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We find neutral and charged black brane solutions with axion fields in the context of a conformally
coupled gravitational theory in four dimensions. These solutions describe anti–de Sitter (AdS) black branes
supported by axion fields that break translational invariance at the boundary, which provides momentum
dissipation. The conformally coupled scalar field is regular inside and outside the event horizon and there is
no need for any self-interaction, obtaining in this way solutions without fine-tuned parameters. We analyze
the thermodynamics of our solutions considering the effects of the axionic charges. In asymptotically AdS
configurations, the axionic and electric charges are related, implying vanishing scalar field contributions to
the mass. The rotating solution is obtained by means of a Lorentz boost having angular momentum
sustained by the axion parameter. We compute the holographic DC conductivity and we show how it is
affected by the inclusion of the conformal scalar field, which provides a temperature-independent behavior.
Finally, we include a k-essence term that modifies the DC conductivity and provides more general
behaviors.
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I. INTRODUCTION

For any well-posed gravitational theory such as
Einstein’s general relativity (GR) or any of its extensions,
the existence of black hole solutions is a matter of primary
interest. Black holes offer the perfect arena to study the
theory in the strong gravity regime and provide information
about the causal structure of the spacetime and astrophysi-
cally relevant predictions. Moreover, their semiclassical
descriptions through the study of their thermodynamical
properties provide the perfect setup to study quantum
gravity effects that would lead to the characterization of
a fundamental theory of quantum gravity [1]. However, in
standard GR, to find black hole solutions dressed with
matter fields is typically a nontrivial task due to the

existence of the topological censorship theorem [2] as
well as the no-hair conjecture [3].
On the one hand, topological obstructions in four

dimensions can be evaded by relaxing the asymptotic
behavior through the inclusion of a cosmological constant,
obtaining static solutions with planar and hyperbolic
horizons [4] along with several solutions with nontrivial
topology at infinity [5].1 In contrast, topological obstruc-
tions are weaker in dimension D > 4, allowing asymptoti-
cally flat solutions with nonspherical topology such as
black rings [6] and diverse black object solutions [7].
Moreover, for higher-dimensional GR, the unicity theorems
[8–10] are no longer valid, permitting black hole solutions
such as the Schwarzschild-Tangherlini black hole [11] and
the black p-brane.
On the other hand, the no-hair conjecture states that

black holes cannot be described by any quantity apart from
its mass, electric charge and angular momentum [12]. This
implies that, after gravitational collapse, black holes
can only be characterized by quantities that follows
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1Solutions with nontrivial topology at spatial infinity are
obtained by compactifying the base manifold directions. They
are usually dubbed topological black holes.
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a Gauss-type law, namely charges that can be measured at
infinity. Any other characteristic of the matter that falls into
the black hole is lost. This is because the assumptions
forbid black holes with nontrivial matter fields apart from
the electromagnetic one, which is the well known Kerr-
Newman solution [13]. As shown in Ref. [14], there are no
nontrivial regular solutions in GR when minimally coupled
scalar fields are considered. The no-hair conjecture renders
the scalar field trivial and the solution is nothing else than
the Schwarzschild black hole. Nevertheless, this conjecture
can be circumvented by allowing the introduction of
suitable potentials or nonminimal couplings to the matter
field. The nonminimal coupling of conformal type with
electromagnetic interaction and in the absence of a cos-
mological constant, was first considered by Bronnikov,
Melnikov and Bocharova [15] and Bekenstein [16,17].2

This was the first counterexample to the no-hair conjecture
using scalar fields and it represents a black hole only in four
dimensions [19]. Due to the fact that the scalar field does
not introduce any new integration constant in the back-
reaction these solutions are dubbed “solutions with secon-
dary hair.” However, although the metric of this so-called
“BMBB” black hole turns out to be the extreme Reissner-
Nordström solution, the scalar field diverges at the horizon,
making its physical properties difficult to interpret. As it
was shown in Refs. [20,21], this physical pathology can be
fixed by introducing a cosmological constant which pushes
the scalar field singularity behind the event horizon. This
solution, dubbed the “MTZ” black hole, possesses a
spherical or hyperbolic horizon depending on the sign of
the cosmological constant and exists only for a particular
combination of the cosmological and the quartic self-
interacting coupling constants.3 No planar solution is
allowed to exist. In particular, planar solutions are typically
affected by singular behaviors, which is a symptom of a
shortage of a curvature scale on the horizon. In Ref. [23] the
authors, based on a family of metrics that accomplish a
weaker version of Birkhoff’s theorem, constructed four-
dimensional asymptotically anti–de Sitter (AdS) black
holes with planar horizons supported by matter represented
by p-forms.4 Then, regular solutions can be found by
charging the horizon with homogeneously distributed
axionic charges along planar directions. These axion fields
endow spacetime with an effective intrinsic curvature scale,
making it possible to regularize black hole solutions. In

Ref. [24] the authors constructed a nontrivial planar version
of the MTZ black hole including, apart from the MTZ
solution ingredients, two axion fields given by three forms
originated from two Kalb-Ramond potentials. In this
situation, both the scalar fields and the axion fields are
nonminimally coupled to gravity. These solutions were also
generalized to the case in which the nonminimal coupling is
arbitrary and to the case of higher dimensions [25].
It is known that the flat geometry of the horizon opens

the possibility to study holographic applications based on
the gauge/gravity duality. The AdS=CFT correspondence
[28] establishes a duality between gravitational theories in
D dimensions and conformal field theories in the (D − 1)-
dimensional boundary. In this scenario, black holes became
suitable laboratories to study strongly coupled systems,
opening a new range of applicability of gravitational
solutions at the service of condensed matter systems
[29,30]. In this respect, planar/toroidal black holes with
scalar fields possess special relevance due, in particular, to
their applications in the dual description of superconductor
systems [31,32]. Hairy black holes can undergo sponta-
neous undressing in a phase transition process reminiscent
of nonzero condensate behavior in unconventional super-
conductors. Some examples of holographic applications,
such as interesting AC conductivity behavior of hairy black
branes, can be found by introducing a dilaton-dependent
gauge coupling between the dilaton field and the Maxwell
field, as well as phase transitions in the dual field theory
[33,34]. To successfully describe real materials using the
holographic tools [29,30], it is very important to include a
mechanism of momentum dissipation. Several methods are
employed in order to accomplish this, such as the so-called
scalar lattice technique implemented by a periodic scalar
source [35,36], the framework of massive gravity where the
diffeomorphism invariance of the theory breaks down in the
bulk [37–40], or theQ-lattice model in which the phase of a
complex scalar field breaks the translational invariance of
the theory [41,42]. A very simple way to describe systems
with momentum dissipation is the case of massless scalar
fields that depend linearly on the base manifold coordi-
nates. This technique was introduced in Ref. [43] as an
effective way to break translational invariance on the dual
field theory and obtain several novel properties for the dual
condense matter sector. Several solutions regarding these
ideas were reported in Refs. [44–50].5 This paper is devoted
to the construction of AdS black brane solutions with a
conformally coupled scalar field where the translational
invariance at the boundary is broken by means of axion
fields that depend linearly on the base manifold directions.
This solution represents the generalization to the conformal

2An alternative way to circumvent the conjecture is to consider
a complex scalar field with different symmetries than those
exhibited by the spacetime. This is constructed in such a way that
its stress-energy tensor shares the same symmetries of spacetime.
Using this approach Kerr black holes with scalar hair have been
numerically constructed in Ref. [18].

