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We calculate a finite momentum–dependent part of the photon polarization operator in a simple model of
Lorentz-violating quantum electrodynamics nonperturbatively at all orders of Lorentz-violating parameters.
We sum one-particle reducible diagrams into the modified photon propagator and determine the physical
photon dispersion relation as the location of its pole. The photon dispersion relation, as well as its group
velocity, acquires the one-loopmomentum-dependent radiative correction.We constrain the Lorentz-violating
parameters for heavy charged fermions (muon, τ lepton, and top quark) from the photon timing observations.
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I. INTRODUCTION

Small violation of Lorentz invariance (LI) may take
place in physics at low energies as a relic of some unknown
ultraviolet theory, which includes quantum gravity. There
are numerous approaches to quantum gravity, featuring
Lorentz invariance violation (LV), such as loop quantum
gravity [1], noncommutative field theory [2], spacetime
foam [3], some approaches in string theory [4], Horava-
Lifshitz gravity [5,6], and others (see Refs. [7–9] for
reviews). In accordance with these models, small but
nonzero LV may appear in the matter sector as well.
Lorentz invariance violation in the matter sector may be

also considered phenomenologically. The most general
framework describing LV in the matter sector is called
the Standard Model extension (SME) [10]. The SME
Lagrangian includes all possible operators of a given order,
which are scalars under coordinate transformations. These
operators are controlled by the coefficients which may be
tested (and constrained) experimentally (see Ref. [11]).
Quantum field theory methods in a theory without LI

may be developed in analogy with corresponding LI theory.
Such models can be quantized [12], and Feynman rules for
perturbative calculations can be derived, for full SME or a
certain sector of it [13,14]. Tree-level processes in this type
of models are deeply investigated. Several processes,
kinematically forbidden in LI theory, may occur in its
LV extension; thresholds and cross sections of other
processes may be modified [13–16]. These tree-level

phenomena lead to several experimental constraints on
SME parameters [11].
Loop-level processes in theories without LI have been

also studied since Ref. [17]. One of the main achievements
in this area is the proof of one-loop renormalizability of the
QED sector of the SME [18]. In that work, infinite parts of
one-loop diagrams have been calculated. A study of finite
radiative corrections was initiated in Ref. [19]. The authors
of Ref. [19] have shown that these corrections may be
momentum dependent and may influence the propagation
of free particles (see also Ref. [20]).
The last statement can be illustrated in the following

way. A chain of one-particle reducible diagrams (polari-
zation operators or self-energy) can be summed into the
one-loop modified propagator. The poles of the propagator
determine the modified dispersion relation for the corre-
sponding particle. In the LI case, the corrections to the
denominator of the propagator reduce to the renormaliza-
tion of fields and parameters, but in the LV case, they do
not. There are two examples in standard physics: photon
dispersion in external magnetic (see e.g., Ref. [21]) and
gravitational [22] fields. Both external classical fields
violate LI, and in both cases, photon velocity depends
on its energy as well as on the external field parameters.
The similar situation may occur if LI is broken at
fundamental level like in the SME.
Cambiaso et al. [19] have calculated the momentum-

dependent radiative correction to the electron dispersion
relation in a leading order on SME parameters in a
simplified CPT-even nonbirefringent version of the
SME. They used a general technique of calculations in
the SME—perturbative treatment of LV parameters.
However, in the most simplified models, which are both
CPT even and isotropic, nonperturbative treatment can be
possible. Thus, both external states and propagators may be
computed exactly on LV parameters. This allows us to use
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these expressions to compute loop diagrams nonperturba-
tively at all orders in LV parameters. The aim of this article
is to adopt this nonperturbative approach in the calculation
of the finite momentum–dependent part of the photon
polarization operator, which allows us to calculate one-loop
radiative correction to the photon dispersion relation. The
charge of this nonperturbative treatment is the restriction to
a very limited number of LV parameters.
The paper is organized as follows. In Sec. II, we describe

a simplified model that we use for calculations. In Sec. III,
we provide the one-loop calculation of the photon polari-
zation operator, summarize one-loop radiative corrections
to the photon propagator, and compute the modified photon
dispersion relation. In Sec. IV, we establish bounds on LV
parameters for charged fermions from photon timing
observations. Section V is devoted to a discussion.

