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Operators dual to strings attached to giant graviton branes in AdSs x S° can be described rather
explicitly in the dual A/ = 4 super-Yang-Mills theory. They have a bare dimension of order N so that for
these operators the large N limit and the planar limit are distinct; summing only the planar diagrams will not
capture the large N dynamics. Focusing on the one-loop SU(3) sector of the theory, we consider operators
that are a small deformation of a %—Bogomol’nyi-Prasad-Sommerﬁeld (BPS) multigiant graviton state. The
diagonalization of the dilatation operator at one loop has been carried out in previous studies, but explicit
formulas for the operators of a good scaling dimension are only known when certain terms which were
argued to be small are neglected. In this article, we include the terms which were neglected. The
diagonalization is achieved by a novel mapping which replaces the problem of diagonalizing the dilatation
operator with a system of bosons hopping on a lattice. The giant gravitons define the sites of this lattice, and
the open strings stretching between distinct giant gravitons define the hopping terms of the Hamiltonian.
Using the lattice boson model, we argue that the lowest energy giant graviton states are obtained by
distributing the momenta carried by the X and Y fields evenly between the giants with the condition that any

particular giant carries only X or ¥ momenta, but not both.

DOI: 10.1103/PhysRevD.97.126004

I. INTRODUCTION

Motivated by the AdS/CFT correspondence [1-3], there
has been dramatic progress in computing the planar
spectrum of anomalous dimensions in A =4 super-
Yang-Mills theory. The planar spectrum is now known,
in principle, to all orders in the ’t Hooft coupling [4]. This
has been possible thanks to the discovery of integrability
[5,6] in the planar limit of the theory. This spectrum of
anomalous dimensions reproduces classical string energies
on the AdSs x S° spacetime, in the dual string theory [7].

Much less is known about N =4 super-Yang-Mills
theory outside the planar limit. There are many distinct
large N but nonplanar limits of the theory that could be
considered, and these correspond to a variety of fascinating
physical problems. For example, the problem of consider-
ing new spacetime geometries (including black hole
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solutions) corresponds to considering operators with a
bare dimension of order N? [8], while giant graviton branes
[9-11] are dual to operators with a bare dimension of order
N. The planar limit does not correctly capture the dynamics
of these operators [12,13].

Although much less is known about these large N but
nonplanar limits, some progress has been made. Approaches
based on group representation theory provide a powerful
tool, essentially because they allow us to map the problem of
the dynamics of the nonplanar limit—summing the ribbon
graphs contributing to correlation functions—into a purely
algebraic problem in group theory. Typically, it can be
phrased as the construction of a collection of projection
operators and their properties. Once the algebraic problem is
properly formulated, systematic approaches to it can be
developed. As an example of this approach, bases of local
gauge invariant operators have been given [14-21]. These
bases provide a good starting point from which the anoma-
lous dimensions can be studied. This is basically because
they diagonalize the free field two point function and,
at weak coupling, operator mixing is highly constrained
[22-26]. The resulting operators have a complicated multi-
trace structure, quite different from the single trace structure
relevant for the planar limit and its mapping to an integrable
spin chain. The spectrum of anomalous dimensions has been
computed for operators that are small deformations of
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%—Bogomol’nyi-Prasad—Sommerﬁeld (BPS)  operators.
Problems with two distinct characters have been solved;
it is possible to simply treat all fields in the operator on the
same footing, construct the basis, and then diagonalize
[27-30], or alternatively, one can build operators that
realize a spacetime geometry or a giant graviton brane and
use words constructed from the fields of the conformal
field theory (CFT) to describe string excitations
[22,31,32]. In the approach that treats all fields on the
same footing, one simply defines the operators of the basis
and considers the diagonalization of the dilatation oper-
ator with no physical input from the dual gravity descrip-
tion. When considering states dual to systems of giant
gravitons, the Gauss law of the dual giant world volume
gauge theory emerges so that in this approach we see open
string and membranes are present in the CFT Hilbert
space. When using words to describe string excitations,
computations in the CFT reproduce the classical values of
energies computed in string theory [31,32], the world
sheet S-matrix [33], and have led to the discovery of
integrable subsectors for string excitations of certain Lin-
Lunin-Maldacena (LLM) backgrounds [32]. Clearly, this
is a rich problem with hidden simplicity, so further study
of these limits is bound to be fruitful. The existence of this
hidden simplicity is not unexpected; conventional lore of
the large N limit identifies 1/N as the gravitational
interaction, so the N — oo limit, in which this interaction
is turned off, should be a simple limit.

One next step that can be contemplated is to go beyond
small perturbations of the %—BPS sector. This problem is our
main motivation in this study, and we will take a small step
in this direction. We will study operators constructed from
three complex adjoint scalars X, Y, Z of N =4 super-
Yang-Mills theory. Operators that are a small perturbation
of a %—BPS operator are constructed using mainly Z fields.
For these operators, interactions between the X and Y fields
are subdominant to interactions between X and Z and
between Y and Z fields and can hence be neglected. As we
move further from the original %—BPS operator, more and
more Xand Y fields are added. At some point, the
interactions between the X and Y fields can no longer
be neglected. Dealing with these interactions is the focus of
our study. We will argue that this is a well-defined problem
that can be solved, often explicitly. This is accomplished
by phrasing the new X and Y interactions as a lattice model,
for essentially free bosons. Thus, we finally end up with a
simple problem that is familiar and can be solved. This is
the basic achievement of this paper.