3A number of solutions were found including more general
self-interactions in four and in higher dimensions [22].

4Applications of these ideas have provided several new regular
black brane solutions [24–27].

5A very interesting application is the construction of homo-
geneous black strings and black p-branes with a negative
cosmological constant, with no ingredients other than minimally
coupled scalar fields [51].
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coupling case of Ref. [43] in four dimensions and can be
viewed as an economic way to obtain the planar version of
the BMBB solution. The paper is organized as follows.
Section II presents the theory under consideration. In
Sec. III the solutions are exposed and their principal
features are discussed. Section IV provides a general
description of the black brane thermodynamic analysis
while in Sec. V we describe the holographic DC conduc-
tivity and Hall angle for these solutions. We include a
nonlinear k-essence term in order to modify the classical
expected behavior of conductivities in these types of
models. Finally we conclude in Sec. VI.

II. THE THEORY

We consider four-dimensional gravity with a cosmologi-
cal constant interacting with a matter source given by a
conformally coupled real scalar field and two free axions,
described by the action

S½g;ϕ;ψ I� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κðR − 2ΛÞ − 1

2
ð∂ϕÞ2

−
1

12
ϕ2R −

1

2

X2
I¼1

ð∂ψ IÞ2
�
; ð1Þ

where κ≡ 1
16πG and G is the four-dimensional Newton’s

constant. The field equations are

κðGμν þ ΛgμνÞ ¼
1

2
Tϕ
μν þ 1

2
Tψ
μν; ð2Þ

�
□ −

1

6
R

�
ϕ ¼ 0; ð3Þ

□ψ I ¼ 0; ð4Þ

where □≡ gμν∇μ∇ν. The energy-momentum tensor is
given by contributions from the scalar and axion fields
which are respectively

Tϕ
μν ¼ ∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2 þ 1

6
ðgμν□ −∇μ∇ν þ GμνÞϕ2;

ð5Þ

Tψ
μν ¼

X2
I¼1

�
∂μψ I∂νψ I −

1

2
gμνð∂ψ IÞ2

�
: ð6Þ

We look for static and planar four-dimensional metrics
given by

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2ðdx2 þ dy2Þ; ð7Þ

where 0 ≤ r < ∞, 0 ≤ x ≤ βx and 0 ≤ y ≤ βy. The base
manifold is assumed to be compact, without boundary and

of vanishing curvature, i.e., it is locally isometric to flat
space R2. Imposing the axion fields to depend only on the
boundary directions the Klein-Gordon equation for each
axion field is trivially integrated, yielding

ψ I ¼ ζIixi þ αI; ð8Þ

where x1 ≡ x, x2 ≡ y and ζIi; αI are integration constants.
Due to the form of the axion kinetic term in the action, the
axion field enjoys global ISO(2) symmetry. As it was
pointed out in Ref. [27], this means that for planar solutions
of the field equations, the global ISO(2) symmetry is
isomorphic to the spatial isometries of the conformal
boundary. Nevertheless, Eq. (8) completely breaks the
global ISO(2) symmetry. As a matter of choice, we are
interested in solutions that break translation symmetry in the
conformal boundary, for which αI ¼ 0. This is because,
from a holographic point of view, it ismore interesting, since
it inducesmomentumdissipation in the dual field theory.We
have preserved only the SOð2Þ symmetry of the conformal
boundary, allowing to rearrange the expression for the axion
field in terms of only two integration constants λI, which
translate into the constraint

P
2
I¼1ðζIiζIj − λ2IδijÞ ¼ 0. In

this way, we may write the solution as ψ I ¼ λxI .

III. FOUR DIMENSIONAL BLACK BRANE
SOLUTION

The field equations (2), (3) and (4) admit an exact
solution where the metric, scalar and axion fields are
given by

ds2 ¼ −
ðr− 3λlÞðrþ λlÞ3

r2l2
dt2

þ r2l2

ðr− 3λlÞðrþ λlÞ3 dr
2 þ r2ðdx2 þ dy2Þ; ð9Þ

ϕ ¼ 2
ffiffiffi
3

p λl
rþ λl

; ð10Þ

ψ I ¼ 2
ffiffiffi
3

p
λxI; ð11Þ

where we have redefined the axion parameter λ → 2
ffiffiffi
3

p
λ,

set κ ¼ 1 for simplicity and defined the AdS radius
l−2 ≔ − Λ

3
. The metric (9) describes a planar black hole,

provided the cosmological constant is negative, with an
asymptotically AdS behavior as it can be seen by the
large-r behavior of the components gtt ∼ − r2

l2 þOðr0Þ,
grr ∼ l2

r2 þOðr0Þ. There is a curvature singularity at the
origin as it can be checked by evaluating the Ricci scalar

R ¼ −
12

l2
þ 12λ2

r2
; ð12Þ
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which is dressed by a single event horizon located at
rþ ¼ 3λl, when λ is positive, and at rþ ¼ −λl when λ is
negative. In the latter case the scalar field diverges at the
event horizon resembling what occurs with the BMBB
configuration, making its physical interpretation not clear as
the entropy is not well defined. However, unlike the BMBB
andMTZconfigurations, the scalar field has no poleswhen λ
is positive, being regular everywhere and hereafter, we
analyze this well-behaved solution. In contrast with the case
of the MTZ black hole configuration, where the cosmo-
logical constant is fine-tuned by the quartic self-interacting
coupling constant, here the cosmological constant is com-
pletely arbitrary. This means that this solution naturally
emerges as themost economicway to obtain a toroidal black
hole with a conformally coupled scalar field which is free of
singularities in four dimensions. The inclusion of both free
axion fields allows us to obtain planar solutions and
regularizes everywhere the conformally coupled scalar field
in a simpler way than in the casewith a conformally coupled
scalar field with quartic self-interaction.
An electrically and magnetically charged black hole is

obtained by adding the Maxwell term,

−
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν; ð13Þ

to the action (1), which gives the same metric (9) and axion
field (11), but with a scalar field and gauge potential of the
form

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þQ2
M þ 12λ4l2

p
λðrþ λlÞ ;

A ¼ −
QE

r
dtþQM

2
ðxdy − ydxÞ: ð14Þ

At large r, the scalar field is approximated by

ϕ ¼ ϕ1

r
þ ϕ2

r2
þOðr−3Þ; ð15Þ

where

ϕ1 ≡ λ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þQ2
M þ 12l2λ4

q
;

ϕ2 ≡ −l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þQ2
M þ 12l2λ4

q
: ð16Þ

It is worth pointing out that, as it was shown in
Refs. [52,53], the boundary conditions that ensure the
AdS symmetry of the scalar field’s asymptotic behavior are
fϕ1 ¼ 0;ϕ2 ≠ 0g, fϕ1 ≠ 0;ϕ2 ¼ 0g and ϕ2