II. MODEL

The QED sector of SME is described by the
Lagrangian [10]

LSME ¼ −
1

4
FμνFμν þ iψ̄ΓμDμψ − ψ̄Mψ

−
1

4
ðkFÞμνρσFμνFρσ þ 1

2
ðkAFÞκϵκλμνAλFμν; ð1Þ

where the constants ðkFÞμνρσ, ðkAFÞμ control LV in photon
sector and Γμ and M have the following form:

Γμ ¼ γμ þ cμνγν þ dμνγ5γν þ ifμ þ 1

2
gλνμσλν þ eμ;

M ¼ mþ aμγμ þ bμγ5γμ þ
1

2
Hμνσμν: ð2Þ

Here, aμ, bμ, cμν, dμν, eμ, fμ, gλμν, andHμν are the constants
controlling all types of Lorentz and CPT violation. The
electromagnetic field strength Fμν ≡ ∂μAν − ∂νAμ and the
covariant derivative Dμ ¼ ∂μ − ieAμ are defined in a usual
way, and e is the electron charge. The greek indices μ; ν…
are raised and lowered by using the Minkowski metric. It
was shown that the Lagrangian (1) is one-loop renormaliz-
able [18] and does not lose renormalizability in curved
spacetime [23].
Note that the renormalization procedure [18] implies a

certain mixing of some coefficients in (2). Nevertheless,
there are several separate sectors in the parametric space
which are compatible with the structure of SME renormal-
ization, for example the C- and CPT-even sectors in which
all coefficients except ðkFÞμνρσ and cμν are set to zero.1 In this
work, we restrict ourselves to the SO(3)-invariant sector in
which all time components of ðkFÞμνρσ and cμν are set to zero

while each space component is characterized by a single
parameter:

ðkFÞμνρσ ¼ cγ ·δiμδ
j
νδkρδ

l
σðδikδjl−δilδjkÞ; cμν ¼ ce ·δiμδ

j
νδij:

ð3Þ

The greek indices μ; ν… run from 0 to 3, while the latin
indices i; j… are spacelike, taking the values 1,2,3.
Substituting the expressions (3) into the Lagrangian (1),
we obtain the following model:

Lmodel ¼ −
1

4
FμνFμν þ iψ̄γμDμψ −mψ̄ψ

−
cγ
2
FijFij − iceψ̄γiDiψ : ð4Þ

Here, the parameters cγ and ce determine the maximal
velocities for the photon and electron/positron respectively.
Namely, the Lagrangian (4) yields the following tree-level
dispersion relations:

γ∶ k20 ¼ ð1þ cγÞ2k⃗2 ≃ ð1þ 2cγÞk⃗2; ð5Þ

e�∶ E2 ¼ ð1þ ceÞ2p2 þm2 ≃ ð1þ 2ceÞk⃗2 þm2: ð6Þ

Let us notice that one can redefine fields and coordinates
in such a way that one of the parameters (ce and cγ)
disappears from the Lagrangian (4), since only the differ-
ence ðce − cγÞ carries physical meaning.2 However,
for completeness, we will keep both of them for further
analysis.
The model (4) has been described in Ref. [24], where the

exact expression for external states and propagators has
been obtained. The electron propagator has the same form
as in the standard case,

SðpÞ ¼ iðγμp̂μ −mÞ
p̂2 −m2

; ð7Þ

where p̂μ is no longer the electron four-momentum but
p̂μ ¼ ðp0; ð1þ ceÞpiÞ, p̂2 ¼ p̂μp̂μ. In order to write the
photon propagator, one should first add to the Lagrangian
(4) a gauge-fixing term, which, in order to get rid of
nondiagonal terms in propagator, is convenient to take in
the form

Lgf ¼ −
1 − 2cγ

2
ð∂0A0 − ð1þ 2cγÞ∂iAiÞ2: ð8Þ

1This model, with the reduced form of ðkFÞμνρσ , has been
considered in Ref. [19].

