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Operators dual to strings attached to giant graviton branes in AdS5 × S5 can be described rather
explicitly in the dual N ¼ 4 super-Yang-Mills theory. They have a bare dimension of order N so that for
these operators the largeN limit and the planar limit are distinct; summing only the planar diagrams will not
capture the large N dynamics. Focusing on the one-loop SUð3Þ sector of the theory, we consider operators
that are a small deformation of a 1

2
-Bogomol’nyi-Prasad-Sommerfield (BPS) multigiant graviton state. The

diagonalization of the dilatation operator at one loop has been carried out in previous studies, but explicit
formulas for the operators of a good scaling dimension are only known when certain terms which were
argued to be small are neglected. In this article, we include the terms which were neglected. The
diagonalization is achieved by a novel mapping which replaces the problem of diagonalizing the dilatation
operator with a system of bosons hopping on a lattice. The giant gravitons define the sites of this lattice, and
the open strings stretching between distinct giant gravitons define the hopping terms of the Hamiltonian.
Using the lattice boson model, we argue that the lowest energy giant graviton states are obtained by
distributing the momenta carried by the X and Y fields evenly between the giants with the condition that any
particular giant carries only X or Y momenta, but not both.
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I. INTRODUCTION

Motivated by the AdS=CFT correspondence [1–3], there
has been dramatic progress in computing the planar
spectrum of anomalous dimensions in N ¼ 4 super-
Yang-Mills theory. The planar spectrum is now known,
in principle, to all orders in the ’t Hooft coupling [4]. This
has been possible thanks to the discovery of integrability
[5,6] in the planar limit of the theory. This spectrum of
anomalous dimensions reproduces classical string energies
on the AdS5 × S5 spacetime, in the dual string theory [7].
Much less is known about N ¼ 4 super-Yang-Mills

theory outside the planar limit. There are many distinct
large N but nonplanar limits of the theory that could be
considered, and these correspond to a variety of fascinating
physical problems. For example, the problem of consider-
ing new spacetime geometries (including black hole

solutions) corresponds to considering operators with a
bare dimension of order N2 [8], while giant graviton branes
[9–11] are dual to operators with a bare dimension of order
N. The planar limit does not correctly capture the dynamics
of these operators [12,13].
Although much less is known about these large N but

nonplanar limits, some progress has been made. Approaches
based on group representation theory provide a powerful
tool, essentially because they allow us to map the problem of
the dynamics of the nonplanar limit—summing the ribbon
graphs contributing to correlation functions—into a purely
algebraic problem in group theory. Typically, it can be
phrased as the construction of a collection of projection
operators and their properties. Once the algebraic problem is
properly formulated, systematic approaches to it can be
developed. As an example of this approach, bases of local
gauge invariant operators have been given [14–21]. These
bases provide a good starting point from which the anoma-
lous dimensions can be studied. This is basically because
they diagonalize the free field two point function and,
at weak coupling, operator mixing is highly constrained
[22–26]. The resulting operators have a complicated multi-
trace structure, quite different from the single trace structure
relevant for the planar limit and its mapping to an integrable
spin chain. The spectrum of anomalous dimensions has been
computed for operators that are small deformations of
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1
2
-Bogomol’nyi-Prasad-Sommerfield (BPS) operators.
Problems with two distinct characters have been solved;
it is possible to simply treat all fields in the operator on the
same footing, construct the basis, and then diagonalize
[27–30], or alternatively, one can build operators that
realize a spacetime geometry or a giant graviton brane and
use words constructed from the fields of the conformal
field theory (CFT) to describe string excitations
[22,31,32]. In the approach that treats all fields on the
same footing, one simply defines the operators of the basis
and considers the diagonalization of the dilatation oper-
ator with no physical input from the dual gravity descrip-
tion. When considering states dual to systems of giant
gravitons, the Gauss law of the dual giant world volume
gauge theory emerges so that in this approach we see open
string and membranes are present in the CFT Hilbert
space. When using words to describe string excitations,
computations in the CFT reproduce the classical values of
energies computed in string theory [31,32], the world
sheet S-matrix [33], and have led to the discovery of
integrable subsectors for string excitations of certain Lin-
Lunin-Maldacena (LLM) backgrounds [32]. Clearly, this
is a rich problem with hidden simplicity, so further study
of these limits is bound to be fruitful. The existence of this
hidden simplicity is not unexpected; conventional lore of
the large N limit identifies 1=N as the gravitational
interaction, so the N → ∞ limit, in which this interaction
is turned off, should be a simple limit.
One next step that can be contemplated is to go beyond

small perturbations of the 1
2
-BPS sector. This problem is our

main motivation in this study, and we will take a small step
in this direction. We will study operators constructed from
three complex adjoint scalars X, Y, Z of N ¼ 4 super-
Yang-Mills theory. Operators that are a small perturbation
of a 1

2
-BPS operator are constructed using mainly Z fields.

For these operators, interactions between the X and Y fields
are subdominant to interactions between X and Z and
between Y and Z fields and can hence be neglected. As we
move further from the original 1

2
-BPS operator, more and

more Xand Y fields are added. At some point, the
interactions between the X and Y fields can no longer
be neglected. Dealing with these interactions is the focus of
our study. We will argue that this is a well-defined problem
that can be solved, often explicitly. This is accomplished
by phrasing the new X and Y interactions as a lattice model,
for essentially free bosons. Thus, we finally end up with a
simple problem that is familiar and can be solved. This is
the basic achievement of this paper.
Our results show a fascinating structure that deserves to

be discussed. The mapping to the lattice model associates a
harmonic oscillator to both the X field and to the Y field.
Earlier results [29] treating the leading term performed the
diagonalization by associating a harmonic oscillator to the
Z field, so in the end, we seem to be seeing an equality in
the description of the three scalar fields. An even-handed

treatment of all three fields is a big step toward being able
to treat operators constructed with equal numbers of X, Y,
and Z fields. This would most certainly go beyond the
1
2
-BPS sector, the main motivation for our study.
In the next section, we review the action of the one-loop

dilatation operator D2. The action of D2 in the SUð3Þ
sector, in the Schur polynomial basis, has been evaluated
previously [34], and we simply quote and use the result.
We then move to the Gauss graph basis of Ref. [30], in
which the terms in D2 arising from Z and Y or Z and X
interactions are diagonal. Again, this is a known result, and
we simply use it. The Gauss graph basis has a natural
interpretation in terms of giant graviton branes and their
open string excitations. We will often use this language of
branes and strings. We then come to the central term of
interest: the term in D2 arising from X and Y interactions.
Denote this term by DXY

2 . We will carefully evaluate this
term, arriving at a rather simple formula, which is the
starting point for Sec. III. The explicit expression for DXY

2

can easily be identified with a lattice model for a collection
of bosons. The giant gravitons define the sites of this lattice,
and the open string excitations determine the lattice
Hamiltonian. Section IV diagonalizes the dilatation oper-
ator for a number of giants plus open string configurations,
arriving at detailed and explicit expressions for both the
anomalous dimensions and for the operators of a definite
scaling dimension. Our conclusions and some discussion
are given in Sec. V.