1 ¼ αϕ2, where
α is a constant without variation. However, only the third
boundary condition allows a nonvanishing scalar field. By
means of Eq. (16), and in order to satisfy this boundary
condition, a relation between the parameters of the solution
must be fulfilled as follows:

λ4 ¼ Q2
E þQ2

M

ðα2 − 12Þl2 ; jαj > 2
ffiffiffi
3

p
: ð17Þ

It can be checked that the dominant energy condition is
satisfied for the charged and neutral black hole. In fact, by
computing the stress-energy tensor in the orthonormal
frame,

Tab ¼ diag

�
12r2λ2 − 6l2λ4

r4
;−

12r2λ2 − 6l2λ4

r4
;

−
6l2λ4

r4
;−

6l2λ4

r4

�
; ð18Þ

we note that its canonical form is of type I according to the
classification in Ref. [54]. We can identify the energy
density ρ and the principal pressures pa (a ¼ 1, 2, 3), as

ρ¼−p1¼
12r2λ2−6l2λ4

r4
; p2¼p3¼−

6l2λ4

r4
; ð19Þ

verifying directly that ρ ≥ 0 and −ρ ≤ pa ≤ ρ for r ≥ λl.
Note that the event horizon rþ > 3λl covers this region,
implying that the dominant energy condition holds in the
causally connected region of the spacetime. Our solutions
are easily extended to the case in which they possess
angular momentum. Due to our planar base manifold this
can be done by applying an improper gauge transformation
on the time coordinate and on one of the transverse
manifold directions upon identification of this last coor-
dinate. We explicitly show this construction and its
thermodynamic analysis in Appendix A.

IV. BLACK HOLE THERMODYNAMICS

For a more complete understanding of the black hole
solutions above we perform a complete thermodynamical
analysis using the Euclidean approach. In this context, the
partition function for a thermodynamical ensemble is
identified with the Euclidean path integral in the saddle-
point approximation around the classical Euclidean sol-
ution [55]. We consider spacetimes with a manifold of
topology R2 ×R2 where the first plane R2 is parametrized
by the radial coordinate r and the Euclidean time τ, while
the second refers to the base manifold which is assumed to
be compact with volume σ and, as we mentioned, spanned
by coordinates x and y. Therefore the Euclidean continu-
ation of the black hole metric (7) reads,

ds2E ¼ N2ðrÞFðrÞdτ2 þ dr2

FðrÞ þ r2ðdx2 þ dy2Þ; ð20Þ

and the scalar, axionic and gauge fields are
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ϕ ¼ ϕðrÞ; ψ I ¼ ψ IðxiÞ;
A ¼ AτðrÞdτ þ AxðyÞdxþ AyðxÞdy; ð21Þ

where x1 ¼ x and x2 ¼ y. These plane coordinates range as
0 ≤ τ ≤ β, rþ ≤ r < ∞, 0 ≤ x ≤ βx and 0 ≤ y ≤ βy where
the period β is identified with the inverse temperature
and the Euclidean action is related to the Gibbs G free
energy by IE ¼ βG. These considerations cause the reduced
Euclidean action IE to take the Hamiltonian form,

IE ¼ β

Z
∞

rþ
dr

Z
βx

0

dx
Z

βy

0

dyðNH − AτGÞ þ BE ð22Þ

where BE is a surface term. The reduced constraints are
given by

H ¼ r2

8πG

��
1 −

4πG
3

ϕ2

��∂rF
r

þ F
r2

�
þ Λ

�

þ r2

6

�
Fð∂rϕÞ2 −

�
∂rF þ 4F

r

�
ϕ∂rϕ − 2Fϕ∂2

rϕ

�

þ 1

2

X2
i¼1

ð∂xiψ IÞ2 þ
1

2r2
ð∂xAy − ∂yAxÞ2 þ

1

2r2
ðπrÞ2;

G ¼ ∂rπ
r; ð23Þ

where πr stands for the electromagnetic field momentum
defined by,

πr ¼ −
r2A0

τ

N
: ð24Þ

This is the only nonvanishing momenta conjugated to the
fields. In order to get a well-defined variational problem,
the Euclidean action must be a differential functional of the
canonical variables fF; Ax; Ay;ϕ; πr;ψ Ig, i.e., δIE ¼ 0 on
shell. This means that the boundary term BE must cancel all
the boundary terms induced by the variations of the bulk
term when the total variation of the action is performed. It is
easy to check that the equations of motion obtained by
varying the reduced action with respect to fN;F; Aτ; Ax;
Ay;ϕ; πrg are consistent with the original Einstein equa-
tions. It turns out that N is a constant which, without loss of
generality, can be taken to be N ¼ 1. It is certainly evident,
from Eq. (22), that N and Aτ are Lagrange multipliers
whose associated constraints are the Hamiltonian one
H ¼ 0 and Gauss’ law G ¼ 0 for the electromagnetic
field’s conjugate momentum. The former, in addition to
variations with respect to F and ϕ, provides a closed set of
equations whose solution is given by the expressions for F
and ϕ found in Eq. (7). The latter determines a Coulomb
form for the electric potential. Maybe the less direct
equations of motion are given by variations with respect
to ψ I and Axi which turn out to be respectively,

∂2
xiψ I ¼ 0; ∂xiFxy ¼ 0; ð25Þ

whose solution, after a suitable redefinition of the con-
stants, provides a linear dependence on the coordinates for
the fields in agreement with the solution found previously
[Eqs. (8) and (14)]. Finally, the variation with respect to the
momenta πr determines an equation trivially satisfied by its
definition.
The variational principle on the boundary term gives

δBE ¼ βσ

�
Aτδπ

r −
rN
8πG

�
1 −

4πG
3

ϕ2 −
4πG
3

rϕϕ0
�
δF −

r2N
6

ð4Fϕ0 þ F0ϕÞδϕþ r2N
3

Fϕδϕ0
�∞
rþ

−
Z

∞

rþ
dr

N
r2

��Z
βx

0

dxð∂yAx − ∂xAyÞδAx

�
y¼βy

y¼0

−
�Z

βy

0

dyð∂yAx − ∂xAyÞδAy

�
x¼βx

x¼0

�

−
Z

∞

rþ
dr

��Z
βy

0

dy∂xψ1δψ1

�
x¼βx

x¼0

þ
�Z

βx

0

dx∂yψ2δψ2

�
y¼βy

y¼0

�
; ð26Þ

where we have used the fact that the volume of the
base manifold is σ ¼ βxβy. Hereafter N is considered
as a constant and is chosen to be N ¼ 1. From the
last two boundary terms the contribution of the topological
and axionic charge of the system can be identified. These
terms lead to the variation of the magnetic charge multi-
plied by the magnetic potential as well as the variation of
the axionic charge multiplied by its associated chemical
potential.
Requiring regularity of the metric at the horizon yields

