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The full quark-gluon vertex is a crucial ingredient for the dynamical generation of a constituent quark
mass from the standard quark gap equation, and its nontransverse part may be determined exactly from the
nonlinear Slavnov-Taylor identity that it satisfies. The resulting expression involves not only the quark
propagator, but also the ghost dressing function and the quark-ghost kernel, and constitutes the non-abelian
extension of the so-called “Ball-Chiu vertex,” known from QED. In the present work we carry out a
detailed study of the impact of this vertex on the gap equation and the quark masses generated from it,
putting particular emphasis on the contributions directly related with the ghost sector of the theory, and
especially the quark-ghost kernel. In particular, we set up and solve the coupled system of six equations that
determine the four form factors of the latter kernel and the two typical Dirac structures composing the quark
propagator. Due to the incomplete implementation of the multiplicative renormalizability at the level of the
gap equation, the correct anomalous dimension of the quark mass is recovered through the inclusion of a
certain function, whose ultraviolet behavior is fixed, but its infrared completion is unknown; three
particular Ansätze for this function are considered, and their effect on the quark mass and the pion decay
constant is explored. The main results of this study indicate that the numerical impact of the quark-ghost
kernel is considerable; the transition from a tree-level kernel to the one computed here leads to a 20%
increase in the value of the quark mass at the origin. Particularly interesting is the contribution of the fourth
Ball-Chiu form factor, which, contrary to the Abelian case, is nonvanishing, and accounts for 10% of the
total constituent quark mass.
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I. INTRODUCTION

The dynamical breaking of chiral symmetry and the
generation of a constituent mass for the quarks represent
two of the most important emergent phenomena in QCD,
and the detailed study of the nonperturbative dynamics
associated with them has been the focal point of countless
articles spanning several decades [1–23]. One of the
standard frameworks employed in this pursuit is the so-
called “quark gap-equation,” namely the Schwinger-Dyson
equation (SDE) [10,13] that controls the evolution of the
quark propagator SðpÞ. This special integral equation is
particularly sensitive to the ingredients that compose its
kernel, and in particular on the details of the fully-dressed
quark-gluon vertex Γμðq; p2;−p1Þ [10]. This latter three-
point function is built out of twelve linearly independent
tensorial structures [24–27], and the determination of

the nonperturbative behavior of the corresponding
form-factors represents a major challenge for the contem-
porary field-theoretic formalisms, both continuous and
discrete [18,23,28–49].
The quark-gluon vertex Γμ satisfies a nonlinear Slavnov-

Taylor identity (STI), given by qμΓμðq; p2; −p1Þ ¼
FðqÞ½S−1ðp1ÞHðq; p2; −p1Þ − H̄ð−q; p1; −p2ÞS−1ðp2Þ�,
where FðqÞ is the dressing function of the ghost propagator,
and H is the so-called quark-ghost kernel, which consists
of four linearly independent tensorial structures, and
S−1ðpÞ ¼ AðpÞ=p − BðpÞ.When theghost sector is switched
off (i.e., F ¼ H ¼ 1), the above STI reduces to the standard
Ward-Takahashi identity of QED. It is common practice to
decompose Γμ into two parts, Γμ ¼ ΓSTI

μ þ ΓT
μ , where ΓSTI

μ

saturates the above STI, while ΓSTI
μ denotes the transverse

(automatically conserved) part, (i.e., qμΓT
μ ¼ 0). Then, it

turns out that the four form factors comprising ΓSTI
μ , to be

denoted by Li, may be expressed entirely in terms of
combinations involving A, B, and the form factors of H.
The ΓSTI

μ obtained from the Abelianized version of the STI
(setting F ¼ H ¼ 1) is known in the literature as the “Ball-
Chiu” vertex [24], and will be denoted by ΓBC

μ . In order to
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establish a clear distinction between ΓBC
μ and the full ΓSTI

μ ,
which includes, at least in principle, all ghost related con-
tributions (and, in particular, those fromH), we will denomi-
nate the latter as the “non-Abelian Ball-Chiu vertex”.1

Since the form factors of H, to be denoted by Xi,
constitute an indispensable ingredient for the complete
determination of ΓSTI

μ , in a recent work [40] a SDE-based
procedurewas developed for their dynamical determination.
Specifically, the skeleton expansion ofHwas truncated at its
“one-loop-dressed” level, and the four Xi were determined
by means of appropriate projections, for arbitrary values of
Euclidean momenta. As a result, one obtained approximate
expressions for the form factors of ΓSTI

μ , which receive
nontrivial contributions from the kernelH, whose numerical
impact is quite considerable. In particular, not only is the
difference between ΓSTI

μ and ΓBC
μ particularly pronounced,

but a considerable difference is found also between ΓSTI
μ

and the “minimally non-Abelianized” Ball-Chiu vertex,
obtained by multiplying ΓBC

μ by FðqÞ; we denote this latter
vertex by ΓFBC

μ ¼ FðqÞΓBC
μ [12,40]. Note that the resulting

form factors of ΓSTI
μ ðq; p2;−p1Þ display a completely non-

trivial dependence on three kinematic variables, chosen to be
the moduli of two of the incoming momenta, p1 and p2, and
the angle θ between them.
Given that Γμ is known to be particularly relevant for the

studies of the phenomena controlled by the gap equation, it is
natural to explore the impact that the ΓSTI

μ constructed in [40]
might haveondynamical chiral symmetrybreakingandquark
mass generation. The purpose of the present work is to carry
out a detailed quantitative study of this particular question,
adding, at the same time, an extra layer of technical complex-
ity to the considerations presented so far. Specifically, in the
analysis of [40,50], SðpÞ was essentially treated as an
“external” quantity: the corresponding A and B used for
the evaluation of the Xi were obtained from solving a gap
equation containing a simplified version of ΓSTI

μ . It is clear,
however, that the self-consistent treatment of this problem
requires the solution of a coupled system of several dynamical
equations, given that SðpÞ enters in the integrals that
determine the form factors ofH, which, in turn, enter through
ΓSTI
μ in the gap equation that determines SðpÞ. Therefore, in

the analysis presented here, we will consider the intertwined
dynamics produced by a system involving six coupled
equations (four determining the Xi, and two the A and B).
There are two important issues related to our analysis

that need to be emphasized at this point. First, the gap
equation is studied in the chiral limit, i.e., no “current”
mass, m0, is added to the corresponding equations [see, for
example, Eq. (2.2)]. Second, the external ingredients used
(see subsection III A) are obtained from “quenched” lattice
simulations; this simplification affects both the gluon

propagator and the ghost dressing function, and, indirectly,
the form factors of the quark-gluon vertex, and, eventually,
the gap equation itself. Unquenching effects have been
taken into account in the context of other approaches
[29,38,51–53], and can also be treated within our formal-
ism, along the lines presented in [54]. Such a study,
however, lies beyond the main scope of the present work,
which focuses on the impact that the fully non-Abelianized
Ball-Chiu vertex has on the gap equation.
The main findings of our study may be summarized as

follows:
(1) The dynamical quark masses,MðpÞ, generated with

ΓSTI
μ are always higher than those obtained with the

ΓBC
μ . The precise amount depends on the specific

value of αs employed in the numerical calculation,
but, on the average, the impact of H on Mð0Þ is of
the order of 20% for the cases where MðpÞ is
around 300–350 MeV [see Fig. 3]. The quark wave
functions follow a similar pattern, with A−1ðpÞ
always larger than A−1

FBCðpÞ [Fig. 3].
(2) The results for the vertex form factors, Li, obtained

after solving the coupled system, display the same
qualitative and quantitative behavior found in
Ref. [40], where AðpÞ and BðpÞ were treated as
external ingredients [see Fig. 5].

(3) The form factor L1 is responsible for generating more
than half of the value of Mð0Þ (54%), whereas L2,
and L3 provide 13% and 23% of the quark mass value
at zero momentum, respectively. Particularly interest-
ing is the considerable contribution originating from
the inclusion of L4, which is commonly neglected in
the quark SDE studies, accounting for 10% ofMð0Þ.

(4) The pion constant decay, fπ , was used as a simple
indicator of the impact that the inclusion of H in the
construction of ΓSTI

μ might have on physical quan-
tities. Our study reveals that the final impact of H is
to increase by 10% of the value of fπ [see Table III].

(5) All quark masses obtained may be fitted accurately
by two very simple formulas, given by Eqs. (3.1) and
(3.2), which, at large momenta, reproduce the well-
known power-law behavior expressed in Eq. (2.17)
[see Fig. 9].

The article is organized as follows. In Sec. II we introduce
the notation and set up the theoretical framework of this
work, and review the general structure of the gap equation,
together with the SDEs for the four form factors, Xi. In
Sec. III we present the numerical treatment of the system of
six coupled integral equations, formed by AðpÞ, BðpÞ and
the four Xi. Finally, in Sec. IV we present our conclusions.

