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We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled
at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The
Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or
absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass
resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering
in the J ¼ 2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a
large cosmological constant and we study possible solutions to this, including a unimodular version of the
theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.
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I. INTRODUCTION

There are many exotic approaches to quantum gravity,
but comparatively little present work exploring the option
of describing gravity by a renormalizable quantum field
theory (QFT). Nature has shown that the other funda-
mental interactions, i.e. those of the standard model, are
described by renormalizable QFTs at present energies, so
this should be the most conservative approach. There is a
modest body of recent work [1–13] attempting to revive
this possibility.1As a subfield, this literature is somewhat
diffuse, with different groups pursuing different, although
related, variants. However, the key question is to deter-
mine if any renormalizable QFT can serve as a UV
completion for gravity. In this paper, we explore such a
variation which we feel is particularly well suited for
being a controlled approach using present techniques,
with encouraging results.
The distinctive feature of a renormalizable QFT treat-

ment of gravity is simple to diagnose. Loops involving

matter fields coupled to the metric yield divergences propor-
tional to the second power of the curvatures. Therefore, the
fundamental action must have terms in it which are quadratic
in the curvatures in order to renormalize the theory. This also
explains why such QFT treatments are often overlooked.
Curvatures involve second derivatives of the metric, so that
quadratic gravity involves metric propagators which are
quartic in the momentum. Quartic propagators are generally
considered problematic, for reasons which will be reviewed
below. However, quadratic gravity does have the positive
feature that it is renormalizable [14], and can be asymptoti-
cally free [15–17]. Moreover, to recover general relativity in
the low energy limit one must arrange to have the usual
quadratic propagators at low energy. The challenge for such
QFT treatments then is to deal with fundamental quartic
propagators at high energy while recovering usual gravity at
low energy.
The variation which we explore will involve a Yang-Mill

gauge theory plus weakly coupled quadratic gravity.
For the purposes of this introduction one can consider this
to be defined by the action (in units of ℏ ¼ c ¼ kB ¼ 1,
which will be consistently employed throughout the paper)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

4g2
gμαgνβFa

μνFa
αβ −

1

2ξ2
CμναβCμναβ

�

ð1Þ

although we also discuss other variants below. The Weyl
tensor is given by
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Cμναβ ¼ Rμναβ −
1

2
ðRμαgνβ − Rναgμβ − Rμβgμα þ RνβgμαÞ

þ RðgÞ
6

ðgμαgνβ − gναgμβÞ: ð2Þ

The quantity Fa
μν is the usual field strength tensor for the

Yang-Mills theory. The index a is summed over the
generators of the gauge group G. One has that

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν ð3Þ

where fabc are the structure constants of G and g is the
Yang-Mills coupling constant.
Both couplings g and ξ are asymptotically free, so this is

a renormalizable asymptotically free theory at high energy.
We consider the limit where the gauge coupling g is larger
than the gravitational coupling ξ. This means that the gauge
theory becomes strongly interacting at a higher energy.
The energy scale of the gauge theory will be taken to be the
Planck scale. Indeed, this is the role of the helper gauge
theory in this construction—it defines the Planck scale, and
also induces the Einstein-Hilbert action at lower energies
[18–22]. We have elsewhere [4] calculated the induced
gravitational constant due to QCD,

1

16πGind
¼ 0.0095� 0.0030 GeV2 ð4Þ

and so a QCD-like theory would need an energy scale 1019

times greater to generate the observed Planck scale.
Left on its own, the Weyl-squared term would also

become strong at some energy. However, because we take it
to be still weakly coupled at the Planck scale, it would
become strong only at a very low energy scale. (For
example, for a pure Weyl theory if ξ ¼ 0.1 at the Planck
scale, it would become strong at Λξ ¼ 10−1006 eV.) In
practice, this running of ξ is interrupted by the induced
gravitational effects due to the gauge field, and hence is
never relevant at low energy2. Indeed we will see that the
gravitational interaction can remain weakly coupled at all
energies. This helps give us control over the predictions of
the theory. Our goal is to explore the structure of this theory
in order to see if there are any calculable obstacles to
treating it as a UV completion of quantum gravity. The
theory so far passes such tests successfully.
In order to describe the nature of this theory, let us show

a subset of our results. For the purpose of this introduction,
let us again simplify the result by ignoring the possibility of
an induced cosmological constant, although this will be
discussed below. In this case, the spin-two part of the
propagator will be seen to have the following structure

iDμναβ ¼ iPð2Þ
μναβD2ðqÞ

D−1
2 ðqÞ ¼ q2 þ iϵ

κ̃2ðqÞ −
q4

2ξ2ðμÞ −
q4Neff

640π2
ln

�
−q2 − iϵ

μ2

�

−
q4Nq

1280π2
ln

�ðq2Þ2
μ4

�
: ð5Þ

Here, Pð2Þ
μναβ is the spin-two projector to be described below.

The function 1=κ̃2ðqÞ is induced by the gauge theory and
can be described by techniques related to QCD sum rules.
It will have the limits

1

κ̃2ðqÞ →
1

κ2
q ≪ MP

→ 0 q ≫ MP ð6Þ

where κ2 ¼ 32πG is the coupling in the Einstein-Hilbert
action. The coefficient of the first logarithm, Neff , is a
number that depends on the number of light degrees of
freedom (d.o.f.) with the usual couplings to gravity and Nq

is a number due to gravitons coupled through the quadratic-
curvature action. These numbers will be defined in detail
below but for now we can note that at very high energies
Neff ¼ N∞ ¼ Dþ NSM, where D is the number of gen-
erators in the gauge theory and NSM is due to the particles
of the standard model and beyond3 while Nq ¼ 199=3.
This propagator is described by three regions. At low

energy q2 ≪ ξ2M2
P, where Mp is the Planck mass,4the

quadratic propagator dominates, and one gets the usual
coupling of general relativity. At high energy q2 > M2

P, one
has a purely quartic propagator and the running gravita-
tional coupling is

ξ2ðqÞ¼ ξ2ðμÞ
1þ ξ2ðμÞðN∞þNqÞ

320π2
lnðq2=μ2Þ

¼ 320π2

ðN∞þNqÞ lnðq2=Λ2
ξÞ
ð7Þ

where as usual we have defined the scale factor Λξ via
1=ξ2ðμÞ ¼ ðN∞ þ NqÞðln μ2=Λ2

ξÞ=320π2. In the inter-
mediate regime ξ2M2

P ≤ q2 < M2
P, the propagator goes

through a resonance, and also transitions from quadratic to
quartic behavior. A plot of the absolute value of propa-
gator throughout these regions is shown in Fig. 1 for
timelike values of q2, normalized to the usual propagator
at low energy. One can readily see the usual behavior at
low energy, as well as the improved momentum behavior
at high energy. But clearly the striking feature is the
resonance, which occurs at q2 ¼ m2

r ¼ 2ξ2=κ2. At weak

2The same thing happens to the SU(2) coupling of the standard
model. It would become strong at 10−14 eV but its running is
interrupted by the symmetry breaking at the TeV scale.

3Including just the standard model particles yields NSM ¼
283=12.

4To be more precise, we are referring to a variation on a
reduced Planck mass M2

p ¼ 2=κ2
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coupling the width is roughly Δq2 ∼ Neffξ
2m2

r=320π. It is
fair to think of this as an unstable spin-two resonance, and
we will explore this interpretation more fully.
We have used this propagator in the calculation of a

physical process which goes through the resonance region,
which is the scattering in the spin-two s-channel partial
wave. The cross-section is shown in Fig. 2. The usual
growth of the amplitude, which normally would become
strong at the Planck scale, is tamed by the quartic part of the
propagator beyond s ¼ m2

r , and remains weakly coupled.
We will explicitly confirm that the scattering amplitude is

unitary at all energies. This occurs despite the sign of the
propagator near the pole being the opposite from normal
expectation. Careful readers should pay attention to this
point below.
There are some approximations which have gone into

the form of the propagator. One is that we have included the
logarithmic behavior from loops but not any residual
nonlogarithmic constants. These in practice can be
absorbed in a redefinition of 1=ξ2, but we have not
explicitly calculated these terms. More importantly, we
have treated each region using only the dominant action
appropriate for that region. In particular this means that
when we are displaying results from the highest energies,
we use the quadratic curvature action only. This feature is
related to the lack of an imaginary part in the ln q4 terms.
We also note that the propagator in the spacelike region,

and equally the Euclidean propagator, is featureless and
well behaved. In particular the Euclidean propagator
involves

D2EðqEÞ ¼
�

q2E
κ̃2ðqEÞ

þ q4E
2ξ2ðμÞ þ

q4EðNeff þ NqÞ
640π2

ln

�
q2E
μ2

��−1

¼
�

q2E
κ̃2ðqEÞ

þ q4EðNeff þ NqÞ
640π2

ln

�
q2E
Λ2
ξ

��−1
ð8Þ

where q2E > 0. It is shown in Fig. 3, again normalized to the
usual quadratic propagator. Note that without the helper
gauge interaction inducing the usual gravitational coupling
at low energy, the quartic terms would have blown up
at q2E ¼ Λ2