βF0ðrþÞ ¼ 4π giving the value for the temperature,

T ¼ 16

9π

λ

l
: ð27Þ

The variation of the fields on the event horizon is given by

δFjrþ ¼−
4π

β
δrþ; δϕjrþ ¼ δϕðrþÞ−ϕ0jrþδrþ; ð28Þ

δψ Ijrþ ¼ 2
ffiffiffi
3

p
xiδλ; δπrjrþ ¼ δQE;

δAxjrþ ¼ δQM

2
y; δAyjrþ ¼ −

δQM

2
x: ð29Þ
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It is convenient to define the effective Newton’s constant at
the horizon G̃þ as,6

G̃þ ¼ G
ð1 − 4πG

3
ϕðrþÞ2Þ

: ð30Þ

With this definition and Eqs. (26), (28) and (29), the
variation of the boundary term at the horizon is

δBEðrþÞ ¼ δ

�
Aþ
4G̃þ

�
þ βΦeδðσQEÞ þ βΦMδðσQMÞ

þ βΦψ1
δð−2

ffiffiffi
3

p
σλÞ þ βΦψ2

δð−2
ffiffiffi
3

p
σλÞ; ð31Þ

where Aþ ¼ σr2þ is the horizon area. Additionally we have
conveniently defined

ΦE ≡QE

rþ
; ΦM ≡QM

rþ
;

Φψ1
≡ 2

ffiffiffi
3

p
λrþ; Φψ2

≡ 2
ffiffiffi
3

p
λrþ; ð32Þ

identifying the chemical potentials for the electric, mag-
netic and axion fields as ΦE;ΦM;Φψ I

, respectively. We
reordered the variations in Eq. (31) using the fact that σ is
fixed to make clear contact with the conserved charges
later. Hereafter, we work in the grand canonical ensemble,
where the temperature T ¼ β−1 and the chemical potentials
at the horizon are fixed. Then, by virtue of these boundary
conditions at the horizon, the boundary term can be
integrated there, giving

BEðrþÞ ¼
Aþ
4G̃þ

þ βΦeðrþÞðσQEÞ þ βΦMðσQMÞ

þ βΦψ1
ð−2

ffiffiffi
3

p
σλÞ þ βΦψ2

ð−2
ffiffiffi
3

p
σλÞ: ð33Þ

The variations of the fields at infinity are

δFj∞ ¼ −12λδλ −
24lλ2δλ

r
−
12l2λ3δλ

r2
;

δϕj∞ ¼ δϕ1

r
þ δϕ2

r2
þOðr−3Þ; ð34Þ

δψ Ij∞ ¼ 2
ffiffiffi
3

p
xiδλ; δπrj∞ ¼ δQE;

δAxj∞ ¼ δQM

2
y; δAyj∞ ¼ −

δQM

2
x: ð35Þ

Then, from Eq. (26) and Eqs. (34)–(35) we obtain an
expression for the variation of the boundary term at infinity
as follows:

δBEð∞Þ ¼ βσ48lλ2δλþ βσ

3l2
ð2ϕ2δϕ1 − ϕ1δϕ2Þ: ð36Þ

The integrability condition δ2BEð∞Þ ¼ 0 can be imposed,
implying that ϕ2 ¼ ϕ2ðϕ1Þ. Additionally, since β is fixed
the boundary term at infinity generically takes the form

BEð∞Þ ¼ βσ16lλ3 þ βσ

3l2

Z �
2ϕ2 − ϕ1

dϕ2

dϕ1

�
dϕ1: ð37Þ

Having computed the boundary terms and since the value
of the reduced action on shell is the boundary term BE, we
obtain,

IE ¼ BEð∞Þ − BEðrþÞ

¼ βσ16lλ3 þ βσ

3l2

Z �
2ϕ2 − ϕ1

dϕ2

dϕ1

�
dϕ1 −

Aþ
4G̃þ

− βΦeðrþÞðσQEÞ − βΦMðσQMÞ
− βΦψ1

ð−2
ffiffiffi
3

p
σλÞ − βΦψ2

ð−2
ffiffiffi
3

p
σλÞ; ð38Þ

up to an arbitrary additive constant without variation. Since
the Gibbs free energy is related to the Euclidean action
as IE ¼ βG ¼ βM − S − βΦEQE − βΦMQM − βΦψ1

Q1 −
βΦψ2

Q2 in the grand canonical ensemble, the massM, the
electric charge QE, the magnetic charge QM, the axionic
charges Qi and entropy S are computed by means of the
standard thermodynamical relations. From Eq. (38) it is
straightforward that, the mass is generically given by

M¼
� ∂
∂β−β−1ΦE

∂
∂ΦE

−β−1ΦM
∂

∂ΦM
−β−1Φψ I

∂
∂Φψ I

�
IE

¼16σlλ3þ σ

3l2

Z �
2ϕ2−ϕ1

dϕ2

dϕ1

�
dϕ1; ð39Þ

whereas the entropy S, axionic charges Qi, electric charge
QE and magnetic charge QM read

S ¼
�
β
∂
∂β− 1

�
IE ¼

Aþ
4G̃þ

; Qi ¼−
1

β

∂IE
∂Φψ I

¼−2
ffiffiffi
3

p
λσ;

ð40Þ

QE¼−
1

β

∂IE
∂ΦE

¼σQE; QM¼−
1

β

∂IE
∂ΦM

¼σQM: ð41Þ

Thus, it turns out from these results, that the first law of
black hole thermodynamics is satisfied,

dM ¼ TdSþΦEdQE þΦMdQM þΦψ1
dQ1 þΦψ2

dQ2;

ð42Þ

which was expected since this is a consequence of the
fact that the Euclidean reduced action attains an extremum.

6Here we have reestablished Newton’s constant G for clear-
ness. Note that we set 1=16πG ¼ 1 when evaluating our solution.
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The positivity of the entropy requires G̃þ > 0 which
provides a lower bound for the axion parameter,

λ4 >
Q2

E þQ2
M

180l2
; ð43Þ

which implies an upper bound for the constant α through
Eq. (17) such that jαj < 8

ffiffiffi
3

p
. Therefore, we see that, unlike

the uncharged case, the axion parameter is restricted by the
electric and magnetic charge; otherwise there is an unphys-
ical negative entropy. The precise functional relation
between the leading and subleading terms of the scalar
field in the asymptotic region, can be determined by
demanding that the scalar field respect the asymptotic
AdS invariance. As we are interested in holographic
applications, we will consider Eq. (17), and the boundary
condition causes the integral term in Eq. (39) to vanish
giving,

M ¼ 16σlλ3: ð44Þ

Therefore, there is no scalar field contribution to the black
hole mass. As it was pointed out in Ref. [56], this is because
to preserve the AdS symmetry of the scalar field in the
asymptotic region the contribution of the scalar field to the
mass must vanish.
The rotating solution can be found in Appendix A,

in which for simplicity we analyze the neutral case. The
main property of the rotating black brane is that the
finiteness condition on the conserved charges imposes a
relation between the angular momentum and the axion
parameter. This means that the axion field can provide
angular momentum to physically acceptable solutions
whose massM and angular momentum J are respectively
given by

M ¼ 8σlλð3ω2
0 þ 2λ2Þ; J ¼ 24σl2λω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ λ2

q
;

ð45Þ

where

ω ¼ ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ λ2

p ; ð46Þ

where ω0 is a constant without variation.
The local stability can be analyzed by computing the

specific heat at fixed chemical potentials giving,

CΩþ;ΦψI
¼ 3πσðr2þ þ 9l2ω2

0Þ3=2ð2r2þ þ 9l2ω2
0Þ

2rþðr2þ þ 18l2ω2
0Þ

; ð47Þ

which is positive always. In consequence, the black brane
can always reach thermal equilibrium with a heat bath.