II. THEORETICAL INGREDIENTS AND
DERIVATION OF THE SYSTEM

In this section we review all ingredients and concepts
necessary for arriving at the system of integral equations
that is diagrammatically depicted in Fig. 1.

1In what follows we will use the terms “ΓSTI
μ ” and “non-

Abelian Ball-Chiu vertex” interchangeably.
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A. Gap equation and quark-gluon vertex

The full quark propagator can be written as

S−1ðpÞ ¼ AðpÞ=p − BðpÞI ¼ AðpÞ½=p −MðpÞI�; ð2:1Þ

where AðpÞ and BðpÞ are scalar functions whose ratio
defines the dynamical quark mass function MðpÞ ¼
BðpÞ=AðpÞ.
The momentum-dependence of SðpÞ, or, equivalently, of

the functions AðpÞ and BðpÞ, may be obtained from the
quark gap equation, which, in its renormalized form, is
given by

S−1ðpÞ¼ZF=p−Z1CFg2
Z
k
γμSðkÞΓνðq;k;−pÞΔμνðqÞ;

ð2:2Þ

where CF is the Casimir eigenvalue for the fundamental
representation, and we have introduced the compact nota-
tion for the integral measure

Z
k
≡ μϵ

ð2πÞd
Z

ddk; ð2:3Þ

with μ the ’t Hooft mass, and d ¼ 4 − ϵ the space-time
dimension. In addition, Γνðq; k;−pÞ is the full quark-gluon
vertex, while Z1ðμÞ and ZFðμÞ are the vertex and the quark
wave-function renormalization constants, respectively, and
μ is the renormalization point. Moreover, in the Landau
gauge, the full gluon propagator ΔμνðqÞ is given by

iΔμνðqÞ ¼ −iPμνðqÞΔðqÞ; PμνðqÞ ¼ gμν −
qμqν
q2

:

ð2:4Þ

Note finally that Eq. (2.2) is expressed in the chiral limit,
since it contains no “current” quark mass (m0 ¼ 0).
Γa
μðq; p2;−p1Þmay be cast in the form Γa

μðq; p2;−p1Þ ¼
gtaΓμðq; p2;−p1Þ, where g is the gauge coupling and ta are
the SU(3) generators in the fundamental representation.
Γμðq; p2;−p1Þ may be then separated into two distinct
pieces,

Γμðq;p2;−p1Þ¼ΓSTI
μ ðq;p2;−p1ÞþΓT

μðq;p2;−p1Þ; ð2:5Þ

where ΓT
μ is transverse with respect to the momentum qμ

carried by the gluon,

qμΓT
μðq; p2;−p1Þ ¼ 0; ð2:6Þ

while the first piece saturates the fundamental STI given by

qμΓSTI
μ ðq; p2;−p1Þ ¼ FðqÞ½S−1ðp1ÞHðq; p2;−p1Þ

− H̄ð−q; p1;−p2ÞS−1ðp2Þ�: ð2:7Þ

In the STI above, FðqÞ is the dressing function of the full
ghost propagator, DðqÞ ¼ iFðqÞ=q2, H is the quark-ghost
scattering kernel, shown diagrammatically in the second line
of Fig. 1, while H̄ is its “conjugate,” whose relation to H is
explained in detail in [40]. Note that the color structure has
been factored out, setting Ha ¼ −gtaH. The most general
tensorial decompositions of H and H̄ read [18,26,40]

Hðq; p2;−p1Þ ¼ X0I þ X1=p1 þ X2=p2 þ X3σ̃μνp
μ
1p

ν
2;

H̄ð−q; p1;−p2Þ ¼ X̄0I þ X̄2=p1 þ X̄1=p2 þ X̄3σ̃μνp
μ
1p

ν
2;

ð2:8Þ

where σ̃μν ≡ 1
2
½γμ; γν�, and we have introduced the compact

notation for the form factors Xi ≔ Xiðq2; p2
2; p

2
1Þ and

X̄i ≔ Xiðq2; p2
1; p

2
2Þ. At tree-level, Xð0Þ

0 ¼ X̄ð0Þ
0 ¼ 1 and

Xð0Þ
i ¼ X̄ð0Þ

i ¼ 0 for i ≥ 1.
Next, we can write the most general Lorentz decom-

position for ΓSTI
μ as

ΓSTI
μ ðq; p2;−p1Þ ¼ L1γμ þ L2ð=p1 − =p2Þðp1 − p2Þμ

þ L3ðp1 − p2Þμ þ L4σ̃μνðp1 − p2Þν;
ð2:9Þ

whereLi ≔ Liðq2; p2
2; p

2
1Þ are the quark-gluon form factors.

It is clear that with the help of the Eq. (2.7) the form
factors Li, appearing in Eq. (2.9), may be expressed in
terms of A, B, F, Xi, and X̄i. Factoring out the common
FðqÞ, it is convenient to define Li ≔ FðqÞL̄i=2, which
leads us to

FIG. 1. The SDE for the quark propagator, SðpÞ (top), and the
quark-ghost scattering kernel at one-loop dressed approximation,
H½1�ðq; k;−pÞ (bottom). The quark-gluon vertex, ΓSTI

μ , couples
SðpÞ to H½1�ðq; k;−pÞ.
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L̄1 ¼ Aðp1Þ½X0 − ðp2
1 þ p1 · p2ÞX3� þ Aðp2Þ½X̄0 − ðp2

2 þ p1 · p2ÞX̄3� þ Bðp1ÞðX2 − X1Þ þ Bðp2ÞðX̄2 − X̄1Þ;

L̄2 ¼
1

ðp2
1 − p2

2Þ
fAðp1Þ½X0 þ ðp2

1 − p1 · p2ÞX3� − Aðp2Þ½X̄0 þ ðp2
2 − p1 · p2ÞX̄3�g

−
1

ðp2
1 − p2

2Þ
fBðp1ÞðX1 þ X2Þ − Bðp2ÞðX̄1 þ X̄2Þg;

L̄3 ¼
2

p2
1 − p2

2

fAðp1Þðp2
1X1 þ p1 · p2X2Þ − Aðp2Þðp2

2X̄1 þ p1 · p2X̄2Þ − Bðp1ÞX0 þ Bðp2ÞX̄0g;

L̄4 ¼ Aðp1ÞX2 − Aðp2ÞX̄2 − Bðp1ÞX3 þ Bðp2ÞX̄3: ð2:10Þ

Setting in Eq. (2.10) tree level values for the Xi and X̄i,
we obtain the form factors of the “minimally non-
Abelianized” Ball-Chiu vertex, ΓFBC

μ ¼ FðqÞΓBC
μ , given

by [12,18,40],

LFBC
1 ¼ FðqÞ ½Aðp1Þ þ Aðp2Þ�

2
;

LFBC
2 ¼ FðqÞ ½Aðp1Þ − Aðp2Þ�

2ðp2
1 − p2

2Þ
;

LFBC
3 ¼ −FðqÞ ½Bðp1Þ − Bðp2Þ�

p2
1 − p2

2

;

LFBC
4 ¼ 0: ð2:11Þ

To proceed, we will insert into Eq. (2.2) the dressed quark-
gluon vertex of Eq. (2.9), defining p1 ¼ p and p2 ¼ k. It is
important to keep in mind that the expressions for the form
factors Li ¼ FðqÞL̄i=2 in terms of the Xi are given by
Eq. (2.10). Then, taking appropriate traces and applying the
usual rules for going to Euclidean space [18], we derive the
following expressions for the integral equations satisfied by
AðpÞ and BðpÞ,

p2AðpÞ ¼ ZFp2 þ Z14πCFαs

Z
k
KAðk; pÞΔðqÞFðqÞ;

BðpÞ ¼ Z14πCFαs

Z
k
KBðk; pÞΔðqÞFðqÞ; ð2:12Þ

where αs ¼ g2ðμÞ=4π, and we have introduced the kernels

KAðk;pÞ¼
�
3

2
ðk ·pÞL̄1− ½L̄1−ðk2þp2ÞL̄2�hðp;kÞ

�
QAðkÞ

−
�
3

2
p ·ðkþpÞL̄4þðL̄3− L̄4Þhðp;kÞ

�
QBðkÞ;

KBðk;pÞ¼
�
3

2
k ·ðkþpÞL̄4−ðL̄3þ L̄4Þhðp;kÞ

�
QAðkÞ

þ
�
3

2
L̄1−2hðp;kÞL̄2

�
QBðkÞ; ð2:13Þ

with the functions hðp; kÞ and QfðkÞ defined as

hðp; kÞ ≔ k2p2 − ðk · pÞ2
q2

; ð2:14Þ

and

QfðkÞ ≔
fðkÞ

A2ðkÞk2 þ B2ðkÞ ; ð2:15Þ

where fðkÞ, appearing in the numerator of Eq. (2.15), can
be either AðkÞ or BðkÞ, depending on the index of Q.
Clearly, the kernels KA and KB that enter in Eq. (2.12)

depend on the various L̄i, which ultimately will couple the
functions AðpÞ and BðpÞ with the four integral equations
for the form factors Xi, to be presented in Eq. (2.26).
However, as we explain in the next subsection, before
proceeding to the solution of the system, an additional
important approximation needs to be implemented at the
level of Eq. (2.12).