II. ACTION OF THE ONE-LOOP
DILATATION OPERATOR

We combine the six Hermitian adjoint scalars of N ¼ 4
super-Yang-Mills theory into three complex combinations,
denoted X, Y, and Z. The operators we consider are
constructed using n Z’s, m Y’s, and p X’s. Operators
that are dual to giant graviton branes are constructed using
nþmþ p ∼ N fields. We will focus on operators that are
small deformations of 1

2
-BPS operators, achieved by choos-

ing n ≫ mþ p. We will fix m
p ∼ 1 as N → ∞ and treat mn as

a small parameter. The collection of operators constructed
using X, Y, and Z fields are often referred to as the SUð3Þ
sector. This is not strictly speaking correct since these
operators do mix with operators containing fermions. At
one loop, however, this is a closed sector.
Our starting point is the action of the one-loop dilatation

operator of the SUð3Þ sector
D2 ¼ DYZ

2 þDXZ
2 þDXY

2 ; ð2:1Þ
where

DAB
2 ≡ g2YMTrð½A; B�½∂A; ∂B�Þ ð2:2Þ

on the restricted Schur polynomial basis. This has been
evaluated in Ref. [34]. Further, the termsDYZ

2 andDXZ
2 have

been diagonalized. The operators of a definite scaling
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dimension OR;rðσÞ, called Gauss graph operators [28,30],
are labeled by a pair of Young diagrams R ⊢ nþmþ p
and r ⊢ n as well as a permutation σ ∈ Sm × Sp. Although
these labels arise when diagonalizing DYZ

2 and DXZ
2 in the

CFT, they have a natural interpretation in the dual gravi-
tational description in terms of giant graviton branes plus
open string excitations. AYoung diagram R that has q rows
corresponds to a system of q giant gravitons. The Y and X
fields describe the open string excitations of these giants, so
there are mþ p open strings in total. We can describe the
state of the system using a graph, with nodes of the graph
representing the branes (and hence rows of R) and directed
edges of the graph describing the open string excitations
(represented by X and Y fields in the CFT). Each directed
edge ends on any two (not necessarily distinct) of the q
branes. The only configurations that appear when DYZ

2 and
DXZ

2 are diagonalized have the same number of strings
starting or terminating on any given giant, for the X and Y
strings separately [30,34]. Thus, the Gauss law of the brane
world volume theory implied by the fact that the giant
graviton has a compact world volume [35] emerges rather
naturally in the CFT description. Since every terminating
edge end point can be associated to a unique emanating end
point, we can give a nice description of how the open
strings are connected to the giants by specifying how the
terminating and emanating end points are associated. The
permutation σ ∈ Sm × Sp describes how the m Y’s and
the p X’s are draped between the q giant gravitons by
describing this association [30,34]. The explicit form of the
Gauss graph operators is [30,34]

Om⃗;p⃗
R;r ðσÞ ¼

jHX ×HY jffiffiffiffiffiffiffiffiffiffi
p!m!

p
X
j;k

X
s⊢m

X
t⊢p

X
μ⃗1;μ⃗2

ffiffiffiffiffiffiffiffiffi
dsdt

p
Γðs;tÞ
jk ðσÞ

× B
ðs;tÞ→1HX×HY
jμ⃗1

B
ðs;tÞ→1HX×HY
kμ⃗2

OR;ðt;s;rÞμ⃗1μ⃗2 : ð2:3Þ

Each box in R is associated with one of the complex fields.
r is a label for the Z fields. The graph σ encodes important
information. The number of Y (or X) strings terminating
on the ith node, which equals the number of Y (or X)
strings emanating from the ith node, is denoted by mi (or
pi). mi (or pi) also counts the number of boxes in the ith
row of R that correspond to Y (or X) fields. We will often
assemble mi and pi into the vectors m⃗ and p⃗. The number
of Y (or X) strings stretching between nodes i and k is
denoted mik (or pik), while the number of strings stretch-
ing from node i to node k is denoted mi→k (or pi→k). A
Young diagram with k boxes a ⊢ k labels an irreducible
representation of Sk with dimension da. The branching

coefficients B
ðs;tÞ→1HX×HY
jμ⃗1

resolve the operator that projects
from ðs; tÞ, with s ⊢ m, t ⊢ p, an irreducible representa-
tion of Sm × Sp, to the trivial (identity) representation of
the product group HY×HX with HY ¼Sm1

×Sm2
× � � �Smq

and HX ¼ Sp1
× Sp2

× � � � Spq
, i.e.,

1

HX ×HY

X
γ∈HX×HY

Γðs;tÞ
ik ðγÞ ¼

X
μ⃗

B
ðs;tÞ→1HX×HY
iμ⃗ B

ðs;tÞ→1HX×HY
kμ⃗ :

ð2:4Þ

Γðs;tÞ
jk ðσÞ is a matrix (with row and column indices jk)

representing σ ∈ Sm × Sp in irreducible representation
ðs; tÞ. The operators OR;ðr;s;tÞμ⃗1μ⃗2 are normalized versions
of the restricted Schur polynomials [18]

χR;ðt;s;rÞμ⃗1μ⃗2ðZ; Y; XÞ ¼
1

n!m!p!

X
σ∈Snþmþp

χR;ðt;s;rÞμ⃗1μ⃗2ðσÞ

× TrðσZ⊗nY⊗mX⊗pÞ; ð2:5Þ

which themselves provide a basis for the gauge inva-
riant operators of the theory. The restricted characters
χR;ðt;s;rÞμ⃗1μ⃗2ðσÞ are defined by tracing the matrix represent-
ing group element σ in representation R over the subspace
giving an irreducible representation ðr; s; tÞ of the Sn ×
Sm × Sp subgroup. There is more than one choice for this
subspace, and the multiplicity labels μ⃗1μ⃗2 resolve this
ambiguity, for the row and column index of the trace. The
operators OR;ðt;s;rÞμ⃗1μ⃗2 given by

OR;ðt;s;rÞμ⃗1μ⃗2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hooksrhooksshookst

hooksRfR

s
χR;ðt;s;rÞμ⃗1μ⃗2 ð2:6Þ

have unit two point function. hooksr stands for the product
of hook lengths of Young diagram r, and fR stands for the
product of the factors of Young diagram R.
The above construction is rather technical, so it is useful

to describe some simple examples. A simple example
which illustrates the above formulas is provided by taking

, , s ¼ □, and t ¼ □. Notice that ðr; s; tÞ
is a one-dimensional irreducible representation of
S2 × S1 × S1. In this case, ðr; s; tÞ is obtained once after
restricting to the subgroup, so we do not need any
multiplicity labels. The representation R is three dimen-
sional, and a basis for the vector space carrying the
representation can be labeled using the three standard
tableau