In general, the global stability can be analyzed through
the comparison of the free energies between the hairy black
brane and its counterpart in the absence of the scalar field.
This is because, it is necessary to compare them by setting
both configurations at the same fixed temperature T and
chemical potentials in a given ensemble. Note that, because
of Eq. (44), it is not possible to switch off the scalar field
and keep a fixed mass and a nonvanishing temperature.
This means that the only possible candidate to compare
with the black brane is the black brane solution obtained in
the absence of the conformally coupled scalar field found in
Ref. [43]. In this case, and choosing the grand canonical
ensemble we found that for the same boundary conditions
and at fixed temperature, the free energy of our black brane
is always positive while the other black brane possesses
a nonpositive free energy for any temperature. In other
words, the solution without a conformal scalar field is the
thermodynamically preferred configuration.

V. HOLOGRAPHIC DC CONDUCTIVITIES
AND HALL ANGLE

Now we move on to study the DC conductivities σDC and
the Hall angle θH of the holographic theory dual to the
charged hairy black hole. These transport properties have
recently been widely studied in various theories because the
conductivities do not evolve in the radial direction and
hence can be analytically obtained by calculating the values
at the horizon. It was discussed in Refs. [42,57] that σDC
usually contains two terms, i.e., σDC ¼ σccs þ σdiss, where
σccs is the “charge-conjugation-symmetric” part [58] while
σdiss is related to the charge QE of the black hole and it is
divergent in a translationally invariant theory. The relation
between the Hall angle and σdiss and the corresponding
scaling were carefully studied in Refs. [57,59]. Thus, we
will use the techniques of Ref. [42] to study the features of
σDC and θH of our charged hairy black hole. To proceed, we
turn on only the following relevant perturbations because
the remaining perturbations are decoupled and have no
relevance to our study:

δAx ¼ −Extþ ax; δAy ¼ −Eytþ ay;

δgtx ¼ r2htx; δgrx ¼ r2hrx;

δgty ¼ r2hty; δgry ¼ r2hry;

δψ1 ¼ Ψ1; δψ2 ¼ Ψ2; ð48Þ

where Ex and Ey are constant, while ax, ay,
htx; hty; hrx; hry;Ψ1;Ψ2 are all functions of the radial
coordinate r. Then, the two perturbed Maxwell equations
are

F0a0x þ Fa00x þQEh0tx þQMðF0hry þ Fh0ryÞ ¼ 0; ð49Þ

F0a0y þ Fa00y þQEh0ty −QMðF0hrx þ Fh0rxÞ ¼ 0; ð50Þ
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where a prime denotes a derivative with respect to r. From
the above equations, we define two conserved currents7

Jx ¼ −r2Frx ¼ −Fa0x −QEhtx −QMFhry; ð51Þ

Jy ¼ −r2Fry ¼ −Fa0y −QEhty þQMFhrx; ð52Þ

which satisfy dJxðrÞ
dr ¼ dJyðrÞ

dr ¼ 0 due to the Maxwell equa-
tions (49) and (50). This implies that Jx and Jy do not
depend on r. In addition, according to the AdS=CFT
dictionary, the holographic DC conductivities are deter-
mined by the conserved currents in the asymptotic boun-
dary. As mentioned above, since Jx and Jy are independent
of r, we shall evaluate them at the horizon instead of on
the boundary. To impose the regularity conditions at the
horizon, it is convenient to work in Eddington-Finkelstein
coordinates ðv; rÞ with v ¼ t −

R
dr
F . Thus, the regular

conditions at the event horizon require the gauge field to
take the form [60]

ax ¼ −Ex

Z
dr
F
; ay ¼ −Ey

Z
dr
F

ð53Þ

while the perturbed metric reads

hrx ¼
htx
F

; hry ¼
hty
F

: ð54Þ

Moreover, we have FðrþÞ ∼ 4πTðr − rþÞ and we set Ψ1;2

to be constant near the horizon [42]. Then, substituting the
conditions (53) and (54) into the rx and ry components of
the Einstein equation, we can solve for htxðrþÞ and htyðrþÞ.
Thus, the conductivities can be obtained

σxx ¼
∂JxðrþÞ
∂Ex

¼ 3ð12λ4 þQ2
M þQ2

EÞð36λ4 þ 3Q2
M þQ2

EÞ
2Q2

Eð36λ4 þ 5Q2
MÞ þ 9ð12λ4 þQ2

MÞ2 þQ4
E
; ð55Þ

σyy ¼
∂JyðrþÞ
∂Ey

¼ σxx; ð56Þ

σxy¼
∂JxðrþÞ
∂Ey

¼ 6QEQMð12λ4þQ2
MþQ2

EÞ
2Q2

Eð36λ4þ5Q2
MÞþ9ð12λ4þQ2

MÞ2þQ4
E
; ð57Þ

σyx ¼
∂JyðrþÞ
∂Ex

¼ −
6QEQMð12λ4 þQ2

M þQ2
EÞ

2Q2
Eð36λ4 þ 5Q2

MÞ þ 9ð12λ4 þQ2
MÞ2 þQ4

E

¼ −σxy; ð58Þ

where we have considered the event horizon rþ ¼ 3λ and
the temperature T ¼ 16λ=9π in Eq. (27) by setting l ¼ 1.
The DC conductivity and the Hall angle are

σDC ≔ σxxðQM ¼ 0Þ ¼ 3ð12λ4 þQ2
EÞ

36λ4 þQ2
E

; ð59Þ

θH ≔
σxy
σxx

¼ 2QEQM

36λ4 þ 3Q2
M þQ2

E
; ð60Þ

and we see that σDC and θH are finite.
We rewrite the DC conductivity as

σDC¼1þ 2Q2
E

36λ4þQ2
E
¼1þ2ðα2−12Þ

24þα2
¼ 3α2

24þα2
; ð61Þ

where we have used Eq. (17) in the second equality. When
QE ¼ 0, we have σDC ¼ 1 which is consistent with the
result for a neutral black hole found in Ref. [42]. However,

the term 2Q2
E

36λ4þQ2
E
is very different from σdiss in the case

without a scalar field [43], which is divergent as λ → 0.
Theories in which other scalar fields appear, other than the
minimally coupled axions, have been considered for
example in Ref. [61]. We observe that, even in very exotic
cases, in which other fields with nonminimal couplings are
included, the conductivity still behaves as if those fields
were not present, reproducing the same result found in
Ref. [43]. Of course, once the theory under consideration
modifies the location of the horizon in terms of these new
contributions to the system, the dependence on the temper-
ature will change. Nevertheless the asymptotic behavior of
the conductivity remains unchanged. In our case, we
observe that the conformally coupled scalar field ϕðrÞ
modifies the backreaction of the black brane solution such
that σDC is temperature independent. Actually, after con-
sidering Eq. (17), we observe that it does not depend on λ at
all, and then by means of Eq. (27) there is no dependence
on the temperature. Thus, the holographic transport features
in our model are more like those in a neutral black hole
whose DC conductivity is a finite constant in the dual
theory. We note that the DC conductivity in this model
satisfies σDC > 1 by inserting Eq. (17) into Eq. (61). The
only dependence that σDC possesses is the dependence on
the constant α. From Eq. (17) we know that the absolute
value of α must be strictly greater than 2

ffiffiffi
3

p
. On the other

hand we observe that in order to reproduce solutions with
positive entropy, λ is bounded from below according to

