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Dark sectors lying beyond the Standard Model and containing sub-GeV particles which are bilinearly
coupled to nucleons would induce quantum forces of the Casimir-Polder type in ordinary matter. Such new
forces can be tested by a variety of experiments over many orders of magnitude. We provide a generic
interpretation of these experimental searches and apply it to a sample of forces from dark scalars behaving
as 1=r3, 1=r5, 1=r7 at short range. The landscape of constraints on such quantum forces differs from the
one of modified gravity with Yukawa interactions and features, in particular, strong short-distance bounds
from molecular spectroscopy and neutron scattering.
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I. INTRODUCTION

When going beyond the StandardModel (SM) of particle
physics, it is natural to imagine the existence of other light
particles, which would have been so far elusive because of
their weak or vanishing interactions with the SM particles.
Such speculations on dark sectors could be simply driven
by theoretical curiosity although there are more concrete
motivations coming from two striking observational facts:
dark matter and dark energy. In both cases, theoretical
constructions elaborated to explain one or both of these
fundamental aspects of the Universe tend to assume the
existence of dark sectors of various complexity.
Among the many possibilities for the content of the dark

sector, our interest in this work lies in dark particles with
masses below the GeV scale, where quantum chromody-
namics (QCD) reduces to an effective theory of nucleons. If
a light scalar coupled to nucleons, it would induce a fifth
force of the form V ¼ αe−r=λ=r, with λ ¼ ℏ=mc being the
Compton wavelength of the scalar and m its mass. The
presence of such a Yukawa-like force is sometimes dubbed
“modified gravity.” Experimental searches for such fifth
forces between nucleons extend from nuclear to astronomic

scales and lead to a landscape of exclusion regions, see
summary plots in [1–5].
As noted in [6], even in the absence of a light boson

linearly coupled to nucleons, other fifth forces can still arise
from the dark sector whenever a sub-GeV particle of any
spin is bilinearly coupled to nucleons. Such forces would
arise from the double exchange of a particle and are, thus,
fundamentally quantum. Moreover, in order to take into
account retardation effects, such forces have to be com-
puted within relativistic quantum field theory. This kind of
computation has been first done by Casimir and Polder for
polarizable particles [7], and by Feinberg and Sucher for
neutrinos [8]. We will refer to such quantum forces as
Casimir-Polder forces.
There is a variety of motivations for having a particle of

the dark sector coupling bilinearly to nucleons. The dark
particle can be for instance charged under a symmetry of
the dark sector, can be a symmetron from a dark energy
model, or simply a dark fermion sharing a contact inter-
action with nucleons. Such Z2 symmetry also can be
needed in order to explain the stability of dark matter.
In the presence of forces which do not have a Yukawa-

like behavior, as is the case of the Casimir-Polder forces we
focus on, the landscape of fifth force searches is expected to
change drastically. A thorough investigation of the exper-
imental fifth force searches then becomes mandatory in
order to put bounds on such extra forces in a consistent
manner, and thus on the underlying dark particles.
This requires revisiting each of the experimental results,

a task that will be performed in this paper. In Sec. II, we
consider Casimir-Polder forces focussing on the case of a
scalar with various effective interactions with nucleons.
General features of Casimir-Polder forces are then derived
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in Sec. III. A generic interpretation of the most recent and
stringent fifth force searches, valid for arbitrary potentials,
is given in Sec. IV. The exclusion regions will be displayed
and discussed in Sec. V.
We emphasize that our approach to constrain dark

sectors relies only on virtual dark particles, and is thus
independent on whether or not the dark particle is stable.
The case where the dark particle is stable and identified
as dark matter has been treated in a dedicated companion
paper, Ref. [6], where a complementarity with low-mass
direct detection bounds (like XQC [9–11]) has been found.
Searches for dark sectors via loops of virtual dark particles
include Refs. [6,12,13], and are yet under-represented in
the literature.

