2N
d2k1dy1d2k2dy2

¼
��

dN
d2k1dy1

����
ρp;ρt

dN
d2k2dy2

����
ρp;ρt

�
p

�
t

;

ð4Þ

where the averaging is performed over the projectile and
target color charge configurations:

hOðρpÞip ¼
1

Zp

Z
DρpWpðρpÞOðρpÞ ð5Þ

and

hOðρtÞit ¼
1

Zt

Z
DρtWtðρtÞOðρtÞ: ð6Þ

The normalization factors, Zp;t, are fixed so that

h1ip ¼ h1it ¼ 1: ð7Þ

In general, m-particle production is

dmN
d2k1dy1d2k2dy2…d2kmdym

¼
��

dN
d2k1dy1

����
ρp;ρt

dN
d2k2dy2

����
ρp;ρt

…
dN

d2kmdym

����
ρp;ρt

�
p

�
t

:

ð8Þ

Instead of computing the moments of inclusive particle
number fluctuations, we evaluate the moment generating
function (see, e.g., Ref. [23])

GðtÞ ¼
��

exp

�
t
Z
kmin

d2k
dN

d2kdy

����
ρp;ρt

��
p

�
t
; ð9Þ

where we introduced an arbitrary kmin ≫ ΛQCD. The
moments of the distribution are obviously obtained from
GðtÞ by differentiating with respect to t at t ¼ 0.
To calculate the generating function, we have to specify

the distribution of the sources in the projectile and in the
target. For the projectile, we will use the simple Gaussian
MV model specified by

hρapðpÞρbpðkÞip ¼ ð2πÞ2μ2pðpÞδðpþ kÞδab; ð10Þ

which corresponds to the weight functional

WpðρpÞ ¼ exp

�
−
Z

d2q
ð2πÞ2 ρ

a
pð−qÞ

1

2μ2pðqÞ
ρapðqÞ

�
: ð11Þ

Note that the structure of the ρp correlator means transla-
tional invariance of the projectile wave function in the
transverse plane. This assumption is only reasonable if we
concentrate on momenta of produced particles larger than
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the inverse radius of the projectile. Thus, in the following,
we will always assume kmin > 1=R.
The averaging over the Wilson lines of the target will be

performed in the approximation articulated recently in
Ref. [12]. Any product of Wilson lines is factored into
pairs with the basic Wick contraction

hUabðpÞUcdðqÞit ¼
ð2πÞ2
N2

c − 1
δacδbdδðpþ qÞDðpÞ: ð12Þ

Here, the adjoint dipole amplitude is defined as

DðpÞ ¼ 1

N2
c − 1

Z
d2xeix·phtr½U†ðxÞUð0Þ�it: ð13Þ

As explained in Ref. [12], this approximation is appropriate
for the dense regime. It collects all terms in the n-particle
cross section that have the leading dependence on the area
of the projectile. The approximation only includes terms
that contain “small-size” color singlets in the projectile
propagating through the target. Any nonsinglet state that in
the transverse plane is removed by more than 1=Qs from
other propagating partons must have a vanishing S matrix
on the dense (black disk) target. On the other hand, if the
singlet state contains more than two partons, one loses a
power of the area when integrating over the coordinates of
the partons. Thus, the leading contribution in the black disk
limit is the one in which only dipole contribution to the S
matrix should be accounted for. The same approximation
for the quadrupole amplitude has been used previously in
Ref. [18], in which its consistency with explicit modeling
of the Wilson line correlators via the MV model has been
verified.
Note that this averaging procedure for the target is

formally (disregarding subtleties related to the definition
of the Haar measure) equivalent to the following form of
the weight functional:

Wt½U� ¼ exp

	
−
1

2

Z
d2q
ð2πÞ2

1

DðqÞ tr½U
†ðqÞUðqÞ�



: ð14Þ

A. Projectile averaging

We now consider the calculation of the generating
function:

GðtÞ ¼
Z

DρpDU exp

�
−
Z

d2q
ð2πÞ2

�
ρapð−qÞ

1

2μ2pðqÞ
ρapðqÞ

þ 1

2DðqÞ tr½U
†ðqÞUð−qÞ�

�

þ t
Z
kmin

d2k
dN

d2kdy

����
ρp;ρt

�
: ð15Þ

We notice immediately that, since dN
d2kdy is quadratic in both

ρp and U and both the corresponding weight functionals
are Gaussian as well, we can integrate over one of these
“fields” exactly. We choose to integrate first over ρp. The
result of this integration is

GðtÞ ¼
Z

DU exp

�
−
Z

d2q
ð2πÞ2

1

2DðqÞ tr½U
†ðqÞUð−qÞ�

−
1

2
tr ln½1 − tM�

�
; ð16Þ

where the operator M is defined by its matrix elements

Mabðq0; qÞ ¼
4g2

ð2πÞ3 μ
2ðqÞ

Z
kmin

d2k
ð2πÞ2 Γðk; q; q

0Þ

× ½U†ðk − q0ÞUðk − qÞ�
ab
: ð17Þ

At this point, we need to make some approximations in
order to perform the remaining functional integral over U.
In the next section, we will consider more closely the two-
gluon production cross section, which will help us under-
stand the systematics of the leading contributions to the
multiplicity fluctuations and to devise the appropriate
approximation that sums these leading contributions.