ξ but this point is innocuous in the present
framework.
With this as introduction, we turn to the more detailed

investigation of the theory. In Sec. II we describe some of
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FIG. 3. The Euclidean spin-two propagator corresponding to
the same conditions as shown in Fig. 1, again normalized to the
standard propagator of general relativity.
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FIG. 2. The absolute value of the unitary J ¼ 2 partial wave
amplitude, calculated with ξ ¼ 0.1. The x-axis is the center of
mass energy in units of the Planck mass.
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FIG. 1. The absolute value of the spin-two propagator for
ξ ¼ 0.1, normalized to the standard propagator of general
relativity. The x-axis is the momentum jqj in the time-like region,
in units of the Planck mass. The imaginary parts have been
calculated with loops of standard model particles and gravitons.
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the issues of quadratic gravity in general, including some
aspects of describing the d.o.f. In Sec. III we turn to the
spin-two propagator and explore some of the results
mentioned above. Section IV describes a test of unitarity
in scattering in the spin-two channel. Section V gives a
discussion of a broader class of theories, including the
cosmological constant and also the spin-zero sector. In
Sec. VI, we make some comments on the unimodular
version of this theory, which also may be useful to explore
more fully. Finally Sec. VII gives a summary and dis-
cussion. In the Appendix, we calculate the magnitude of the
R2 term in the action which is also induced by the Yang-
Mills interaction.

II. QUADRATIC GRAVITY

In addition to the Einstein-Hilbert action

SEH ¼ 2

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
R ð9Þ

there in general can be three combinations at quadratic
order in the curvature which are generally covariant

Squad¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

6f20
R2−

1

2ξ2
CμναβCμναβ−ηG

�
ð10Þ

where

G ¼ RμναβRμναβ − 4RμνRμν þ R2 ð11Þ
is the Gauss-Bonnet invariant. This latter term is a total
derivative in four dimensions, and so it cannot influence the
classical equations of motion nor graviton propagation.
One can also introduce a surface term □R in the above
action. The counterterm associated with it in the calculation
of the one-loop effective action is gauge-dependent. We
will drop the surface term as well as the Gauss-Bonnet
contribution in the rest of this paper. In any case, we remark
that topological and surface terms should be included in
order to provide renormalizability. We also note that

−
1

2ξ2
CμναβCμναβ ¼ −

1

ξ2

��
RμνRμν −

1

3
R2

�
þ 1

2
G

�

ð12Þ
Our conventions are: the Minkowski metric is given as
ημν ¼ diagð1;−1;−1;−1Þ and the Riemann curvature ten-
sor is given by Rλ

μνκ ¼ ∂κΓλ
μν þ Γη

μνΓλ
κη − ðν ↔ κÞ.

In theories with fundamental curvature-squared terms,
the graviton propagator will be quartic in the momentum.
This is generally considered to be problematic. With a
quartic propagator in free field theory one expects negative
norm ghost states, using for example

−i
q4

∼
−i

q2ðq2 − μ2Þ ¼
1

μ2

�
i
q2

−
i

q2 − μ2

�
ð13Þ

and perhaps tachyons if μ2 is negative. When considering
quadratic curvature gravity, the decomposition of the d.o.f.
varies depending on the gauge condition imposed and also
on the choice of field parametrization, and there are
generally gauge-variant unphysical states [23]. However,
it is generally agreed that the free field propagating modes
are a massive scalar and its massless scalar ghost, and a
massless spin-two graviton and its massive spin-two ghost.
The scalar massive mode arises uniquely from the R2 term
and its mass is proportional to f20. The massless scalar ghost
is interesting because it is the ghost found in most
quantization schemes of pure Einstein gravity [24]. With
some work, it can be shown to be harmless. The massive
spin-two ghost arises uniquely from the C2 term, and its
mass is proportional to ξ2.
In order to see what ultimately is a problem with ghost

states, one can draw on the work on Lee-Wick models
[25–30]. In these theories, states with negative norms are
introduced much like the Pauli-Villars regulators, which
combine with regular fields to produce a q−4 fall-off of
the combined propagators. While one might worry about
unitarity and negative energies with the ghost states, it is
not these features which are problematic. Due to the
interactions of the theory, the ghost states are unstable
and do not appear in the asymptotic spectrum5. The theories
can be shown to be unitary. However, what does occur is
microscopic violations of causality due to the ghost states.
While there are not gross large scale violations of causality,
because the ghost states only propagate for a short time, the
causal properties are uncertain on small scales by amounts
of the order of the ghost width. This has been explicitly
demonstrated in Refs. [29,30]. For example, by forming
initial state localized wave packets, the final arrival times
will have portions of the wave packet arriving earlier than
usual expectations by amounts of order of the width.
In our calculation, a similar effect in the propagator

holds. Interactions shift the massive spin-two effect in the
propagator away from the real axis, and it appears as a
resonance rather than an asymptotic state. The sign of the
propagator near the pole is ghostlike. However, the result-
ing amplitude near the pole will be explicitly shown to be
unitary. We should also expect microscopic violations of
causality as in the Lee-Wick models. To have this happen
near the Planck scale in gravity does not seem outrageous.
We would expect that the causal properties would become
fuzzy in any quantum theory of gravity because the
quantum fluctuations of whatever defines spacetime would
lead to uncertainties in the causal structure. In our case
these effects would be proportional to the Planck length,
although somewhat larger by an amount 1=ξ4 as the

5For other recent discussions regarding the emergence of real
and complex ghosts in higher-derivative quantum gravity, see
Refs. [31,32].
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resonance width is narrow. We are willing to accept this
feature as a property of our theory.
The other complaint about theories with extra derivatives

in the fundamental Lagrangian is that they lead to a
classical Hamiltonian which is not bounded from below,
via the Ostrogradsky construction [33]. It is not clear how
relevant this classical result is. The path integral treatment
based on the Lagrangian does not find the effect of such an
instability. The Lee-Wick theories also seem not to be
bothered by it. Our calculations do not show such an effect
either. One notes that the classical Dirac Hamiltonian is
also not bounded from below. The Dirac case is rendered
stable by a modification of the quantization rules. There are
at least three variations on modified quantization rules
which lead to a well-behaved quantum Hamiltonian in the
case of quartic derivative theories [34–36]. We do not take a
position on these alternative rules. However, gauge theories
and gravity are most simply quantized by the path integral
formalism using the action, and we adopt these techniques.
They seem to lead to a well-behaved quantum theory.
Finally, theories with quartic propagators at high energy

violate the Källen-Lehmann bound on the asymptotic
behavior of propagators [37,38]. However, this bound does
not apply for gauge fields—indeed it is violated in QCD
[39,40]. Moreover, the microscopic violations of causality
also violated the assumptions for the theorem. For both
reasons, this bound is not relevant for the present theory.
Let us briefly discuss the quantization of the theory given

by the action (1) within the path integral treatment. Using
the background-field method, one considers the paramet-
rization gμν ¼ ḡμλðehÞλν, where ḡμν is a smooth background
metric. One should add the necessary gauge-fixing terms
concerning the Weyl part, SGF½h�, and for the Yang-Mills
term, SYM;GF½Aa

μ; h�. Moreover, one should also take into
account the associated Faddeev-Popov ghost contributions
SFP½η; η�; h� (for the Weyl part) and Sgh½c; c̄; Aa

μ; h� (for the
Yang-Mills part). In such contributions, η is the ghost field
related to the Weyl term and c is the ghost field associated
with the Yang-Mills term. For the Weyl contribution, one
can consider the construction given in Refs. [23,41]. On the
other hand, the Yang-Mills part can be obtained from the
usual Minkowski counterpart by the usage of general
covariance and then one expands the metric as above. In
this way, in the background-field method the partition
function for our theory is given by

Z½ḡ� ¼ ðdetGμνÞ1=2
Z

DhDη�DηDADc̄Dc

× expfifSW ½h� þ SGF½h� þ SFP½η; η�; h�
þ SYM½Aa

μ; h� þ SYM;GF½Aa
μ; h� þ Sgh½c; c̄; Aa

μ; h�gg;
ð14Þ

where SW ½h� (SYM½Aa
μ; h�) is obtained from (1) by solely

considering the Weyl (Yang-Mills) term expanded up to

second order in hμν, and Gμν is the differential operator
associated with the gravitational gauge-fixing term.
The one-loop divergences for the effective action evalu-

ated from this theory have been calculated elsewhere, see
for instance Refs. [15–17,23,41–43]. It is given by

Γdiv ¼ −
μd−4ðα1 þ α2Þ

d − 4

Z
ddx

ffiffiffiffiffiffi
−ḡ

p
C̄μναβC̄μναβ: ð15Þ

The Weyl tensor C̄μναβ is built from the background metric
ḡμν. We will conveniently specialize this result to a flat
background in due course. In addition, in the above
equation, α1 is the contribution coming from graviton
loops, whereas α2 is the contribution coming from the
non-Abelian gauge field. Specifically:

α1 ¼
199

480π2
¼ Nq

160π2

α2 ¼
D

160π2
: ð16Þ

In order to include standard model particles, as well as
interactions beyond the standard model, one would have to
consider additional shifts in the α2 coefficient due to one-
loop divergencies associated with such couplings. One
finds

α2 → α02 ¼
Dþ NSM

160π2
¼ N∞

160π2
; ð17Þ

at very high energies.