Our results show a fascinating structure that deserves to
be discussed. The mapping to the lattice model associates a
harmonic oscillator to both the X field and to the Y field.
Earlier results [29] treating the leading term performed the
diagonalization by associating a harmonic oscillator to the
Z field, so in the end, we seem to be seeing an equality in
the description of the three scalar fields. An even-handed

treatment of all three fields is a big step toward being able
to treat operators constructed with equal numbers of X, Y,
and Z fields. This would most certainly go beyond the
%—BPS sector, the main motivation for our study.

In the next section, we review the action of the one-loop
dilatation operator D,. The action of D, in the SU(3)
sector, in the Schur polynomial basis, has been evaluated
previously [34], and we simply quote and use the result.
We then move to the Gauss graph basis of Ref. [30], in
which the terms in D, arising from Z and Y or Z and X
interactions are diagonal. Again, this is a known result, and
we simply use it. The Gauss graph basis has a natural
interpretation in terms of giant graviton branes and their
open string excitations. We will often use this language of
branes and strings. We then come to the central term of
interest: the term in D, arising from X and Y interactions.
Denote this term by DXY. We will carefully evaluate this
term, arriving at a rather simple formula, which is the
starting point for Sec. III. The explicit expression for DY
can easily be identified with a lattice model for a collection
of bosons. The giant gravitons define the sites of this lattice,
and the open string excitations determine the lattice
Hamiltonian. Section IV diagonalizes the dilatation oper-
ator for a number of giants plus open string configurations,
arriving at detailed and explicit expressions for both the
anomalous dimensions and for the operators of a definite
scaling dimension. Our conclusions and some discussion
are given in Sec. V.

II. ACTION OF THE ONE-LOOP
DILATATION OPERATOR

We combine the six Hermitian adjoint scalars of N = 4
super-Yang-Mills theory into three complex combinations,
denoted X, Y, and Z. The operators we consider are
constructed using n Z’s, m Y’s, and p X’s. Operators
that are dual to giant graviton branes are constructed using
n+m+ p ~ N fields. We will focus on operators that are
small deformations of %—BPS operators, achieved by choos-
ingn > m+ p. Wewillﬁx%fv l as N — oo and treat " as
a small parameter. The collection of operators constructed
using X, Y, and Z fields are often referred to as the SU(3)
sector. This is not strictly speaking correct since these
operators do mix with operators containing fermions. At
one loop, however, this is a closed sector.

Our starting point is the action of the one-loop dilatation
operator of the SU(3) sector

D, = D} 4+ D¥? + DY, (2.1)

where
D3 = g%\ Tr([A, B][0,, Op)) (22)

on the restricted Schur polynomial basis. This has been
evaluated in Ref. [34]. Further, the terms D% and DX* have
been diagonalized. The operators of a definite scaling
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dimension Og (), called Gauss graph operators [28,30],
are labeled by a pair of Young diagrams R+n+m+ p
and r = n as well as a permutation ¢ € S, x S,,. Although
these labels arise when diagonalizing D% and D3Z in the
CFT, they have a natural interpretation in the dual gravi-
tational description in terms of giant graviton branes plus
open string excitations. A Young diagram R that has g rows
corresponds to a system of ¢ giant gravitons. The Y and X
fields describe the open string excitations of these giants, so
there are m + p open strings in total. We can describe the
state of the system using a graph, with nodes of the graph
representing the branes (and hence rows of R) and directed
edges of the graph describing the open string excitations
(represented by X and Y fields in the CFT). Each directed
edge ends on any two (not necessarily distinct) of the ¢
branes. The only configurations that appear when D% and
D¥? are diagonalized have the same number of strings
starting or terminating on any given giant, for the X and Y
strings separately [30,34]. Thus, the Gauss law of the brane
world volume theory implied by the fact that the giant
graviton has a compact world volume [35] emerges rather
naturally in the CFT description. Since every terminating
edge end point can be associated to a unique emanating end
point, we can give a nice description of how the open
strings are connected to the giants by specifying how the
terminating and emanating end points are associated. The
permutation ¢ € S,, X §,, describes how the m Y’s and
the p X’s are draped between the g giant gravitons by
describing this association [30,34]. The explicit form of the
Gauss graph operators is [30,34]

0o =S S S S VT

J.k skm otep s

« B(~ )—’1HXxHYB< 0= uyxny Or

JH ki (2.3)

(t8.r)ijiy

Each box in R is associated with one of the complex fields.
ris a label for the Z fields. The graph ¢ encodes important
information. The number of Y (or X) strings terminating
on the ith node, which equals the number of Y (or X)
strings emanating from the ith node, is denoted by m; (or
pi). m; (or p;) also counts the number of boxes in the ith
row of R that correspond to Y (or X) fields. We will often
assemble m; and p; into the vectors 7 and p. The number
of Y (or X) strings stretching between nodes i and k is
denoted m;; (or p;), while the number of strings stretch-
ing from node i to node k is denoted m;_; (or p;_;). A
Young diagram with k boxes a I k labels an irreducible
representation of S; with dimension d,. The branching

()= 1hyxmy

coefficients B resolve the operator that projects

from (s, 1), Wlth s = m, t+ p, an irreducible representa-
tion of §,, X S, to the trivial (identity) representation of
the product group Hy X Hy with Hy =S, XS, x-~-qu
and Hy = Sp] X sz PEEE Spq, i.e.,