III. DOUBLE INCLUSIVE PRODUCTION:
DISSECTING DIFFERENT CONTRIBUTIONS

To get some insight of which effects contribute the most
to the multiplicity fluctuations, we make a short detour and
consider the double inclusive gluon production,

d2N
d2k1dy1d2k2dy2

¼
��

dN
d2k1dy1

����
ρp;ρt

dN
d2k2dy2

����
ρp;ρt

�
p

�
t

:

ð18Þ

A. Dipole contribution

First, consider the average with respect to projectile
inside each factor dN

d2kdy jρp;ρt , that is,�
d2N

d2k1dy1d2k2dy2

�
Dipole

¼
��

dN
d2k1dy1

����
ρp;ρt

�
p

�
dN

d2k2dy2

����
ρp;ρt

�
p

�
t

: ð19Þ

The projectile averaging gives

�
dN

d2k1dy1

����
ρp;ρt

�
p

¼ 2g2

ð2πÞ3
Z

d2q
ð2πÞ2 μ

2
pðqÞΓðk1; q; qÞ

× tr½U†ðk1 − qÞUðk1 − qÞ�: ð20Þ
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The subsequent target averages give two distinct contribu-
tions. The first one involves target contractions inside each
single inclusive factor and is disconnected. It reproduces
the square of the single-gluon production probability and is
of no interest to us. The connected contribution is

htr½U†ðk1 − q0ÞUðk1 − qÞ�tr½U†ðk2 − q0ÞUðk2 − pÞ�iconn:
t

¼ 2S⊥δðk1 þ k2 − q − pÞD2ðk1 − qÞ: ð21Þ

The result is of order N0
c. As we will see in the following,

the contractions of ρ that break the factors of dN
d2kdy jρp;ρt are

of order N2
c and thus are more important. The contribution

from Eq. (21) can therefore be neglected at large Nc, and
we will not try to include it and analogous contributions for

higher moments in the generating function. The physics of
this contribution was discussed in Ref. [24]. There, it was
shown that it corresponds to the Bose enhancement of
gluons in the target wave function. Note that in the
framework of the dilute target expansion utilized in
Ref. [13] this contribution is leading order in Nc. The
differentNc counting for the same quantity in the dense and
dilute limits is not uncommon in saturation approaches.

B. Quadrupole contributions

We now concentrate on the other two contractions of the
projectile color charges. There are two such contractions,
and they both lead to a single trace “quadrupole” contri-
bution to the production probability:

dN=d2k1dy1

hρapð−q0Þ½U†ðk1 − q0ÞUðk1 − qÞ�abρbpðqÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ dN=d2k2dy2

ρcpð−p0Þ½U†ðk2 − p0ÞUðk2 − pÞ�cdρdpðpÞ
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

p

−
�
ρapð−q0Þ½U†ðk1 − q0ÞUðk1 − qÞ�abρbpðqÞ

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dN=d2k1dy1

p

�
ρcpð−p0Þ½U†ðk2 − p0ÞUðk2 − pÞ�cdρdpðpÞ

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dN=d2k2dy2

p

¼ ð2πÞ2μ2pðpÞδðp − q0Þð2πÞ2μ2pðqÞδðq − p0Þtr½U†ðk1 − pÞUðk1 − qÞU†ðk2 − qÞUðk2 − pÞ�
þ ð2πÞ2μ2pð−p0Þδð−p0 − q0Þð2πÞ2μ2pðqÞδðqþ pÞtr½U†ðk1 − q0ÞUðk1 − qÞU†ð−q − k2ÞUð−q0 − k2Þ�: ð22Þ

Each term has two contractions with respect to U of order N2
c. We organize them according to their physical meaning [24].

1. HBT term

The following contraction leads to the HBT contribution (cyclic property of trace was used):

ð2πÞ4μ2pðpÞμ2pðqÞδðp−q0Þδðq−p0Þtr½hUðk2−pÞU†ðk1−q0ÞithUðk1−qÞU†ðk2−p0Þit�
þð2πÞ4μ2pð−p0Þμ2pðqÞδð−p0−q0ÞδðqþpÞtr½hUðp0−k2ÞU†ðk1−q0ÞithUðk1−qÞU†ðp−k2Þit�
¼ ðN2

c−1Þð2πÞ8S⊥½μ2pðpÞμ2pðqÞDðk1−pÞDðk1−qÞδðk2−k1Þþμ2pð−p0Þμ2pðqÞDðp0 þk1ÞDðk1−qÞδðk1þk2Þ�: ð23Þ

Substituting into double inclusive production, we get

�
d2N

dy1dy2

�
HBT

¼ 2ðN2
c − 1ÞS⊥

�
2g2

ð2πÞ3
�

2
Z
kmin

d2k
Z

d2qd2pΓðk; q; pÞΓðk; p; qÞμ2pðqÞμ2pðpÞDðk − qÞDðk − pÞ: ð24Þ

2. Bose enhancement in the projectile

The remaining contraction reflects Bose enhancement of gluons in the projectile wave function:

ð2πÞ4μ2pðpÞμ2pðqÞδðp − q0Þδðq − p0Þtr½hU†ðk1 − q0ÞUðk1 − qÞithU†ðk2 − p0ÞUðk2 − pÞit�
þ ð2πÞ4μ2pð−p0Þμ2pðqÞδð−p0 − q0Þδðqþ pÞtr½hU†ðk1 − q0ÞUðk1 − qÞithU†ðp − k2ÞUðp0 − k2Þit�
¼ ð2πÞ8ðN2

c − 1ÞS⊥½μ2pðpÞμ2pðqÞDðk1 − qÞDðk2 − qÞδðq0 − qÞδðp0 − pÞδðp − qÞ
þ μ2pð−pÞμ2pðqÞDðk1 − qÞDðp − k2Þδðq0 − qÞδðp0 − pÞδðpþ qÞ�: ð25Þ
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Again, substituting into double inclusive production,