II. CASIMIR-POLDER FORCES FROM
A DARK SCALAR

There are many reasons why the dark sector could
feature a scalar with a Z2 symmetry with respect to the
Standard Model sector. If such a scalar is charged under
a new symmetry such as a Uð1ÞX charge while the SM
fields are not, the scalar should interact with the SM via
bilinear operators. The scalar can also be the pseudo-
Nambu-Goldstone boson (pNGB) of an approximate global
symmetry, in which case it couples mostly with derivative
couplings to the nucleons. Theories of modified gravity can
also feature light scalars with a bilinear coupling to the
stress-energy tensor [14]. While the properties of these
scalars are often considered to be modified by some
screening mechanism, it is certainly relevant to consider
scenarios where screening is negligible or absent. This is
the most minimal possibility and can also serve as a
reference for comparison with the screened models.
Moreover, for models like the symmetrons, screening does
not happen in vacuum.
All these possibilities of the dark sector can be UV-

completed in a warped five-dimensional framework where
the SM lies on the UV brane while the dark sector is on the
IR brane and in the bulk. At energies larger than the KK
scale μ, interactions between SM and dark sector become
exponentially suppressed by ∼e−E=μ and the SM is mostly
ignorant of the dark sector—as first noted in [15] in another
context. By AdS=CFT this framework is also equivalent to
have a dark sector made of bound states from a strongly
interacting theory with large number of color and con-
formal in the UV. Some details are given in Appendix A.
This model will be the focus of a future publication [16].
It is convenient to use an effective field theory (EFT)

approach to describe the interactions of the dark particle.
All the measurements we consider occur well below the
quantum chromodynamics (QCD) confinement scale;
hence, we can readily write down effective interactions
with nucleons. The operators we consider have the form
OnucODS, where Onuc is bilinear in the nucleon fields and
ODS is bilinear in the dark sector field.Onuc has in principle

a N̄ΓAN structure, where ΓA can have any kind of Lorentz
structure. In the limit of unpolarized nonrelativistic nucle-
ons, only the interactions involving Onuc ¼ N̄N; N̄γ0N are
relevant, the other being either canceled by averaging over
nucleon spins or suppressed by powers of m−1

N .
In this paper, we focus on the exchange of a dark scalar.

The exchange of dark fermions and dark vectors, either
self-conjugate or complex, have been treated in [6], and
details of the calculations for all these cases are given in
Appendix B. Here, we focus on three types of effective
interactions, L ¼ LSM þOi, with

O0
a ¼

1

Λ
N̄N

ϕ2

2
; O0

b ¼
1

Λ2
N̄γμNϕ�i∂↔μϕ;

O0
c ¼

1

Λ3
N̄N

ð∂μϕÞ2
2

: ð2:1Þ

We assume that only one of these operators is turned on at a
time. In the O0

a;c cases, we assume a real scalar, while for
O0

b we assume a complex scalar. The O0
a interaction

corresponds to the case of a symmetron, the O0
b interaction

is typically the one generated from a heavy Z0 exchange,
and the O0

c would occur if the scalar is the pNGB of a
hidden global symmetry. In the last case, as the pNGBmass
explicitly breaks the shift symmetry, an interaction of the
form m2

Λ2 O0
a could also be present. However, its effect would

be negligible at short distance; hence, we do not take it into
account. Similar calculations have been performed for
disformal couplings in [17,18].
Higher-dimensional operators are in principle present in

the effective Lagrangian, and are suppressed by higher
powers of either Λ or ΛQCD. The EFT is valid for momenta
below min ðΛ;ΛQCDÞ when coupling constants are Oð1Þ in
the UV theory. We will assume a universal coupling to
protons and neutrons—all our results are easily generalized
for nonuniversal couplings. Also, for simplicity, we do not
consider the dark particle coupling to electrons. Including
the coupling to electrons would lead typically to stronger
forces and thus to enhanced limits.
As a result of the Oa;b;c interactions, nucleons can

exchange two scalars as shown in the Feynman diagram
of Fig. 1. This Feynman diagram induces a Casimir-Polder

FIG. 1. The exchange of two scalars inducing a force between
the nucleons.
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force (i.e., a relativistic van der Waals force) between the
nucleons. The forces induced by the Oa;b;c operators have
been computed in [6] and are given by the potentials

Va ¼ −
1

32π3Λ2

m
r2
K1ð2mrÞ; Vb ¼

1

8π3Λ4

m2

r3
K2ð2mrÞ;

Vc ¼ −
1

32π3Λ6r

��
30m2

r4
þ 6m4

r2

�
K2ð2mrÞ

þ
�
15m3

r3
þm5

r

�
K1ð2mrÞ

�
; ð2:2Þ

where Ki is the ith modified Bessel function of the second
kind. The Va force is consistent with a previous calculation
of [19] after matching to our conventions.
The main steps of the general calculation are as follows.