ð2:7Þ

The state j3i is the ðr; s; tÞ subspace, so the restricted
character is

ð2:8Þ

Using this restricted character, we find
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Thus, we see that the restricted Schur polynomials are sums
over all possible traces structures with coefficients set by
the restricted characters. To really trust our approximations
and the brane interpretation, we would need to have many
(order N) Z’s in each row of r. However, our goal is simply
to illustrate the construction in a simple setting. With this in
mind, we will abuse the language and refer to each row of r
as a giant graviton. Since we have two rows in r, there are
two giants. There are two open strings (represented by the
X and Y fields), and in this simple example, the restricted
Schur operator and Gauss graph operators are identical.
This is the case whenever we have a single X and a single Y
field. In the generic situation, Eq. (2.3) says we must sum
over all possible irreducible representations of the impu-
rities, with the coefficient set by a permutation σ. To
translate permutation σ ∈ Sm × Sp into an open string
configuration, label the fields X and Y from 1 to p for
the X’s and pþ 1 to pþm for the Y’s. Each row of r is a
giant graviton. The numbers ðp1; p2;…; pqÞ tell us how the
X strings [and ðm1; m2;…; mqÞ tell us how the Y strings]
are distributed among the giants. The permutation σ then
tells us how to join the strings. So, for

ð2:9Þ

and p⃗ ¼ ð1; 1; 1Þ, m⃗ ¼ ð1; 1; 0Þ, and σ ¼ ð123Þð45Þ, we
would have the open string plus giant configuration shown
in Fig. 1.
The action of the dilatation operator on the Gauss graph

operators is [28,30,34]

DYZ
2 Om⃗;p⃗

R;r ðσÞ ¼ −g2YM
X
i<j

mijðσÞΔijO
m⃗;p⃗
R;r ðσÞ

DXZ
2 Om⃗;p⃗

R;r ðσÞ ¼ −g2YM
X
i<j

pijðσÞΔijO
m⃗;p⃗
R;r ðσÞ; ð2:10Þ

where Δij ¼ Δ−
ij þ Δ0

ij þ Δþ
ij [29]. We will now spell out

the action of the operatorsΔþ
ij, Δ0

ij, andΔ−
ij. Denote the row

lengths of r by lri. The Young diagram rþij is obtained by
deleting a box from row j and adding it to row i. The Young
diagram r−ij is obtained by deleting a box from row i and
adding it to row j. In terms of these Young diagrams,
we have

Δ0
ijO

m⃗;p⃗
R;r ðσÞ ¼ −ð2N þ lri þ lrjÞOm⃗;p⃗

R;r ðσÞ ð2:11Þ

Δþ
ijO

m⃗;p⃗
R;r ðσÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ lriÞðN þ lrjÞ

q
Om⃗;p⃗

Rþ
ij ;r

þ
ij
ðσÞ ð2:12Þ

Δ−
ijO

m⃗;p⃗
R;r ðσÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ lriÞðN þ lrjÞ

q
Om⃗;p⃗

R−
ij;r

−
ij
ðσÞ: ð2:13Þ

Notice that DYZ
2 and DXZ

2 in (2.10) are not yet diagonal;
they still mix operators with different R, r labels. This last
diagonalization, however, is rather simple; it maps into
diagonalizing a collection of decoupled oscillators as
demonstrated in Ref. [29]. We will call these Z oscillators,
since they are associated to the r label which organizes the
Z fields. It is clear that DXY

2 does not act on the r label so
that, in the end, the contribution fromDXY

2 simply shifts the
ground state eigenvalue of the Z oscillators.
We will now focus on the term DXY

2 . Recall that our
operators are built with many more Z fields than X or Y
fields (n ≫ pþm). Since this term contains no derivatives
with respect to Z, it is subleading (of order m

n) when
compared to DYZ

2 and DXZ
2 . Diagonalizing this operator is

the main goal of this article, so it is useful to sketch the
derivation of the matrix elements ofDXY

2 in the Gauss graph
basis. We will simply quote existing results that we need,
giving complete details only for the final stages of the
evaluation, which are novel. The reader will find useful
background material in Ref. [34]. The action of this term on
the restricted Schur polynomial basis was computed in
Ref. [34]. The result is

FIG. 1. An example of a Gauss graph for a Young diagram r
with three rows, p⃗ ¼ ð1; 1; 1Þ, m⃗ ¼ ð1; 1; 0Þ, and σ ¼ ð123Þð45Þ.
Strings labeled 1, 2, or 3 are X’s. Strings labeled 4 or 5 are Y’s.
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DXY
2 OR;ðt;s;rÞμ⃗ ν⃗ ¼

X
R0

X
T;ðy;x;wÞα⃗ β⃗

CTrR⊕Tð½P1;ΓRð1; pþ 1Þ�

× IR0T 0 ½P2;ΓTð1; pþ 1Þ�IT 0;R0 ÞOT;ðy;x;wÞβ⃗ α⃗;

where

C ¼ −g2YMcRR0
dTmp

dxdydwðnþmþ pÞdR0

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fThooksThooksrhooksshookst
fRhooksRhookswhooksxhooksy

s

P1 ¼ PR;ðt;s;rÞμ⃗ ν⃗ P2 ¼ PT;ðy;x;wÞα⃗ β⃗: ð2:14Þ

ΓSðσÞ is the matrix representing σ ∈ Snþmþp in irreducible
representation S ⊢ nþmþ p. Young diagram R0 is
obtained from Young diagram R by dropping a single
box, with cRR0 denoting the factor of this box. IT 0R0 , IR0T 0 ,
P1, and P2 are intertwining maps. IT 0R0 maps from the
carrier space of R0 to the carrier space of T 0. It is only
nonvanishing if T 0 and R0 are equal as Young diagrams
implying that operators labeled by R and T can only mix if
they differ by the placement of a single box. The operators

P1 and P2 are the intertwining maps used in the con-
struction of the restricted Schur polynomials. It is chal-
lenging to evaluate the above expression explicitly,
basically because it is difficult to construct P1 and P2.
However, the above expression has not yet employed the
simplifications of large N. To do this, following Ref. [28],
we will use the displaced corners approximation. This
approximation assumes that the difference of the number
of boxes in any two rows of R is of order N. In this situation,
the action of the Sm × Sp subgroup simplifies so much that
the relevant restricted characters can be computed and a
complete explicit characterization of the multiplicity labels
on the restricted Schur polynomials is possible. The correc-
tions to the displaced corners approximation are suppressed
by the inverse of the difference in length of rows of R. After
applying the approximation, we obtain [34]

DXY
2 OR;ðt;s;rÞμ⃗ ν⃗ ¼

X
T;ðw;v;uÞα⃗ β⃗

M̃R;ðt;s;rÞμ⃗ ν⃗T;ðw;v;uÞα⃗ β⃗OT;ðw;v;uÞα⃗ β⃗;