�
d2N

dy1dy2

�
BE

¼ 2ðN2
c − 1ÞS⊥

Z
d2qjμ2pðqÞj2

���� 2g2

ð2πÞ3
Z
kmin

d2kΓðk; q; qÞDðq − kÞ
����2: ð26Þ

C. Conclusions on double inclusive

Comparing the HBT term Eq. (24) and the BE term
Eq. (26), we see immediately that Eq. (26) gives the leading
contribution to the multiplicity fluctuations.
The dominant contribution to the integral over q in

Eq. (26) comes from small q due to the IR divergence of the
Lipatov vertex

Γðk; q; qÞ ¼ ðk − qÞ2
k2q2

: ð27Þ

Thus, approximately, we have�
d2N

dy1dy2

�
BE

≈2ðN2
c−1ÞS⊥

Z
d2q

jμ2pðqÞj2
q4

���� 2g2

ð2πÞ3
Z
kmin

d2kDðkÞ
����2:
ð28Þ

For the MV model, μ2p ¼ const, we get a strong IR

divergence of the integral
R
d2q μ4p

q4. This divergence is

regularized by the momentum scale inversely propor-
tional to the projectile size Λ ¼ 1

Rp
, that is, modulo

constant factors Z
d2q

μ4p
q4

∝ μ4pS⊥; ð29Þ

where S⊥ is the area of the projectile. Thus, the area
dependence of the BE contribution to the double
inclusive cross section is the same as that of the single
inclusive cross section squared. This feature was
noted and discussed earlier in Refs. [13,18], see also
Ref. [25], in which the first saturation correction in the
projectile to the double inclusive production was
derived.
The behavior of the HBT contribution is different.

There is no quadratic IR divergence for the integration
over q or p in Eq. (24). As long as kmin ≫ Λ, no extra
factor of area arises, and thus the HBT term is
subleading. We note that if we include the soft scales
in the k integral, that is, take kmin ∼ Λ, the situation
changes, and the HBT effect becomes as important as
the Bose enhancement. We will not consider this
situation in the present work.

Although we have concentrated on the double inclu-
sive cross section, it is easy to see that the analysis
generalizes to the higher gluon production as well [13].
For production of n gluons, the BE term that has all
contractions of the Wilson loops within the same single
inclusive operator yields the highest power of area Sn−1⊥ .
Thus, in the leading approximation, we will only keep
these terms. We will discuss the first corrections to this
approximation later on.

IV. MOMENT GENERATING FUNCTION—THE
BOSE ENHANCEMENT CONTRIBUTION

A. Leading contribution from BE

We now return to Eq. (16). We do not know how to
perform the integration over U in full generality.
However, in view of the conclusion of the previous
section, we will first only keep the leading BE con-
tributions. It is quite clear how to do that. The leading
BE contribution corresponds to contracting the two
Wilson lines within the same single inclusive gluon
operator. In the context of Eq. (16), this corresponds
simply to contractions between the two Wilson lines
inside the trace of the logarithm in the exponent,

GLOðtÞ¼exp
�
−
1

2
tr ln½1−thMit�

�

¼exp

�
−
1

2
ðN2

c−1ÞS⊥
Z

kmin

Λ

d2q
ð2πÞ2 ln

�
1−t

μ2pðqÞD
q2

��
;

ð30Þ

where we have defined the integrated dipole operator:

D ¼ 4g2

ð2πÞ3
Z
kmin

d2kDðkÞ: ð31Þ

In Eq. (30), we have approximated the square of the
Lipatov vertex by its leading term at low q, Γðk; q; qÞ≈
1=q2, and have restricted the integration over q by kmin from
above. These restrictions can be in principle lifted, but as
long as kmin ≫ Λ, Eq. (30) faithfully represents all leading
area terms in any moment of the probability distribution.
For the MV model μ2p ¼ const, the integral can be

performed analytically, as follows:
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GLOðtÞ ¼ exp

�
−

1

8π
ðN2

c − 1ÞS⊥
Z

k2min

Λ2

dq2 ln

�
1 − t

μ2pD

q2

��

¼ exp
�
−

1

8π
ðN2

c − 1ÞS⊥
�
k2min ln

	
1 − t

μ2D
k2min



− Λ2 ln

	
1 − t

μ2D
Λ2



− tμ2D ln

k2min − tμ2D
Λ2 − tμ2D

��

¼ exp
�
1

8π
ðN2

c − 1ÞS⊥μ2pD
	
t ln

k2min

Λ2
þ
X∞
n¼2

tn

nðn − 1Þ
��

μ2pD

Λ2

�n−1
−
�
μ2pD

k2min

�n−1�
�
: ð32Þ

The generating function for the cumulants is

lnGLOðtÞ ¼
1

8π
ðN2

c − 1ÞS⊥μ2pD
�
ln
k2min

Λ2
tþ

X∞
n¼2

1

nðn − 1Þ
	�

μ2pD

Λ2

�n−1
−
�
μ2pD

k2min

�n−1

tn
�

≈
1

8π
ðN2

c − 1ÞS⊥μ2pD
�
ln
k2min

Λ2
tþ

X∞
n¼2

1

nðn − 1Þ
�
μ2pD

Λ2

�n−1
tn
�
: ð33Þ

This is our result for the multiplicity moment generating
function, which resums all contributions due to the Bose
enhancement of gluons in the projectile wave function. We
now note some of its properties.