B. Approximate renormalization and the
anomalous dimension of MðpÞ

It is relatively straightforward to establish that the STI of
Eq. (2.7) imposes the relation Z1 ¼ Z−1

c ZFZH, where Zc
and ZH are the renormalization constants of the ghost
propagator and the quark-ghost scattering kernel, respec-
tively. Now, we recall that, in the Landau gauge, both the
quark self-energy and the quark-ghost kernel are finite at
one-loop [55]; thus, at that order, ZF ¼ ZH ¼ 1, and,
therefore, Z1 ¼ Z−1

c . Imposing the above relations on
Eq. (2.12), we obtain the approximate version

p2AðpÞ ¼ p2 þ Z−1
c 4πCFαs

Z
k
KAðk; pÞΔðqÞFðqÞ;

BðpÞ ¼ Z−1
c 4πCFαs

Z
k
KBðk; pÞΔðqÞFðqÞ: ð2:16Þ

Even with these approximations, the presence of Z−1
c in

front of the corresponding integrals complicates the analy-
sis, especially in a nonperturbative setting [56–60]. It iswell-
known that, in general, such multiplicative renormalization
constants are instrumental for the systematic cancellation of
overlapping divergences, whose complete implementation
hinges, in addition, on the inclusion of crucial contributions
stemming from the transverse parts of the vertices involved
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(in our case,ΓT
μ ). From the perturbative point of view, several

of the aforementioned issues have been studied in detail in
the context of the electron propagator in QED [61], and even
though the levels of technical complexity are high, they are
considered to be well-understood. On the other hand, these
cancellations are far more difficult to identify and enforce
nonperturbatively, even if a reasonable approximation of ΓT

μ

is furnished. Given that in the present analysis the term ΓT
μ is

completely undetermined, and is set identically to zero, the
possibility of a bona fide cancellation of the overlapping
divergences is excluded from the outset.
A typical manifestation of the mismatches induced when

implementing the usual simplification Z−1
c ¼ 1 (or directly

Z1 ¼ 1) is the failure of MðpÞ to display the correct
anomalous dimension in the deep ultraviolet. Specifically,
the asymptotic behavior of MðpÞ at one-loop is given by
[3,4,10]

MUVðpÞ ¼
C
p2

�
ln

�
p2

Λ2

��
γf−1

; ð2:17Þ

where C is a constant with mass dimension ½M�3, γf ¼
12=ð11CA − 2nfÞ is the mass anomalous dimension, and nf
is the number of active quark flavors. Instead, if the
aforementioned approximation is implemented, the asymp-
totic behavior of the quark mass obtained from the resulting
gap equation has the wrong value for γf, given by γf ¼
48=ð35CA − 8nfÞ.
A simple remedy to this problemhas been put forth in [18],

which is similar in spirit to an earlier proposal presented in
[12]. Specifically, one carries out the substitution

Z−1
c KA;Bðp; kÞ → KA;Bðp; kÞCðqÞ; ð2:18Þ

where the function CðqÞ should display the appropriate
ultraviolet characteristics to convert the product

RðqÞ ¼ αsðμÞΔðq; μÞFðq; μÞCðq; μÞ; ð2:19Þ

into a renormalization-group invariant (RGI) (μ-independent)
combination, at least at one-loop.
Focusing on the function CðqÞ, the requirement that

RðqÞ be RGI fixes its ultraviolet behavior; specifically, for
large q2, the inverse of CðqÞ must behave as

C−1UVðqÞ ¼ 1þ 9CAαs
48π

ln

�
q2

μ2

�
; ð2:20Þ

where CA is the eigenvalue of the Casimir operator in the
adjoint representation. However, the low-energy comple-
tion of CðqÞ remains undetermined, leading to the necessity
of introducing specific Ansätze for it.
The ghost dressing function FðqÞ is the simplest quantity

that fulfills (2.20) and, due to high-quality lattice simulations
and extensive studies in the continuum, is quite accurately
known in the entire range ofEuclideanmomenta. However, in
the present work we will mainly focus on an alternative
quantity that conformswith the aforementioned requirements,
and, in addition, displays a relative enhancement with respect
to FðqÞ in the region of momenta that is particularly relevant
for chiral symmetry breaking. Specifically,wewill employ the
so-called “ghost-gluon” mixing self-energy, denoted by
1þ GðqÞ, which is a crucial ingredient in contemporary
application of the pinch technique [62–65], and coincides (in
theLandau gauge)with thewell-knownKugo-Ojima function
[41,66–69]. The quantity ½1þ GðqÞ�−1 has precisely the same
ultraviolet behavior stated in (2.20), and SDE and lattice
studies furnish its form for lowand intermediatemomenta (see
Fig. 2); in fact, by virtue of an exact identity valid in the
Landau gauge, ½1þGð0Þ�−1 ¼ Fð0Þ [70].
An accurate fit of 1þ GðqÞ, valid for the entire range of

Euclidean momenta, is given by

0 1 2 3 4 5
0

2

4

6

8

0 1 2 3 4 5
0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

FIG. 2. The gluon propagator, ΔðqÞ, (left panel, red continuous) and the ghost dressing function, FðqÞ, (right panel, red continuous),
and the corresponding lattice data of [71]. In the right panel we also show the functions C1ðqÞ (blue dotted), C2ðqÞ (green dashed), and
C3ðqÞ ¼ FðqÞ (red continuous) given by Eq. (2.23). All functions are renormalized at μ ¼ 4.3 GeV.
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1þ GðqÞ ¼ 1þ 9CAαs
48π

IðqÞ ln
�
q2 þ ρ3m2ðqÞ

μ2

�
; ð2:21Þ

with

m2ðqÞ ¼ m4

q2 þ ρ2m2
;

IðqÞ ¼ 1þD exp

�
−
ρ4q2

μ2

�
; ð2:22Þ

where m2 ¼ 0.55 GeV2, ρ2 ¼ 0.60, ρ3 ¼ 0.50, ρ4 ¼ 2.08,
αs ¼ 0.22, D ¼ 3.5, and μ ¼ 4.3 GeV.
In the general analysis presented in the following section,

we will consider three particular models for CðqÞ; the first
two have the function ½1þGðqÞ�−1 as their principal
ingredient, while the third is simply FðqÞ itself. Of course,
these Ansätze are to be understood as representative cases
of a wider range of qualitatively similar, but technically
more involved, realizations.2

Specifically,

C1ðqÞ ¼ ½1þGðqÞ�−1;

C2ðqÞ ¼
q2

q2 þ a1

�
1þ exp

�
−
a2q2

μ2

��
½1þGðqÞ�−1;

C3ðqÞ ¼ FðqÞ; ð2:23Þ

where a1 ¼ 0.13 GeV2 and a2 ¼ 50. Note that F−1ðqÞ can
be also expressed by the same functional form given in
Eq. (2.21), where the corresponding fitting parameters
are m2 ¼ 0.55 GeV2, ρ2 ¼ 2.57, ρ3 ¼ 0.50, ρ4 ¼ 3.83,
and D ¼ 2.24.
By construction, the three Ansätze display the same

asymptotic behavior, and their perturbative tails merge
into each other approximately in the region of 3 GeV [see
Fig. 2]. In addition, one can see that C3ðqÞ is more
suppressed than C1ðqÞ and C2ðqÞ in the range of
[400 MeV, 2 GeV]. On the other hand, the main difference
between the first two Ansätze appears below approximately
700 MeV; thus, while C1ðqÞ grows monotonically and
finally saturates at the value Fð0Þ, C2ðqÞ drops rapidly and
vanishes at the origin.
Finally, carrying out the replacement given in Eq. (2.18)

into Eq. (2.12), we obtain the form of the gap equation that
will be used in what follows; in particular,

p2AðpÞ ¼ p2 þ 4πCF

Z
k
KAðk; pÞRiðqÞ;

BðpÞ ¼ 4πCF

Z
k
KBðk; pÞRiðqÞ; ð2:24Þ

where RiðqÞ refers to the RGI product of Eq. (2.19),
realized with CiðqÞ, for i ¼ 1, 2 or 3.