III. THE SPIN-TWO PROPAGATOR

Here we focus on the study of the spin-2 propagator. As
discussed above, the free field propagating modes emerg-
ing in the model depend on the choice of gauge parameters
as well as on the choice of field parametrization. However,
the spin-2 part of the propagator of the hμν field maintains
the same form irrespective of gauge parameters and field
parametrizations [23]. The most interesting feature of this
exploration is the finite-width resonance in the propagator.
This emerges from a competition of the q2 and q4 terms in
the propagator. It appears with an opposite sign from usual
expectation, and the imaginary part also changes sign from
expectation, in a way that is consistent with the optical
theorem. It is the remnant of a would-be ghost state,
although because it is unstable it does not appear as a
physical state in the asymptotic spectrum. Also of interest is
the existence of three energy regions, in each of which the
propagator has a distinct structure and/or different active
d.o.f. In the highest energy region, the quadratic curvature
terms are dominant, and this is reflected in the structure of
the propagator.
In this section we set the cosmological constant to zero,

and return to its influence in Sec. V. This allows us to
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expand around flat space. In this paper we will use the
exponential parameterization of the fluctuation, gμν ¼
ημλðehÞλν ¼ ημν þ hμν þ 1

2
hμλhλν þ � � �. One obtains the

following free propagator (in momentum space)

iD0
μναβðqÞ ¼ −

2iξ2

ðq2Þ2 P
ð2Þ
μναβ: ð18Þ

We will give an explicit expression for the spin-2 projector

Pð2Þ
μναβ below.
First let us work at low energies and include loop

corrections. We treat all fields as massless—the small
masses of standard model fields make no difference in
the energy region of interest to us. In this case, the one-loop
vacuum polarization can be written schematically as
(temporarily suppressing the Lorentz indices), for d → 4

Πðq2EÞ ¼ q4E

�
μ

qE

�
4−d c1

d − 4
;

where we considered dimensional regularization for regu-
larizing the integrals and this result was obtained after a
Wick rotation to the Euclidean space (qE is the Euclidean
momentum). The scale factor μ, with dimensions of mass,
is inserted for dimensional reasons, and c1 is a constant
that does not contain poles as d → 4. By rearranging the
expression in terms of an exponential of a logarithm, one
easily sees that, as d → 4, the one-loop vacuum polariza-
tion will consist of a divergent part plus a finite part. In
addition, the knowledge of the form of the divergence term
gives us straightforwardly the logarithmic finite part, since
they share the same coefficient.6

All such discussions imply that the results presented at
the end of the previous section allows us to determine
explicitly the finite part of the one-loop vacuum polariza-
tion. By employing the following expansions of the differ-
ent invariants up to second order in h (in Minkowski
background)

R2 ¼ ∂μ∂νhμν∂α∂βhαβ − 2□h∂μ∂νhμν þ□h□h

RμνRμν ¼ 1

4
□h□hþ 1

4
□hμν□hμν þ 1

2
∂μ∂νhμν∂α∂βhαβ

−
1

2
□h∂μ∂νhμν −

1

2
∂μ∂νhμα∂β∂νhβα

RμναβRμναβ ¼ □hμν□hμν − 2∂μ∂νhμα∂β∂νhβα

þ ∂μ∂νhμν∂α∂βhαβ; ð19Þ

where some integrations by parts were carried out, one
obtains the following one-loop contribution to the vacuum
polarization

Πμν;αβðq2Þ

¼ −
Nð0Þ

eff

320π2
ln

�
−q2

μ2

��
1

3
qμqνqαqβ þ

1

2
q4Iμναβ

þ 1

6
q2ðqμqνηαβ þ qαqβημνÞ −

1

6
q4ημνηαβ

−
1

4
q2ðqμqβηνα þ qμqαηνβ þ qνqαημβ þ qνqβημαÞ

�
;

ð20Þ

where Iμναβ is given by

Iμναβ ¼ 1

2
ðημαηνβ þ ημβηναÞ: ð21Þ

Here Nð0Þ
eff is defined by the contributions of various matter

fields to the one-loop divergence (within the standard
model and beyond), normalized to that for gauge bosons.
For the fields with spin J ≤ 1, this is

Nð0Þ
eff ¼ NV þ 1

4
N1=2 þ

1

6
NS ð22Þ

where NV , N1=2, NS are the number of gauge bosons,
fermions and scalars respectively. The contribution coming
from graviton loops will be discussed in due course. The
one-loop spin-2 propagator is then given by

iDμναβðq2Þ ¼ iD0
μναβðq2Þ þ iD0

μνρτðq2Þ
× ½iΠρτ;γδðq2Þ�iD0

γδαβðq2Þ: ð23Þ

Now we rewrite Πμν;αβðq2Þ by introducing the set of the
following projectors for symmetric second-rank tensors in
momentum space [23]

Pð2Þ
μνρσ ¼ 1

2
ðθμρθνσ þ θμσθνρÞ −

1

3
θμνθρσ

Pð1Þ
μνρσ ¼ 1

2
ðθμρωνσ þ ωμρθνσ þ θμσωνρ þ ωμσθνρÞ

Pð0Þ
μνρσ ¼ 1

3
θμνθρσ

P̄ð0Þ
μνρσ ¼ ωμνωρσ ð24Þ

where

θμν ¼ ημν −
qμqν
q2

ωμν ¼
qμqν
q2

: ð25Þ

Such projectors do not form a complete basis in the
corresponding space, and hence we must also add the
following transfer operators

6We keep only the logarithmic terms. Additional finite terms
can be absorbed into the finite parts of the coupling constants and
do not change our analysis.
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T ð0Þ
μνρσ ¼ 1ffiffiffi

3
p θμνωρσ

T̄ ð0Þ
μνρσ ¼ 1ffiffiffi

3
p ωμνθρσ ð26Þ

in order to obtain a complete basis. In terms of such
projectors the one-loop vacuum polarization can be
written as

Πμν;αβðq2Þ ¼ −
Nð0Þ

eff

640π2
q4 ln

�
−q2 − iϵ

μ2

�
Pð2Þ

μναβ: ð27Þ

The imaginary part of the vacuum polarization is found via
the usual prescription

lnð−q2 − iϵÞ ¼ lnðjq2jÞ − iπθðq2Þ: ð28Þ

Using the usual orthogonality relations satisfied by the
above projectors, one can iterate the vacuum polarization
and find an intermediate form for the spin-2 propagator

Dμναβðq2Þ ¼ −
Pð2Þ

μναβ

ðq2Þ2
h

1
2ξ2ðμÞ þ

Nð0Þ
eff

640π2
ln
�
−q2−iϵ

μ2

�i : ð29Þ

The factor in square brackets defines the running coupling
constant ξðq2Þ at these energy scales (that is, below the
resonance). That is, we define

ξ2ðqÞ ¼ ξ2ðμÞ
1þ ξ2ðμÞNð0Þ

eff
320π2

ln
�
jq2j
μ2

� ¼ 320π2

Nð0Þ
eff ln

�
jq2j
Λ2
ξ

� : ð30Þ

In addition, there are the effects of gravitational loops. At
low energies these are treated using the effective field
theory for gravity. As briefly discussed in the Introduction
section, the Einstein-Hilbert gravitational action will be
induced at low energies by the helper gauge interaction
[18–22,44,45]. In other words, an induced Einstein-Hilbert
term is present in the effective action due to the scale-
invariance breaking generated by loop effects. We have
calculated this effect for QCD-like theories in a previous
paper, finding a positive value for κ2 [4]. In addition to
leading to a q2 term in the propagator, the effects of loops of
gravitons also provide logarithmic factors in the propaga-
tor. The loops carry the usual iϵ convention. Taking into
account such modifications, one obtains that