B. Some properties of the distribution

First of all, the mean number of particles, being the first
moment of the distribution, is given by the first derivative
of GðtÞ at t ¼ 0 and is proportional to the projectile μ2p and
the logarithm of ratio of the momentum scales as expected,

κ1 ¼
1

8π
ðN2

c − 1ÞS⊥μ2pD ln
k2min

Λ2
: ð34Þ

The higher-order cumulants are given by

κn≥2¼
∂
∂tn lnGLOðtÞ

����
t¼0

¼ðn−2Þ!ðN
2
c−1ÞS⊥Λ2

8π

�
μ2pD

Λ2

�n

:

ð35Þ
Also note that, owing to presence of the increasing powers
of 1=Λ2, κnþ1 ≫ κn, and thus the factorial cumulants
defined by

cn>2 ¼
∂
∂zn lnGLOðt ¼ ln zÞ

����
z¼1

ð36Þ

are approximately equal to the cumulants, cn ≈ κn.
The cumulants are very close to those of the γ

distribution,

x̄Pðz ¼ x=x̄Þ ¼ α

ΓðαÞ e
−zαðαzÞα−1; ð37Þ

with

κn ¼ ðn − 1Þ!α
�
x̄
α

�
n
: ð38Þ

Since the γ distribution is known to exhibit the Koba-
Nielsen-Olesen (KNO) scaling, we naturally expect to have
KNO scaling at this order as well. We can check the KNO
scaling by plotting the scaling function (37) for different
values of kmin. The value of kmin defines the mean multi-
plicity. This is plotted in Fig. 1, right panel. Note that what is
plotted here is the result of full numerical evaluation of the
probability distribution (see theAppendix for detail) and not
just the leading approximation. The numerics is performed
by using the MV model also for the target fields with the
scale μt ≫ μp. One observes that, indeed, for large enough
kmin, the quality of the KNO scaling is very good. There is
one subtlety here. Our distribution (32) is not exactly the γ
distribution. In particular, the first moment (34) has an
additional logarithmic factor relative to the parameter that
determines the higher moments (35). Since this logarithmic
factor depends on kmin, it could potentially affect the KNO
scaling. Nevertheless, this additional logarithmic depend-
ence is very slowly varying, and the scaling is clearly seen in
the numerical results in Fig. 1.
The left panel in Fig. 1 illustrates what happens when the

soft scale Λ is raised and becomes comparable with the
target saturation momentum. One clearly observes that asΛ
grows the probability distribution becomes narrower. Note
that in this regime we cannot neglect the effects of HBT as
well as correction due to the exact form of the Lipatov
vertex. These are the effects that drive the narrowing of the
distribution for larger Λ.
The leading-order probability distribution we obtained

is similar in many respects to that obtained in Ref. [13].
There are, however, some significant differences. First, in
the case of the dense target, the contribution of the Bose
enhancement in the target wave function is suppressed by
the factor 1=N2

c, whereas in Ref. [13], the target was
treated as dilute; this contribution was of order unity and
contributed to the probability distribution on par with the
projectile BE.

ALEX KOVNER and VLADIMIR V. SKOKOV PHYS. REV. D 98, 014004 (2018)

014004-6



Second, the cumulants in our case are very close to those
given by the gamma distribution, whereas Ref. [13] found
negative binomial distribution (NBD). The nth cumulants
of the two distributions differ by the factor n − 1. This
difference can be traced to the different ways the function
μ2pðpÞ is treated at small p in the two approaches. Our
calculation corresponds to taking constant μ2p and cutting
off the putative infrared divergence in the integrals by a
finite area of the projectile. The IR regulator therefore does
not arise from making the correlation between the sources
nonlocal in coordinate space but rather imposing an impact
parameter profile on the source density. On the other hand,
the authors of Ref. [13] regulated IR divergences by taking
μ2pðpÞ ∼ p2 for momenta smaller than the projectile satu-
ration momentum. Physically, this corresponds to taking
the correlation function between the two sources to be
nonlocal in coordinate space.
This different treatment of the IR behavior leads to

different integrals with respect to the incoming gluon from
the projectile wave function q. In this paper, we keep
μp ¼ const and thus

Z
dq2

μ2np
q2n

¼ −
1

n − 1

μ2np
q2ðn−1Þ

; ð39Þ

while the authors of Ref. [13] approximated μ2p ≈ q2; in this
case, the integral in Eq. (39) brings no additional factors
dependent on n.
Related to this point is also the different energy depend-

ence that we expect from the distribution. In our case,
the parameter of the distribution is α ¼ N2

c−1
8π S⊥Λ2, where

S⊥Λ2 ≈ 1. This parameter does not depend on energy for
the dilute projectile. Thus, we expect α to be approximately
energy independent. On the other hand, the treatment of
the IR in Ref. [13] leads to the replacement of Λ2 by the
saturation momentum of the projectileQ2

s . This grows with
energy, and thus the probability distribution has rather
strong dependence on energy.