C. The equations for the Xi

The starting point in deriving the dynamical equations
governing the behavior of the form factors Xi is the dia-
grammatic representation of H½1�ðq; k;−pÞ at the one-loop
dressed approximation, shown in the second line of Fig. 1.
As we can see, the complete treatment of H½1�ðq; k;−pÞ

requires the previous knowledge of the full gluon-ghost
vertex, Gν, and the complete quark-gluon vertex, Γμ,
including its transverse part. In order to reduce the level
of technical complexity, we will adopt the following
approximations: (i) for the full gluon-ghost vertex we

simply use its tree-level value Gð0Þ
ν ¼ ðp − lÞμ, and (ii) Γμ

is approximated by the component of ΓBC
ν , proportional to

γν, namely the LFBC
1 of Eq. (2.11) with FðqÞ ¼ 1.

With the above simplifications, one has

H½1� ¼ 1 −
1

2
iCAg2

Z
l
Δμνðl − kÞGð0Þ

μ ðp − lÞ

×Dðl − pÞSðlÞLBC
1 ðl − k; k;−lÞγν: ð2:25Þ

Then, contracting the above equation with the projectors
defined in Eq. (3.9) of [40],3 one obtains the following set of
expressions for the individual form factors Xiðq2; k2; p2Þ,

X0¼1þiπCAαs

Z
l
Kðp;k;lÞAðlÞGðk;q;lÞ;

X1¼ iπCAαs

Z
l

Kðp;k;lÞBðlÞ
q2hðp;kÞ ½k2Gðp;q;lÞ−ðp ·kÞGðk;q;lÞ�;

X2¼ iπCAαs

Z
l

Kðp;k;lÞBðlÞ
q2hðp;kÞ ½p2Gðk;q;lÞ−ðp ·kÞGðp;q;lÞ�;

X3¼−iπCAαs

Z
l

Kðp;k;lÞAðlÞ
q2hðp;kÞ ½k2Gðp;q;lÞ

−ðp ·kÞGðk;q;lÞ−T ðp;k;lÞ�; ð2:26Þ

where we have introduced the kernel

Kðp; k; lÞ ¼ Fðl − pÞΔðl − kÞ½AðlÞ þ AðkÞ�
ðl − pÞ2½A2ðlÞl2 − B2ðlÞ� ; ð2:27Þ

and the functions

Gðr;q;lÞ¼ ðr ·qÞ− ½r · ðl−kÞ�½q · ðl−kÞ�
ðl−kÞ2 ;

T ðp;k;lÞ¼ ðk ·qÞ½ðp · lÞ− ðp ·kÞ�− ðp ·qÞ½ðk · lÞ−k2�:
ð2:28Þ

2For example, if CðqÞ originates ultimately from ΓT
μ , it would

be reasonable to expect its dependence on k, p, and θ to be more
complicated than simply q2 ¼ ðk − pÞ2.

3Note that in the convention of momenta used in [40] we have
p1 → p and p2 → k.
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The above expressions for Xi are expressed in Minkowski
space, and depend on the three momenta q, k, and p. The
Euclideanversion of (2.26) is given in Eq. (3.21) of [40], and
is a function of p2, k2, and the angle θ between p and k,
i.e., Xiðp2; k2; θÞ.

III. NUMERICAL ANALYSIS

In this section we present the numerical analysis and
main results of the six coupled integral equations formed by
AðpÞ, BðpÞ, and the four Xi, defined by Eqs. (2.24) and
(2.26), respectively.

A. Inputs

As can be observed from Eqs. (2.24) and (2.26), the
numerical evaluation of AðpÞ, BðpÞ, and Xi requires the
knowledge of three additional quantities: (i) the gluon
propagator, ΔðqÞ, (ii) the ghost dressing function, FðqÞ,
and (iii) the function, CiðqÞ, appearing in the renormalized
version of the gap equation (2.24). Ideally one could
consider an even more extended system of equations, where
the six equations would be coupled to the two additional
SDEs that determine the momentum evolution of ΔðqÞ and
FðqÞ; however, the resulting complexity of such an approach
is very high. Instead, as was done in a series of earlier works
[18,40,72,73], we will employ for ΔðqÞ and FðqÞ appro-
priate fits reconstructed from the lattice data of [71]. In the
left panel of Fig. 2 we show the lattice data for ΔðqÞ and its
corresponding fits (red continuous), renormalized at
μ ¼ 4.3 GeV. We emphasize that these particular lattice
results are “quenched”, i.e., do not incorporate the effects of
dynamical quark loops. In addition, on the right panel of the
same figure, we show C1ðqÞ (blue dotted), C2ðqÞ (green
dashed-dotted), and C3ðqÞ ¼ FðqÞ (red continuous), all
given by Eq. (2.23). Although in the deep infrared and in
the intermediate region of momenta the three curves display
different behaviors, one can clearly see that for values of
q≳ 3 GeV they merge into each other, as discussed in the
subsection II B.
The use of quenched lattice results merits some additional

clarifications, especially in view of the fact that unquenched
lattice data are also available in the literature; note, for
instance, that the simulations of [74] yielded results for both
the gluon propagator and the ghost dressing function for
Nf ¼ 2 (two degenerate light quarks), and Nf ¼ 2þ 1þ 1

(two degenerate light quarks and two heavy ones).
The main reason we refrain from using them is related

with the fact that in such simulations chiral symmetry is
explicitly broken due to the presence of a nonvanishing
current quark mass, m0ðμÞ ≠ 0, whose inclusion in the
corresponding gap equation brings about nontrivial mod-
ifications. Specifically, the presence of a nonvanishing
m0ðμÞ introduces an additional term Zmm0ðμÞ on the
right-hand side of the equation for BðpÞ given in (2.12),
where Zm is the mass renormalization constant associated

with m0ðμÞ. The presence of this term complicates further
the renormalization procedure of the gap equation. To see
that, we recall that the renormalization conditions in the
momentum subtraction scheme (MOM) require that the
renormalized AðpÞ and BðpÞ recover their tree level values
at μ, i.e., AðμÞ ¼ 1, and BðμÞ ¼ m0ðμÞ. Then, if one were to
impose ZF ¼ 1 throughout, as was done in Sec. II B, the
renormalized AðpÞwill not recover its tree level value at the
renormalization point, unless the contribution of the inte-
gral containing the kernel KAðk; pÞ were vanishing. Even
though a “hybrid” treatment of ZF could be adopted,4 in
order to avoid these additional complications we use the
quenched lattice results throughout.
Let us finally mention that, notwithstanding the afore-

mentioned difficulties, a rough estimate of the impact of the
unquenching effects in the form factors of the quark-gluon
vertex in some special kinematic limits was presented in
[50]; according to that analysis, the effects due to
unquenching are relatively small, of the order of 10%.

B. Numerical results for the coupled system

With all external inputs defined, we proceed to solve the
coupled system; note in particular that the form factors Xi
will be determined for general Euclidean kinematics. Then,
the vertex form factors Li will be obtained through direct
substitution of the solutions into the Euclidean version
of Eq. (2.10).
The coupled system of SDEs (2.24) and (2.26) is solved

iteratively. The logarithmic grid is composed by136 different
values of momenta p2 in the range ½5 × 10−5 GeV2;
5 × 103 GeV2�, whereas the angular interval is subdivided
uniformly into 25 values from 0 to π. The most costly task,
the numerical evaluation of the multidimensional integrals,
was tackled with an adaptive algorithm employing an 11th
degree polynomial rule for the 3D integrals and a 13th degree
rule for the 2D ones [75].
In Fig. 3 we show the numerical results for two out of the

six quantities determined in our coupled system. In
particular, we show the dynamical quark mass, MðpÞ
(top panels), and the quark wave function, A−1ðpÞ (bottom
panels), obtained as solutions when we use C1ðqÞ in the
RGI product R1ðqÞ, defined in the Eq. (2.19). The
solutions were obtained for αs ¼ 0.24 (left panels), αs ¼
0.28 (center panels), and αs ¼ 0.30 (right panels).
In order to appreciate how MðpÞ and A−1ðpÞ are

affected by the inclusion of H (or, equivalently, the Xi)
in the construction of the quark-gluon vertex, in Fig. 3 we
compare the solutions obtained with the full ΓSTI (blue
continuous curves) with those computed using the ΓFBC

μ of
Eq. (2.11) (orange dashed lines). Evidently, the former
solutions produce higher MðpÞ compared to the latter, in

4For example, for the integral terms one may substitute
Z1KA;Bðp; kÞ → KA;Bðp; kÞCiðqÞ as before, but treat “subtrac-
tively” the ZF and Zm appearing in the “tree-level” terms.
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the entire range of momentum. Of course, the quantitative
difference between MðpÞ and MFBCðpÞ depends on the
precise value of αs: smaller values for αs increase the
difference between MðpÞ and MFBCðpÞ. In particular,
within the range of momenta between [0,780 MeV], we
observe a difference of approximately 32%, 21%, and 19%,
when αs ¼ 0.24, αs ¼ 0.28, and αs ¼ 0.30, respectively. A
similar pattern is observed in the results for A−1ðpÞ
and A−1