D̃μναβðq2Þ ¼ Pð2Þ
μναβDðq2Þ; ð31Þ

where

D−1ðq2Þ ¼ q2 þ iϵ
κ̃2

−
q4

2ξ2ðμÞ −
Neff

640π2
q4 ln

�
−q2 − iϵ

μ2

�

ð32Þ

and κ̃2 ¼ κ2 at the low energies which we are working
presently. The pole at q2 ¼ 0 carries the usual iϵ pre-
scription because it was induced via the Yang-Mills
interaction. Here Neff needs to include the graviton
contribution, calculated within effective field theory
[46,47], such that

Neff ¼ NV þ 1

4
N1=2 þ

1

6
NS þ

21

6

¼ 21

6
þ NSM þ NBSM ð33Þ

with NSM being the contribution from standard model
particles and NBSM that of new physics beyond the
standard model but below the scale of gravity. We neglect
the latter in what follows. In the standard model with one
Higgs doublet and three generations of fermions, one finds
that NS ¼ 2, N1=2 ¼ 45, and NV ¼ 12, so that NSM ¼
283=12.
The effect of graviton loops is somewhat different at high

energies. Here the curvature-squared terms in the action are
dominant, and the graviton propagator is quartic in the
momentum. We treat this region by considering only the
curvature-squared effect—the induced Einstein term is
subdominant and is neglected. Here again the logarithmic
effects are tied to one-loop divergences. However, the
difference comes in that there is no imaginary part induced
by these loops. This arises because the matrix element
for the production of on-shell gravitons vanishes. This is
known quite generally, in that the Weyl action produces
no on-shell scattering amplitudes in flat space [48–52].
In our situation, this can be seen directly.
The vertex involved is a triple graviton coupling between

an off-shell graviton with invariant mass q2 and two on-shell
gravitons. The latter will be massless, transverse and trace-
less since the spectrum is defined by the induced Einstein
action. Let us show that this triple graviton vertex vanishes.
Consider the triple gravitonvertex arising from theR2 term in
R2 − 1

3
RμνRμν. The curvature can be expanded around flat

space in powers of thenumber of gravitational fields involved

R ¼ Rð1Þ þ Rð2Þ þ Rð3Þ þ � � � ð34Þ

such that we can pull out the triple graviton term as

ffiffiffiffiffiffi
−g

p
R2 ¼ …þ 1

2
hλλR

ð1ÞRð1Þ þ 2Rð1ÞRð2Þ þ � � � ð35Þ

The on-shell condition corresponding to transverse, traceless
fields at q2 ¼ 0 is that Rμν ¼ 0. This holds order by order
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in the expansion in the number of graviton fields. The off-
shell graviton will be taken from one of the terms in Eq. (35).
However, no matter how this field is chosen, there always
remains another curvature which satisfies RðiÞ ¼ 0 leading
to the vanishing of the vertex. This can be verified by direct
computation. This argument also easily generalizes the
RμνRμν.
The vanishing of this vertex implies that the logarithms

do not pick up an imaginary part. This can be accom-
plished by using 1

2
ln½ðq2Þ2=μ4� instead of lnð−q2 − iϵÞ=μ2.

This form can also be achieved by regularizing the
propagator via

D ∼
1

q4 þ ϵ2
: ð36Þ

This then implies that the final propagator involves
two logarithmic factors and takes the form quoted
previously

iDμναβ ¼ iPð2Þ
μναβD2ðqÞ

D−1
2 ðqÞ ¼ q2 þ iϵ

κ̃2ðqÞ −
q4

2ξ2ðμÞ −
q4Neff

640π2
ln

�
−q2 − iϵ

μ2

�

−
q4Nq

1280π2
ln

�ðq2Þ2
μ4

�
: ð37Þ

In the low energy region below the resonance, where the
Einstein action dominates, we have Nq ¼ 0, and Neff is
given by Eq. (33). Above the resonance but below the
Planck scale, the Weyl action is dominant and we have
Nq ¼ 199=3 and Neff ¼ NSM. Finally above the Planck
scale the gauge bosons of the helper gauge theory
become active and we have Nq ¼ 199=3 and Neff ¼
Dþ NSM ¼ N∞, where D is the number of gauge bosons.
Now let us study the poles of the propagator given by

Eq. (31). We will show that the ghost state contained in the
free propagator becomes unstable due to loop corrections.
Clearly the spin-2 propagator (31) has the standard pole at
q2 ¼ 0, which means that the graviton remains massless at
one-loop order. Note also that, for Euclidean q2E ¼ −q2 (or
spacelike q), D−1ðq2EÞ has no other real zeros apart from
q2E ¼ 0 for q2E > Λ2

ξ. In turn, for timelike q, q2 > 0 andD−1

picks up an imaginary part. Because we are in the weakly
coupled region ξ2 ≪ 1, the pole will occur below the
Planck scale.
Consider the propagator near the pole. If we expand

using

q2 ¼ m2
r þ δq2 ð38Þ

and note that in this energy region κ̃ ¼ κ, we get the
expansion of the inverse propagator

D−1ðqÞ

¼ m2
r

κ2
−m4

r

�
1

2ξ2ðμÞ þ
Neff

640π2
ln

�
m2

r

μ2

��

þ δq2
�
1

κ2
− 2m2

r

�
1

2ξ2ðμÞ þ
Neff

640π2

�
ln

�
m2

r

μ2

�
þ 1

2

���

þ iπm4
r
Neff

640π2

ð39Þ

Using

1

2ξ2ðμÞ þ
Neff

640π2
ln

�
m2

r

μ2

�
¼ 1

2ξ2ðmrÞ
ð40Þ

the real part of the pole location is then determined by the
condition

m2
r ¼

2ξ2ðmrÞ
κ2

ð41Þ

and we have

D−1ðqÞ ¼ −
δq2

κ2

�
1þ Neffξ

2ðmrÞ
320π2

�
þ i

2ξ2m2
r

κ2
Neff

640π
: ð42Þ

If we define the positive number γ by

γ ¼ 2ξ2m2
r

Neff

640π
�
1þ Neffξ

2ðmrÞ
320π2

� ð43Þ

and pull out an overall normalization (which can be
absorbed in the normalization of the field), we have the
propagator near the pole involving

DðqÞ ¼
�

κ2

1þ Neffξ
2ðmrÞ

320π2

�
1

−δq2 þ iγ

¼
�

κ2

1þ Neffξ
2ðmrÞ

320π2

�
−1

δq2 − iγ
: ð44Þ

This behavior is different from the usual structure for a
propagator of an unstable particle. In the standard case we
use

DðqÞ ¼ 1

q2 − ðM − i Γ
2
Þ2 ð45Þ

and we would have near the pole, m2 ¼ M2 − Γ2=4, the
behavior

DðqÞ ¼ 1

δq2 þ iMΓ
: ð46Þ
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We note that, aside from the overall normalization, the
residue right on the pole is exactly the same as usual, with
the correspondence

1

iγ
¼ 1

iMΓ
: ð47Þ

However when the form of the propagators is defined by
the sign of δq2, this is composed of two unusual signs.
Comparing the second version in Eq. (44) with that of
Eq. (46) we see that the overall normalization is the
opposite of the expectation (i.e., ghostlike), and also the
imaginary part has the opposite sign from expectation.
These two signs are connected in an important way. We can
summarize these by a factor Z, such that

iDðq2Þ ∼ iZ
q2 −m2

r þ iZγ
ð48Þ

where Z ¼ −1. As discussed in Refs. [29,30], the overall
minus sign in Z is significant; such a sign is compensated
by the unusual sign of the ghost propagator in such a way
that the imaginary part of the forward scattering amplitude
is positive, as it should be in order to obey the optical
theorem. These signs also play a very important role in the
unitarity of the scattering amplitude which we will discuss
in the next section.
Note that we find a single pole, in contrast with previous

work in Ref. [9] which claims a pair of complex-conjugated
poles. The imaginary part in the region of the pole comes
from the loops of light particles with usual quadratic
propagators. These carry the usual iϵ prescription, and
the imaginary part comes from the property of the loga-
rithm, Eq. (28). The fact that we are at weak coupling
facilitates the analysis of the pole location, as described
above, but the determining feature that yields a single pole
is the iϵ prescription of Eq. (28). Also note that in Ref. [9]
the issue of the gauge dependence of the pole location has
been raised. The location is gauge independent at one loop
which is the order that we are working, as can be seen in the
work of Ref. [23]. We hope to explore this issue in future
work when we look at loop processes using the full spin-
two propagator.
Our calculations show the emergence of three energy

scales, defined by Λξ, Λg, which is the gauge field scale
mass, and mr, the value for which the propagator presents
a resonance, as discussed above. We take Λg ≫ Λξ. For
energies below Λg, the gauge field becomes strongly
coupled and confined. In addition, we recall that we
identify the Planck scale with the Yang-Mills scale,
Λg ≡Mp. For energies ∼mr, the ghost particle goes as a
resonance; since it is unstable, it will not appear in
asymptotic states. Below such a scale one should take into
account the contribution to the vacuum polarization coming
from the gravitons in the effective-field-theory calculations.