BY (8,1 —>1HXXHYB s z)—>1HXX,.,y
E : ki

Zr

HX X HY yEHxxHy

(2.4)
F;i’t)(o) is a matrix (with row and column indices jk)
representing ¢ € S, X §, in irreducible representation

(s,1). The operators Og (. i, are normalized versions
of the restricted Schur polynomials [18]

Y Xk (0)

D'ES,H,erP

AR (t.5.0)jiy iy (Z’ Y, X) - n!m!p!

x Tr(cZ®"Y®mxX®r), (2.5)
which themselves provide a basis for the gauge inva-
riant operators of the theory. The restricted characters
XR\(1.5.7)iinii, (0) are defined by tracing the matrix represent-
ing group element o in representation R over the subspace
giving an irreducible representation (r,s,?) of the S, x
S,y X S, subgroup. There is more than one choice for this
subspace, and the multiplicity labels i, resolve this
ambiguity, for the row and column index of the trace. The

operators OR,<,’S‘,)I;] i given by
hooks, hooks hooks
0 RN r s t N 26
R,(t.5,7)H) i \/ hOOkSRfR AR.(ts.r)jirfin ( )

have unit two point function. hooks, stands for the product
of hook lengths of Young diagram r, and f stands for the
product of the factors of Young diagram R.

The above construction is rather technical, so it is useful
to describe some simple examples. A simple example
which illustrates the above formulas is provided by taking
R = Bjj,r = H s = [, and ¢t = (J. Notice that (r, s, 1)
is a one-dimensional irreducible representation of
Sy x 81 x S;. In this case, (r,s,1) is obtained once after
restricting to the subgroup, so we do not need any
multiplicity labels. The representation R is three dimen-
sional, and a basis for the vector space carrying the
representation can be labeled using the three standard
tableau

1y =432 1) = | A8ILY ) = 41210,

3) =

(2.7)

The state |3) is the (r,s, ) subspace, so the restricted
character is

X000 @) = BT

Using this restricted character, we find

(2.8)

126004-3



DE CARVALHO, DE MELLO KOCH, and LARWEH MAHU

PHYS. REV. D 97, 126004 (2018)

XTD oo (4 Y X

—Tr (Z2Y)Tr (X) —
T (ZXY) T (Z) —

Thus, we see that the restricted Schur polynomials are sums
over all possible traces structures with coefficients set by
the restricted characters. To really trust our approximations
and the brane interpretation, we would need to have many
(order N) Z’s in each row of r. However, our goal is simply
to illustrate the construction in a simple setting. With this in
mind, we will abuse the language and refer to each row of r
as a giant graviton. Since we have two rows in r, there are
two giants. There are two open strings (represented by the
X and Y fields), and in this simple example, the restricted
Schur operator and Gauss graph operators are identical.
This is the case whenever we have a single X and a single Y
field. In the generic situation, Eq. (2.3) says we must sum
over all possible irreducible representations of the impu-
rities, with the coefficient set by a permutation o. To
translate permutation ¢ € §,, X S, into an open string
configuration, label the fields X and Y from 1 to p for
the X’s and p + 1 to p + m for the Y’s. Each row of ris a
giant graviton. The numbers (p1, p. ..., p,) tell us how the
X strings [and (my,m,, ..., m,) tell us how the Y strings]
are distributed among the giants. The permutation ¢ then
tells us how to join the strings. So, for

[T TTT]
T = [T

(2.9)

and p=(1,1,1), m = (1,1,0), and ¢ = (123)(45), we
would have the open string plus giant configuration shown
in Fig. 1.

The action of the dilatation operator on the Gauss graph
operators is [28,30,34]

91

FIG. 1. An example of a Gauss graph for a Young diagram r
with three rows, p = (1,1,1), m = (1,1,0), and 6 = (123)(45).
Strings labeled 1, 2, or 3 are X’s. Strings labeled 4 or 5 are Y’s.

= % 'Tr (Z) Tk (V) Tr (X) — Tr (22)
+Tr (ZY)Tr (2)Tr (X) + Tr (ZX)Tr (2)Tr (V) + Tr (Z2)*Tr (Y X)
Tr (Z22X)Tr (V) + Tr (ZY X)Tx (2)
Tr (Z*)Tr (YX) —

Tr (Z2)Tr (Y)Tr (X)

Tr (Z2°Y X) — Tx (Z°XY)]

DYZO;’;}{) = _gYMZmU A Omp( )
i<j
DXZOm 7 = _ngMZplj ) (210)
i<j
where A;; = Aj; + AO + A+ [29]. We will now spell out

;;, A?J, and Aj;. Denote the row

lengths of r by /,.. The Young diagram r is obtained by
deleting a box from row j and adding it to row i. The Young
diagram ry; is obtained by deleting a box from row i and
adding it to row j. In terms of these Young diagrams,
we have

the actlon of the operators A

AYLORT(0) = —(2N + 1, +1,) 0% (o) (2.11)
A0 (o) = \/(N +1,)(N+1,,)0p R ?(U) (2.12)
AORE(0) = \JIN + 1)(N +1,) 07 (). (2.13)

Notice that D}% and D¥? in (2.10) are not yet diagonal;
they still mix operators with different R, r labels. This last
diagonalization, however, is rather simple; it maps into
diagonalizing a collection of decoupled oscillators as
demonstrated in Ref. [29]. We will call these Z oscillators,
since they are associated to the r label which organizes the
Z fields. It is clear that D5Y does not act on the r label so
that, in the end, the contribution from DX" simply shifts the
ground state eigenvalue of the Z oscillators.