FBCðpÞ.
The remaining four quantities are shown in the 3D plots

of Fig. 4. Specifically, we present a typical set of results for
the form factors Xi, where αs ¼ 0.28 and θ ¼ 2π=3. We
notice that all Xiðp2; k2; 2π=3Þ are infrared finite. In
addition, all curves tend asymptotically to their expected
perturbative behaviors.
The Xi computed in the previous step are subsequently

fed into the Euclidean version of Eq. (2.10), thus furnishing
the corresponding form factors Li, shown in Fig. 5, where,
as before, αs ¼ 0.28 and θ ¼ 2π=3.
As we can see, the behavior of the Li (colorful surfaces)

is rather similar to that obtained in Ref. [40], where AðpÞ
and BðpÞ were treated as “external” quantities. As dis-
cussed in that work, the properties of the Li may be
summarized as follows: (i) the four form factors are infrared
finite in the entire range of momenta; (ii) the Li obtained
indicate considerable deviations from the LFBC

i represented
by the cyan surface, given by Eq. (2.11); (iii) although L4

is a non-vanishing quantity, its size is considerably sup-
pressed for all momenta, and (iv) L2 displays the most

pronounced changes, because it is particularly sensitive to
the details of the shape of AðpÞ.
Given that we have derived Li for general configurations,

we may easily single out two special kinematics cases,
namely (i) the “soft quark” limit, obtained as p → 0, and
(ii) the “totally symmetric” limit, where p2 ¼ k2 ¼ q2 and
θ ¼ 2π=3. Evidently, in these limits the Li become func-
tions of a single momentum, to be indicated by r; we will
denote the corresponding form factors by Lq

i ðrÞ and
Lsym
i ðrÞ, respectively. In Fig. 6 we show the corresponding

results, with Lq
i ðrÞ on the left panel, and Lsym

i ðrÞ on the
right. Note that, at the level of the 3D plots shown in Fig. 5,
the Lsym

i ðrÞ correspond to the “slices” defined by the planes
p ¼ k, where θ ¼ 2π=3. In particular, Lsym

4 ðrÞ ¼ 0.
Moreover, in both cases, we recover the expected pertur-
bative behavior for large values of the momentum (L1 ¼ 1
and L2 ¼ L3 ¼ L4 ¼ 0).
It would be interesting to compare the above results

with lattice simulations; however, the existing lattice data
for the kinematic limits mentioned above are typically
“contaminated” by contributions from ΓT

μ [45,47], due to
an overall contraction by PμνðqÞ (in the Landau gauge).
For the case of the “soft-gluon” configuration, q → 0, a
detailed comparison both with the lattice and with results
found with different functional approaches has been
performed in [40]. Since the present results and those
of [40] are quite similar, a further comparison is of
limited usefulness and will be omitted from the present
work.
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FIG. 3. Comparison of the MðpÞ (top panels) and the A−1ðpÞ (bottom panels) obtained with ΓSTI
μ (blue continuous curve) and those

obtained using ΓFBC
μ (orange dashed curve). All curves were obtained with the C1ðqÞ of Eq. (2.23), and we used αs ¼ 0.24 (left panels),

αs ¼ 0.28 (central panels), and αs ¼ 0.30 (right panels).
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Next, we turn our attention to the numerical
impact of each individual Li on the value of the
dynamical quark mass. The results of this exercise
are presented in Fig. 7, where in both panels we show
the corresponding A−1ðpÞ and MðpÞ, which are gen-
erated as we turn on, one by one, the form factors Li
that compose the kernels KA and KB, given by
Eq. (2.13). Clearly, the largest numerical contribution
comes from L1, which is responsible for generating 54%
of Mð0Þ. In addition, L2 furnishes 13% of the Mð0Þ
value, while L3 contributes another 23%. Particularly
interesting is the impact of L4; even though it is rather
suppressed [see Fig. 5], and is usually neglected in
related studies [10,12,18], L4 provides, rather unexpect-
edly, 10% of Mð0Þ.

C. Varying the form of CðqÞ
In order to determine the influence of the functions CiðqÞ

on the coupled system, we repeat the analysis using C2ðqÞ
and C3ðqÞ instead of C1ðqÞ [equivalently, R1ðqÞ → R2ðqÞ,
or R1ðqÞ → R3ðqÞ].
In Fig. 8 we perform a comparative analysis of theA−1ðpÞ

andMðpÞ obtained when we employ the three Ansätze for
CiðqÞ, given by Eq. (2.23), for different values of αs.
Although C2ðqÞ is significantly more suppressed in the

deep infrared compared to C1ðqÞ and C3ðqÞ [see Fig. 2], one
can observe that, essentially, the first two models generate
quark masses of comparable size: the masses obtained using
C1ðqÞ (bluedotted curve) are slightly larger than those coming
from C2ðqÞ (green dashed curve). Clearly, the difference in
the results obtained with C1ðqÞ and C2ðqÞ decreases as αs
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increases; in particular, the difference between the corre-
sponding Mð0Þ computed with αs ¼ 0.24, αs ¼ 0.28, and
αs ¼ 0.30 is about 20%, 10%, and 6%, respectively.
Instead, C3ðqÞ does not provide sufficient strength to the

kernel of the gap equation (2.24) to trigger the onset of the
dynamical mass generation, when αs ¼ 0.24 (red continu-
ous curve in the top left panel). Although for higher values
of αs the chiral symmetry is eventually broken, one notices
that the values of masses obtained are phenomenologically
disfavored; specifically, one finds 160 MeV for αs ¼ 0.28,
and 217 MeV when αs ¼ 0.30.
We emphasize that the mass pattern emerging from the

above exercise is consistent with what one would expect on

general grounds. Indeed, as is well-established by now, the
support of the gap equation kernel in the intermediate
region of momenta is crucial for the generation of phe-
nomenologically compatible quark masses [12,18], while
modifications of that kernel in the deep infrared do not
affect significantly the resulting quark mass [10,76].
Consequently, the origin of the small difference in the
MðpÞ obtained with the first two models can be naturally
attributed to the slight suppression that C2ðqÞ displays in
the region of [1–2] GeV in comparison with C1ðqÞ, whereas
the sizable suppression of C3ðqÞ in the range of [0.5–
1.5] GeV prohibits or reduces substantially the generation
of a quark mass.

FIG. 5. The quark-gluon form factors Li obtained by substituting into Eq. (2.10) the solutions of the coupled system given by
Eqs. (2.24) and (2.26). The results represent the case where αs ¼ 0.28 and θ ¼ 2π=3.
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We conclude this subsection by presenting in Table I a
detailed analysis of the impact of the scattering kernelH on
the dynamical mass generation, as we vary the function
CiðqÞ. We will restrict ourselves to the comparison of the
values for MFBCð0Þ and Mð0Þ; we remind the reader that,
in the former case,H assumes its tree-level value, while the
latter is obtained from solving the system. The impact will
be quantified through the relative percentage difference
IH ¼ ½Mð0Þ=MFBCð0Þ − 1� × 100%. Independently of the
form that CiðqÞ assumes, one notices that IH depends on
the value of αs, reaching larger values as αs decreases.
Interestingly enough, as we reach phenomenologically
relevant values for Mð0Þ (i.e., in the range 280–
360 MeV), IH practically stabilizes around 20%.

D. Fits for the constituent quark mass

It turns out that all running quark masses MðpÞ
presented in the Fig. 8 may be accurately fitted by the
following physically motivated fit

MðpÞ ¼ M3
1

M2
2 þ p2½lnðp2 þM2

3Þ=Λ2�1−γf ; ð3:1Þ

where ðM1;M2;M3Þ are the three adjustable “mass”
parameters, and Λ ¼ 270 MeV.
The above formula constitutes a simple infrared

completion of Eq. (2.17), where the presence of the
M2 in the denominator enforces the saturation of MðpÞ
at the origin, while the M3 in the argument of the
logarithm improves the convergence of the fitting
procedure.
It turns out that the expression

MðpÞ ¼ M0

1þ ðp2=λ2Þ1þd ; ð3:2Þ

is yet another excellent fit for all our results forMðpÞ. The
functional form of Eq. (3.2) may be easier to handle when
numerical integrations of MðpÞ are involved.
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In Fig. 9 we superimpose the numerical solutions when
αs ¼ 0.24 (red circles), αs ¼ 0.28 (purple squares), and
αs ¼ 0.30 (green stars) for C1ðqÞ (left panel) and C2ðqÞ
(right panel) and the fit of Eq. (3.2) (continuous curves).
Since it is not possible to notice any sizable quantitative
difference between the fits produced either with Eq. (3.1) or
Eq. (3.2), in Fig. 9 we only show the curves for Eq. (3.2).
The corresponding sets of parameters ðM1;M2;M3Þ and
ðM0; λ; dÞ are quoted in the Table II. All fits have a
reduced χ2 ¼ 0.99.