2In particular, redefinitions xi → ð1þceÞxi, Ai→ð1þceÞ−1Ai,
ψ → ð1þ ceÞ3=2ψ in the action S ¼ R

d4zLmodel remove the
parameter ce from the fermionic part of the model. In terms
of these new fields, the combination ðcγ − ceÞ appears in the
photon dispersion relation (5) instead of cγ .
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Inverting the quadratic part of the photon Lagrangian
in (4) with (8), one obtains the photon propagator
(cf. Refs. [14,24]) in “pseudo-Lorentz” gauge:

DμνðkÞ ¼ −i
diagðð1þ 2cγÞ;−1;−1;−1Þ

k20 − ð1þ 2cγÞk⃗2
: ð9Þ

For our calculation, the photon propagator in the Coulomb
gauge ∂iAi ¼ 0 is more convenient:

D00ðkÞ ¼ i
1

ð1þ 2cγÞk⃗2
; D0iðkÞ ¼ 0;

DijðkÞ ¼ i
δij − kikj

k⃗2

k20 − ð1þ 2cγÞk⃗2
: ð10Þ

To obtain the polarization operator, one also needs to know
the photon-fermion vertex, which now takes the form

Γμ ¼ −ieðγ0; ð1þ ceÞγiÞ: ð11Þ
We apply the expressions (7), (9)–(11) to compute the one-
loop photon polarization operator.

III. PHOTON POLARIZATION OPERATOR

The aim of this section is to calculate the photon
polarization operator in the one-loop approximation and
subsequently resum one-loop contributions into the photon
propagator.
Following the rules of the standard perturbation theory,

let us write the expression for the photon polarization
operator in the one-loop approximation,

ΠμνðkÞ ¼
Z

d4kl
ð2πÞ4 Tr½ΓμSðkþ klÞΓνSðklÞ�; ð12Þ

where Γμ and SðklÞ are the vertex and propagator defined in
the previous section and kl is the loop momentum.
Rescaling the loop momentum, kil → ð1þ ceÞkil, and intro-
ducing the “hat” momentum, k̂ ¼ ðk0; ð1þ ceÞkiÞ, we can
represent the components Π00, Π0i, and Πij of the photon
polarization operator (12) via LI ones:

Π00ðkÞ ¼ ð1þ ceÞ−3ΠLI
00ðk̂Þ;

Π0iðkÞ ¼ ð1þ ceÞ−2ΠLI
0i ðk̂Þ;

ΠijðkÞ ¼ ð1þ ceÞ−1ΠLI
ij ðk̂Þ: ð13Þ

Here, ΠLI
μνðkÞ is the standard LI polarization operator

ΠLI
μνðkÞ ¼

�
ημν −

kμkν
k2

�
k2Πðk2Þ; ð14Þ

where Πðk2Þ is expressed via the dimensional regulariza-
tion technique as

Πðk2Þ ¼ −
e2

2π2

Z
1

0

dxxð1 − xÞ

×

�
1

ε
þ ln 4π − γE − ln

m2 − xð1 − xÞk2
μ2

�
: ð15Þ

Here, ε ¼ 4 − 2d tends to zero as the number of
dimensions d tends to 4, γE is the Euler constant. By
using Eqs. (13)–(15), we rewrite the LV polarization
operator as follows,