One first calculates the amplitude corresponding to the
diagram in Fig. 1. In order to calculate loop amplitudes in
the EFT, dimensional regularization has to be used in order
not to spoil the EFT expansion. The one-loop amplitudes
can be decomposed over the basis

fn ¼
Z

1

0

dxðxð1 − xÞÞn log
�
Δ
Λ2

�
; ð2:3Þ

where Δ ¼ m2 − xð1 − xÞq2. Λ is the scale at which the
effective theory is matched on to the UV theory and is also
the scale at which the EFT breaks down.
Then one takes the nonrelativistic limit of the amplitude

and identifies the scattering potential Ṽ as

iM ¼ −iṼðjqjÞ4m2
Nδ

s1s01δs2s
0
2 ; ð2:4Þ

where s1;2 ðs01;2Þ corresponds to the spin polarization of
each ingoing (outgoing) nucleons. The spatial potential is
given by the three-dimensional Fourier transform of ṼðjqjÞ,

VðrÞ ¼
Z

d3q
ð2πÞ3 ṼðjqjÞe

iq·r ¼ −i
ð2πÞ2r

Z
∞

−∞
dρρṼðρÞeiρr;

ð2:5Þ

where r ¼ jrj and the momentum has been extended to the
complex plane in the last equality, ρ≡ jqj. Using standard
complex integration, one obtains

VðrÞ ¼ −i
ð2πÞ2r

Z
i∞

i2m
dρρ½Ṽ�eiρr ¼ i

ð2πÞ2r
Z

∞

2m
dλλ½Ṽ�e−λr;

ð2:6Þ

where [V] is the discontinuity from right to left across the
positive imaginary axis, ½V� ¼ Vright − V left, and one has
defined ρ ¼ iλ. Notice that λ can also be understood as

ffiffi
t

p
,

the square root of the tMandelstam variable extended to the
complex plane. The discontinuities ½fn� needed to compute

the Casimir-Polder force via Eq. (2.6) are given in
Appendix B.
In the case of the scalar dark particle exchanged via

the Oa, Ob or Oc operators, the amplitudes are given in
Appendix C. The discontinuities needed to calculate the
Va;b;c potentials are

½f0� ¼ iπ
2

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4m2

p
;

½f1� ¼ iπ
2m2 þ λ2

3λ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4m2

p
;

½f2� ¼ iπ
6m4 þ 2m2λ2 þ λ4

15λ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4m2

p
: ð2:7Þ

The discontinuity of the nonrelativistic scattering potentials
for the three diagrams considered above are

½Ṽa� ¼
½f0�

32π2Λ2
;

½Ṽb� ¼
m2½f0�− λ2½f1�

8π2Λ4
;

½Ṽc� ¼
ð6m4 þm2λ2Þ½f0� þ ð24m2λ2 þ λ4Þ½f1� þ 20λ4½f2�

64π2Λ6
:

ð2:8Þ

At short distance mr ≪ 1 the forces behave as

Va ¼ −
1

64π3Λ2r3
; Vb ¼

1

16π3Λ4r5
;

Vc ¼ −
15

32π3Λ6r7
; ð2:9Þ

while at long distance mr ≫ 1, the forces go as

Va ¼ −
ffiffiffiffi
m

p
e−2mr

64π5=2Λ2r5=2
; Vb ¼

m3=2e−2mr

16π5=2Λ4r7=2
;

Vc ¼ −
m9=2e−2mr

64π5=2Λ6r5=2
: ð2:10Þ

As sketched in [6], the broad features of these forces can
be understood from general principles. The arguments are
given in detail in the next section.

III. GENERAL CONSIDERATIONS
ON CASIMIR-POLDER FORCES

A. Structure of the effective theory

Let us first comment on the effective theory giving rise
to the Casimir-Polder forces. The four-nucleon loop dia-
grams we consider come from higher-dimensional oper-
ators and are thus more divergent than the four-nucleon
diagrams from the UV theory lying above Λ. This implies
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that four-nucleon local operators (i.e.,. counterterms) of the
form ðN̄NÞ2, ð∂μðN̄NÞÞ2;… are also present in the effective
Lagrangian to cancel the divergences which are not present
in the UV theory. The finite contribution from these local
operators is fixed by the UV theory at the matching scale,
and is expected to be of same order as the coefficient of
the logΛ term in the amplitude by naive dimensional
analysis (this situation is analog to renormalization of the
nonlinear sigma model; see Ref. [20]). The loop amplitudes
have the form