E. Estimating the pion decay constant

In order to appreciate the impact of H on a physical
observable sensitive to the dynamical quark mass, we turn
to the pion decay constant, fπ . For its computation we use
an improved version of the Pagels-Stokar-Cornwall for-
mula [77,78] proposed in [79], given by.5

f2π ¼
3

8π2

Z
∞

0

dyyB2ðyÞfσ2V − 2½σSσ0S þ yσVσ0V �

− y½σSσ00S − ðσ0SÞ2� − y2½σVσ00V − ðσ0VÞ2�g; ð3:3Þ

where

σV ≔
AðyÞ

yA2ðyÞ þ B2ðyÞ ; σS ≔
BðyÞ

yA2ðyÞ þ B2ðyÞ : ð3:4Þ

The values quoted in the Table III for fπ should be
compared to the experimental value fπ ¼ 93 MeV [80].
Evidently, C3ðqÞ produces the smallest set of values for fπ,
since the corresponding MðpÞ, entering in Eq. (3.3), are
quite suppressed in comparison with the others solutions
obtained with C1ðqÞ or C2ðqÞ. Our analysis shows clearly a
preference for αs in the range of 0.28–0.30, and for the
functional forms given by C1ðqÞ or C2ðqÞ. In addition, one
notices that, for either C1ðqÞ or C2ðqÞ, the relative percent-
age difference between the values for fπ obtained with ΓSTI
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FIG. 8. Comparison of the dynamical quark masses, MðpÞ, (top panels) and the quark wave function, A−1ðpÞ, (bottom panels)
obtained when we employ the three Ansätze for CiðqÞ given by Eq. (2.23) for different values of αs.

TABLE I. Comparison of the values obtained for MFBCð0Þ and Mð0Þ when we employ the three Ansätze CiðqÞ of Eq. (2.23).
Masses with C1ðqÞ [MeV] Masses with C2ðqÞ [MeV] Masses with C3ðqÞ [MeV]

αs MFBCð0Þ Mð0Þ IH MFBCð0Þ Mð0Þ IH MFBCð0Þ Mð0Þ IH

0.24 157 207 32% 114 172 51% 0 0 0%
0.28 261 316 21% 231 286 24% 86 162 88%
0.30 305 362 19% 278 339 22% 142 217 53%

5The values of fπ obtained from an alternative expression
given in Eq. (6.27) of [10] are about 10% lower.
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and ΓFBC
μ are approximately 10%, when αs ¼ 0.28 and

αs ¼ 0.30.

IV. DISCUSSION AND CONCLUSIONS

In this article we have performed a detailed study of the
dynamical quark mass pattern that emerges when the gap
equation is coupled to the four dynamical equations that

determine the structure of the quark-ghost kernel, H, and,
in turn, the STI-saturating part of the quark-gluon vertex,
Γμ. The analysis has been carried out in the Ball-Chiu
tensorial basis, and the dynamical equations for H are
derived within the one-loop dressed truncation scheme,
under certain simplifying assumptions for the vertices
appearing in them. The corresponding gap equation that
generates the dynamical quark mass has been treated in the
chiral limit (vanishing “current” mass).
The numerical effect of including a nontrivial H into the

construction of the Γμ that enters in the gap equation is
rather sizable. Indeed, as we have seen in the Table I,
while its precise contribution depends on the value of
αs, it accounts for approximately 20% of the dynamical
quark mass generated, when Mð0Þ is in the range of
280–360 MeV.
The impact of H on the dynamics of chiral symmetry

breaking was also estimated indirectly, through the deter-
mination of the pion decay constant, fπ . When phenom-
enological compatible quark masses are generated, we see
that the inclusion of H into Γμ, i.e., the transition
ΓBC
μ → Γμ, amounts to a 10% increase in the value of fπ .
It is important to emphasize that in the present analysis a

nontrivial structure of the vertex form factor L4 was
included in the gap equation. Despite the fact that L4 is
rather suppressed compared to L1, L2, L3, as shown in the
Fig. 5, our findings indicate that it accounts for 10% of total
Mð0Þ generated. Therefore, L4 contributes to the dynami-
cal mass generation practically with the same strength as
L2. This result, in turn, seems to suggest that L4 provides
a more “focused” support to the gap equation kernel,
enhancing it precisely in the range of momenta that drive
the onset of chiral symmetry breaking. To the best of our
knowledge, such a concrete quantitative statement on the
impact of L4 appears for the first time in the literature.
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FIG. 9. The numerical solution for MðpÞ obtained using the C1ðqÞ (left panel) and C2ðqÞ (right panel). In each panel we display the
solutions for αs ¼ 0.24 (red circles), αs ¼ 0.28 (purple squares) and αs ¼ 0.30 (green stars). The continuous curves represent the fit of
Eq. (3.2).

TABLE II. The sets of adjustable parameters employed for the
fits given by Eqs. (3.1) and (3.2). All fits have a reduced
χ2 ¼ 0.99.

Fit given by Eq. (3.1) Fit given by Eq. (3.2)

αs

M1

[MeV]
M2

[GeV]
M3

[MeV]
M0

[MeV]
λ

[MeV] d

0.24 with C1ðqÞ 601 1.03 404 206 780 0.22
0.24 with C2ðqÞ 572 1.04 270 171 809 0.31
0.28 with C1ðqÞ 758 1.18 426 314 878 0.25
0.28 with C2ðqÞ 715 1.12 270 288 876 0.28
0.30 with C1ðqÞ 824 1.25 358 361 925 0.25
0.30 with C2ðqÞ 772 1.16 270 337 914 0.28

TABLE III. Values for fπ computed with Eq. (3.3) in [MeV].
The six sets of results were calculated using the corresponding
AðpÞ and MðpÞ obtained with the three CiðqÞ given by
Eq. (2.23), when we employ either the “minimal” non-abelian
Ball-Chiu vertex, ΓFBC

μ , or the complete ΓSTI.

fπ with C1ðqÞ fπ with C2ðqÞ fπ with C3ðqÞ
αs ΓFBC

μ ΓSTI
μ ΓFBC

μ ΓSTI
μ ΓFBC

μ ΓSTI
μ

0.24 62 73 52 67 0 0
0.28 87 97 83 93 40 61
0.30 97 107 93 103 57 75
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Given that the multiplicative renormalizability of the
quark propagator constitutes a notoriously difficult task,
the restoration of the correct one-loop anomalous dimension
for MðpÞ has been accomplished through the introduction
(“by hand”) of a set of functions, CiðqÞ, which in the deep
ultraviolet display the required asymptotic behavior, but
differ substantially at the level of their infrared “comple-
tion.” The support of CiðqÞ in the region of [500 MeV,
1.5 GeV] is crucial for the generation of quark masses of the
order of 300MeV. In fact, any suppression in the behavior of
CiðqÞ, as reported in the case C3ðqÞ given by Eq. (2.23), can
diminish or even eradicate the desired phenomenon.
The difficulties in enforcing multiplicative renormaliz-

ability at the level of the gap equation, as mentioned above,
make the study of the transverse part of the quark-gluon
vertex all the more pressing. Even though the relevance of
ΓT
μ in this context has been amply emphasized, and various

techniques have been put forth for restricting its structure
[50,81–85], a well-defined framework for its systematic
determination still eludes us. In particular, it would be
rather important to obtain reliable results for ΓT

μ by means
of nonperturbative methods in the continuum (e.g., SDEs
[10,13,41,62] or functional renormalization group [86]),
especially in view of its theoretical and numerical relevance
for chiral symmetry breaking.
As mentioned in the Introduction, we have carried out a

“quenched” calculation, given that the gluon and ghost
propagators used as inputs for solving the system of
integral equations are obtained from lattice simulations
with no dynamical quarks [71]. To be sure, a more

complete analysis ought to take unquenching effects into
account; their inclusion is expected to affect the results
mainly due to the modifications induced to the gluon
propagator (see, e.g., [74] for unquenched lattice results,
and [29,38,52–54] for related studies). A preliminary study
presented in [50] indicates a slight increase, of the order
6%–10%, in the form factors of the quark-gluon vertex,
evaluated in some special kinematic limits. Of course, a
complete study needs be carried out in order to determine if
such an increase persists at the level of the coupled system,
and the changes that it might induce to the gap equation and
the quark mass derived from it.