ΠμνðkÞ ¼ ½ð1 − ceÞk2ðP1Þμν − 2cek⃗
2ðP2Þμν�Πðk̂2Þ; ð16Þ

where we have introduced two projection operators,

Pμν
1 ¼ ημν −

kμkν

k2
; Pμν

2 ¼ −δμi δνj

�
δij −

kikj

k⃗2

�
; ð17Þ

with the properties Pμ
1νP

ν
1λ ¼ Pμ

1λ, Pμ
2νP

ν
2λ ¼ Pμ

2λ,
Pμ
1νP

ν
2λ ¼ Pμ

2λ, and

Πðk̂2Þ ¼ e2

2π2

Z
1

0

dxxð1 − xÞ ln
�
1 − xð1 − xÞ k̂

2

m2

�
þ CΠ;

ð18Þ

where CΠ ¼ − e2

12π2
ð1ε þ ln 4π − γE − ln m2

μ2
Þ.

The polarization operator (16) contains two infinite terms
proportional to the projectors Pμν

1 and Pμν
2 . In the renorm-

alization procedure, they are contracted with their counter-
terms appearing from renormalizing the electromagnetic
field Aμ and parameter cγ respectively (see Ref. [18] for
detailed calculations in the SME). Dependent on the con-
crete subtraction scheme, renormalized constant CΠ may
take different values. Being interested in the propagation of a
free photon,we apply the on-shell subtraction scheme. From
physical grounds, we assume no radiative corrections for
soft on-shell photons. This can be achieved by setting
CΠ ¼ 0, which results in Πð0Þ ¼ 0.
Let us sum a chain of one-particle reducible diagrams

into the modified photon propagator. This procedure is
simpler if we take photon propagator in Coulomb gauge
(10) (see the Appendix for comparison with pseudo-
Lorentz gauge). The summation goes independently for
the time and space parts and leads to the result [cf. (10)]

D00
1−loopðkÞ ¼

i

k⃗2ð1þ 2cγ − ð1 − ceÞΠðk̂2ÞÞ
;

D0i
1−loopðkÞ ¼ 0; ð19Þ

Dij
1−loopðkÞ ¼

i

1−Πðk̂2Þð1− ceÞ

·
δij − kikj

k⃗2

k20 − k⃗2ð1þ 2cγ þ 2ðcγ − ceÞΠðk̂2ÞÞ
: ð20Þ
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Time components of the propagator, D00 and D0i, are the
same as in the tree-level propagator (up to the coefficient),
and the space component Dij keeps its tensor structure
proportional to the projector Pμν

2 , but the pole structure of
the denominator changes. It is known that the position of
the pole in (20) determines the dispersion relation for a free
photon. The pole from the first term, 1=½1−Πðk̂2Þð1− ceÞ�,
is a usual Landau pole. The pole from the second term of
(20) is physical. Hence, to find the photon dispersion
relation explicitly, one should solve the equation

k20 − k⃗2ð1þ 2cγ þ 2ðcγ − ceÞΠðk̂2ÞÞ ¼ 0; ð21Þ

where Πðk̂2Þ, given by (18), includes the zeroth component
of the momentum k0 as well. For this purpose, we apply an
iteration procedure: we start from the tree-level dispersion
relation (5) at zero order and consider Πðk̂2Þ as a small
perturbation suppressed by αem ¼ e2=4π. At the first order
on αem, the dispersion relation is

k20 ¼ k⃗2ð1þ 2cγ þ 2ðcγ − ceÞΠϵðk⃗2ÞÞ; ð22Þ

where

Πϵðk⃗2Þ ¼
e2

2π2

Z
1

0

dxxð1 − xÞ

× ln

�
1þ 2ðce − cγÞxð1 − xÞ k⃗

2

m2

�
: ð23Þ

Let us introduce a notation y≡ ðce − cγÞ k⃗2

m2 and perform
integration in (23) analytically. In the case y > −2, one
obtains

Πϵðk⃗2Þ¼
e2

2π2

�
y−1

3y

ffiffiffiffiffiffiffiffiffiffi
yþ2

y

s
arcth

ffiffiffiffiffiffiffiffiffiffi
y

yþ2

r
þ 1

3y
−

5

18

�
; ð24Þ

otherwise (y < −2), the polarization operator gains a non-
zero imaginary part. According to the optical theorem, the
process of photon decay to an electron-positron pair
γ → eþe− takes place in this case.3 This process is extremely
fast [14], so any phenomenological consideration of the
modified dispersion relation seems to be irrelevant.
Let us go back to the case y > −2, in which the photon