We will now focus on the term DXY. Recall that our
operators are built with many more Z fields than X or Y
fields (n > p + m). Since this term contains no derivatives
with respect to Z, it is subleading (of order ”) when
compared to D% and D5#. Diagonalizing this operator is
the main goal of this article, so it is useful to sketch the
derivation of the matrix elements of DY in the Gauss graph
basis. We will simply quote existing results that we need,
giving complete details only for the final stages of the
evaluation, which are novel. The reader will find useful
background material in Ref. [34]. The action of this term on
the restricted Schur polynomial basis was computed in
Ref. [34]. The result is
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R T (yxw)ap
X IR/TI[Pz,FT(l,p + 1)}IT’,R’)OT(

¥,x w)ﬁ&
where
c _ _gz Copr dTmp
YMERK dxdydw<n +m+ p)dR’
frhooks;hooks,hooks hooks,
S rhooksghooks,, hooks hooks,
P] - PR,(t,s.r)ﬁD P2 — PT,(y.x,w){_iﬁ' (214)

I'S() is the matrix representing ¢ € S+, in irreducible
representation S+ n+m+ p. Young diagram R’ is
obtained from Young diagram R by dropping a single
box, with cpp denoting the factor of this box. Iy, [z,
P, and P, are intertwining maps. Iy maps from the
carrier space of R’ to the carrier space of 7°. It is only
nonvanishing if 77 and R’ are equal as Young diagrams
implying that operators labeled by R and T can only mix if
they differ by the placement of a single box. The operators

P, and P, are the intertwining maps used in the con-
struction of the restricted Schur polynomials. It is chal-
lenging to evaluate the above expression explicitly,
basically because it is difficult to construct P; and P,.
However, the above expression has not yet employed the
simplifications of large N. To do this, following Ref. [28],
we will use the displaced corners approximation. This
approximation assumes that the difference of the number
of boxes in any two rows of R is of order N. In this situation,
the action of the S, x S, subgroup simplifies so much that
the relevant restricted characters can be computed and a
complete explicit characterization of the multiplicity labels
on the restricted Schur polynomials is possible. The correc-
tions to the displaced corners approximation are suppressed
by the inverse of the difference in length of rows of R. After
applying the approximation, we obtain [34]

XY _ v
D3 O (15,07 = Z MR,(t,s.r)ﬁ17T.(w,v,u)&ﬁOT.(w,v,u)&,E’

T,(w,v,u)&'ﬁ

MR,(t,s,r) T,(w,v,u) a gYMzéR T

() (+1) (p.m)
E E ; Pl(1|ﬂ| sy ak

=
t‘l

\/dddd

2=

(p+1) p(p.im) (1) p(p'.i")
+ E ? qu/}, mz/}ink PW{IJM:Z 7//12'/2]

The trace in this expression is over the tensor product
Vj?”*’”, where V, is the fundamental representation of
U(q). The intertwining maps used to define the re-
stricted Schur polynomials (P; and P, above) factor
into an action on the boxes associated to the Z fields,
an action on the boxes associated to the Y fields, and an
action on the boxes associated to the X fields. The
intertwining maps' Pﬁgl‘;fl);mﬂz and P
actions of the intertwining maps on the X and Y fields
only. This happens because the trace over the Z field
indices, which is simple as the dilatation operator DXY
does not act on the Z fields, has been performed. Young
diagram R; is obtained from R by dropping a single box
from row i, and T} is obtained from T by dropping a
single box from row k.

are the

'A very explicit algorithm for the construction of these maps
has been given in Ref. [28].

E<1)E(p+l)P(p m

(2.15)
where
|
CRRCTT 1) p(p.i +1) (B’
Ipl Tr [Elii)Pgl;;);sazﬂz flf )PE&IZLI;)“/‘ZZ’Z
R;lT,
) (1) p(p+1) p(p.) (1) p(p+1) p(p'.')
WHIV1 3Oy Ekc E 9 Pl(llﬂ] Mlz/}in’l Eai P“f/)ll’;l];vﬂzl/z
(2.16)

The result (2.16) gives the DXY term in the dilatation
operator, as a matrix that must be diagonalized. As we
will see, all three terms in D, are simultaneously
diagonalizable at large N, so it is convenient to employ
the Gauss graph basis which already diagonalizes both
D% and D%X. The problem of diagonalizing D3" then
amounts to a diagonalization on degenerate subspaces of
D%¥ and D5X. Thus, the original diagonalization of an
enormous matrix is replaced by diagonalizing a number
of smaller matrices—a significant simplification.
Applying the results of Ref. [34], we find that, after
the change in basis,

DY Oy T (01) = Myl .0, 077 (02),  (217)

where
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1
ergfathaz = (
wo (1) 107 (o) 2 7 (P
x (P, /|O-2l//21Ekz wi|p, m)(p,
— (7. ii|o, w3 E( )E(P'H 1B
_ 1)
~ (B ow3 EEL

+ (P i |oyyy EL

Here, the Gauss graph operators O i (01) are normalized
to have a unit two point function. They are related to the
operators introduced in (2.3) as follows:

Ok;7 (o)

= Hmii(ff) m;;(o)
i=1

pii(6) 10k (0).