ð2:15Þ

where

M̃R;ðt;s;rÞμ⃗ ν⃗T;ðw;v;uÞα⃗ β⃗ ¼ −g2YM
X
R0

δR0
iT

0
k
δru

pmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dsdtdwdv

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRR0cTT 0

lRi
lTk

r
Tr
h
Eð1Þ
ki P

ðp⃗;m⃗Þ
tα1β1;sα2β2

Eðpþ1Þ
ik Pðp⃗0;m⃗0Þ

wμ1ν1;vμ2ν2

− Eð1Þ
ci E

ðpþ1Þ
kc Pðp⃗;m⃗Þ

tα1β1;sα2β2
Eð1Þ
ak E

ðpþ1Þ
ia Pðp⃗0;m⃗0Þ

wμ1ν1;vμ2ν2 − Eð1Þ
kc E

ðpþ1Þ
ci Pðp⃗;m⃗Þ

tα1β1;sα2β2
Eð1Þ
ia E

ðpþ1Þ
ak Pðp⃗0;m⃗0Þ

wμ1ν1;vμ2ν2

þ Eðpþ1Þ
ki Pðp⃗;m⃗Þ

tα1β1;sα2β2
Eð1Þ
ik P

ðp⃗0;m⃗0Þ
wμ1ν1;vμ2ν2

i
: ð2:16Þ

The trace in this expression is over the tensor product
V⊗nþm
q , where Vq is the fundamental representation of

UðqÞ. The intertwining maps used to define the re-
stricted Schur polynomials (P1 and P2 above) factor
into an action on the boxes associated to the Z fields,
an action on the boxes associated to the Y fields, and an
action on the boxes associated to the X fields. The

intertwining maps1 Pðp⃗;m⃗Þ
tα1β1;sα2β2

and Pðp⃗0;m⃗0Þ
wμ1ν1;vμ2ν2 are the

actions of the intertwining maps on the X and Y fields
only. This happens because the trace over the Z field
indices, which is simple as the dilatation operator DXY

2

does not act on the Z fields, has been performed. Young
diagram R0

i is obtained from R by dropping a single box
from row i, and T 0

k is obtained from T by dropping a
single box from row k.

The result (2.16) gives the DXY
2 term in the dilatation

operator, as a matrix that must be diagonalized. As we
will see, all three terms in D2 are simultaneously
diagonalizable at large N, so it is convenient to employ
the Gauss graph basis which already diagonalizes both
DZY

2 and DZX
2 . The problem of diagonalizing DXY

2 then
amounts to a diagonalization on degenerate subspaces of
DZY

2 and DZX
2 . Thus, the original diagonalization of an

enormous matrix is replaced by diagonalizing a number
of smaller matrices—a significant simplification.
Applying the results of Ref. [34], we find that, after
the change in basis,

DXY
2 Ôm⃗;p⃗

R;r ðσ1Þ ¼ Mm⃗;p⃗
R;r;σ1T;t;σ2

Ôm⃗;p⃗
T;t ðσ2Þ; ð2:17Þ

where
1A very explicit algorithm for the construction of these maps

has been given in Ref. [28].
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Mm⃗;p⃗
R;r;σ1T;t;σ2

¼ −g2YM
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jOm⃗;p⃗
R;r ðσ1Þj2jOm⃗;p⃗

T;t ðσ2Þj2
q X

R0

δR0
iT

0
k
δru

ðp − 1Þ!ðm − 1Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRR0cTT 0

lRi
lTk

r X
ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

× ½hp⃗0; m⃗0jσ2ψ−1
2 Eð1Þ

ki ψ1jp⃗; m⃗ihp⃗; m⃗jσ−11 ψ−1
1 Eðpþ1Þ

ik ψ2jp⃗0; m⃗0i
− hp⃗0; m⃗0jσ2ψ−1

2 Eð1Þ
ci E

ðpþ1Þ
kc ψ1jp⃗; m⃗ihp⃗; m⃗jσ−11 ψ−1

1 Eð1Þ
ak E

ðpþ1Þ
ia ψ2jp⃗0; m⃗0i

− hp⃗0; m⃗0jσ2ψ−1
2 Eð1Þ

kc E
ðpþ1Þ
ci ψ1jp⃗; m⃗ihp⃗; m⃗jσ−11 ψ−1

1 Eð1Þ
ia E

ðpþ1Þ
ak ψ2jp⃗0; m⃗0i

þ hp⃗0; m⃗0jσ2ψ−1
2 Eðpþ1Þ

ki ψ1jp⃗; m⃗ihp⃗; m⃗jσ−11 ψ−1
1 Eð1Þ

ik ψ2jp⃗0; m⃗0i�: ð2:18Þ

Here, the Gauss graph operators Ôm⃗;p⃗
R;r ðσ1Þ are normalized

to have a unit two point function. They are related to the
operators introduced in (2.3) as follows:

Om⃗;p⃗
R;r ðσÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYq
i¼1

miiðσÞ!miiðσÞ!
Y

k;l;k≠l
mk→lðσÞ!pk→lðσÞ!

vuut Ôm⃗;p⃗
R;r ðσÞ:

ð2:19Þ

Introduce the vectors ðvðiÞÞa ¼ δia which form a basis for
Vq. The vector jp⃗; m⃗i is defined as follows,

jp⃗; m⃗i ¼ jp⃗i ⊗ jm⃗i; ð2:20Þ

where

jp⃗i ¼ ðvð1ÞÞ⊗p1 ⊗ � � � ⊗ ðvðqÞÞ⊗pq

jm⃗i ¼ ðvð1ÞÞ⊗m1 ⊗ � � � ⊗ ðvðqÞÞ⊗mq: ð2:21Þ

We will now explain how the sums over ψ1 and ψ2 in
(2.18) can be evaluated. This discussion is novel and is one
of the new contributions of this paper. Consider the term

T1 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗0; m⃗0jσ2ψ−1
2 Eð1Þ

ki ψ1jp⃗; m⃗i

× hp⃗; m⃗jσ−11 ψ−1
1 Eðpþ1Þ

ik ψ2jp⃗0; m⃗0i:

The dependence on the permutations σ1 and σ2 can be
simplified with the following change of variables: replace
ψ2 with ψ̃2, where

ψ̃2 ¼ ψ2σ
−1
2 ⇒ ψ̃−1

2 ¼ σ2ψ
−1
2 : ð2:22Þ

After relabeling ψ̃2 → ψ2 and taking the transpose of the
first factor which is a real number, we find

T1 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗; m⃗jψ−1
1 Eð1Þ

ik ψ2jp⃗0; m⃗0i

× hp⃗; m⃗jσ−11 ψ−1
1 Eðpþ1Þ

ik ψ2σ2jp⃗0; m⃗0i:

If i ≠ k, the matrix element hp⃗; m⃗jψ−1
1 Eð1Þ

ik ψ2jp⃗0; m⃗0i is only
nonvanishing if p⃗ ≠ p⃗0 and m⃗ ¼ m⃗0, while the matrix

element hp⃗; m⃗jσ−11 ψ−1
1 Eðpþ1Þ

ik ψ2σ2jp⃗0; m⃗0i is only nonvan-
ishing if p⃗ ¼ p⃗0 and m⃗ ≠ m⃗0. Thus, T1 vanishes for i ≠ k.
Indicate this explicitly as follows:

T1 ¼ δik
X

ψ1;ψ2∈Sp⃗×Sm⃗

hp⃗; m⃗jψ−1
1 Eð1Þ

ii ψ2jp⃗; m⃗i

× hp⃗; m⃗jσ−11 ψ−1
1 Eðpþ1Þ

ii ψ2σ2jp⃗; m⃗i:

To simplify this expression further, note that Eð1Þ
ii jp⃗; m⃗i is

only nonzero if vector vðiÞ occupies slot 1 in the vector jp⃗i.
In this case, Eð1Þ

ii jp⃗; m⃗i ¼ jp⃗; m⃗i. Since ψ1 and ψ2 shuffle

the vectors in jp⃗; m⃗i into all possible locations, Eð1Þ
ii will in

the end count how many times the vector vðiÞ appears in
jp⃗; m⃗i. This is given by pi introduced above. A similar
argument applies to Eðpþ1Þjp⃗; m⃗i. Thus, we obtain

T1 ¼ δik
pi

p
mi

m

X
ψ1;ψ2∈Sp⃗×Sm⃗

hp⃗; m⃗jψ−1
1 ψ2jp⃗; m⃗i

× hp⃗; m⃗jσ−11 ψ−1
1 ψ2σ2jp⃗; m⃗i

¼ δik
pi

p
mi

m

X
ψ1;ψ2∈Sp⃗×Sm⃗

X
h1;h2∈HX×HY

δðψ−1
1 ψ2h1Þ

× δðσ−11 ψ−1
1 ψ2σ2h2Þ:

Now, perform the change of summation variables ψ1 → ψ̃1

with

ψ1 ¼ ψ2ψ̃1: ð2:23Þ

The summand is now independent of ψ2 so that after
summing over ψ2 and relabeling ψ̃1 → ψ1 we find

T1 ¼ δikðp − 1Þ!ðm − 1Þ!pimi

×
X

ψ1∈Sp⃗×Sm⃗

X
h1;h2∈HX×HY

δðψ1h1Þδðσ−11 ψ1σ2h2Þ:

Summing over ψ1 now gives
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T1 ¼ δikðp − 1Þ!ðm − 1Þ!pimi

X
h1;h2∈HX×HY

δðσ−11 h−11 σ2h2Þ:

ð2:24Þ

We also need to consider the term

T4 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗0; m⃗0jσ2ψ−1
2 Eðpþ1Þ

ki ψ1jp⃗; m⃗i

× hp⃗; m⃗jσ−11 ψ−1
1 Eð1Þ

ik ψ2jp⃗0; m⃗0i
¼

X
ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗; m⃗jσ−11 ψ−1
1 Eð1Þ

ik ψ2jp⃗0; m⃗0i

× hp⃗; m⃗jψ−1
1 Eðpþ1Þ

ik ψ2σ
−1
2 jp⃗0; m⃗0i:

Changing variables ψ−1
1 → σ−11 ψ−1

1 shows that T4 ¼ T1 and
hence

T1 þ T4 ¼ 2δikðp − 1Þ!ðm − 1Þ!pimi

×
X

h1;h2∈HX×HY

δðσ−11 h−11 σ2h2Þ: ð2:25Þ

The next sum we consider is

T2 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗0; m⃗0jσ2ψ−1
2 Eð1Þ

ci E
ðpþ1Þ
kc ψ1jp⃗; m⃗i

× hp⃗; m⃗jσ−11 ψ−1
1 Eð1Þ

ak E
ðpþ1Þ
ia ψ2jp⃗0; m⃗0i:

Changing variables ψ−1
2 → ψ̃−1

2 with

ψ̃−1
2 ¼ σ2ψ

−1
2 ⇒ ψ̃2 ¼ ψ2σ

−1
2 ; ð2:26Þ

the sum becomes

T2 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗0; m⃗0jψ−1
2 Eð1Þ

ci E
ðpþ1Þ
kc ψ1jp⃗; m⃗i

× hp⃗; m⃗jσ−11 ψ−1
1 Eð1Þ

ak E
ðpþ1Þ
ia ψ2σ2jp⃗0; m⃗0i

¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗0; m⃗0jψ−1
2 ψ1E

ψ−1
1
ð1Þ

ci E
ψ−1
1
ðpþ1Þ

kc jp⃗; m⃗i

× hp⃗; m⃗jσ−11 E
ψ−1
1
ð1Þ

ak E
ψ−1
1
ðpþ1Þ

ia ψ−1
1 ψ2σ2jp⃗0; m⃗0i:

Change variables ψ2 → ρ with ρ ¼ ψ−1
1 ψ2, and relabel

ρ → ψ2 to find

T2 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗0; m⃗0jψ−1
2 E

ψ−1
1
ð1Þ

ci E
ψ−1
1
ðpþ1Þ

kc jp⃗; m⃗i

× hp⃗; m⃗jσ−11 E
ψ−1
1
ð1Þ

ak E
ψ−1
1
ðpþ1Þ

ia ψ2σ2jp⃗0; m⃗0i:

We will use b̂ to denote the q-dimensional vector that has
all entries zero except the bth entry, which is 1. For a
nonzero contribution, the first factor requires

p⃗ − îþ ĉ ¼ p⃗0 m⃗ − c⃗þ k⃗ ¼ m⃗0; ð2:27Þ

and the second factor requires

m⃗ − îþ â ¼ m⃗0 p⃗ − a⃗þ k⃗ ¼ p⃗0: ð2:28Þ

There are two solutions:
Case 1: ĉ ¼ î and â ¼ k̂. In this case p⃗ ¼ p⃗0 and
m⃗ − îþ k̂ ¼ m⃗0,

Case 2: ĉ ¼ k̂ and â ¼ î. In this case m⃗ ¼ m⃗0 and
p⃗ − îþ k̂ ¼ p⃗0.