M ¼ Fðq2Þ þ Gðq2Þ log
�
m
Λ

�
; ð3:1Þ

where Fðq2Þ is complex, with Fðq2 ¼ 0Þ ¼ 0, andGðq2Þ is
a real polynomial in q2 (both depend also on m, Λ). The
log term is a consequence of the divergence. The log term is
real and contributes to the running of local four-nucleon
operators. The Casimir-Polder force arises from the branch
cut of Fðq2Þ and is, thus, independent of the log term. An
experiment measuring only the Casimir-Polder force will
have the advantage of being insensitive to these four-
nucleon operators, which are set by the UV completion
and, thus, introduce theoretical uncertainty. This happens
either when the experiment is nonlocal by design (e.g.,.
measuring the force between nucleons at a nonzero dis-
tance), or by construction of the observables as we will see
in the case of neutron scattering. All the measurements
considered in this paper are either fully or approximately
insensitive to local four-nucleon interactions.
Certain of the experiments we are considering

(namely molecular spectroscopy and bouncing neutrons)
rely on systems which are small enough to necessitate a
quantum description of the nucleus. The wave functions
associated to the quantum states in these systems are
computed using QED and are, thus, valid down to an
internuclear distance of order the radius of the nucleus
r ∼ rnuc, with typically r−1nuc ¼ Oð100 MeVÞ. These wave
functions will be convoluted with the potential of the
dark force, hence the space integral should be cut off at a
value rUV given by the maximum of rnuc and the inverse
cutoff of the EFT. Depending on the behavior of the
wave function and of the dark force at small r, the
observables can be sensitive to rUV or not. Having a
cutoff-dependent observable is not inconsistent, and
often occurs in high-energy physics, for instance when
loop contributions to electroweak observables are com-
puted. The r < rUV contribution to the space integrals
are not computed. When the observable is independent
of rUV, one may expect that the r < rUV contribution to
the integral is negligible. On the other hand, when the
observable is cutoff dependent, it is likely that physics
beyond r < rUV contribute as well. In such case, the
predictions from the r > rUV piece of the integral should
be understood as mere estimates.

B. General features of Casimir-Polder forces

The main features of Casimir-Polder forces between two
nonrelativistic sources can be understood using dimen-
sional analysis and the optical theorem. We focus on the
double exchange of a particle having local interactions with
the sources, the operators used in Sec. II being examples
of such a scenario. We further assume that the sources are
identical—a similar approach applies similarly to different
sources. We denote by X the dark particle exchanged, X̄ its
conjugate, m its mass. We use nucleons as source for
concreteness. X can take any spin. The generic operator we
consider has the form

L ⊃
1

Λn OðXÞN̄ΓAN; ð3:2Þ

where ΓA can be any Lorentz structure. When averaging
over the nucleon spins, the first nonvanishing Lorentz
structures are N̄N (“scalar channel”), N̄γμN (“vector
channel”), and we will focus on those ones.
Within the above assumptions we obtain the following

properties:
(i) Sign. Operators of the form OðXÞN̄N give rise to

attractive forces. Operators of the form OμðXÞN̄γμN
give rise to repulsive forces.

(ii) Short distance. An operator of dimension nþ 4
gives rise to a potential behaving at short distance as

VðrÞ ∝ 1

r1þ2n : ð3:3Þ

(iii) Long distance. When the square amplitude
jMðNN̄ ↔ XX̄Þj2 taken at

ffiffiffi
s

p
∼ 2m is suppressed

by a power ðs − 4m2Þp (i.e., velocity-suppressed by
v2p), the long range behavior of the force is given by

VðrÞ ∝ e−2mr

r
5
2
þp

: ð3:4Þ

Let us prove the above properties. Property 2 is simply
a consequence of dimensional analysis. When r ≪ 1=m,
the potential can be expanded with respect to rm and at
first order, VðrÞ ¼ VðrÞjm¼0ð1þOðmrÞÞ. In this limit the
potential depends only on r and on the effective coupling
1=Λn squared. The potential having dimension one, it must
have a dependence in 1=r2nþ1 so that dimensions match.
Notice that this argument applies similarly for the exchange
of a single particle (giving then a 1=r potential) or for the
exchange of an arbitrary number of particles.
For Properties 1 and 3, let us denote the amplitude of

interest (Fig. 1) by iMt, and introduce the amplitude
iMs ¼ iMðNN̄ → X�X̄� → NN̄Þ, which is the s ↔ t
crossing of iMt. In order to get some insight on iMt,
we can study iMs use crossing symmetry. The optical
theorem applies to iMs, with
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ImðMsÞ ¼ ImðMðNN̄ → X�X̄� → Nðq1ÞN̄ðq2ÞÞÞ