C. Constraint action formalism and the
Liouville potential

One interesting property of our derivation is that the
probability distribution of produced particles that we find is
deeply related to the probability distribution of particles in
the projectile wave function. Note that we have approxi-
mated the Lipatov vertex by its part that involves only the
momentum of the gluon coming from the incoming wave
function. Thus, if in the rest of the calculation we simply set
UðxÞ ¼ 1, that would correspond to calculating the particle
distribution in the projectile wave function. This last move
would simply correspond to setting kmin ¼ 0 in Eq. (31),
since

R
d2k
ð2πÞ2 DðkÞ ¼ Dðx ¼ 0Þ ¼ 1, which is equivalent to

setting U ¼ 1. This then gives

D ¼ 2g2

π
: ð40Þ

Clearly, we should not set kmin ¼ 0 in the integration limits
in Eq. (30) but instead keep it fixed. Thus, we conclude that
taking the limit of Eq. (40) in Eq. (30) corresponds to
calculating the probability distribution for particles with
transverse momenta smaller than momentum kmin in the
projectile wave function.
Interestingly, such a calculation can be performed

independently using an alternative formulation based on
the framework of the constraint effective potential; see
Refs. [19,26,27].
The main idea of this approach is to integrate out

fluctuations of ρpðqÞ that do not affect a specific operator
defined through ρpðqÞ. In Ref. [19], the constraint effective
potential for the gluon distribution defined by the covariant
field, Aþ, was derived,

e−Veff ½ηðqÞ� ¼ 1

Zp

Z
DρpWðρpÞδ

�
ηðqÞ − g2trjAþðqÞj2

hg2trjAþðqÞj2i
�
;

ð41Þ

FIG. 1. The probability distribution multiplied by the average as a function of z ¼ dN=dy=ðdN̄=dyÞ for different values of the infrared
cut-off, Λ, and the minimal momentum of produced gluon, kmin.
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where AþðqÞ ¼ g=q2ρpðqÞ,

hg2trjAþðqÞj2i ¼ 1

2
ðN2

c − 1ÞS⊥
g4μ2p
q4

; ð42Þ

and

Veff ½ηðqÞ� ¼
1

2
ðN2

c − 1ÞS⊥
Z

d2q
ð2πÞ2 fηðqÞ − 1 − ln ηðqÞg:

ð43Þ

This potential corresponds to a Liouville potential with
negative Ricci scalar.2

The probability distribution for gluon multiplicity in the
projectile is defined as

GLOðtÞ¼
�
exp

�
t
Z

kmin

Λ

d2q
ð2πÞ2ρ

a
pð−qÞ

D
2q2

ρapðqÞ
��

p
: ð44Þ

Using the effective potential (43), we have

GLOðtÞ ¼
�
exp

�
t
Z

kmin

Λ

d2q
ð2πÞ2 ρ

a
pð−qÞ

D
2q2

ρapðqÞ
��

p

¼
Z

Dη exp

�
−Veff ½ηðqÞ� þ

1

2
ðN2

c − 1ÞS⊥
Z

kmin

Λ

d2q
ð2πÞ2 t

μ2pD

q2
ηðqÞ

�

¼
Z

Dη exp

�
−
1

2
ðN2

c − 1ÞS⊥
Z

d2q
ð2πÞ2

	
ηðqÞ − 1 − ln ηðqÞ þ θðq − ΛÞθðkmin − qÞt μ

2
pD

q2
ηðqÞ


�
: ð45Þ

For large S⊥, this integral can be computed using the saddle
point approximation

ηSPðqÞ ¼

8><
>:

�
1 − t

μ2pD

q2

�−1
; if Λ ≤ q ≤ kmin

1; otherwise

ð46Þ

to yield

GLOðtÞ¼ exp

�
1

2
ðN2

c−1ÞS⊥
Z

d2q
ð2πÞ2 lnηSPðqÞ

�

¼ exp

�
−
1

2
ðN2

c−1ÞS⊥
Z

kmin

Λ

d2q
ð2πÞ2 ln

�
1− t

μ2pD

q2

��
;

ð47Þ

which reproduces the result obtained previously. Interest-
ingly, the origin of the logarithm in this equation is owing
to the presence of the Liouville logarithm in the effective
constraint action for ηðqÞ; see Eq. (43).
Note that the form of the integral appearing in Eq. (45) is

quite suggestive,

Z
Dη exp

�
−Veff ½ηðqÞ� þ t

1

2
ðN2

c − 1ÞS⊥

×
Z

kmin

Λ

d2q
ð2πÞ2

μ2pD

q2
ηðqÞ

�
: ð48Þ

Here, t can be viewed as an external field, while the
moments and the cumulants of the gluon number can be
viewed as the moments and the cumulants for fluctuations
of the composite field

R
d2qηðqÞ=q2. Thus, the fluctuations

of the number of particles provide a direct measurement of
the Liouville potential.
It is interesting to note that our derivation provides a

concrete realization of early ideas in the literature about
relevance of Liouville action to multiplicity fluctuations in
CGC. Reference [29] postulated ad hoc such a Liouville
potential for saturation momentum fluctuations. In the
present paper, we instead derive it form the constrained
effective potential for the MV model.3

Although the argument of our potential is not the
saturation momentum, but rather the composite filed η,
they are closely related. Consider the effective potential for
η close to its saddle point value at zero external field.
Expanding in ln η, we obtain

Veff ½ηðqÞ� ≈
1

2
ðN2

c − 1ÞS⊥
Z

d2q
ð2πÞ2

1

2
ln2ηðqÞ: ð49Þ

Recall that the operator definition of the composite field η is
given by Eq. (41),

ηðqÞ ¼ ρapðqÞρapðqÞ
ðN2

c − 1Þμ2pðqÞ
; ð50Þ

2See also Ref. [28], in which this formalism was applied to
describe the centrality dependence of the nuclear modification
factor.