! H mk—>l(6)

k.Lk#l

(2.19)

Introduce the vectors (v(!)), = §;, which form a basis for
V,. The vector |p,m) is defined as follows,

p.m) = [p) ® |m), (2.20)
where
p) = ()8 @ @ (v\7)®rs
im) = (1) @ - @ (v\@)®m. (221)

We will now explain how the sums over y; and y, in
(2.18) can be evaluated. This discussion is novel and is one
of the new contributions of this paper. Consider the term

_ = = 1) = =
T = ) > (P i oy By i | B i)
WIGSﬁXS,ﬁWZGS«/XS«/

IEP+

x (p, o7yt wolp', m').

The dependence on the permutations ¢; and o, can be
simplified with the following change of variables: replace
y, with yr,, where
i, = ynoy =5 = o (2.22)
After relabeling ¥, — y, and taking the transpose of the

first factor which is a real number, we find
_ 5 - E
T = ) > (p.yT'E
I/IIGS];XS,T, WZES];!XSW

ooy 1
X <p,m|0'111//11ES/f+)

|p', ')

zk W2

00| p’, ).

mloy wllEz/f 1’l/|
m)(p, mlo7'yi'E
p.m)(p, o7y
Wy | (B ot i By | B )],

L T D>
—1)! — 1)
1)(m 1) lRilTk V/1€Sﬁ><5r7; V/Zesﬁ/xsﬁ/

(

=/ -’/>

+1)
Ve

P’ ')

Ya|P
—lE(_ )E I’H a |—>/ —>/>
(2.18)

If i # k, the matrix element (p, m|y7! Egi)y/zﬁ)", m') is only
nonvanishing if p # p’ and m = m/, while the matrix
element <;_5,ﬁ'1|01‘11//1‘1El(.,f+1)y/202|ﬁ’,}71’) is only nonvan-
ishing if p = p’ and m # m'. Thus, T; vanishes for i # k.
Indicate this explicitly as follows:

T, =6y Z

V1Y ESFXSs

(B, mlyi E vy | p. i)

oo g 1 - -

< (B, o i B yaoy| B ).

To simplify this expression further, note that El(.il) |p,m) is

only nonzero if vector v} occupies slot 1 in the vector D)

In this case, El(,l) p,m) = |p,m). Since y, and y, shuffle
(1)

the vectors in |p, m) into all possible locations, E;

will in
the end count how many times the vector v() appears in
|p,m). This is given by p; introduced above. A similar
argument applies to E(?*1)|p, ). Thus, we obtain

pim; -
T, =6, 21 E ,
1 tkp m <P

W12 ESEXS

mlyi 'y |p,m)

< (p. o7y w00 i)

pim;
=6yt

-1
S(wi'wahy)
P AE€S5xS; by EHyxHy

x 8(oy 'y waoa ).

Now, perform the change of summation variables y; —
with
W1 = yow. (2.23)

The summand is now independent of y, so that after
summing over y, and relabeling r; — w; we find

T =3dy(p— 1! m—1)Ip;m
Z Z 8(y1h1)d(o7 ' wi02hs).

W1ESXSj hy,hy€EHyxHy

Summing over y; now gives
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Ty =6u(p—1){(m—1)Ip;m; Z

hy,hy€EHxxHy

6(0'1_1,’11_102}12).

(2.24)

We also need to consider the term

To= Y Y (Fwlowy By |p.n)

17781 GS],XSm I/IZES~/ ><Sm,

P ')

x (p.n|oy o ‘l/11Ezk Y|P

= Y Y (Bl ER vl B )

l//]ESﬁXS,,', V/?GS-/XS—/

1)

<p7m|WllE1]1: w2651|ﬁ/9’%/>‘

Changing variables y7! — 67!y 7! shows that T4, = T, and
hence

T+ Ty =253(p — 1)!(m—1)Ip;m

x Y 807 hiloshy). (2.25)
hy,hy€HyxHy
The next sum we consider is
Ty= > > (Bl EGEL | B
WIESXS; Y €S /xSm/
x (B ilor wi B EL | B ).
Changing variables y;' — ;! with
gy = oy = W =y, (2.26)

the sum becomes
o = 1 (1 1 - o

T, = Z Z <’,m/|l//21E£.i)E,(£+)l//1|p,m>

I/IIESI,XS,,, I/IZES /XS il

+1) - -
ik)E(p 1//202|p’,m’>
(7, L) Tl (p+]) o o
Py ELUE T | Bl

X <I_7)a _>|61 l/’llE

=2 2

1781 ES RATRS €S~/ XS

o () T () -
x (p.mloT ELy VU ER Tyt yno| ).

T,=(p—1)(m~-

Dipisgmi Y (P ly3" |p.i) (p

Change variables y, — p with p =y 'y,, and relabel
p =y to find

>, - (1) pH) > -
Ty= Y > (Bl ELVES T B
y/leS,,xSm WZES-/XSmr
() e (1)
Eia]

x (.iilo7 Ely w0 | i)

We will use b to denote the g-dimensional vector that has
all entries zero except the bth entry, which is 1. For a
nonzero contribution, the first factor requires

p—ite=p m—-i+k=m, (227

and the second factor requires
m—ita=m  p-da+k=p. (2.28)

There are two solutlons
Case 1: ¢ =1 and a =k. In this case p =} and

m—1+ k=,
Case 2: ¢ =k and @ =1. In this case m = m’ and
p—it+k=p.
For case 1,

o - 1) it (p+]) = =
To= > X By L UE B
1€S XS5 I/IZES /XS e

“1(p+1 R
x (5ot Bl VEG "yl i).