For case 1,

T2 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗0

hp⃗0; m⃗0jψ−1
2 E

ψ−1
1
ð1Þ

ii E
ψ−1
1
ðpþ1Þ

ki jp⃗; m⃗i

× hp⃗; m⃗jσ−11 E
ψ−1
1
ð1Þ

kk E
ψ−1
1
ðpþ1Þ

ik ψ2σ2jp⃗0; m⃗0i:

Consider the sum over ψ1. Due to the factor E
ψ−1
1
ðpþ1Þ

ki ,
we get a nonzero contribution from the slots pþ 1;
pþ 2;…; pþm (a Y string) if a string starts from node
k and ends at node i. Thus, the sum over ψ1 gives

T2 ¼ ðp − 1Þ!ðm − 1Þ!pi→kmii

X
ψ2∈Sp⃗×Sm⃗0

hp⃗; m⃗0jψ−1
2 jp⃗; m⃗0ihp⃗; m⃗0jσ−11 ψ2σ2jp⃗; m⃗0i

¼ ðp − 1Þ!ðm − 1Þ!pi→kmii

X
ψ2∈Sp⃗×Sm⃗0

X
h1;h2∈HX×HY

δðψ−1
2 h1Þδðσ−11 ψ2σ2h2Þ

¼ ðp − 1Þ!ðm − 1Þ!pi→kmii

X
h1;h2∈HX×HY

δðσ−11 h1σ2h2Þ: ð2:29Þ
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For case 2,

T2 ¼
X

ψ1∈Sp⃗×Sm⃗

X
ψ2∈Sp⃗0×Sm⃗

hp⃗0; m⃗jψ−1
2 E

ψ−1
1
ð1Þ

ki E
ψ−1
1
ðpþ1Þ

kk jp⃗; m⃗ihp⃗; m⃗jσ−11 E
ψ−1
1
ð1Þ

ik E
ψ−1
1
ðpþ1Þ

ii ψ2σ2jp⃗0; m⃗i:

Consider the sum over ψ1. We get a nonzero contribution for each Y string starting from node k, which ends at node i. After
summing over ψ1, we have

T2 ¼ ðp − 1Þ!ðm − 1Þ!piimk→i

X
ψ2∈Sp⃗0×Sm⃗

hp⃗0; m⃗jψ−1
2 jp⃗; m⃗0ihp⃗0; m⃗jσ−11 ψ2σ2jp⃗0; m⃗i

¼ ðp − 1Þ!ðm − 1Þ!piimk→i

X
ψ2∈Sp⃗0×Sm⃗

X
h1;h2∈HX×HY

δðψ−1
2 h1Þδðσ−11 ψ2σ2h2Þ

¼ ðp − 1Þ!ðm − 1Þ!piimk→i

X
h1;h2∈HX×HY

δðσ−11 h1σ2h2Þ: ð2:30Þ

Armed with these sums, we now obtain a rather explicit expression for the matrix elements of DXY
2 in the Gauss

graph basis:

Mm⃗;p⃗
R;r;σ1T;t;σ2

¼ −g2YM
δruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jOm⃗;p⃗
R;r ðσ1Þj2jOm⃗;p⃗

T;t ðσ2Þj2
q X

R0
δR0

iT
0
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRR0cTT 0

lRi
lTk

r
½2δikpimi − pkimii − piimik�

X
h1;h2∈HX×HY

δðσ−11 h1σ2h2Þ:

ð2:31Þ

This is the key result of this section and one of the key
results of this paper. We will now describe how the above
matrix can be diagonalized.

III. BOSON LATTICE

Our goal in this section is to diagonalize (2.31). This is
achieved by interpreting (2.31) as the matrix elements of a
Hamiltonian for bosons on a lattice. Toward this end, first

note that the matrix elements Mm⃗;p⃗
R;r;σ1T;t;σ2

are only nonzero
if we can choose coset representatives such that σ1 and σ2
describe the same element of Sm × Sp. This implies that the
brane-string systems described by σ1 and σ2 differ only in
the number of strings with both ends attached to the same
brane, but not in the number of string stretching between
distinct branes. This already implies that the contribution
DXY

2 only mixes eigenstates of DXZ
2 and DYZ

2 that are
degenerate and hence that all three are simultaneously
diagonalizable. In this case, the matrix element in (2.31)
simplifies to

Mm⃗;p⃗
R;r;σ1T;t;σ2

¼ −g2YM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOm⃗;p⃗

R;r ðσ1Þj2
jOm⃗;p⃗

T;t ðσ2Þj2

vuut δruδR0
iT

0
k

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ lRi

ÞðN þ lTk
Þ

lRi
lTk

s

× ½2δikpiðσ2Þmiðσ2Þ − pkimiiðσ2Þ − piiðσ2Þmik�: ð3:1Þ

The number of strings stretching between the branes mik
(for Y strings) and pki (for X strings) is the same for both
systems, so

mikðσ1Þ¼mikðσ2Þ≡mik pikðσ1Þ¼pikðσ2Þ≡pik: ð3:2Þ

It is the number of closed loops (mii for Y loops and pii for
X loops) that can differ between the operators that mix.
Finally, we have introduced the notation

piðσÞ¼
X
k≠i

pikþpiiðσÞ miðσÞ¼
X
k≠i

mikþmiiðσÞ: ð3:3Þ

From the structure of the operator mixing problem, we

would expect thatMm⃗;p⃗
R;r;σ1T;t;σ2

¼ Mm⃗;p⃗
T;t;σ2R;r;σ1

. This is indeed
the case, as a consequence of the easily checked identity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOm⃗;p⃗

R;r ðσ1Þj2
jOm⃗;p⃗

T;t ðσ2Þj2

vuut

× ½2δikpiðσ2Þmiðσ2Þ − pkimiiðσ2Þ − piiðσ2Þmik�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOm⃗;p⃗

T;t ðσ2Þj2
jOm⃗;p⃗

R;r ðσ1Þj2

vuut

× ½2δikpiðσ1Þmiðσ1Þ − pkimiiðσ1Þ − piiðσ1Þmik�; ð3:4Þ

which holds for any i and k.
The lattice model consists of two distinct species of

bosons, one for X and one for Y, hopping on a lattice, with a
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site for every brane or, equivalently, a site for every row in
the Young diagram R labeling the Gauss graph operator

Ôm⃗;p⃗
R;r ðσÞ. The bosons are described by the following

commuting sets of operators:

½ai; a†j � ¼ δij ½a†i ; a†j � ¼ 0 ¼ ½ai; aj�
½bi; b†j � ¼ δij ½b†i ; b†j � ¼ 0 ¼ ½bi; bj�: ð3:5Þ

Using these boson oscillators, we have

mii ¼ a†i ai pii ¼ b†i bi ð3:6Þ

mi ¼
X
k

mik þ a†i ai pi ¼
X
k

pik þ b†i bi: ð3:7Þ

The vacuum of the Fock space j0i obeys

aij0i ¼ 0 ¼ bij0i i ¼ 1; 2;…; q: ð3:8Þ

The Hamiltonian of the lattice model is given by

H ¼
Xq
i;j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ lRi

ÞðN þ lRj
Þ

lRi
lRj

s �
2δij

�X
l≠i

pil þ b†i bi

�

×

�X
l≠i

mil þ a†i ai

�
− pjia

†
jai −mjib

†
jbi

�
: ð3:9Þ

Notice that this Hamiltonian is quadratic in each type of
oscillator. It has a nontrivial repulsive interaction given by
the

P
ia

†
i aib

†
i bi term, which makes it energetically unfav-

orable for a and b type particles to sit on the same site.
Also, the full Fock space is a tensor product between the
Fock space for the a oscillator and the Fock space for the b
oscillator. We will use the occupation number representa-
tion to describe the boson states. To complete the mapping
to the lattice model, we need to explain the correspondence
between Gauss graph operators and states of the boson
lattice. This map is given by reading the boson occupation
numbers for each site from the number of closed strings
with both ends attached to the node corresponding to that
site. In the next subsection, we consider an example which
nicely illustrates this map.
Finally, let us make an important observation regarding

(3.9). Although the eigenvalues of this Hamiltonian are
subleading contributions to the anomalous dimension, there
is an important situation in which this correction is highly
significant: for BPS states, the leading contribution to the
anomalous dimension vanishes, and this subleading cor-
rection is important. The BPS operators are labeled by
Gauss graphs that have pik ¼ mik ¼ 0whenever i ≠ k; i.e.,
there are no strings stretching between branes. In this case,
it is clear that (3.9) vanishes, so the BPS operators remain
BPS when the subleading interactions are included.