3Although our derivation was done in the MV model, the
numerical result of Ref. [19], see Fig. 5, suggests that the high-
energy evolution does not change the form of the potential and
only leads to the modification of the effective projectile area S⊥.
This modification might be responsible for the origin of the
effective width σ used in Refs. [30,31].
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which is interpreted naturally as the scaled fluctuating
saturation momentum of the projectile, since on a configu-
ration by configuration basis the saturation momentum is
indeed determined by the square of the color charge density.
Thus, we indeed can interpret Eq. (49) as the probability
distribution for the fluctuating saturationmomentum, which
has exactly the same form as assumed in Refs. [30,31].

V. CORRECTIONS TO THE GENERATING
FUNCTION

In this section, we consider corrections to the cumulant
generating function. There are two basic types of correc-
tions: those attributed to BE with a lower power of IR
divergence when integrating with respect to the incoming
gluon from the projectile wave function and those attributed
to the HBT contribution; see the section for two-particle
gluon production.

A. Subleading BE terms

The subleading IR terms due to Bose enhancement can
be easily resummed. We simply have to allow for the full

Lipatov vertex and for the q dependence of the dipole
amplitude in Eq. (30). Thus, formally, we get

GBEðtÞ ¼ exp

�
−
1

2
ðN2

c − 1ÞS⊥

×
Z

kmin

Λ

d2q
ð2πÞ2 lnð1 − tμ2pðqÞD̄ðqÞÞ

�
; ð51Þ

where

D̄ðqÞ ¼ 4g2

ð2πÞ3
Z
kmin

d2kDðk − qÞΓðk; q; qÞ: ð52Þ

The explicit form of the distribution now depends on the
dipole amplitude DðkÞ and can be calculated once this
amplitude is known.

B. HBT contributions

We now concentrate on the corrections of the second
type. We will keep only terms leading in Nc.
We rewrite our basic expression for the generating

function as

GðtÞ¼
Z

Dρp
Zp

Z
Dρt
Zt

WpðρpÞWtðρtÞexp
�
t
2g2

ð2πÞ3
Z

d2q
ð2πÞ2

d2q0

ð2πÞ2ρ
a
pð−q0Þ

Z
d2kΓðk;q;q0Þ½U†ðk−q0ÞUðk−qÞ�

ab
ρbpðqÞ

�
ð53Þ

¼
Z

Dρp
Zp

WpðρpÞ exp
�
t
1

2

Z
d2q
ð2πÞ2 ρ

a
pð−qÞD̄ðqÞρapðqÞ

�

×
Z

Dρt
Zt

WtðρtÞ exp
�
t
2g2

ð2πÞ3
Z

d2q
ð2πÞ2

d2q0

ð2πÞ2 ρ
a
pð−q0Þ

	Z
d2kΓðk; q; q0Þ∶½U†ðk − q0ÞUðk − qÞ�

ab
∶


ρbpðqÞ

�
: ð54Þ

The BE contribution represented by the first line of Eq. (54) is discussed in the detail in previous section. The last two terms
are the corrections we are after. We have introduced the normal-ordered product of the Wilson lines

∶½U†ðk − q0ÞUðk − qÞ�
ab
∶≡ ½U†ðk − q0ÞUðk − qÞ�

ab
−Dðk − qÞδabð2πÞ2δðq0 − qÞ: ð55Þ

The normal ordering ensures that, apart from the BE term, no other terms contain contractions between two Wilson lines
that belong to the same “vertex.” These contractions have been completely resummed into the propagator of the color
charge density,

1

μ̂2pðqÞ
¼ 1

μ2p
− tD̄ðqÞ ≈ 1

μ2p
− t

D
q2

: ð56Þ

We can expand the functional integral into series in the “interaction term,”

GðtÞ ¼
Z

Dρp
Zp

exp

�
−
Z

d2q
ð2πÞ2 ρ

a
pð−qÞ

1

2μ̂2p
ρapðqÞ

� Z
Dρt
Zt

WtðρtÞ exp ½Sintðρp; ρtÞ�

¼
Z

Dρp
Zp

exp

�
−
Z

d2q
ð2πÞ2 ρ

a
pð−qÞ

1

2μ̂2p
ρapðqÞ

�X
n

1

n!

Z
Dρt
Zt

WtðρtÞSnintðρp; ρtÞ; ð57Þ

where the interaction part is given by

Sintðρp; ρtÞ ¼ t
2g2

ð2πÞ3
Z

d2q
ð2πÞ2

d2q0

ð2πÞ2 ρ
a
pð−q0Þ

	Z
d2kΓðk; q; q0Þ∶½U†ðk − q0ÞUðk − qÞ�

ab
∶


ρbpðqÞ: ð58Þ
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To compute the cumulant generating function, it is useful
to introduce the Feynman rules depicted in Fig. 2. Note that,
due to normal ordering in the vertex, no diagram with
contraction of the two U’s belonging to the same vertex
is allowed. Those have already been resummed in the
propagator of ρp.

To understand which type of diagrams gives the
leading corrections, let us first consider a particular
example: the connected contribution involving four vertices
(correction to inclusive four-particle production). The
leading Nc contributions have two different topologies;
see Fig. 3.
Diagram a in Fig. 3 is given by (modulo combinatorial

and kinematic factors)

Z
d2k1d2k2

Z
d2q
ð2πÞ2

d2q1
ð2πÞ2

d2q2
ð2πÞ2 Γ

2ðk1; q; q1ÞΓ2ðk2; q; q2Þμ̂4pðqÞμ̂2pðq1Þμ̂2pðq2ÞDðk1 − qÞDðk1 − q
1
ÞDðk2 − qÞDðk2 − q

2
Þ:

ð59Þ

Diagram b in Fig. 3 is given by

Z
d2k

Z
d2q1
ð2πÞ2

d2q2
ð2πÞ2

d2q3
ð2πÞ2

d2q4
ð2πÞ2 Γðk; q1; q2ÞΓðk; q2; q3ÞΓðk; q3; q4ÞΓðk; q4; q1Þμ̂

2
pðq1Þμ̂2pðq2Þμ̂2pðq3Þμ̂2pðq4Þ

×Dðk − q
1
ÞDðk − q

2
ÞDðk − q

3
ÞDðk − q

4
Þ: ð60Þ

As before, we consider the IR dominant contribution from
the Lipatov vertices. For diagram b, we get

Γðk; q
1
; q

2
ÞΓðk; q

2
; q

3
ÞΓðk; q

3
; q

4
ÞΓðk; q

4
; q

1
Þ

≈
q
1
· q

2

q21q
2
2

q
2
· q

3

q22q
2
3

q
3
· q

4

q23q
2
4

q
4
· q

1

q24q
2
1

; ð61Þ

which, after angular integration, has logarithmic divergence
for each integral of the form

R
dq2i =q

2
i . For diagram a,

we get

Γ2ðk1; q; q1ÞΓ2ðk2; q; q2Þ ≈
�
q · q

1

q2q21

q · q
2

q2q22

�
2

; ð62Þ

and in this case, the integral with respect to q has quadratic
divergence in the IR. This divergence is of course regulated
by Λ2 ∝ 1=S⊥, which leads to the extra power of S⊥.

It is now clear what the leading diagrams due to the HBT
corrections that contribute most to the generating function
are. Those are the diagrams that contain themaximal number
of the ρp propagators at the same momentum q, since each
such propagator is accompanied by a product of twoLipatov
vertices containing the same momentum q, thereby leading
to one extra power of area for each additional ρp propagator.
These diagrams are of the type of Fig. 3(a), in which all
the vertices are organized into pairs with two vertices of the
pair connected by two propagators of the U field and one
propagator of ρp. Physically, this corresponds to contribu-
tions to the n-gluon inclusive production, in which gluon
pairs are emitted independently but theHBT correlations are
present between two gluons in each pair.
We are now going to ignore diagrams of type B but

resum all diagrams of type A, corresponding to pairwise
HBT correlations.

ab

b a
c c

q'

k-q'

q

k-q

(a)

(b)

(c)

FIG. 2. Feynman rules for the propagators and the vertex: a) the
resummed propagator of the projectile ρ: μ̂2pðqÞδab; b) the
propagator of the target U: DðqÞ=ðN2

c − 1Þδbcδcd; c) the “inter-

action vertex”: t 8g2

ð2πÞ3 Γðk; q; q0Þ.

(a) (b)

FIG. 3. Example of the leading Nc contribution.
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For a diagram with 2n vertices, we have the following
combinatorial coefficient 1

ð2nÞ! from expanding the expo-

nential; ð2n − 1Þ!!, the number of ways to organize the 2n
vertices into pairs; 2n, the number of contractions ofU, two
possibilities within each pair of vertices; and 2n, the
number of contractions between two ρp’s within the pair
of vertices. Although there are four possible of contractions
in general, once a particular contraction of U’s is chosen,

only two contractions of ρp ’s are leading order in Nc;
ðn−1Þ!

2

ways of ordering the n vertex pairs along a circle.
Thus, at the end of the day, the diagram with 2n vertices

that are contracted pairwise into the “daisy” is 22n−1 1
n.

Resumming these terms, we obtain

lnGðtÞ − lnGLOðtÞ

≈
ðN2

c − 1Þ
2

S⊥
Z

kmin

Λ

d2q
ð2πÞ2

X∞
n¼1

1

n
ZnðqÞμ̂2np ðqÞ

¼ −
ðN2

c − 1ÞS⊥
2

Z
kmin

Λ

d2q
ð2πÞ2 ln

�
1 − t2

μ̂2pðqÞZ
q2

�
ð63Þ

with

Z ¼
Z

kmin

Λ

d2q0

ð2πÞ2D2ðq0Þ
μ̂2pðq0Þ
q02

ð64Þ

and

D2ðqÞ≡
�
g2

π3

�
2
Z

d2kDðkÞDðk − qÞ: ð65Þ

Finally, we obtain the cumulant generating function in
the form

lnGðtÞ¼−
ðN2

c−1ÞS⊥
2

Z
kmin

Λ

d2q
ð2πÞ2 ln

	
μ2pðqÞ

�
1

μ̂2pðqÞ
−t2

Z
q2

�


¼ðN2
c−1ÞS⊥
2

Z
kmin

Λ

d2q
ð2πÞ2 ln

	
1−t

μ2p
q2

ðDþtZÞ


;

ð66Þ

which has the same form as Eq. (32); thus, the momentum
integral can be performed analytically, leading to Eq. (33)
with the substitution D → ðDþ tZÞ.
This is a rather simple expression, and one can analyze the

effects of the correction given a model for the dipole
amplitude DðpÞ. These corrections may be important in
the regime in which kmin is not significantly greater than the
soft scaleΛ. Althoughwe do not consider such a situation in
the present paper, at high enough energy, the projectilewave
function itselfwill acquire a saturationmomentumscaleQs;p

significantly larger than Λ. In this case, it is quite conceiv-
able that in our expressions the soft scale Λwill be replaced
by this semisoft scaleQs;p. In this case, it is perfectly sensible

to consider kmin < Qs;p. The HBT contributions in this
regimewill become significant, and the relative significance
of the BE and HBT contributions to the multiplicity
fluctuations has to be reanalyzed. We will not attempt to
do it in the present paper.