7In principle, we can also define the current r2Frx because of
the Maxwell equation ðr2FrxÞ0 ¼ 0; however, we have defined
Jt ¼ QE ¼ −r2Frt ¼ r2ðAtÞ0 in the black hole solution (14).
In order to be consistent, we chose Ji ¼ −r2Friði ¼ x; yÞ.
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Eq. (43). This implies an upper bound on α given by 8
ffiffiffi
3

p
. In

Fig. 1 we observe that the conductivity approaches a
constant value as α increases. Its minimum value is obtained
by asymptotically approaching α ¼ 2

ffiffiffi
3

p
from the right. In

addition, through Eqs. (17) and (27), it can be seen that the
Hall angle decays as θH ∼ 1=T2 in the high-temperature
limit, resembling the quadratic-T inverse behavior found in
cuprates holographically studied in Refs. [57,61,62].
To obtain a richer phenomenology, we have to modify

the axionic part of the action by means of nonminimal
couplings. Because our axion depends linearly on the flat
coordinates, we need to modify the action in a way that
maintains the original shift symmetry; otherwise the trans-
verse manifold coordinates would appear in the equations
of motion. The most simple way to do this is to consider a
k-essence term as we did in Ref. [50]

S̄½g;ϕ;ψ I� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ −

ð∂ϕÞ2
2

−
ϕ2R
12

−
X2
I¼1

�
XI

2
þ β

�
XI

2

�
k
�
−
F2

4

�
ð62Þ

where we have defined XI ≔ ∂μψ I∂μψ I . This goes back to
the action (1) plus Eq. (13) when β, with mass dimension
4 − 4k, goes to zero. The equations of motion for the above
action are shown in Appendix B. We know that when
ϕðrÞ ¼ 0, the case k ¼ 2 modifies the black brane solution
found in Ref. [43] including a term which goes as 1=r2, like
the electric charge. Then we provide an exact solution for
Eq. (62) for this particular case

ds2 ¼ −
ðr − 3λlÞðrþ λlÞ3

r2l2
dt2 þ r2l2

ðr − 3λlÞðrþ λlÞ3 dr
2

þ r2ðdx2 þ dy2Þ; ð63Þ
ψ I ¼ 2

ffiffiffi
3

p
λxI; ð64Þ

and the scalar field and the Maxwell gauge field read

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þ 12λ4l2 þ 576λ4β
p

λðrþ λlÞ ; A ¼ −
QE

r
dt: ð65Þ

Here we are interested in the DC conductivity, so we turn
off the magnetic field. For this solution, the AdS criterion is
given by

λ4 ¼ Q2
E

ðα2 − 12Þl2 − 576β
; ð66Þ

requiring

ðα2 − 12Þl2 > 576β: ð67Þ

With the same method and algebra computation as in the
previous study, we obtain the DC conductivity

σ̄DC ¼
3½12ð48βþ 1Þλ4þQ2

E�
36ð48βþ 1Þλ4þQ2

E
¼ 1þ 2Q2

E

36ð48βþ 1Þλ4þQ2
E

¼ 1þ 2ðα2− 12− 576βÞ
α2þ 24þ 1152β

¼ 3α2

α2þ 24þ 1152β
ð68Þ

where we have considered Eq. (66) with l ¼ 1 in the second
line. The above result is also independent of λ and it
reduces to the DC conductivity (61) when β ¼ 0 as we
expected. We will consider only positive values of β in
order to avoid phantom contributions to the axionic sector.
It is observed that the conductivity depends on two
parameters, α and β which satisfy Eq. (67), constraining
β to take values in the interval ½0; α2−12

576
½; otherwise the

axion parameter may become complex. In this case, α is
still bounded from above by requiring configurations of
positive entropy (43) such that α < 8

ffiffiffi
3

p
. For these con-

siderations we note that in the region of parameters of
physically acceptable configurations, the conductivity
again reaches its maximum value σDC → 8=3 for α →
8

ffiffiffi
3

p
and β ¼ 0. Now, the inclusion of the β parameter by

means of the k-essence contribution, allows access to a
wider range of conductivities. Namely, all the configura-
tions for which β approaches its upper bound, which is
β → α2−12

576
, possess σDC → 1. This means that the conduc-

tivity now lies on a two-dimensional surface described by α
and β, whose extremal values give σDC ∈�1; 8=3½. We have
to note that Eq. (67) prevents our solution from behaving
as an insulator, as it imposes a lower bound for β that
forbids access to the insulator state for physically
acceptable configurations. Figure 2 shows this particular
behavior.

FIG. 1. DC conductivity with respect to α. Between the dashed
lines, this curve represents conductivities for physically accept-
able configurations.
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VI. FURTHER REMARKS

In this paper we have constructed black brane solutions in
a conformally coupled scalar theory. These solutions are
supported by two axion fields homogeneously distributed
along the horizon that depend linearly on the transverse
manifold coordinates. No self-interaction for the scalar field
is needed. Solutions of this kind have been shown to produce
momentum dissipation, making them excellent candidates to
study holographic conductivities [43]. We observed that, for
the neutral case, all parameters appearing in the solution are
free from fine-tuning. The electric and magnetically charged
case was also obtained. It was shown in this case, that
demanding that the whole configuration respects invariance
under the group AdS SO(3,2) at the boundary, implies that
the axionic and electromagnetic charges must be related by
means of Eq. (17). This implies that there is no contribution
to the mass from the scalar fields. We then performed in
detail the thermodynamic analysis of our charged solutions
considering the nontrivial effect of the axionic charges.
Unlike the BMBB black hole, the black brane interacts with
a scalar field which is regular everywhere, allowing us to get
a well-defined thermodynamics; in particular, the entropy is
a finite quantity. The rotating black brane can be obtained
from the static one, by performing a boost in the plane
spanned by the temporal coordinate and one of the planar
coordinates. It has been shown that the physically acceptable
configurations with finite conserved charges, possess mass
and angular momentum tuned by the axion parameter. This
configuration satisfies the dominant energy condition and is
thermodynamically locally stable, which means that it
always attains equilibrium with a heat bath as well as its
static counterpart. Once the whole configuration respects the
asymptotic AdS symmetry, we focused on some holographic
applications. Following the procedure stated in Ref. [42],
and using the momentum relaxation techniques of Ref. [43],
we obtained the DC conductivity and Hall angle of our
charged solutions. We demonstrated that due to our AdS
criterion (17) our solution mostly behaves as the neutral case