decay is kinematically forbidden. The expression (24) can
be simplified in two limiting cases. In the limit of large

positive y ≫ 1, one obtainsΠϵ ¼ q2

12π2
ðlnð2yÞ− 5

3
Þ [cf. (23)].

Then, the photon dispersion relation obtains a logarithmic
correction:

k20¼ k⃗2

�
1þ2cγþ

e2

6π2
ðcγ−ceÞ ·

�
ln

�
2ðce−cγÞ

k⃗2

m2

�
−
5

3

��
;

ðce−cγÞ
k⃗2

m2
≫1: ð25Þ

The radiative correction of the photon dispersion relation
results in the dependence of the photon velocity on its
energy. Hence, the physical velocity, defined as cphγ ≡ ∂k0

∂jk⃗j
[see (22) and (23)], is no longer a constant. In the limit
y ≫ 1, the physical photon velocity obtains a negative
radiative correction:

cphγ ¼ 1þ cγ −
e2

6π2
· ðce − cγÞ · ln

�
2ðce − cγÞ

k⃗2

m2

�
: ð26Þ

The expression (26) coincides with the result for renorm-
alization group analysis for cγ obtained in Ref. [18] if we
take the renormalization group scale μ in Ref. [18] as
μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffice − cγ

p Eγ . This can be explained in the following
way. Let us set ce ¼ 0 [this can be achieved via the field
and coordinate redefinition; see the footnote after for-
mula (6)]. The photon polarization operator (16) considered
on shell may be interpreted as an off-shell polarization
operator calculated in LI theory with the squared photon
momentum

q2 ≡ E2
γ − k⃗2 ¼ 2ðcγ − ceÞE2

γ : ð27Þ

The case of the logarithmic correction y ≫ 1 corresponds
to q2 ≫ m2.
In the opposite limit jyj ≪ 1, the expression (22) can be

expanded into series in y, and the leading term is
Πϵ ¼ e2

30π2
yþOðy2Þ. The effective photon dispersion rela-

tion (22) acquires an extra quartic term in the leading order:

k20 ¼ k⃗2ð1þ 2cγÞ −
k⃗4

M2
LV;e

; jce − cγj
k⃗2

m2
≪ 1: ð28Þ

Here, the effective LV mass scale MLV;e is defined as

MLV;e ¼
ffiffiffiffiffi
15

p
π

e
·

m
jce − cγj

: ð29Þ

Let us note that the minus sign before the quartic term in
(28) appears for both positive and negative y. The next-to-
leading term in (28) is expected to be of the order

Oððcγ − ceÞ−1 k⃗6

M4
LV;e

Þ,4 and it may take a plus or minus

sign depending on the sign of ðcγ − ceÞ. Similarly to the
previous case, the physical photon velocity depends on its

3The condition y ¼ −2, which determines the position of the
logarithmic cut at the momentum complex plane, coincides with
an energy threshold condition for the photon decay process.

4However, this term is of the order of α2em, as well as the
contribution from two-loop correction to the polarization operator.
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momentum: cphγ ¼ 1þ cγ − 3k⃗2

2M2
LV;e

. This dependencemay be

tested experimentally, which we study in the next section.