VI. CONCLUSIONS

In this paper, we studied the multiplicity fluctuations in
p − A collisions within the framework of the dense-dilute
CGC formalism using the MV model for the wave function
of the proton. Our approach is similar in many aspects to
that of Ref. [13]. There are, however, some significant
differences, and our results are quite different as well. As
opposed to Ref. [13], we treat the target as very dense, while
on the projectile side, we do not assume any dynamical
“correlation length” associated with the saturation momen-
tum. We rather treat the IR physics of the proton wave
function as genuinely nonperturbative, governed by a soft
scale of the order of the inverse proton size. As a result, we
obtain the probability distribution, which within a large
range of energies is energy independent.
We identified two sources of multiplicity fluctuations:

those due to the Bose enhancement of gluons in the proton
wave function and the HBT effect in the initial stages of
scattering. Interestingly, in the dense-dilute framework, the
Bose enhancement in the nucleus wave function leads only
to a ðN2

c − 1Þ−1-suppressed contribution to any cumulant
of particle number and is thus a subleading effect. We
demonstrated that as long as the low momentum structure
of the proton wave function is dominated by the genuine
soft scale (the “proton size”) the dominant origin for the
multiplicity fluctuations is the Bose enhancement.
We have calculated explicitly the moment generating

function for the multiplicity distribution due to BE. The
distribution we obtain is very close to the γ distribution.
Just like the γ distribution, it satisfies the KNO scaling with
very good precision. Interestingly, the leading term in the
generating function for the multiplicity of produced par-
ticles is practically identical to the generating function for
multiplicity distribution in the projectile wave function.
This latter quantity can be calculated using the effective
action approach as suggested in Ref. [19]. We have shown
that this effective action is nothing but the Liouville action
for the composite field, which can be thought of as
fluctuating density (or saturation momentum).
The authors of Ref. [13] obtained the negative binomial

distribution for the multiplicity. Our result, as mentioned
above, is somewhat different, although for large moments,
the NBD and the γ distribution are quite similar. The main
difference, as explained in the text, is in the physics of the
scale that regulates the formal IR divergences. In the dense-
dilute calculation performed in the present paper, this role is
played by the soft scale of the proton radius and not by the
semisoft scale of the projectile saturation momentum. If
one assumes that the proton wave function itself is
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characterized by a finite correlation length, much smaller
than the proton size, one would have to reanalyze to what
extent the dominance of the BE persists. It may well happen
that the HBT contributions become equally important and
have to be included in the leading-order calculation. In fact,
this is precisely what happens on the target side, where the
presence of large saturation momentum strongly suppresses
the BE effect, as we noted above. It is thus not clear to us
that the approximation of BE dominance and finite satu-
ration momentum of the projectile are mutually compatible.
We note that both NBD and γ distribution have rather

long tails for large values of produced multiplicity. It is very
natural that these tails are associated with the quantum
Bose enhancement effect of identical gluons, just like the
Bose-Einstein distribution of identical noninteracting
bosons. Thus, we believe that, although the details of
the distribution are model dependent (MV model in our
case), the main feature of large fluctuations is universal as
long as the fluctuations are dominated by BE.
Finally, we have also calculated the correction due to the

generating function due to pairwise HBT correlations. In
the regime studied in the present paper, this correction is
small. However, it is bound to become important in the
regime of the saturated projectile and therefore in itself
would be an interesting object of study.
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APPENDIX: NUMERICS

For numerical calculations, it is easier to work in the
semifactorizable representation (see Ref. [32])

dN
d2qdy

����
ρp;ρt

¼ 2

ð2πÞ3
1

jqj2ðδijδlmþϵijϵlmÞΩa
ijðqÞ½Ωa

lmðqÞ��

¼ 2

2ð2πÞ3
1

jqj2ðΩ
a
kðqÞ½Ωa

kðqÞ��þΩa⊥ðqÞ½Ωa⊥ðqÞ��Þ;

ðA1Þ

where

Ωa
ijðqÞ ¼

Z
d2xe−iq·xΩa

ijðxÞ ðA2Þ

and

Ωa
ijðxÞ ¼ g

�∂i

∂2
ρbpðxÞ

�
∂jUabðxÞ; ðA3Þ

with the adjoint Wilson line defined as

UabðxÞ ¼ 2tr½tbV†ðxÞtaVðxÞ� ðA4Þ

and

Ωa
jjðkÞ ¼ δlmΩa

lmðkÞ≡Ωa
11ðkÞ þΩa

22ðkÞ; ðA5Þ

Ωa⊥ðkÞ ¼ ϵlmΩa
lmðkÞ≡Ωa

12ðkÞ − Ωa
21ðkÞ: ðA6Þ

The calculations are performed on a two-dimensional
lattice. For the projectile, the color sources are generated
from a Gaussian ensemble, see Eq. (10), with μp=μt ¼ 1=4
and the radius of the projectile, Rp ¼ 1=μp. The Poisson
equation entering in Eq. (A3), 1

∂2 ρ
a
pðxÞ, is regulated by Λ,

according to

1

∂2
ρapðxÞ →

1

∂2 − Λ2
ρapðxÞ: ðA7Þ

For the target, we use the MV model with

hρat ðx−; xÞρbt ðy−; yÞit ¼ μ2t δðx − yÞδðx− − y−Þδab ðA8Þ

and compute the fundamental Wilson lines

VðxÞ ¼ P exp

�
ig2

Z
dx−ta

1

∂2
ρat ðx−; xÞ

�
: ðA9Þ

Further details can be found in Refs. [33,34].
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