Below this energy scale the theory is satisfactorily
described by the effective field theory approach.
In this analysis we have made an approximation of using

only the dominant gravitational action in each region of
interest. Specifically, at high energy where the Weyl action
dominates, we have used only the quartic propagators and
dropped the effect of the subdominant q2 terms. In addition,
we have considered only the one-loop corrections. It seems
clear that a more complete treatment would use the full
propagator self-consistently within the graviton contribu-
tion to the vacuum polarization. This would indeed be
interesting to explore, and we hope to return to this
calculation in the future.

IV. UNITARITY OF THE SCATTERING
AMPLITUDE

In this section we show, with explicit calculations, that the
J ¼ 2 scattering amplitude in this theory is unitary at all the
energy regions. This proceeds through the graviton propa-
gator in the s-channel and is the one which might be
expected to be problematic due to the lowest order expect-
ation for the ghost state. However, this feature turns out not
to violate unitarity, and indeed it is the special properties
of the resonance and the imaginary parts from loops which
enforce unitarity. We proceed in three steps. First we
describe the scattering of a single scalar field. This demon-
strates how unitarity occurs in this channel and highlights the
role of the various signs in the propagator and the imaginary
parts. Then we generalize to multiple fields. Finally, there is
a discussion of the graviton interactions at the highest
energies due to the quadratic curvature terms in the action.
This calculation is based on previous work by Han and

Willenbrock [53] and Aydemir et al. [54]. As a first step, we
work with a single real massless scalar field minimally
coupled to gravity and consider the reaction ϕþ ϕ →
ϕþ ϕ through s-channel graviton exchange. We recall that
it is through the s-channel that resonances and new unstable
particles are usually probed. In addition, in the s-channel,
the intermediate state satisfies s > 0, where s is the
Mandelstam variable describing the square of the total
energy of the particles in the center-of-mass frame (invari-
ant rest mass).
The Feynman rules associated with the interacting vertex

for scattering amplitudes is to be extracted from the
expression ð1=2ÞhμνTμν. The s-channel amplitude for the
process ϕþ ϕ → ϕþ ϕ is given by

iM ¼
�
1

2
VμνðqÞ

�
½iDμναβðq2Þ�

�
1

2
Vαβð−qÞ

�
ð49Þ

where the energy-momentum of matter has the following
on-shell matrix element (at the lowest order)

VμνðqÞ ¼ hp0jTμνjpi ¼ pμp0
ν þ p0

μpν − p · p0ημν; ð50Þ
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with p · p0 ¼ q2=2, pþ p0 ¼ q. Since we are only con-
sidering the effect of the scalar field, the logarithmic terms
in the propagator only reflect the loop of that particle and
are described by Nq ¼ 0; on the other hand, effective field
theory calculations yield the value Neff ¼ 1=6 for a single
scalar field [54]. Employing the usual Mandelstam varia-
bles, one finds

M ¼ 1

8s

�
2tu −

s2

3

�
D̄ðsÞ

D̄−1ðsÞ ¼ 1

κ̃2

	
1 −

κ̃2s
2ξ2ðμÞ −

κ̃2sNeff

640π2
ln

�
s
μ2

�
þ iκ̃2sNeff

640π




ð51Þ

where we used that sþ tþ u ¼ 0. Now we perform a
partial wave expansion with respect to the angular momen-
tum J

M ¼ 16π
X∞
J¼0

ð2J þ 1ÞTJðsÞPJðcos θÞ ð52Þ

where PJðcos θÞ are the Legendre polynomials that satisfy
PJð1Þ ¼ 1. Furthermore, we employ the parametrization
t ¼ −sð1 − cos θÞ=2 and u ¼ −sð1þ cos θÞ=2. Hence
using that P2ðxÞ ¼ ð3x2 − 1Þ=2, one finds the following
expression for the partial wave amplitude T2:

T2ðsÞ ¼ −
Neffs
640π

D̄ðsÞ: ð53Þ

In order to satisfy elastic unitarity, the scattering in the
elastic channel must have ImT2 ¼ jT2j2. This is satisfied
when the amplitude has the form

T2ðsÞ ¼
AðsÞ

fðsÞ − iAðsÞ ¼
AðsÞ½fðsÞ þ iAðsÞ�
f2ðsÞ þ A2ðsÞ ð54Þ

for any real functions fðsÞ, AðsÞ. Since the imaginary part
in the denominator comes from the logarithmic factor, the
unitarity condition is a relation between the tree-level
scattering amplitude which determines the AðsÞ in the
numerator and the logarithm in the vacuum polarization
which determines the imaginary part in the denominator.
For the elastic scattering of a single scalar, this relation is
satisfied with

AðsÞ ¼ −
Neffs
640π

: ð55Þ

We note that there is an important correlation between the
unusual sign of the imaginary part in the propagator and the
sign of the scattering amplitude which allows unitarity to be
satisfied. It is however perhaps not that surprising that

unitarity is obtained in this case because we are here simply
expanding a unitary S matrix in perturbation theory.
If we now allow not only a single scalar but also other

light fields plus gravitons in the theory, we are in principle
faced with a multichannel problem. An initial state of
scalars can scatter into a final state of gravitons, and visa
versa. The solution is given by Han and Willenbrock [53],
and consists of diagonalizing the scattering matrix. Having
performed this diagonalization, the problem is back into
that of a single channel elastic scattering. Let us first
consider this in the effective field theory limit, below the
resonance where graviton scattering is determined by the
Einstein action only (i.e. Nq ¼ 0). The diagonalization of
Han and Willenbrock can be extended to include the
graviton channel, and the result is identical to that of
Eq. (53) except with a generalized value of Neff , given by
Eq. (33). So we see that unitarity is again satisfied.
Finally, we turn to the high energy region where the

graviton propagator arises dominantly from the terms
quadratic in the curvature. Consistent with the approxima-
tion given above, we here drop consideration of the
Einstein term in the gravitational action and only consider
the quadratic terms. As we described, these give no
coupling for on-shell gravitons. Likewise in the propagator,
the imaginary parts only arise from the matter particles and
not the gravitons. The scattering amplitude then takes the
form

T2ðsÞ ¼ −
Neffs
640π

	
−

s
2ξ2ðμÞ −

sNeff

640π2

�
ln

�
s
μ2

�
− iπ

�

−
sNq

1280π2
ln

�
s2

μ4

�

−1
: ð56Þ

In this region, we have

Neff ¼ N∞ ¼ Dþ NSM Nq ¼
199

3
: ð57Þ

Again, unitarity is satisfied. The consistent decoupling of
the on-shell graviton states in both the numerator and
denominator was important in this regard.
We repeat the comment from the previous section that an

improved treatment would include the full propagator self-
consistently in loops, as we hope to do in the near future.
This will be especially instructive in the unitarity calcu-
lation as it has the potential to couple in on-shell gravitons
even at the highest energies. However it appears from the
general construction of the elastic channel that we would
expect unitarity to be satisfied in such a treatment also.

V. MORE GENERAL RESULTS

The discussion above has focussed on what we feel is the
most important and novel aspects of the present theory.
There are two main topics connected to other terms in the
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action, (1) the cosmological constant and (2) the R2 term in
the quadratic action which is associated with the scalar
d.o.f. in quadratic gravity.
Let us start with the latter effect. Even if excluded from

the initial action, the R2 interaction will be induced by the
helper gauge interaction, much like the Einstein action is
induced. This effect was first described by Brown and Zee
[22]. We discuss this in our Appendix below and calculate
it within QCD. The result, in the notation of Eq. (10), is
positive and has the value

1

6f20
¼ 0.00079� 0.00030: ð58Þ

Because this is dimensionless, it would hold in a scaled-up
version of QCD. However, the result has an unusual feature
that this value is only to be applied when working below the
Planck energy. It can be seen from the derivation of the
Adler-Brown-Zee formalism that the calculation is accom-
plished by Taylor expanding the gravitational field on
longer wavelengths than the Planck scale arising from the
helper gauge interaction. The induced effect vanishes at
energies above the Planck scale, much like the induced
value of the Newton constant also vanishes there.
It is also possible to have a “bare” value of f0 in the

original action. In this case the original symmetry is scale
invariance rather than local conformal invariance7 In this
case there is a scalar sector to analyze. The interesting
feature here is that the massive scalar that appears is not a
ghost state. It has the usual positive residue, and is not
problemmatic. Indeed, the scalar propagator has been
calculated elsewhere and it is given by [2,24]