IV. EXPERIMENTAL CONSTRAINTS
ON LV IN FERMION SECTOR FROM PHOTON

OBSERVATIONS

In the previous section, we have calculated the radiative
correction to the photon dispersion relation in QED,
considering an electron running in the loop in the photon
polarization operator. However, in the full Standard Model,
the photon polarization operator in fact gets corrections not
only from electrons but from all charged particles present in
the theory. Assuming tree-level LV for a certain charged
particle, one can perform machinery similar to the afore-
mentioned one and obtain the radiative correction to the
photon velocity caused by this particle. For two or more
particles with a nonzero analog of ce (electric charges are
assumed to be the same), in the first order on αem, the full
correction to the photon dispersion relation is the sum of
corrections calculated for corresponding particles. For two
or more quartic corrections, associated with charged
fermions, the effective LV mass scale (29) is determined as

M−2
LV ¼

X
f

M−2
LV;f: ð30Þ

Here, we summed over all charged fermions f, and MLV;f

is defined by the formula (29) for a concrete charged
fermion with maximal tree-level velocity 1þ cf, electric
charge ef, and mass mf. If M−2

LV;f for a certain fermion
significantly exceeds the same parameter for other charged
fermions, we can set MLV ≃MLV;f with a good accuracy.
Thus, we can treat LV coefficients cf for different charged
fermions separately.
Let us turn to the experimental constraints. The best

direct constraints on the photon velocity are based on
photon time-of-flight analysis for fast distant astrophysical
sources. Thus, in the presence of LV, characterized by the
dispersion relation (28), high-energy photons from a source
would arrive later than low-energy ones. The best con-
straint of this type [25] is based on timing of the GRB
090510 event, observed by FERMI-LAT [26]. In the
analysis [25], the quartic dispersion relation (28) has been
tested for photon energies up to 150 MeV, and the lower
bound on the LV mass scaleMLV¼MGRB

LV ≡1.3×1011GeV
was established at 95% C.L. In other words, MLV calcu-
lated by formulas (29) and (30) should exceed MGRB

LV .
Taking into account the expression for MLV for a certain
fermion f, we obtain

jcf − cγj <
ffiffiffiffiffi
15

p
π

ef
·

mf

MGRB
LV

≃ 3× 10−10 ·

�
ef
e

�
−1

·

�
mf

GeV

�
:

ð31Þ

The formula (31) is valid under the condition jyj ≪ 1,
which leads to jcf − cγj ≪ ðmf=150 MeVÞ2. This condi-
tion, combined with (31), is satisfied at least for leptons.

A. Bounds in lepton sector

In Table I, we present bounds on the value jcf − cγj,
where cf rely on three generations of leptons. Comparison
with the current bounds [11] for each particle is also
presented in Table I. Our bound for the electron is weaker
than the current one [27], obtained from the absence of
anomaly synchrotron losses at large electron-positron
collider. However, for heavy leptons, the situation changes.
The bound for the muon is of the same order as the current
one; the bound on the tau lepton is 1 order of magnitude
better. Since the bound on jcf − cγj for an electron is
significantly better than for heavy leptons, the muon and
tau bounds from Table I may be considered as bounds only
on jcμj and jcτj. We do not consider the case of fine-tuning
jce − cγj ≪ cγ here.

B. QCD sector: The bound on cf for top quark

The full photon polarization operator includes the con-
tribution from the QCD sector as well. The following issue
arises: should we work in the perturbative regime and
consider quarks running in the loop or work in the non-
perturbative regime and consider the effective theory?
Following the analogy with the off-shell polarization

operator (see the end of the previous section), we compare
the “transferred momentum” q2 ≡ E2

γ − k⃗2 with Λ2
QCD: at

large q2 ≫ Λ2
QCD, the QCD corrections are perturbative and

small; in the opposite case q2 ≪ Λ2
QCD, the perturbative

treatment is not applicable. Using (27), let us rewrite the
condition for the perturbative regime as

jcqj ≫
1

2

Λ2
QCD

E2
γ

: ð32Þ

Here, cq refers to the parameter cf for quarks. The energy
scale of gamma-ray burst (GRB) bound EGRB