ACKNOWLEDGMENTS

The research of J. P. is supported by the Spanish
Ministerio de Economía y Competitividad (MEYC) under
Grants No. FPA2014-53631-C2-1-P and No. SEV-2014-
0398, and Generalitat Valenciana under Grant Prometeo II/
2014/066. The work of A. C. A, J. C. C., and M. N. F. are
supported by the Brazilian National Council for Scientific
and Technological Development (CNPq) under the Grants
No. 305815/2015, No. 141981/2013-0, and No. 142226/
2016-5, respectively. A. C. A also acknowledges the finan-
cial support from São Paulo Research Foundation
(FAPESP) through the projects No. 2017/07595-0 and
No. 2017/05685-2. This research was performed using
the Feynman Cluster of the John David Rogers
Computation Center (CCJDR) in the Institute of Physics
“Gleb Wataghin,” University of Campinas.

[1] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[2] K. D. Lane, Phys. Rev. D 10, 2605 (1974).
[3] H. D. Politzer, Nucl. Phys. B117, 397 (1976).
[4] V. A.Miransky and P. I. Fomin, Phys. Lett. 105B, 387 (1981).
[5] D. Atkinson and P. W. Johnson, Phys. Rev. D 37, 2296

(1988).
[6] N. Brown and M. R. Pennington, Phys. Rev. D 38, 2266

(1988).
[7] A. G. Williams, G. Krein, and C. D. Roberts, Ann. Phys.

(N.Y.) 210, 464 (1991).
[8] J. Papavassiliou and J. M. Cornwall, Phys. Rev. D 44, 1285

(1991).
[9] F. T. Hawes, C. D. Roberts, and A. G. Williams, Phys. Rev.

D 49, 4683 (1994).
[10] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys.

33, 477 (1994).
[11] A. A. Natale and P. S. Rodrigues da Silva, Phys. Lett. B 392,

444 (1997).
[12] C. S. Fischer and R. Alkofer, Phys. Rev. D 67, 094020

(2003).

[13] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12, 297
(2003).

[14] A. C. Aguilar, A. Nesterenko, and J. Papavassiliou, J. Phys.
G 31, 997 (2005).

[15] P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B.
Parappilly, A. G. Williams, and J.-b. Zhang, Phys. Rev.
D 71, 054507 (2005).

[16] V. Sauli, J. Adam, Jr., and P. Bicudo, Phys. Rev. D 75,
087701 (2007).

[17] J. M. Cornwall, arXiv:0812.0359.
[18] A. C. Aguilar and J. Papavassiliou, Phys. Rev. D 83, 014013

(2011).
[19] I. C. Cloet and C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1

(2014).
[20] M. Mitter, J. M. Pawlowski, and N. Strodthoff, Phys. Rev. D

91, 054035 (2015).
[21] J. Braun, L. Fister, J. M. Pawlowski, and F. Rennecke, Phys.

Rev. D 94, 034016 (2016).
[22] W. Heupel, T. Goecke, and C. S. Fischer, Eur. Phys. J. A 50,

85 (2014).

A. C. AGUILAR et al. PHYS. REV. D 98, 014002 (2018)

014002-14

https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRevD.10.2605
https://doi.org/10.1016/0550-3213(76)90405-3
https://doi.org/10.1016/0370-2693(81)90785-1
https://doi.org/10.1103/PhysRevD.37.2296
https://doi.org/10.1103/PhysRevD.37.2296
https://doi.org/10.1103/PhysRevD.38.2266
https://doi.org/10.1103/PhysRevD.38.2266
https://doi.org/10.1016/0003-4916(91)90051-9
https://doi.org/10.1016/0003-4916(91)90051-9
https://doi.org/10.1103/PhysRevD.44.1285
https://doi.org/10.1103/PhysRevD.44.1285
https://doi.org/10.1103/PhysRevD.49.4683
https://doi.org/10.1103/PhysRevD.49.4683
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/S0370-2693(96)01573-0
https://doi.org/10.1016/S0370-2693(96)01573-0
https://doi.org/10.1103/PhysRevD.67.094020
https://doi.org/10.1103/PhysRevD.67.094020
https://doi.org/10.1142/S0218301303001326
https://doi.org/10.1142/S0218301303001326
https://doi.org/10.1088/0954-3899/31/9/002
https://doi.org/10.1088/0954-3899/31/9/002
https://doi.org/10.1103/PhysRevD.71.054507
https://doi.org/10.1103/PhysRevD.71.054507
https://doi.org/10.1103/PhysRevD.75.087701
https://doi.org/10.1103/PhysRevD.75.087701
http://arXiv.org/abs/0812.0359
https://doi.org/10.1103/PhysRevD.83.014013
https://doi.org/10.1103/PhysRevD.83.014013
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1016/j.ppnp.2014.02.001
https://doi.org/10.1103/PhysRevD.91.054035
https://doi.org/10.1103/PhysRevD.91.054035
https://doi.org/10.1103/PhysRevD.94.034016
https://doi.org/10.1103/PhysRevD.94.034016
https://doi.org/10.1140/epja/i2014-14085-x
https://doi.org/10.1140/epja/i2014-14085-x


[23] D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D.
Roberts, Phys. Rev. D 95, 031501 (2017).

[24] J. S. Ball and T.-W. Chiu, Phys. Rev. D 22, 2542 (1980).
[25] A. Kizilersu, M. Reenders, and M. R. Pennington, Phys.

Rev. D 52, 1242 (1995).
[26] A. I. Davydychev, P. Osland, and L. Saks, Phys. Rev. D 63,

014022 (2000).
[27] R. Bermudez, L. Albino, L. X. Gutierrez-Guerrero, M. E.

Tejeda-Yeomans, and A. Bashir, Phys. Rev. D 95, 034041
(2017).

[28] A. Bender, C. D. Roberts, and L. Von Smekal, Phys. Lett. B
380, 7 (1996).

[29] M. S. Bhagwat and P. C. Tandy, Phys. Rev. D 70, 094039
(2004).

[30] F. J. Llanes-Estrada, C. S. Fischer, and R. Alkofer, Nucl.
Phys. B, Proc. Suppl. 152, 43 (2006).

[31] A. Holl, A. Krassnigg, and C. D. Roberts, Nucl. Phys. B,
Proc. Suppl. 141, 47 (2005).

[32] H. H. Matevosyan, A. W. Thomas, and P. C. Tandy, Phys.
Rev. C 75, 045201 (2007).

[33] R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada, and K.
Schwenzer, Ann. Phys. (Amsterdam) 324, 106 (2009).

[34] M. Hopfer, A. Windisch, and R. Alkofer, Proc. Sci.
ConfinementX2012 (2012) 073 [arXiv:1301.3672].

[35] A. C. Aguilar, D. Binosi, J. Cardona, and J. Papavassiliou,
Proc. Sci.ConfinementX2012 (2012) 103 [arXiv:1301.4057].

[36] E. Rojas, J. de Melo, B. El-Bennich, O. Oliveira, and T.
Frederico, J. High Energy Phys. 10 (2013) 193.

[37] R. Williams, Eur. Phys. J. A 51, 57 (2015).
[38] R. Williams, C. S. Fischer, and W. Heupel, Phys. Rev. D 93,

034026 (2016).
[39] H. Sanchis-Alepuz and R. Williams, Phys. Lett. B 749, 592

(2015).
[40] A. C. Aguilar, J. C. Cardona, M. N. Ferreira, and J.

Papavassiliou, Phys. Rev. D 96, 014029 (2017).
[41] C. S. Fischer, J. Phys. G 32, R253 (2006).
[42] J. Skullerud, P. O. Bowman, and A. Kizilersu, arXiv:hep-lat/

0212011.
[43] J. Skullerud and A. Kizilersu, J. High Energy Phys. 09

(2002) 013.
[44] J. I. Skullerud, P. O. Bowman,A.Kizilersu,D. B. Leinweber,

and A. G. Williams, J. High Energy Phys. 04 (2003) 047.
[45] J. I. Skullerud, P. O. Bowman,A.Kizilersu,D. B. Leinweber,

and A. G. Williams, Nucl. Phys. B, Proc. Suppl. 141, 244
(2005).

[46] H.-W. Lin, Phys. Rev. D 73, 094511 (2006).
[47] A. Kizilersu, D. B. Leinweber, J.-I. Skullerud, and A. G.

Williams, Eur. Phys. J. C 50, 871 (2007).
[48] O. Oliveira, A. Kizilersu, P. J. Silva, J.-I. Skullerud, A.

Sternbeck, and A. G. Williams, Acta Phys. Pol. B Proc.
Suppl. 9, 363 (2016).

[49] A. Sternbeck, P.-H. Balduf, A. Kizilersu, O. Oliveira, P. J.
Silva, J.-I. Skullerud, and A. G. Williams, Proc. Sci.
LATTICE2016 (2017) 349 [arXiv:1702.00612].

[50] A. C. Aguilar, D. Binosi, D. Ibañez, and J. Papavassiliou,
Phys. Rev. D 90, 065027 (2014).