Dð0Þ
μναβðq2Þ ¼

�
q4

f20
−
2q2

κ̃2

�−1
Pð0Þ

μναβ

¼ κ̃2

2

�
1

q2 −M2
0

−
1

q2

�
Pð0Þ

μναβ ð59Þ

where M2
0 ¼ 2f20=κ̃

2. One can easily identify the massive
scalar mode, as well as a (massless) ghost state. However,
with some effort one can show that the latter is the standard
ghost that emerges also in general relativity, so it is a
harmless nonpropagating state which can be removed by a
gauge transformation [24]. In turn, the first term describes
the massive scalar excitation, which is in fact a propagating
mode, as alluded to above. In this case one can also define a
running coupling constant f20ðqÞ through the renormaliza-
tion group equation [2]:

μ
df20
dμ

¼ 1

16π2

�
5ξ4

3
þ 5ξ2f20 þ

5

6
f40

�
: ð60Þ

Observe that the coupling f0 is not asymptotically free,
unless f20 < 0, which would lead to a tachyonic instabil-
ity M2

0 < 0.
It also would not be a problem for this theory if we were

to give up the initial scale/conformal invariance, as long as
the energy scale of the intrinsic G−1 and cosmological
constant were small compared to the Planck scale deter-
mined by the helper gauge interaction. For example for
weakly coupled Weyl gravity, we have seen that the
intrinsic scale in the running coupling is Λξ, which can
be 10−1006 eV or even much lower. If the intrinsic Newton’s
constant and cosmological constant were govern by that
scale, the phenomenology of this model would be essen-
tially unchanged.
Finally, there is the problem of the induced cosmological

constant. In a QCD-like theory, this is given by

Λind ¼
1

4
h0jTμ

μj0i ¼
1

4

D
0j βðgÞ

2g
Fa
μνFaμνj0

E
: ð61Þ

For the standard value of the gluonic condensate, this yields
Λind ¼ −0.0034 GeV4. Scaling a QCD-like theory up to
the Planck mass would yield a very large negative value of
the cosmological constant, of order of the Planck scale.
In the presence of this cosmological constant, we need to

expand about anti-de Sitter space rather than about flat
space. We can show that the AdS solution is unchanged by
the presence of quadratic terms. Using the exponential
parametrization around a background field

gμν ¼ ḡμλðehÞλν ð62Þ

and discarding total derivatives, we find the expansion offfiffiffiffiffiffi−gp ðLEH þ LqÞ where
ffiffiffiffiffiffi
−g

p
LEH

¼ ffiffiffiffiffiffi
−ḡ

p �
−Λþ 2

κ2
R̄þ 1

κ2

�
ḡμνR̄ − 2R̄μν −

Λκ2

2
ḡμν

�
hμν

−
Λ
8
ðhλλÞ2 þ

R̄
4κ2

ðhλλÞ2 − R̄μνðhμνhλλ − hμβh
β
νÞ

þ 1

κ2

�
hλλ;νh

ν;β
β − hβα;νhν;αβ þ 1

2
hβα;νhα;νβ −

1

2
hλλ;νh

β;ν
β

��
:

ð63Þ

For the quadratic terms, Lq, we use R ¼ R̄þ Rð1Þ þ � � �,
where Rð1Þ is linear in the quantum fluctuation

Rð1Þ ¼ hλ; νλ;ν − hμν;ν;μ − R̄μ
νhνμ ð64Þ

resulting in

7Indeed calculations exist that show that divergences in f0 is
generated perturbatively at higher loop order even if one starts
from a conformally invariant initial action. See the discussion of
Salvio and Strumia [2]. It would be interesting to understand if
there were regularization schemes which could prevent such
divergences.
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ffiffiffiffiffiffi
−g

p
R2 ¼ ffiffiffiffiffiffi

−ḡ
p �

R̄2 þ
�
2R̄Rð1Þ þ 1

2
R̄2hλλ

�

þ
�
ðRð1ÞÞ2 þ R̄Rð1Þhλλ þ

1

8
ðhλλÞ2R̄2

�
þ � � �

�
:

ð65Þ

However, for constant curvature spacetimes with R̄μν ¼
βgμν, R̄ ¼ 4β, with β being a constant, the linear term
ð2R̄Rð1Þ þ 1

2
R̄2hλλÞ vanishes aside from a total derivative.

Moreover, for such a spacetime the background Weyl
tensor vanishes C̄μναβ ¼ 0. While in general

ffiffiffiffiffiffi−gp
C2 would

have a similar expansion to Eq. (65), in this spacetime there
will be no linear term in the expansion because of the
vanishing of the background Weyl tensor. Therefore the
lowest order Einstein equation remains unchanged and we
recover the AdS curvature Rμν ¼ 1

4
κ2Λḡμν and the back-

ground dependent terms of Eq. (63) reduce to

−
Λ
8
½ðhλλÞ2 − 2hβαhαβ�: ð66Þ

The expansion of Lq is then

ffiffiffiffiffiffi
−g

p
Lq ¼

ffiffiffiffiffiffi
−ḡ

p �
1

6f20
R̄2 þ 1

6f20

�
ðRð1ÞÞ2 þ R̄Rð1Þhλλ

þ 1

8
ðhλλÞ2R̄2

�
−

1

2ξ2
Cð1Þ
μναβC

ð1Þμναβ
�
: ð67Þ

The bilinear terms in the background field expansion of Lq

can be recovered by use of the identity of Eq. (12) and

Rð1Þ
μν ¼ 1

2
½hλλ;μ;ν − hλμ;ν;λ − hλν;μ;λ þ hμν;λ;λ� ð68Þ

as well as Eq. (64).
While probably all quantum theories of gravity suffer

from having a Planck-scale cosmological constant, it is
particularly embarrassing for a theory which starts from a
scale invariant initial action. In such a case, one cannot add
a “bare” cosmological constant in order to cancel the
induced one. We need to remove or severely suppress
the induced cosmological constant. We present a set of
possible solutions without having a perfectly compelling
choice.
Holdom [55] has raised the question of whether the

vacuum energy in massless QCD could in fact vanish. This
is in part because the present lattice estimates are uncertain
enough to include a vanishing value. The calculations are
made more difficult by the presence of a hard dimensional
cutoff—the lattice spacing—which adds a dimensionful
ingredient to the theory beyond just the running coupling.
It would be an important step for induced gravity theories if
this question could be definitively answered.

One of the conditions under which the vacuum energy
would certainly vanish in a Yang-Mills theory is that the
beta function could vanish at zero energy. This can happen
if there is an infrared fixed point in the beta function at a
finite coupling—the Caswell-Banks-Zaks fixed point
[56,57]. This can emerge from a competition of terms of
different order in the beta function, i.e. βðgÞ ¼ −bg3 þ cg5

with b, c > 0. However, the phenomenology of the IR
phase is less-well understood. There is still a dimensional
parameter in the running coupling at higher energies, and
the perturbative contribution to the induced Einstein action
would still exist. However it is not clear if a positive
Newton’s constant would result. This option deserves
further study.
One of the present authors has proposed that the spin

connection, which appears naturally as a gauge field in
gravitational theories, could form an asymptotically free
gauge theory if treated as an independent field [3].
The Euclidean version of such a theory would involve
the symmetry Oð4Þ and would be confined. This involves

six field strengths, F½a;b�
μν where ½a; b� ¼ a, b − b, a is the

antisymmetric combination of Lorentz indices a, b ¼ 0, 1,
2, 3. By symmetry, each of the fields contributes equally to
the Euclidean vacuum value of F2. When continued back to
Lorentzian space-time, the symmetry becomes SOð3; 1Þ.
In the vacuum energy, the products F½01�F½01�, F½02�F½02�,
F½03�F½03� change sign due to the Minkowski metric, while

the spacelike ones F½12�F½12�, F½13�F½13�, F½23�F½23� carry the
same sign. The Lorentzian symmetry then forces the
vacuum expectation value of the trace anomaly to vanish.
If this non-compact group makes sense as the helper gauge
interaction, then it would not suffer from the large
cosmological constant problem.
We have been exploring this theory in the limit where the

Weyl coupling constant ξ stays small, or more precisely that
the scale involved in the running coupling ξðqÞ is very
much smaller than the Planck scale. This is chosen mainly
for our convenience in analysing the theory. However, if the
scale in the gravitational running constant is of the same
order as the Planck scale, it will also become strongly
coupled. In this case, it would induce extra contributions to
the induced Newton constant and to the cosmological
constant. Almost nothing is known about this situation,
although Adler [21] has developed some of the relevant
formalism. In the absence of knowledge, one can engage in
wishful thinking that perhaps a mechanism can be found
such that the gravitational contribution to the cosmological
constant cancels the gauge contribution.
Another approach could be to have the helper gauge

theory be supersymmetric. This would lead to a vanishing
of the cosmological constant if the supersymmetry is still
exact at the Planck scale. One would need supersymmetry
breaking at a lower scale, and potentially a much smaller
value of Λ.
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Finally, one can have a version of the theory in which the
energy density of the vacuum does not gravitate. This is
accomplished by fixing the determinant of the metric to a
constant, such that the vacuum energy term in the action
does not involve the gravitational field. We discuss this
unimodular option in the next section.