γ ¼ 150 MeV
[25] is too small to make any bounds for quarks. Let us take
another timing constraint from the flare of active galaxy PKS
2155-304 [29], which is a bit weaker than the GRB bound
[25] but based on the observation of more energetic photons.
The analysis of the flare performed by the H.E.S.S.
Collaboration [29] set the bound MLV > 6.4× 1010 GeV;

TABLE I. Bounds on jcf − cγ j for three generations of leptons.
Our bound Current bounds

Electron 1.5 × 10−13 10−15 [27]
Muon 3 × 10−11 10−11 [28]
Tau lepton 1.2 × 10−9 10−8 [28]
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photons with energies Eγ ∼ 0.25–4 TeV (mean energy
1 TeV) were considered. For these energies, the condition
(32) takes the numerical value

jcqj ≫ 2.4 × 10−8: ð33Þ

Here, the value ΛQCD ≈ 217 MeV has been used.
For these values of cq and Eγ , the condition jyj ≪ 1 may

be valid only for the top quark. Performing an analysis
similar to (31) with MAGN

LV ≡ 6.4 × 1010 GeV instead of
MGRB

LV and the top-quark electric charge etop ¼ 2=3e, one
arrives at the following bound for the parameter cq for the
top quark:

jctopj < 1.6 × 10−7: ð34Þ

The conditions (33), and jyj ≪ 1, are valid for this bound.
The bound (34) is 5 orders of magnitude better than the
direct collider bound from the Tevatron [30] (see also the
prospect for a collider bound for the LHC [31]).
For light quarks, this analysis fails; one should consider

the case y ≫ 1. The bounds on ce for light quarks and/or
mesons may be a scope of a separate work and should be
compared with collider bounds [32,33].

V. DISCUSSION

We have calculated the finite momentum–dependent part
of the photon polarization operator in a simple model of LV
QED in the one-loop approximation, considering LV
coefficients nonperturbatively. The components of the
one-loop polarization operator are rescaled to the compo-
nents of the LI one due to the presence of a single particle
inside the loop. The modified photon propagator, obtained
by the summation of one-particle reducible contributions to
the photon polarization operator, has nontrivial poles which
determine radiatively corrected dispersion relations. In
different regimes, the correction is either quartic on
momentum or logarithmic; the physical velocity for a free
photon acquires radiative corrections in the corresponding
way. The logarithmic correction to the photon velocity
coincides with the result of renormalization group analysis
for the corresponding coefficient, obtained in Ref. [18]
using infinite parts of one-loop diagrams. The reason of it is
that the on-shell squared momentum for the LV photon may
be considered as off-shell squared momentum for the LI
polarization operator, which is the standard interpretation
of the renormalization group scale.
The position of the logarithmic cut in the momentum

plane is shifted compared to the standard case, in accor-
dance with the optical theorem. This effect seems to be
taken into account only for nonperturbative treatment of LV
parameters and is usually missed in perturbative calcula-
tions (see Ref. [19]).

Radiative corrections to the photon velocity, induced by
a loop of a charged particle with tree-level LV, can be tested
experimentally. The corresponding observations constrain
LV for all charged fermions, and the bounds for the τ lepton
and top quark are the best in the literature. In any case, no
charged fermion can have large values of ce; otherwise, the
photon velocity would strongly depend on its energy (or the
photon would decay).
It turns out that only the region y ≪ 1 is relevant for

phenomenology. However, this fact was not obvious
before the calculation. One can imagine some physical
situations in which y may be larger than unity. First,
consider more energetic photons. Let us note that y grows
with the photon energy. At photon energies ∼50 TeV, the
contribution to y from muons may be of the order of unity
(the value cμ ∼ 10−11 is not restricted). At these energies,
there are no photon timing measurements, so full
analysis including arbitrary y seems to be necessary.
A similar situation would arise if more energetic photons
(1014–1019 eV) were to be detected. A more exotic
example is a hypothetical millicharged fermion [34] inside
the loop. For this type of particle, the regime y ≫ 1 would
be relevant as well.
The modified dispersion relation for a free photon

acquires novel momentum-dependent terms, which are
absent in tree-level dispersion relation (5). This fact may
be also shown in terms of the effective Lagrangian for a
photon. Integrating out charged fermions with tree-level
LV, one should obtain an addition to the effective
Lagrangian, which in the lowest order is expected to be
equal to