. ~1 1
Consider the sum over y. Due to the factor EZ.' (P ),

we get a nonzero contribution from the slots p + 1,
p+2,....,p+m(aY string) if a string starts from node
k and ends at node i. Thus, the sum over y; gives

' |o7 yaoo| P

Z 8(y3 " 11)é (o7 ya0hy)

W2 ESFXS; hy,hy€HxxHy

VIZESﬁXSrﬁ/
:(p_1>!<m_1)!pi—>kmu Z
= (p=Dl(m = 1)p;xm; Z

hy o €HyxHy

5(01_1h102h2).

(2.29)
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For case 2,

T,= >

l//]GS;,XS,;, V/ZES,;’XSF:

g e (| p+l) 5> o\ > o 11 “l(p+1 S -
S (@l B VEL OB ) Bl B VES T e, B ).

Consider the sum over ;. We get a nonzero contribution for each Y string starting from node k, which ends at node i. After

summing over y;, we have

Ty = (p— 1D m—1)pim_, Z (p', iy !

l[leSﬁ/XS,;L

= (p =D m = 1)pimy_,; Z

p. i) (P, o7 waoo| B )

Z 8(y3" 11)d (o7 yr02hy)

W2 ESy XS5 hy.hyE€HyxHy

= (p = Dl(m = 1)p;my_; Z

hy,hyeHxxHy

5(01_11’110'2,’12).

(2.30)

Armed with these sums, we now obtain a rather explicit expression for the matrix elements of DY in the Gauss

graph basis:

n,p 5ru
M

This is the key result of this section and one of the key
results of this paper. We will now describe how the above
matrix can be diagonalized.

III. BOSON LATTICE

Our goal in this section is to diagonalize (2.31). This is
achieved by interpreting (2.31) as the matrix elements of a
Hamiltonian for bosons on a lattice. Toward this end, first

note that the matrix elements M7, 7, ..
if we can choose coset representatives such that ¢ and o,
describe the same element of S,, X S ,. This implies that the
brane-string systems described by o, and o, differ only in
the number of strings with both ends attached to the same
brane, but not in the number of string stretching between
distinct branes. This already implies that the contribution
DY only mixes eigenstates of D34 and DY? that are
degenerate and hence that all three are simultaneously
diagonalizable. In this case, the matrix element in (2.31)
simplifies to

are only nonzero

M

R,r,0\T,t,05

X [26ypi(62)m;(02) = primii(02) = pii(o2)my]. (3.1)

, CRRCTT
Z.f,,l Tito, — —g%{M — — ZéR;T; ol [28ipim; — primi; — piimi] Z
N e STt

5(01_1]110'2]’12).

(2.31)

The number of strings stretching between the branes m;;
(for Y strings) and py; (for X strings) is the same for both
systems, so
mi(or) =mp (o) =my piloy)=pulor)=pu. (3.2)
It is the number of closed loops (m;; for Y loops and p;; for
X loops) that can differ between the operators that mix.
Finally, we have introduced the notation

pi(o)= Zpik +pii(o) mi(o)= Zmik +m;(o). (3.3)

k#i k#i

From the structure of the operator mixing problem, we
would expect that M "” =M7? - This is indeed

R,r,01T,t,0, T.t,ooR,r.0
the case, as a consequence of the easily checked identity

X 26y pi(61)mi(o) = primii(o1) = pii(o)my], (3.4)

which holds for any i and k.
The lattice model consists of two distinct species of
bosons, one for X and one for ¥, hopping on a lattice, with a
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site for every brane or, equivalently, a site for every row in
the Young diagram R labeling the Gauss graph operator
("),’ﬁ’;f’ (6). The bosons are described by the following
commuting sets of operators:

[ai’aﬂ :51] [aj,a;] =0= [al‘,(lj]
(b bl =8;  [bl.bl]=0=1[b.b].  (3.5)
Using these boson oscillators, we have
_t A
m;; = a;da; Pi = b;b; (3.6)
m; = Zmik +a]a; pi= Zpik +bib.  (37)
k k
The vacuum of the Fock space |0) obeys
a;|0) = 0 = b;|0) i=12,....q (3.8)

The Hamiltonian of the lattice model is given by

J(N + Ig) .
H = i 25.. 4 b'h.
P T VPR

X <Zmil + aj“i) - pjia;a,- - mﬂbjb,> .

I#i

(N + Ig,)(

(3.9)

Notice that this Hamiltonian is quadratic in each type of
oscillator. It has a nontrivial repulsive interaction given by
the > iajaibjbi term, which makes it energetically unfav-
orable for a and b type particles to sit on the same site.
Also, the full Fock space is a tensor product between the
Fock space for the a oscillator and the Fock space for the b
oscillator. We will use the occupation number representa-
tion to describe the boson states. To complete the mapping
to the lattice model, we need to explain the correspondence
between Gauss graph operators and states of the boson
lattice. This map is given by reading the boson occupation
numbers for each site from the number of closed strings
with both ends attached to the node corresponding to that
site. In the next subsection, we consider an example which
nicely illustrates this map.

Finally, let us make an important observation regarding
(3.9). Although the eigenvalues of this Hamiltonian are
subleading contributions to the anomalous dimension, there
is an important situation in which this correction is highly
significant: for BPS states, the leading contribution to the
anomalous dimension vanishes, and this subleading cor-
rection is important. The BPS operators are labeled by
Gauss graphs that have p;;, = m;;, = 0 whenever i # k; i.e.,
there are no strings stretching between branes. In this case,
it is clear that (3.9) vanishes, so the BPS operators remain
BPS when the subleading interactions are included.