A. Example

In this section, we will consider an example for which R
has q ¼ 3 rows and p ¼ m ¼ 3. In this problem, ten
operators mix. The Gauss graph labels for the operators
that mix are displayed in Fig. 2.
For the Gauss graph operators shown, we have the

following correspondence with boson lattice states:

j1i ¼ a†1a
†
2a

†
3j0i j2i ¼ a†1

ða†2Þ2ffiffiffiffi
2!

p j0i

j3i ¼ a†3
ða†2Þ2ffiffiffiffi

2!
p j0i j4i ¼ a†2

ða†1Þ2ffiffiffiffi
2!

p j0i

j5i ¼ a†3
ða†1Þ2ffiffiffiffi

2!
p j0i j6i ¼ a†1

ða†3Þ2ffiffiffiffi
2!

p j0i

j7i ¼ a†2
ða†3Þ2ffiffiffiffi

2!
p j0i j8i ¼ ða†3Þ3ffiffiffiffi

3!
p j0i

j9i ¼ ða†2Þ3ffiffiffiffi
3!

p j0i j10i ¼ ða†1Þ3ffiffiffiffi
3!

p j0i: ð3:10Þ

It is now rather straightforward to compute matrix
elements of the lattice Hamiltonian. For example,

h1jHj2i ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ lR3

ÞðN þ lR2
Þ

lR2
lR3

s ffiffiffi
2

p
: ð3:11Þ

It is instructive to compare this to the answer coming from
(2.31). To move from state 2 to state 1, a string must detach
from node 2 and reattach to node 3. Thus, we should plug
i ¼ 2 and k ¼ 1 into (2.31). The Gauss graph σ1 corre-
sponds to j1i, while σ2 corresponds to j2i. In addition,
R0
2 ¼ T 0

1, and from the Gauss graphs, we read off p32 ¼ 1

FIG. 2. Each Gauss graph label is composed of two graphs, the
first for the X strings and the second for the Y strings. Each graph
has three nodes (because q ¼ 3). There are no b type particles
because there are no closed X strings. There are three a type
particles because there are three closed Y strings. All operators
share the same r label.

ANOMALOUS DIMENSIONS FROM BOSON LATTICE MODELS PHYS. REV. D 97, 126004 (2018)

126004-9



and m22ðσ1Þ ¼ 1. It is now simple to see that (2.31) is in
complete agreement with the above matrix element.
Finally, the state corresponding to the Gauss graph in

Fig. 3 is

ða†1Þ3ffiffiffiffi
3!

p ða†3Þ3ffiffiffiffi
3!

p a†5a
†
6b

†
1

ðb†2Þ2ffiffiffiffi
2!

p ðb†3Þ2ffiffiffiffi
2!

p b†4b
†
5b

†
6j0i: ð3:12Þ

IV. DIAGONALIZATION

In this section, we will consider a class of examples that
can be diagonalized explicitly. Our main motivation is to
show that working with the lattice is simple, so the mapping
we have found is useful.

A. Exact eigenstates

For these examples, take

pki ¼ pik ¼ δk;iþ1B mki ¼ mik ¼ δk;iþ1A; ð4:1Þ

with A and B two positive integers. For examples of Gauss
graphs that obey this condition, see Fig. 4. There are two
cases we will consider: we will fix the number of a particles
to zero and leave the number of b particles arbitrary or fix
the number of b particles to zero and leave the number
of a particles arbitrary. We will also specialize to labels R
that have the difference between any two row lengths

lRi
− lRj

∼ N, but
lRi−lRj
lRi

≈ 0. In this case, our lattice

Hamiltonian simplifies to

H ¼ ðN þ lR1
Þ

lR1

Xq
i¼1

ð2ðBþ b†i biÞðAþ a†i aiÞ

− Bða†i aiþ1 þ a†iþ1aiÞ − Aðb†i biþ1 þ b†iþ1biÞÞ: ð4:2Þ

This Hamiltonian is easily diagonalized by going to Fourier
space. Indeed, in terms of the new oscillators,

ãn ¼
1ffiffiffi
q

p
Xq
k¼1

ei
2πkn
q ak b̃n ¼

1ffiffiffi
q

p
Xq
k¼1

ei
2πkn
q bk

n ¼ 0; 1;…; q − 1; ð4:3Þ

the Hamiltonian becomes (we have set the number of a
particles to zero)

H ¼ A
ðN þ lR1

Þ
lR1

Xq−1
n¼0

�
2 − 2 cos

�
2πn
q

��
b̃†nb̃n

þ 2ABq
ðN þ lR1

Þ
lR1

: ð4:4Þ

Eigenstates of the lattice Hamiltonian are given by arbitrary
momentum space excitations

Yq−1
n¼0

ðã†nÞαnffiffiffiffiffiffiffi
αn!

p j0i or
Yq−1
n¼0

ðb̃†nÞβnffiffiffiffiffiffiffi
βn!

p j0i; ð4:5Þ

where the occupation numbers αn and βn are arbitrary. This
state can be translated back into the Gauss graph language
to give operators of a definite scaling dimension.

B. General properties of low energy eigenstates

In this section, we will sketch the features of generic low
energy states of the lattice Hamiltonian. We begin by
relaxing the constraint that only one species is hopping. In
the end, we will also make comments valid for the general
Gauss graph configuration. The Hamiltonian becomes

H ¼ Ha þHb þHab þ E0 ð4:6Þ

Ha ¼
ðN þ lR1

Þ
lR1

B
Xq
i¼1

ð2a†i ai − a†i aiþ1 − a†iþ1aiÞ ð4:7Þ

Hb ¼
ðN þ lR1

Þ
lR1

A
Xq
i¼1

ð2b†i bi − b†i biþ1 − b†iþ1biÞ ð4:8Þ

Hab ¼
ðN þ lR1

Þ
lR1

Xq
i¼1

2b†i bia
†
i ai: ð4:9Þ

FIG. 3. An example of a Gauss graph with nonzero a and b
occupation numbers.