originally studied in Ref. [42]. Nevertheless, in this case we
have σDC > 1 and, contrary to the charged black branes
originally constructed in Ref. [23] and holographically
studied in Ref. [43], its behavior is totally independent of
the temperature. Despite this, our DC conductivity depends
on the arbitrary constant α that ensures a nontrivial scalar
field ϕðrÞ, whose asymptotic behavior is invariant under
the group AdS SO(3,2). It was found that in the range of
values for this constant that ensure physically acceptable
configurations, the conductivity profile is a monotonically
increasing function of α, taking values from σDC ¼ 1 to
σDC ¼ 8=3. In order to look for different behaviors of our
holographic conductor we have included a new contribution
in the axionic sector of our system. Motivated by the result
obtained in Ref. [50] for k-essence theories, we studied the
k-essence case with k ¼ 2. This case is integrated due to the
fact that the k-essence contribution to the equations of
motion possesses the same behavior as the electric charge.
We observed that our AdS criterion is modified but the DC
conductivity is still independent of the temperature. This
behavior was expected since the k ¼ 2 term behaves
similarly to the electric charge. Despite this, the new
coupling β modifies the conductivity in such a way that,
while respecting the condition (67), σDC ∼ 1 for a wide
range of values for β given by β → α2−12

576
. We observed that,

for small values of α and large values of β, σDC ∼ 0 behaves
as an insulator. Nevertheless, this region belongs to unphys-
ical configurations since they violate the reality condition for
the axion fields. As a final remark, we can conclude that,
either in the case of pure minimally coupled axion fields or
in more exotic theories such as k-essence, conformal scalar
fields that respect the asymptotic AdS symmetry lead to a
constant DC conductivity that depends on the coupling
parameters and not on the temperature as it is usually
expected. As further development of this work, we will
disclose the thermal conductivity and the thermoelectric
conductivity of the dual boundary theory elsewhere.
Moreover, we expect to study more general conformally
coupled scalar theories, such as the one studied in Ref. [63],
that exist in dimensions higher than four. These would
provide not only black brane solutions for such models but
also a new setup to study holographic conductivities and
their phenomenology. Additionally, other holographic appli-
cations of interest come from the idea that black branes are
known to be dual to perfect fluids. In this context it would be
interesting to explore when the solutions constructed here
satisfy the shear viscosity entropy bound [64]

η

S
¼ 1

4π
ð69Þ

which has been demonstrated to hold in models without
higher curvature terms [65]. Nevertheless in Ref. [66] it was
demonstrated that by including a nonminimal kinetic
coupled scalar field the bound may be violated. We are

FIG. 2. DC conductivity with respect to α and β. The
yellow region represents conductivities for physically acceptable
configurations.
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aiming to investigate whether or not this is the case for black
branes exhibiting a conformal nonminimal coupling with the
curvature in the presence of scalar fields that induce
momentum dissipation. We expect to report on this in our
future related works.
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APPENDIX A: ROTATING BLACK BRANES

When the static solution possesses a planar base mani-
fold, a rotating solution can be constructed from the static
one by applying an improper local transformation [67].
Additionally, as it was noted in Ref. [68], by performing a
topological identification along one of the planar coordi-
nates, it is possible to obtain a stationary solution with
angular momentum. For simplicity, we will consider the
uncharged solution. To achieve this, the x coordinate now
dubbed as φ and with the range φ ∈ ð−∞;∞Þ, along with
the t coordinate are transformed as follows:

t →
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2
p ðt − lωφÞ; φ →

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
φ −

ω

l
t

�
:

ðA1Þ
This transformation is a boost in the t-φ plane parametrized
by ω2 < 1. By means of a topological identification, the
initial topology of the base manifold R ×R can be trans-
formed to S1 ×R, by fixing the period of the angular
coordinate φ to 2π. This implies that the local geometry
of the static solution is preserved but not the global one.
Hence, the transformation (A1) provides a resultingmanifold
which is globally stationary but locally static. Applying
Eq. (A1) to our original static solution (9)–(11) we obtain

ds2 ¼ −N2ðrÞFðrÞdt2 þ dr2

FðrÞ
þHðrÞðdφþ NφðrÞdtÞ2 þ r2dy2 ðA2Þ

where FðrÞ is given by Eq. (9) and

N2ðrÞ ¼ r2ð1 − ω2Þ
r2 − l2ω2FðrÞ ; NφðrÞ ¼ −

r2 − l2FðrÞ
r2 − l2ω2FðrÞ

ω

l
;

HðrÞ ¼ r2 − l2ω2FðrÞ
1 − ω2

: ðA3Þ

On the other hand the conformally coupled scalar field ϕðrÞ
is not affected by the transformation while the axion field
originally distributed along the x direction becomes time
dependent

ψ1 ¼ 2
ffiffiffi
3

p λffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
φ −

ω

l
t

�
: ðA4Þ

From Eq. (A2) we see that the rotating solutions still possess
a single event horizon located at rþ ¼ 3λl covering the
curvature singularity in r ¼ 0. The functionsN2ðrÞ andHðrÞ
are both positive, which ensures the proper signature for the
black hole and a well-defined local area for the base
manifold. All of these functions are monotonically increas-
ing functions outside the horizon. The asymptotic behavior
corresponds to a boosted AdS spacetime. It is possible to
show that this solution indeed describes a rotating black hole.
For this, we follow the Regge-Teitelboim approach [69]
to determine the mass and angular momentum for
this rotating solution. The Hamiltonian generator of the
asymptotic symmetries ξμ ¼ ðξ⊥; ξiÞ for the Lagrangian in
Eq. (1), is given by a linear combination of the Hamiltonian
constraints H⊥;Hi supplemented with a surface term Q½ξμ�
which ensures well-defined functional derivatives for
the Hamiltonian generator. In the Arnowitt-Deser-Misner
decomposition, γij is the metric of the spacelike surfaces of
constant time. Alongwith the scalar field and the axion fields
ψ I , they constitute the dynamical variables of the system
with conjugate momenta πij, πϕ and πψ I

, respectively. The
generator reads,

H½ξμ� ¼
Z

d3xðξ⊥H⊥ þ ξiHiÞ þQ½ξμ�: ðA5Þ

For the kind of configurations considered in Eq. (A2), the
expressions for the constraints are explicitly given by [70]

H⊥ ¼ −
ffiffiffiffi
H
F

r
r

��
κ −

ξ

2
ϕ2

�
ð3ÞR −

1

2
Fð∂rϕÞ2 − κΛ

�

þ
ffiffiffiffi
f
H

r �
4

2κ − ξϕ2

�
πrφπ

rφ þ
ffiffiffiffi
f
H

r
π2ψ1

2r

− ξ∂rð
ffiffiffiffiffiffiffi
fH

p
r∂rϕ

2Þ; ðA6Þ
Hφ ¼ −2πφrjr þ πψ1

∂φπψ1
ðA7Þ

where ð3ÞR is the Ricci scalar of γij. The nonvanishing
components of the momenta are given by,