N -
12
O V)
N

AN PN \& - )

FIG. 2. Each Gauss graph label is composed of two graphs, the
first for the X strings and the second for the Y strings. Each graph
has three nodes (because g = 3). There are no b type particles
because there are no closed X strings. There are three a type
particles because there are three closed Y strings. All operators
share the same r label.

A. Example

In this section, we will consider an example for which R
has ¢ =3 rows and p =m = 3. In this problem, ten
operators mix. The Gauss graph labels for the operators
that mix are displayed in Fig. 2.

For the Gauss graph operators shown, we have the
following correspondence with boson lattice states:

a'}' 2
1) = ala}all0) |m=ﬂg%m>
a2 ah2
|w—@&%u» |®—%gim>
=Ly 16 =a 9Ly
G Ve
e @
m-d®lo  ®-"2o
(a})? (@)
9= g =@, (3.10)

Val 3!

It is now rather straightforward to compute matrix
elements of the lattice Hamiltonian. For example,

mm%:_VW+th+@%@

3.11

It is instructive to compare this to the answer coming from
(2.31). To move from state 2 to state 1, a string must detach
from node 2 and reattach to node 3. Thus, we should plug
i=2and k=1 into (2.31). The Gauss graph o, corre-
sponds to |1), while 6, corresponds to |2). In addition,
R, =T, and from the Gauss graphs, we read off p3, =1
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2 2
3 1? :
6
5

FIG. 3. An example of a Gauss graph with nonzero a and b
occupation numbers.

and my,(6,) = 1. It is now simple to see that (2.31) is in
complete agreement with the above matrix element.

Finally, the state corresponding to the Gauss graph in
Fig. 3 is

()’ (@)

VEIRE]]

(b)* (b3)?
V2! V2!

alalb] bibib}|0). (3.12)

IV. DIAGONALIZATION

In this section, we will consider a class of examples that
can be diagonalized explicitly. Our main motivation is to
show that working with the lattice is simple, so the mapping
we have found is useful.

A. Exact eigenstates

For these examples, take

Pri = Pik = OkintB my =my =604, (4.1)
with A and B two positive integers. For examples of Gauss
graphs that obey this condition, see Fig. 4. There are two
cases we will consider: we will fix the number of a particles
to zero and leave the number of b particles arbitrary or fix
the number of b particles to zero and leave the number
of a particles arbitrary. We will also specialize to labels R
that have the difference between any two row lengths

L) 77N

(
S

FIG. 4. An example of a Gauss graph that is easily solvable.
The example shown has A =2 and B = 3.

Ig.—lg. . .
#zO. In this case, our lattice

i

lRi - ZR]- NN, but

Hamiltonian simplifies to

N+lR Zq:

i=1

2(B+bb)(A+ala)

- B(aiai+1 +af, a;) = A(blbisy + bl b)), (4.2)
This Hamiltonian is easily diagonalized by going to Fourier

space. Indeed, in terms of the new oscillators,

1 q F2TTKN 1 q KN
a,=—3 ¢a = Z b

Vi Vi
n=0,1,....g—1, (4.3)

the Hamiltonian becomes (we have set the number of a
particles to zero)

S e ()
H=A—" 2 —2cos blb,
> p

lRl n=0

(N +In)

+ 2ABgq ]
R,

(4.4)

Eigenstates of the lattice Hamiltonian are given by arbitrary
momentum space excitations

g-1 a']' a, q=1 7+
%0 o %50,

n=0 n=0

(4.5)

where the occupation numbers «,, and j3,, are arbitrary. This
state can be translated back into the Gauss graph language
to give operators of a definite scaling dimension.

B. General properties of low energy eigenstates

In this section, we will sketch the features of generic low
energy states of the lattice Hamiltonian. We begin by
relaxing the constraint that only one species is hopping. In
the end, we will also make comments valid for the general
Gauss graph configuration. The Hamiltonian becomes

H=H,+H,+H, +E, (4.6)
N+1 !
a = (liRl)B Z (2ajai - aj‘.aiJrl - a:'r.»,_]ai) (47)
R, i=1
N+1 !
Hy =N NS @b bbb (48)
R, i=1
N+ Ig) <
> = (z,,fR‘)Z 2bibajai.  (49)
1 i=1
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The constant E, = 2ABq(N;;i') is not important for the
1

dynamics but must be included to obtain the correct
anomalous dimensions. To start, consider H,, which is a
kinetic term for the a particles. The first term in the
Hamiltonian implies that it costs energy to have an a
particle occupying a site, while the second and third terms
tell us this energy can be lowered by hopping between sites
i and i 4+ 1. Consequently, to minimize H,, the a particles
will spread out as much as is possible. This is in perfect
accord with the results of the last section. The lowest
energy single particle state is the zero momentum state,
which occupies each site with the same probability: the
particle spreads out as much as is possible. Very similar
reasoning for H, implies that the b particles will also
spread out as much as is possible. Finally, the term H ,;, is a
repulsive interaction, telling us that it costs energy to have
a’s and b’s occupying the same site. So, there is a
competition going on: the terms H, and H, want to spread
the a’s and b’s uniformly on the lattice, which would
certainly distribute a’s and b’s to the same site. The term
H,, wants to ensure that any particular site will have only
a’s or b’s but not both. Which wins?