FIG. 4. An example of a Gauss graph that is easily solvable.
The example shown has A ¼ 2 and B ¼ 3.
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The constant E0 ¼ 2ABq
ðNþlR1 Þ

lR1
is not important for the

dynamics but must be included to obtain the correct
anomalous dimensions. To start, consider Ha, which is a
kinetic term for the a particles. The first term in the
Hamiltonian implies that it costs energy to have an a
particle occupying a site, while the second and third terms
tell us this energy can be lowered by hopping between sites
i and iþ 1. Consequently, to minimize Ha, the a particles
will spread out as much as is possible. This is in perfect
accord with the results of the last section. The lowest
energy single particle state is the zero momentum state,
which occupies each site with the same probability: the
particle spreads out as much as is possible. Very similar
reasoning for Hb implies that the b particles will also
spread out as much as is possible. Finally, the termHab is a
repulsive interaction, telling us that it costs energy to have
a’s and b’s occupying the same site. So, there is a
competition going on: the terms Ha and Hb want to spread
the a’s and b’s uniformly on the lattice, which would
certainly distribute a’s and b’s to the same site. The term
Hab wants to ensure that any particular site will have only
a’s or b’s but not both. Which wins?
Consider a thermodynamiclike limit where we consider a

very large number of both species of particles, na and nb. In
the end, the low energy state will be a “demixed" state with
no sites holding both a’s and b’s. To see this, note that Ha
grows like na and Hb grows like nb. This is much smaller
than the growth of the term Hab, which grows like nanb, so
the repulsive interaction wins. This conclusion is nicely
borne out by numerical results for the two-component Bose-
Hubbard model [36,37]. The ground state phase diagram of
the Hamiltonian of Ref. [36] shows four distinct phases: the
double superfluid phase, supercounterflow phase, demixed
Mott insulator phase, and demixed superfluid phase.
Comparing our Hamiltonian to that of Ref. [36], we are
always in the demixed superfluid phase; the a and b particles
do not mix but are free to move in their respective domains.
Thus, we have a collection of two species of particles that
demix but are free on their respective domains. It is in this
sense that we have an essentially free system.
For the generic Gauss graph, with any choices for the

values of mik and pik, it is clear that Ha and Hb will still
cause the a and b particles to spread out as much as
possible. The term Hab will again dominate when we have
large numbers of a’s and b’s, so we again expect a demixed
gas. We can translate this structure of the generic state
back into the language of the giant graviton description. Up
to now, we have considered dual giant gravitons which
correspond to operators labeled by Young diagrams with
long rows. Recall that dual giant gravitons wrap an
S3 ⊂ AdS5. In this context, lR1

is the momentum of each
giant, and N þ lR1

is the radius on the LLM plane at which
the giant orbits. The Hamiltonian for giant gravitons, which
wrap S3 ⊂ S5, is given by

H ¼ ðN − lR1
Þ

lR1

Xq
i¼1

ð2ðBþ b†i biÞðAþ a†i aiÞ

− Bða†i aiþ1 þ a†iþ1aiÞ − Aðb†i biþ1 þ b†iþ1biÞÞ:
ð4:10Þ

These operators are labeled by Young diagrams with
long columns. The giants orbit on the LLM plane with a
radius of N − lR1

. The X and Y fields are each charged
under different Uð1Þ s of the R-symmetry group. The R
symmetry of the CFT translates into angular momentum of
the dual string theory, so attaching the particles to a given
giant corresponds to giving the giant angular momentum.
The lowest energy giant graviton states are obtained by
distributing the momenta carried by the X and Y fields
evenly between the giants with the condition that any
particular giant carries only X or Y momenta, but not both.
These conclusions hold for the generic state where there are
enough pik and mik nonzero, allowing the X’s and Y’s to
hop between any two giants, possibly by a complicated
path. Thus, in the end, we see that the mapping to the boson
lattice model has allowed a rather detailed understanding of
the operator mixing problem.

V. CONCLUSIONS

In this article, we have studied the action of the one-loop
dilatation operator D2 on Gauss graph operators Om⃗;p⃗

R;r ðσÞ
which belong to the SUð3Þ sector. The term we have
studied, DXY

2 , is diagonal in the r label, mixing operators
labeled by distinct graphs. It makes a subleading contri-
bution as compared toDXZ

2 andDYZ
2 when n ≫ mþ p. The

two leading terms mix operators labeled by distinct r s.
Diagonalizing the action of DXZ

2 and DYZ
2 on r leads to a

collection of decoupled harmonic oscillators, which we
refer to as the Z oscillators, since the r label is associated
with Z. The spectrum of the Z oscillators gives the leading
contribution to the anomalous dimensions. The new con-
tribution that we have studied in this paper can also be
mapped to a collection of oscillators, describing a lattice
boson model. This is done by introducing two sets of
oscillators, the X and Y oscillators associated to the X and Y
fields. Diagonalizing the X and Y oscillators breaks
degeneracies among different copies of Z oscillators and
leads to a constant addition to their ground state energy.
This is then a constant shift of the anomalous dimension.
Although this shift is subleading (it is of order m

n), it could
potentially show that certain states are not in fact BPS.
This was investigated in detail, and it turns out that states
that are BPS (their leading order anomalous dimension
vanishes) at leading order remain BPS when the subleading
correction is computed (it, too, vanishes).
The mapping that we have found to a lattice boson model

has achieved an enormous simplification of the operator
mixing problem, and we have managed to understand it in
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some detail. Indeed, using the lattice boson model, we have
argued that the lowest energy giant graviton states are
obtained by distributing the momenta carried by the X and
Y fields evenly between the giants with the condition that
any particular giant carries only X or Y momenta, but not
both. Since states with two charges are typically 1

4
-BPS

while states with three charges are typically 1
8
-BPS, it

maybe that the solution is locally trying to maximize
supersymmetry. It would be interesting to arrive at the
same picture, employing the dual string theory description.
Perhaps the most interesting consequence of our results

is that they suggest ways in which one can go beyond the 1
2
-

BPS sector. Indeed, all three types of fields considered have
been mapped to oscillators, so perhaps there is a more
general description of this sector that treats all three types of
oscillators on the same footing. This would relax the
constraint n ≫ pþm which allows for operators that
are far from the 1

2
-BPS limit. Deriving this picture is a

fascinating open problem, since it will require that we go

beyond the displaced corners approximation or, alterna-
tively, that we generalize it.
As a final comment, recall that Mikhailov [38] has

constructed an infinite family of 1
8
BPS giant graviton branes

in AdS5 × S5. Quantizing the space of Mikhailov’s solutions
leads to N noninteracting bosons in a harmonic oscillator
[39–41]. It is tempting to speculate that it is precisely these
oscillators that we are uncovering in our study; for evidence
in harmony with this suggestion, see Ref. [42]. It would be
interesting to make this speculation precise.
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