VI. UNIMODULAR GAQ GRAVITY

Because of the difficulties associated with the cosmo-
logical constant, it is worth considering a unimodular
version of the theory. In unimodular general relativity
[58–65], the determinant of the metric is set equal to a
constant, which can be chosen to be unity,

ffiffiffiffiffiffi
−g

p ¼ 1 ð69Þ

and the symmetry of the theory is reduced to volume-
preserving diffeomorphisms which preserve this condition.
The initial equations of motion differ from those of general
relativity, because the

ffiffiffiffiffiffi−gp
factor is not varied, but there is

an additional constraint on the solutions associated with
energy conservation. When this constraint is imposed, the
equations are exactly those of general relativity, including
the possibility of a cosmological constant term which
emerges as an integration constant of the constraint
equation. Percacci [64] has a recent treatment of unim-
odular theories which makes it clear that the equivalence of
the unimodular theory to the general one is not just a
property of the Einstein action, but would also be true for a
theory quadratic in the curvature, such as we are consid-
ering here.
However, the striking advantage of a unimodular theory

is the different status of the cosmological constant. In usual
metric theories, the cosmological constant is tied to the
energy density of the vacuum, and appears as a constant
term in the Lagrangian. The many large contributions to
this energy density form part of the “cosmological constant
problem.” In unimodular theories, this energy density in the
Lagrangian (which we have called Λ above) does not
couple to gravity and is irrelevant. The cosmological
constant which appears in the equations of motion arises
from the initial condition of the constraint equation. We can
call this constraint parameter Λu. Of course, we do not
yet have a good theory of this initial condition. For our
purposes Λu can have any magnitude and either sign.
Unimodular theories solve this part of the cosmological
constant problem by decoupling the constant that appears
in Einstein’s equation Λu from the vacuum energy Λ. In the
theory considered in this paper, the unimodular constraint
would remove the worry about the large energy density
found when one scales up QCD-like theories as the helper
gauge theory.
Our starting point can be close to the unimodular case.

Consider first the theory with a gauge interaction and the
Weyl-squared action, as in Eq. (1). This has local conformal

symmetry, and it has one less propagating d.o.f. compared
to general quadratic gravity. In the exponential parameter-
ization, this is the scalar trace h ¼ hλλ. This “conformal
mode” is missing from the action to all orders in pure 4D,
not just in the expansion about flat space.
This set-up differs from a unimodular version in the

path integral measure. In a general theory, the conformal
mode is included in the path integration, whereas in a
unimodular one it is not included. When one regulates the
general theory, this mode can in principle get fed back into
the action. If one regulates dimensionally, the conformal
mode actually appears in the action when the dimension D
is not equal to 4. If one regulates with a cutoff, then the
mode is presumably sensitive to the cutoff when done in a
gauge invariant manner. So the path integral measure is
one way that the general action differs from a unimod-
ular one.
Let us then remove the conformal mode from the path

integration. The background field expansion for the final
theory changes. From the analysis shown above using the
exponential parametrization, we must set h ¼ hλλ ¼ 0. The
R2 action could still be induced, or even appear initially.
The remaining background field expansion has a slightly
modified structure in the unimodular case. Generally, when
we expand to second order in the fluctuation, we take the
first order term to vanish by the equations of motion. But
for unimodular gravity the first order term is not equivalent
to the final equations of motion. In particular it does not
include the constraint that brings in the parameter that plays
the role of the cosmological constant. In particular, the first
order term in the expansion is

ĥμν

�
Rμν −

1

4
ḡμνR

�
ð70Þ

where the fluctuating field with the conformal mode
removed is

ĥμν ¼ hμν −
1

4
ḡμνhλλ: ð71Þ

This is the equation of motion before the constraint is
imposed. However, both this original equations of motion
and the constraint are separately satisfied. This implies that
the first order variation vanishes as usual. When we reach
second order in the fluctuation there are also background
curvatures here. Here we should use the background
curvatures which satisfy the final equations of motion.
This leads to two differences in the final result. One is that
the fluctuating field is traceless in the exponential repre-
sentation. This removes the vacuum energy Λ from the
quadratic action. The other is that the equations of motion
will involve the constraint-generated cosmological constant
rather than the one connected with the vacuum energy. That
is, one uses Rμν ¼ 1

4
κ2Λugμν. For example, these changes

yield the leading low energy action for AdS or dS spaces as

GAUGE ASSISTED QUADRATIC GRAVITY: A FRAMEWORK … PHYS. REV. D 97, 126005 (2018)

126005-13



SEH ¼
Z

d4x
1

κ2

�
−ĥβα;νĥν;αβ þ 1

2
ĥβα;νĥ

α;ν þ Λu

4
ĥμν ĥ

ν
μ

�
ð72Þ

instead of Eqs. (63), (66).

VII. SUMMARY

There are several features of this theory which differ
from usual expectation. We list these here:

(i) Although the initial theory was scale invariant, the
Planck scale and the Einstein term in the action were
induced by the helper gauge theory interaction via
dimensional transmutation. This allows the low
energy spectrum of gravitons to be the usual one.

(ii) The spin-two graviton propagator has a resonance at
a scale ξMP. This is the remnant of the ghost state,
but is unstable and does not exist as an asymptotic
state in the spectrum. Related work on Lee-Wick
models indicates that we should expect microscopic
violations of causality on timescales given by the
inverse of the width of the resonance, which is
1=ξ2MP.

(iii) The propagator sign at the resonance is opposite to
the usual expectation, and likewise the imaginary
part has the opposite sign from usual expectation.
These two features combine to give the residue at the
resonance the proper sign, consistent with the optical
theorem.

(iv) There are three kinematic regions with different
physical content. At low energies, below the reso-
nance, the usual effective field theory description is
valid. In the intermediate energies between the
resonance and the Planck scale, the quadratic cur-
vature terms dominate for the gravitons, but the
helper gauge interaction is not yet active. At high
energies, the theory can be asymptotically free with
both the gauge and graviton interactions active.

(v) When treated using only the interactions from the
quadratic curvatures at ultrahigh energies, the propa-
gator does not pick up imaginary parts from the
graviton loops, because the coupling to on-shell
states vanishes.

(vi) The spin-two partial wave amplitude—which is the
dangerous one due to the original ghost pole—has
been shown to be unitary in all energy regions. This
is nontrivial and is tied to the special properties of
the propagator.

(vii) The gravitational interaction remains weakly coupled
at all energies. The usual growth of amplitudes with
increasing energy is tamed by the transition to quartic
propagators at high energy.

(viii) The R2 term in the action is also induced by the
helper gauge interaction even if it was not present in
the initial theory. We calculate its coefficient in
QCD-like theories. However, this has the feature that

the induced coupling is only present below the
Planck scale, and disappears above it.

The role of the helper gauge interaction in the theory is
primarily to dynamically generate the Planck scale, while
still keeping the gravitational interaction weakly coupled.
This is the feature which allows the theory to be under
reasonable theoretical control. We understand the dynamics
of confined gauge theories from decades of study of QCD
and related theories. By keeping the gravitational inter-
action weakly coupled, we can use perturbation theory to
describe it and to bypass a strongly coupled theory of
gravity. One can imagine other limits of this same theory in
which the gravitational interaction is also strongly interact-
ing. Or one could consider other methods for inducing the
Planck scale, perhaps with scalar fields. However, the
variation considered here, with weakly coupled gravity
and a strongly interacting gauge theory, seems to be a very
good laboratory for UV complete quantum field theories of
gravity.
The theory has passed the tests that we have explored thus

far. The naive fears concerning ghosts and unitarity violation
have not been realized. The mechanisms for avoiding these
have been nontrivial, and required the signs and amplitudes
to work out in a coordinated manner. Further work is needed
in order to study amplitudes with gravitational loops in this
theory, and we hope to turn to this in the future. In addition,
the cosmological constant problem remains, although we
have suggested possible solutions, including a unimodular
version of the theory. Overall, the possibility of using this
theory as a QFT-based ultraviolet completion of quantum
gravity remains promising.
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APPENDIX: THE CALCULATION OF THE
INDUCED R2 TERM IN THE ACTION

Here we derive the induced R2 term within the Adler-
Zee-Brown approach. The gravitational effective action
reads

eiSeff ½gμν� ¼
Z

dϕeiS½ϕ;gμν�; ðA1Þ

where ϕ represents generically the matter fields and
S½ϕ; gμν� describes matter fields on a curved background.
As discussed above, we are considering the Yang-Mills
field as the matter field responsible for inducing the
effective gravitational action. Since Seff ½gμν� is a scalar
under general-coordinate transformations, it may be
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represented as the integral over the manifold of a
scalar density, which for slowly varying metrics can be
formally developed in a series expansion in powers of
∂λgμν

Seff ½gμν� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Leff ½gμν�

Leff ½gμν� ¼ Lð0Þ
eff ½gμν� þ Lð2Þ

eff ½gμν� þ Lð4Þ
eff ½gμν� þO½ð∂λgμνÞ6�

Lð0Þ
eff ½gμν� ¼ Λind;

Lð2Þ
eff ½gμν� ¼

R
16πGind

;

Lð2Þ
eff ½gμν� ¼

1

6f2ind
R2: ðA2Þ

Let us derive a representation of the induced f2 in terms
of the vacuum expectation value of products of the stress-
energy tensor Tμν of the matter fields. For that, let us study
the response of the action functional to an external
classical gravitational field gμν ¼ ημν þ hμν treating hμν
as a small perturbation. The response of quantum fields to
an arbitrary external field is described by the generating
functional of connected Green’s functions:

iW½h� ¼ −
i
2

Z
d4xhμνðxÞhTμνðxÞi

þ i
4

Z
d4xhμνðxÞhαβðxÞhτμναβðxÞi

þ i2

2!