Consider a thermodynamiclike limit where we consider a
very large number of both species of particles, n, and n,. In
the end, the low energy state will be a “demixed" state with
no sites holding both a’s and b’s. To see this, note that H,,
grows like n, and H, grows like n,. This is much smaller
than the growth of the term H,;,, which grows like n,n,, so
the repulsive interaction wins. This conclusion is nicely
borne out by numerical results for the two-component Bose-
Hubbard model [36,37]. The ground state phase diagram of
the Hamiltonian of Ref. [36] shows four distinct phases: the
double superfluid phase, supercounterflow phase, demixed
Mott insulator phase, and demixed superfluid phase.
Comparing our Hamiltonian to that of Ref. [36], we are
always in the demixed superfluid phase; the a and b particles
do not mix but are free to move in their respective domains.
Thus, we have a collection of two species of particles that
demix but are free on their respective domains. It is in this
sense that we have an essentially free system.

For the generic Gauss graph, with any choices for the
values of m;;, and py, it is clear that H, and H,, will still
cause the a and b particles to spread out as much as
possible. The term H,;, will again dominate when we have
large numbers of a’s and b’s, so we again expect a demixed
gas. We can translate this structure of the generic state
back into the language of the giant graviton description. Up
to now, we have considered dual giant gravitons which
correspond to operators labeled by Young diagrams with
long rows. Recall that dual giant gravitons wrap an
S* c AdSs. In this context, [ r, 18 the momentum of each
giant, and N + [, is the radius on the LLM plane at which
the giant orbits. The Hamiltonian for giant gravitons, which
wrap S3 C S°, is given by

(N —Ig,)
I, “
— B(aja;.i +a},,a;) = A(b]bioy + b}, b))
(4.10)

q
=1

These operators are labeled by Young diagrams with
long columns. The giants orbit on the LLM plane with a
radius of N — Il . The X and Y fields are each charged
under different U(1) s of the R-symmetry group. The R
symmetry of the CFT translates into angular momentum of
the dual string theory, so attaching the particles to a given
giant corresponds to giving the giant angular momentum.
The lowest energy giant graviton states are obtained by
distributing the momenta carried by the X and Y fields
evenly between the giants with the condition that any
particular giant carries only X or ¥ momenta, but not both.
These conclusions hold for the generic state where there are
enough p;, and m;; nonzero, allowing the X’s and Y’s to
hop between any two giants, possibly by a complicated
path. Thus, in the end, we see that the mapping to the boson
lattice model has allowed a rather detailed understanding of
the operator mixing problem.

V. CONCLUSIONS

In this article, we have studied the action of the one-loop

dilatation operator D, on Gauss graph operators OZ’f (o)
which belong to the SU(3) sector. The term we have
studied, D5Y, is diagonal in the r label, mixing operators
labeled by distinct graphs. It makes a subleading contri-
bution as compared to D54 and D} when n > m + p. The
two leading terms mix operators labeled by distinct 7 s.
Diagonalizing the action of DY# and D% on r leads to a
collection of decoupled harmonic oscillators, which we
refer to as the Z oscillators, since the r label is associated
with Z. The spectrum of the Z oscillators gives the leading
contribution to the anomalous dimensions. The new con-
tribution that we have studied in this paper can also be
mapped to a collection of oscillators, describing a lattice
boson model. This is done by introducing two sets of
oscillators, the X and Y oscillators associated to the X and Y
fields. Diagonalizing the X and Y oscillators breaks
degeneracies among different copies of Z oscillators and
leads to a constant addition to their ground state energy.
This is then a constant shift of the anomalous dimension.
Although this shift is subleading (it is of order %), it could
potentially show that certain states are not in fact BPS.
This was investigated in detail, and it turns out that states
that are BPS (their leading order anomalous dimension
vanishes) at leading order remain BPS when the subleading
correction is computed (it, too, vanishes).

The mapping that we have found to a lattice boson model
has achieved an enormous simplification of the operator
mixing problem, and we have managed to understand it in
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some detail. Indeed, using the lattice boson model, we have
argued that the lowest energy giant graviton states are
obtained by distributing the momenta carried by the X and
Y fields evenly between the giants with the condition that
any particular giant carries only X or Y momenta, but not
both. Since states with two charges are typically A—{—BPS
while states with three charges are typically %—BPS, it
maybe that the solution is locally trying to maximize
supersymmetry. It would be interesting to arrive at the
same picture, employing the dual string theory description.

Perhaps the most interesting consequence of our results
is that they suggest ways in which one can go beyond the %—
BPS sector. Indeed, all three types of fields considered have
been mapped to oscillators, so perhaps there is a more
general description of this sector that treats all three types of
oscillators on the same footing. This would relax the
constraint n > p +m which allows for operators that
are far from the %—BPS limit. Deriving this picture is a
fascinating open problem, since it will require that we go

beyond the displaced corners approximation or, alterna-
tively, that we generalize it.

As a final comment, recall that Mikhailov [38] has
constructed an infinite family of %BPS giant graviton branes
in AdSs x S°. Quantizing the space of Mikhailov’s solutions
leads to N noninteracting bosons in a harmonic oscillator
[39-41]. It is tempting to speculate that it is precisely these
oscillators that we are uncovering in our study; for evidence
in harmony with this suggestion, see Ref. [42]. It would be
interesting to make this speculation precise.
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