πφ
r ¼ −

rH3=2

2N

�
κ −

ξ

2
ϕ2

�
∂rNφ;

πψ1
¼ r

ffiffiffiffi
H

p

NF
ð∂rψ1 − Nφ∂φψ1Þ: ðA8Þ

Demanding δH ¼ 0 on shell, we obtain the variation of the
charge
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δQ½ξμ� ¼ lim
r→∞

�
σ

ffiffiffiffi
H
F

r ��
−
F
H

�
∂rδH −

∂rH
2H

δH

�
−
�∂rH
2H

þ 1

r

�
δF

��
1 − κξΦ2

2κ

�
ξ⊥

þ F
H
∂r

��
κ −

ξ

2
ϕ2

�
ξ⊥

�
δH þ F½ξ⊥ðξ∂rðδϕ2Þ − δϕ∂rϕÞ − ξ∂rξ

⊥δϕ2�
�
þ 2σξφδπφ

r

−
Z

dSi

�
r

ffiffiffiffi
H

p

F
ξ⊥∂iðϕδϕþ ψ1δψ1 þ ψ2δψ2Þ þ ξiπψ1

δψ1

��
; ðA9Þ

where σ stands for the volume of the base manifold. The
deformation vectors ξμ in terms of the Killing vectors ∂t
and ∂φ are given by,

ξ⊥ ¼ N
ffiffiffiffi
F

p ∂t; ðA10Þ

ξφ ¼ ∂φ þ Nφ∂t: ðA11Þ
The mass M is the conserved charge associated with the
time translation symmetry, while the angular momentum J
is the conserved charge associated with the rotational
translation symmetry. In fact, in this approach, both of
them are obtained by evaluating δM ¼ δQ½∂t� and
δJ ¼ −δQ½∂φ�, respectively. Namely,

δM ¼ lim
r→∞

�
ðtþ βφlωÞδΩ

r
l

þ 24lσλ2

ð1 − ω2Þ2 ½ðω
4 þ ω2 − 2Þδλ − 2λωδω�

�
; ðA12Þ

δJ ¼ lim
r→∞

�
−ðωtþβφlÞδΩr

þ 24l2σλ2

ð1−ω2Þ2 ½3ð1−ω2Þωδλþð1þω2Þλδω�
�

ðA13Þ

where δΩ is given by,

δΩ ¼ −
12λβy

ð1 − ω2Þ2 ½ωð1 − ω2Þδλþ λδω�: ðA14Þ

As it can be seen in Eqs. (A12) and (A13), the boost
performed on the static solution, has introduced terms
proportional to δΩ which are divergent. However, we can
obtain finite conserved charges by demanding δΩ ¼ 0,
which imposes a relation between the boost parameter ω
and the axion parameter λ. This is determined by a
differential equation of the form

dω
dλ

þ ω

λ
ð1 − ω2Þ ¼ 0; ðA15Þ

whose solution gives

ω ¼ ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ λ2

p ; ðA16Þ

where ω0 is a constant without variation. This relation
renders the variation of the charges finite and the remaining
terms can be directly integrated. Therefore, the mass and
angular momentum have the following expressions:

M ¼ 8σlλð3ω2
0 þ 2λ2Þ; J ¼ 24σl2λω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ λ2

q
;

ðA17Þ

up to additive fixed constants. These constants have been
fixed in order to have a static and massless background. In
other words, switching off the axion field through λ ¼ 0,
the configuration

ds2 ¼ −
r2

l2
dt2 þ l2

r2
dr2 þ r2ðdφ2 þ dy2Þ; ðA18Þ

possesses M ¼ 0 and J ¼ 0. Note also that, naturally the
angular momentum vanishes when the boost parameter
vanishes, recovering the mass for the static solution
obtained in Sec. IV in the neutral case. Also, it is worth
noting that the angular momentum is bounded from above
by the mass jJ j < Ml. The temperature of the black hole
can be computed by means of the surface gravity k2 ¼
− 1

2
∇μχν∇μχν given in terms of the null Killing vector at the

event horizon χ ¼ ∂t þΩþ∂φ. Here, Ωþ ¼ ω=l is the
angular velocity at the horizon. This is

T ¼ k
2π

¼ 16

9π

λ2

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ λ2

p ; ðA19Þ

which, as it was expected, reduces to Eq. (27) when
ω0 ¼ 0. The conformal coupling modifies the standard
Bekenstein-Hawking entropy, giving [71,72]

S ¼ Aþ
4G̃þ

; ðA20Þ

where Aþ ¼ σrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrþÞ

p
is the area of the horizon. As it

was expected, the first law of thermodynamics is satisfied,

dM ¼ TdS þ ΩþdJ þΦψ1
dQ1 þΦψ2

dQ2; ðA21Þ

with the chemical potentials for axion fields and axionic
charges determined by
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Φψ1
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − ω2Þ

q
λrþ; Qψ1

¼ −
2

ffiffiffi
3

p
λσffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2
p ; ðA22Þ

Φψ2
¼ 2

ffiffiffiffiffi
3λ

p
rþ; Qψ2

¼ −2
ffiffiffi
3

p
λσ: ðA23Þ

The local thermal stability of the black hole can be analyzed
by computing the specific heat at fixed angular velocity and
chemical potentials,

CΩþ;ΦψI
¼
�∂M
∂T

�
ω;ΦψI

¼
��∂M

∂rþ
�� ∂T

∂rþ
�

−1
�
ω;ΦψI

; ðA24Þ

which gives

CΩþ;ΦψI
¼ 3πσðr2þ þ 9l2ω2

0Þ3=2ð2r2þ þ 9l2ω2
0Þ

2rþðr2þ þ 18l2ω2
0Þ

: ðA25Þ

The specific heat is always positive, and in consequence,
the rotating black hole, as well as the static one (ω0 ¼ 0),
always attains equilibrium with a heat bath.

APPENDIX B: EQUATIONS OF MOTION
FOR THE k-ESSENCE EXTENSION

The Einstein equations for Eq. (62) are given by

κðGμν þ ΛgμνÞ ¼
1

2
Tϕ
μν þ 1

2
Tψ
μν þ 1

2
Tem
μν ðB1Þ

where we have defined

Tϕ
μν ¼ ∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2 þ 1

6
ðgμν□ −∇μ∇ν þ GμνÞϕ2;

ðB2Þ

Tψ
μν ¼

X2
I¼1

�
∂μψ I∂νψ I −

1

2
gμνXI

þ 2β

�
kXk−1

I ∂μψ I∂νψ I −
1

2
gμνXk

I

��
; ðB3Þ

Tem ¼ FμρF
ρ
ν −

1

4
gμνFαβFαβ: ðB4Þ

On the other hand, for our conformally coupled scalar and
axion fields we have

�
□ −

1

6
R

�
ϕ ¼ 0; ðB5Þ

½ð1þβkXk−1
I Þgμνþβkðk−1ÞXk−2

I ∇μψ I∇νψ I�∇μ∇νψ I ¼0:

ðB6Þ

These equations provide our solution (63)–(65), for the
k ¼ 2 case.
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