�
1

2

�
2
Z

d4x
Z

d4yhμνðxÞhρσðyÞ

× hTfT̄μνðxÞT̄ρσðyÞgi þ � � � ðA3Þ

where h…i ¼ h0j…j0i denotes vacuum expectation value,
Tμν is the energy-momentum tensor of the Yang-Mills
field, given by

Tμν ¼ −Fa
λμF

aλ
ν þ

1

4
ημνFa

αβF
a αβ: ðA4Þ

and T̄μνðxÞ ¼ TμνðxÞ − hTμνðxÞi. The second term on the
right-hand side of Eq. (A3) is needed for consistency;
it plays a role in the cosmological constant sum rule [4].
We consider, for arithmetical simplicity, that hμν ¼
ð1=4Þημνh. We choose h to be a slowly varying over
the scale of the gauge interaction so that one can expand

hðyþ zÞ ¼ hðyÞ þ zμ∂μhðyÞ þ
1

2
zμzν∂μ∂νhðyÞ þ…

ðA5Þ

In this way, with W ¼ R
d4x

ffiffiffiffiffiffi−gp
Leff , one finds

i
ffiffiffiffiffiffi
−g

p
Leff ½gμν�

≈−
i
2
hðxÞ

�
1

4
hTðxÞi

�
þ i
16

ðhðxÞÞ2
�
1

4
hτμμααðxÞi

�

−
1

16
ðhðxÞÞ2

Z
d4z

�
1

8
KðzÞ

�
þ 1

210
ð∂μhÞ2

Z
d4zz2½KðzÞ�

−
1

24576
ð∂2

μhÞ2
Z

d4zðz2Þ2½KðzÞ� ðA6Þ

where integrations by parts in the two last terms were
performed, Kμνρσðx − yÞ ¼ hTfT̄μνðxÞT̄ρσðyÞgi, T¼ημνTμν

and K ¼ ημνηρσKμνρσ. In turn

ffiffiffiffiffiffi
−g

p
R≈

1

4

�
∂αhλκ∂α

�
hλκ−

1

2
ηλκh

�
−2∂μ

�
hλμ−

1

2
ηλμh

�
∂κ

×

�
hλκ−

1

2
ηλκh

��
¼−

3

32
ð∂μhÞ2;

ffiffiffiffiffiffi
−g

p
R2≈∂μ∂νhμν∂α∂βhαβ−2□h∂μ∂νhμνþ□h□h

¼ 9

16
ð∂2

μhÞ2 ðA7Þ

and also
ffiffiffiffiffiffi−gp ¼ 1þ ð1=2Þhþ ð1=16Þh2. Equipped with

such results one is able to derive representations for the
induced cosmological constant and induced Newton’s
constant as described in Refs. [18–22,44,45] and recently
investigated in Ref. [4] for the gluonic QCD case. In the
present context, we need an expression for the induced
coupling constant appearing before the R2 term. One finds

1

6f2ind
¼ i

13824

Z
d4zðz2Þ2hTfT̄ðzÞT̄ð0Þgi: ðA8Þ

Working in Euclidean space, one obtains

1

6f2ind
¼ 1

13824

Z
d4xðx2Þ2hTfT̄ðxÞT̄ð0Þgi: ðA9Þ

After performing a change of variables x2 ¼ t, we split the
integration into an ultraviolet part and an infrared part as
follows:

1

6f2ind
¼ π2

13824
ðIUV þ IIRÞ

IUV ¼
Z

t0

0

dtt3ΨðtÞ

IIR ¼
Z

∞

t0

dtt3ΨðtÞ ðA10Þ

where

ΨðxÞ ¼ hTfT̄ðxÞT̄ð0Þgi: ðA11Þ
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Now let us use the same approach as in Ref. [4] to evaluate
f2ind which would arise in QCD. We will employ the same
ingredients, namely perturbation theory and the operator
product expansion (OPE) at short distances and modern
lattice glueball studies at long distances.
Using the same expression for the infrared contribution

to ΨðxÞ as presented in Ref. [4], one gets the following
result for the IIR part:

IIR ¼ 16λ2

π2M6
G

G3;0
1;3

�
M2

Gt0
4

���� 1

0; 3; 4

�
ðA12Þ

where

Gm;n
p;q

�
z
���a1;…;an;…;ap

b1;…; bm;…; bq

�

is the Meijer G-function [66], Mg is the glueball mass and

λ ¼ h0jT̄ð0ÞjSi; ðA13Þ
is the glueball coupling, with jSi being the normalized
scalar glueball state.
As for IUV portion, one finds perturbative contributions

coming from short-distance scales as well as contributions
coming from intermediate energies which are going to be
evaluated through the OPE technique. Regarding these
latter terms, the results presented in Ref. [4] (and references
cited therein) allows one to obtain

IOPEUV ¼ b20α
2
s

256π4

	
2b0t20
π

hαsF2i

þ 2t30
3

�
4þ 29αs

3

�
ln

�
t30μ

6

64

�
þ 6γ − 1

��
hgF3i



;

ðA14Þ
where αs ¼ g2=4π and

b0 ¼
11

3
Nc −

2

3
Nf;

with Nf ¼ 0 and Nc ¼ 3 for gluonic QCD. In addition, μ is
an arbitrary subtraction point, γ ¼ 0.5772 is the Euler-
Mascheroni constant and hð� � �Þi are gluon condensate
terms

hαsF2i ¼ hαsFa
μνFaμνi

hgF3i ¼ hgfabcFa
μνFbν

ρ Fcρμi
hα2sF4i ¼ 14hðαsfabcFa

μρFb
ν
ρÞ2i − hðαsfabcFa

μνFb
ρλÞ2i

ðA15Þ
As for the perturbative contribution, with the change of
variables u ¼ Λ2

QCDt and again using the results quoted in
Ref. [4], one gets

ILUV ¼ CΨ

Z
u0

0

du
u

ΘðuÞ
ðln uÞ2

ΘðuÞ ¼ 1þ
X∞
n¼1

Xn
m¼0

amn
½lnðln u−1Þ�m
ðln u−1Þn

CΨ ¼ 96

π4
ðA16Þ

where the QCD scale parameter is given by (at one-loop
order)

ΛQCDðgðμÞ; μÞ ¼ μe−1=½bg2ðμ2Þ�

b ¼ b0
8π2

: ðA17Þ

The coefficients amn are loop corrections of higher order.
We employ the restriction that u0 ¼ Λ2

QCDt0 < 1. Let us
rewrite ILUV as

ILUV ¼ CΨ

Z
∞

ln u−1
0

dv
Θðe−vÞ
v2

: ðA18Þ

At leading order the integral can be easily evaluated and the
result is

ILUV ¼ CΨ

x0
: ðA19Þ

where x0 ¼ ln u−10 . Hence collecting our results, one has
that

1

6f2ind
¼ π2

13824

	
16λ2

π2M6
G

G3;0
1;3

�
M2

GX
2
0

4

���� 1

0;3;4

�

þ CΨ

ln½ðΛQCDX0Þ−2�
þ b20α

2
s

256π4

�
2b0X4

0

π
hαsF2i

þ2X6
0

3

�
4þ29αs

3

�
ln

�
X6
0μ

6

64

�
þ6γ−1

��
hgF3i

�

:

ðA20Þ

The above expression gives the induced f2 as a function of
X0 ¼

ffiffiffiffi
t0

p
. Using the lattice data given by Ref. [67], as well

as the values given by Refs. [67–69] for the OPE coef-
ficients, following Ref. [4] we quote our result for a
matching scale of X−1

0 ¼ 2 GeV:

1

6f2ind
¼ 0.00079� 0.00030: ðA21Þ

The error bar is determined by examining changes in the
input parameters. As one can easily see, QCD predicts a
positive shift for this coupling constant (in the energy range
of interest). This suggests that f2ind should be a positive
quantity.
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