δLeff ∼ −
1

4M2
LV

FijΔFij: ð35Þ

Here, MLV is determined according formula (30) for LV
charged fermions. We can integrate out all charged
Standard Model particles except the electrons and obtain
the QED effective Lagrangian which includes the dimen-
sion-6 kinetic term (35). Such high-dimensional terms in
the LV QED Lagrangian have been considered in the
literature (see Refs. [14,24,35] for example). In these
models, QED Feynman rules are modified, so there are
some changes in thresholds and cross sections for several
tree-level processes in QED. Astrophysically relevant
examples of such processes are pair production by a
high-energy photon on photon background or in the
Coulomb field [14]. These reactions influence the proc-
esses of photon propagation in the extragalactic medium
and shower formation in the atmosphere. Experimental
constraints onMLV, based on the detection of TeV photons
from astrophysical sources, are of the same order but a bit
better than MGRB

LV [36]. Considerations of these processes
may set a bit stronger bounds on the parameter cf for
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charged fermions than presented in Table I. Hypothetical
experimental observation of ultrahigh-energy (∼1019 eV)
photons would establish significantly better constraints on
MLV [37] and subsequently better constraints on cf.
Radiative corrections to the physical velocity can be

considered nonperturbatively on ce and cγ for electrons as
well. Such calculation, perturbative on SME parameters,
has been performed in Ref. [19]. Nonperturbative calcu-
lation in our simplified model can be a good test of it. The
radiative corrections to the electron velocity can be tested
experimentally as well. However, the corresponding con-
straints are expected to be worse than the constraints from
photon velocity measurements.
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APPENDIX: RADIATIVELY CORRECTED
PHOTON PROPAGATOR IN
PSEUDO-LORENTZ GAUGE

Let us summarize one-particle reducible contributions to
the photon propagator in pseudo-Lorentz gauge (9). It is
simpler to perform field and coordinate rescaling (see
footnote 2) in order to set cγ ¼ 0 (otherwise, a complicated
resummation should be needed). The summation yields

ΔμνðkÞ¼
1

1−Πðk̂2Þð1−ceÞ

×

�ðP1−P2Þμν
k20− k⃗2

þ ðP2Þμν
k20− k⃗2ð1−2ceΠðk̂2ÞÞ

�
; ðA1Þ

where projectors Pμν
1 and Pμν

2 were defined in (17).
The overall coefficient 1=½1 − Πðk̂2Þð1 − ceÞ� determines
the Landau pole, as previously. The position of the pole of
the second term gives the photon dispersion relation. At first
sight, it seems that the propagator (A1) describes more
degrees of freedom because of another pole in the first term
corresponding to a relativistic dispersion relation. This would
contradict the fact that photons have two polarizations that,
according to CPT, must propagate with the same velocity. In
fact, the relativistic pole is a puregauge artifact and disappears
from gauge invariants. Indeed, consider the photon exchange
amplitude between two conserved currents:

A ¼ Jμ1ΔμνðkÞJν2; kμJ
μ
1 ¼ kμJ

μ
2 ¼ 0: ðA2Þ

A straightforward calculation yields

A ¼ 1

1 − Πðk̂2Þð1 − ceÞ
·
ð1 − 2ceΠðk̂2ÞÞJ01J02 − Ji1J

i
2

k20 − k⃗2ð1 − 2ceΠðk̂2ÞÞ
:

ðA3Þ

Wesee that the spurious pole has completely disappeared, and
(A3) gives the modified dispersion relation (22).
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