[51] C. S. Fischer, R. Alkofer, W. Cassing, F. J. Llanes-Estrada,
and P. Watson, Nucl. Phys. B, Proc. Suppl. 153, 90 (2006).

[52] C. S. Fischer, P. Watson, and W. Cassing, Phys. Rev. D 72,
094025 (2005).

[53] A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff,
Phys. Rev. D 97, 054006 (2018).

[54] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D
86, 014032 (2012).

[55] O. Nachtmann and W. Wetzel, Nucl. Phys. B187, 333
(1981).

[56] N. Brown and N. Dorey, Mod. Phys. Lett. A 06, 317 (1991).
[57] D. C. Curtis and M. R. Pennington, Phys. Rev. D 42, 4165

(1990).
[58] D. C. Curtis and M. R. Pennington, Phys. Rev. D 48, 4933

(1993).
[59] J. C. R. Bloch, Phys. Rev. D 64, 116011 (2001).
[60] J. C. R. Bloch, Phys. Rev. D 66, 034032 (2002).
[61] A. Kizilersu and M. R. Pennington, Phys. Rev. D 79,

125020 (2009).
[62] D. Binosi and J. Papavassiliou, Phys. Rep. 479, 1 (2009).
[63] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D

78, 025010 (2008).
[64] D. Binosi, L. Chang, J. Papavassiliou, and C. D. Roberts,

Phys. Lett. B 742, 183 (2015).
[65] D. Binosi, C. Mezrag, J. Papavassiliou, C. D. Roberts, and J.

Rodriguez-Quintero, Phys. Rev. D 96, 054026 (2017).
[66] T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. 66, 1

(1979).
[67] T. Kugo, arXiv:hep-th/9511033.
[68] P. A. Grassi, T. Hurth, and A. Quadri, Phys. Rev. D 70,

105014 (2004).
[69] A. C. Aguilar, D. Binosi, and J. Papavassiliou, J. High

Energy Phys. 11 (2009) 066.
[70] A. C. Aguilar, D. Binosi, J. Papavassiliou, and J. Rodriguez-

Quintero, Phys. Rev. D 80, 085018 (2009).
[71] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker,

and A. Sternbeck, Proc. Sci. LATTICE2007 (2007) 290
[arXiv:0710.1968].

[72] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D
84, 085026 (2011).

[73] A. C. Aguilar, D. Binosi, and J. Papavassiliou, J. High
Energy Phys. 01 (2012) 050.

[74] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J.
Rodriguez-Quintero, Phys. Rev. D 86, 074512 (2012).

[75] J. Berntsen, T. O. Espelid, and A. Genz, ACM Trans. Math.
Softw. 17, 452 (1991).

[76] P. Maris and P. C. Tandy, Phys. Rev. C 60, 055214 (1999).
[77] H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).
[78] J. M. Cornwall, Phys. Rev. D 22, 1452 (1980).
[79] C. D. Roberts, Nucl. Phys. A605, 475 (1996).
[80] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,

100001 (2016).
[81] K.-I. Kondo, Int. J. Mod. Phys. A 12, 5651 (1997).
[82] H.-X. He, F. Khanna, and Y. Takahashi, Phys. Lett. B 480,

222 (2000).
[83] H.-X. He, Commun. Theor. Phys. 46, 109 (2006).
[84] H.-X. He, Int. J. Mod. Phys. A 22, 2119 (2007).
[85] S.-X. Qin, L. Chang, Y.-X. Liu, C. D. Roberts, and S. M.

Schmidt, Phys. Lett. B 722, 384 (2013).
[86] J. M. Pawlowski, Ann. Phys. (Amsterdam) 322, 2831 (2007).

QUARK GAP EQUATION WITH NON-ABELIAN BALL-CHIU … PHYS. REV. D 98, 014002 (2018)

014002-15

https://doi.org/10.1103/PhysRevD.95.031501
https://doi.org/10.1103/PhysRevD.22.2542
https://doi.org/10.1103/PhysRevD.52.1242
https://doi.org/10.1103/PhysRevD.52.1242
https://doi.org/10.1103/PhysRevD.63.014022
https://doi.org/10.1103/PhysRevD.63.014022
https://doi.org/10.1103/PhysRevD.95.034041
https://doi.org/10.1103/PhysRevD.95.034041
https://doi.org/10.1016/0370-2693(96)00372-3
https://doi.org/10.1016/0370-2693(96)00372-3
https://doi.org/10.1103/PhysRevD.70.094039
https://doi.org/10.1103/PhysRevD.70.094039
https://doi.org/10.1016/j.nuclphysbps.2005.08.008
https://doi.org/10.1016/j.nuclphysbps.2005.08.008
https://doi.org/10.1016/j.nuclphysbps.2004.12.009
https://doi.org/10.1016/j.nuclphysbps.2004.12.009
https://doi.org/10.1103/PhysRevC.75.045201
https://doi.org/10.1103/PhysRevC.75.045201
https://doi.org/10.1016/j.aop.2008.07.001
http://arXiv.org/abs/1301.3672
http://arXiv.org/abs/1301.4057
https://doi.org/10.1007/JHEP10(2013)193
https://doi.org/10.1140/epja/i2015-15057-4
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1103/PhysRevD.93.034026
https://doi.org/10.1016/j.physletb.2015.08.067
https://doi.org/10.1016/j.physletb.2015.08.067
https://doi.org/10.1103/PhysRevD.96.014029
https://doi.org/10.1088/0954-3899/32/8/R02
http://arXiv.org/abs/hep-lat/0212011
http://arXiv.org/abs/hep-lat/0212011
https://doi.org/10.1088/1126-6708/2002/09/013
https://doi.org/10.1088/1126-6708/2002/09/013
https://doi.org/10.1088/1126-6708/2003/04/047
https://doi.org/10.1016/j.nuclphysbps.2004.12.037
https://doi.org/10.1016/j.nuclphysbps.2004.12.037
https://doi.org/10.1103/PhysRevD.73.094511
https://doi.org/10.1140/epjc/s10052-007-0250-6
https://doi.org/10.5506/APhysPolBSupp.9.363
https://doi.org/10.5506/APhysPolBSupp.9.363
http://arXiv.org/abs/1702.00612
https://doi.org/10.1103/PhysRevD.90.065027
https://doi.org/10.1016/j.nuclphysbps.2006.01.011
https://doi.org/10.1103/PhysRevD.72.094025
https://doi.org/10.1103/PhysRevD.72.094025
https://doi.org/10.1103/PhysRevD.97.054006
https://doi.org/10.1103/PhysRevD.86.014032
https://doi.org/10.1103/PhysRevD.86.014032
https://doi.org/10.1016/0550-3213(81)90278-9
https://doi.org/10.1016/0550-3213(81)90278-9
https://doi.org/10.1142/S0217732391000294
https://doi.org/10.1103/PhysRevD.42.4165
https://doi.org/10.1103/PhysRevD.42.4165
https://doi.org/10.1103/PhysRevD.48.4933
https://doi.org/10.1103/PhysRevD.48.4933
https://doi.org/10.1103/PhysRevD.64.116011
https://doi.org/10.1103/PhysRevD.66.034032
https://doi.org/10.1103/PhysRevD.79.125020
https://doi.org/10.1103/PhysRevD.79.125020
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1016/j.physletb.2015.01.031
https://doi.org/10.1103/PhysRevD.96.054026
https://doi.org/10.1143/PTPS.66.1
https://doi.org/10.1143/PTPS.66.1
http://arXiv.org/abs/hep-th/9511033
https://doi.org/10.1103/PhysRevD.70.105014
https://doi.org/10.1103/PhysRevD.70.105014
https://doi.org/10.1088/1126-6708/2009/11/066
https://doi.org/10.1088/1126-6708/2009/11/066
https://doi.org/10.1103/PhysRevD.80.085018
http://arXiv.org/abs/0710.1968
https://doi.org/10.1103/PhysRevD.84.085026
https://doi.org/10.1103/PhysRevD.84.085026
https://doi.org/10.1007/JHEP01(2012)050
https://doi.org/10.1007/JHEP01(2012)050
https://doi.org/10.1103/PhysRevD.86.074512
https://doi.org/10.1145/210232.210234
https://doi.org/10.1145/210232.210234
https://doi.org/10.1103/PhysRevC.60.055214
https://doi.org/10.1103/PhysRevD.20.2947
https://doi.org/10.1103/PhysRevD.22.1452
https://doi.org/10.1016/0375-9474(96)00174-1
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1142/S0217751X97002978
https://doi.org/10.1016/S0370-2693(00)00353-1
https://doi.org/10.1016/S0370-2693(00)00353-1
https://doi.org/10.1088/0253-6102/46/1/025
https://doi.org/10.1142/S0217751X07036257
https://doi.org/10.1016/j.physletb.2013.04.034
https://doi.org/10.1016/j.aop.2007.01.007