¼ 1

2

X
polar

Z
d4q1
ð2πÞ3 δðq

2
1Þ

d4q2
ð2πÞ3 δðq

2
2Þð2πÞ4δ4ðq1 þ q2 − qÞjMðNN̄ → Xðq1ÞX̄ðq2ÞÞj2

¼ 1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r X
polar

jMðNN̄ → Xðq1ÞX̄ðq2ÞÞj2 ð3:5Þ

where in the last line we use the fact that the amplitude
arising from local interactions [Eq. (2.6)] depend only on
the center-of-mass energy

ffiffiffi
s

p
. The optical theorem is of

interest because ImðMtÞ is directly related to the disconti-
nuity of Mt over its branch cut, which is precisely the
quantity needed to calculate nonrelativistic potential. In the
formalism of Sec. II, we have

ImðMtÞ ¼ −2½Ṽ�m2
Nδ

s1s2δs
0
1
s0
2 : ð3:6Þ

It turns out that ImðMtÞ > 0 (< 0) corresponds to an
attractive (repulsive) force.
Let us prove Property 1. For the scalar channel, the

crossing of ImðMsÞ stays positive, hence ImðMtÞ > 0
and the force is attractive. For the vector channel, we
have MðNN̄ → XX̄Þ ∝ Jμ;NJ

μ
X where the Jμ are vector

currents. The square matrix elements takes the form
ðJμ;NJν;NÞðJμ;XJν;XÞ. All the Jμ are conserved currents,
Jμqμ ¼ 0. The Jμ;N can be pulled outside of the integral in
Eq. (3.5). Conservation of the Jμ;N currents implies that
they project out the components proportional to qμ of the
quantity they are contracted with. It follows that

Jμ;NJν;N
X
polar

ðJμ;XJν;XÞ¼Jμ;NJν;NAðsÞðqμqν−sgμνÞ; ð3:7Þ

where we have introduced s ¼ ðq1 þ q2Þ2 and AðsÞ is a
positive function. In the nonrelativistic limit, one keeps
only the μ ¼ ν ¼ 0 components of the nucleon currents,
and the projector reduces to qμqν − sgμν ∼ q2—hence AðsÞ
has to be positive to ensure ImðMsÞ > 0. The crossing of
ImðMsÞ gives

ImðMtÞ ¼ ðJ̃μ;NJ̃ν;NÞAðtÞðqμqν − tgμνÞ; ð3:8Þ

where J̃μ;N denotes the crossed nucleon currents. In the
nonrelativistic limit, we have J̃μ;NJ̃ν;N∼4m2

Nδ
μ0δν0δs1s2δs

0
1
s0
2 ,

q0 ∼ 0, t ∼ −q2. However, when taking the Fourier trans-
form of ṼðqÞ [see Eq. (2.6)], jqj is extended to the complex
plane. The nonrelativistic potential is then given by an
integral of ImðMtÞ over positive values of the real variable
λ, which is related to t by λ≡ ffiffi

t
p

. Hence the t variable in
Eq. (3.8) is positive when computing the nonrelativistic

potential. This implies that ImðMtÞ is always negative, and
thus the Casimir-Polder force between nucleons induced by
a vector channel is always repulsive.
Let us finally prove Property 3. We first remark that

the long distance behavior of the VðrÞ potential amounts
to having a steep exponential in

R
∞
2m dλλ½Ṽ�e−λr, see

Eq. (2.6). When this is true we are allowed to expand
½Ṽ� as a power series at small values of λ, hence at the
point λ ¼ 2m. In order to understand what form this
power series takes, let us consider the square amplitude
jMðNN̄ ↔ XX̄Þj2, which corresponds to pair production
or annihilation of X. This amplitude arises from the local
operators of Eq. (2.6) hence it depends only on the center-
of-mass energy

ffiffiffi
s

p
. We extend s to the complex plane.

We can always perform a power series expansion near
s ¼ 4m2,1

jMðNN̄ ↔ XX̄Þj2
¼ 4m2

Nðaþ bðs − 4m2Þ þ cðs − 4m2Þ2 þ…Þ ð3:9Þ

where the 4m2
N factor is introduced for further conven-

ience and the a, b, c are dimensionful constants. Using the
optical theorem, we obtain that

ImðMsÞ ¼
m2

N

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
ðaþ bðs − 4m2Þ

þ cðs − 4m2Þ2 þ…Þ; ð3:10Þ

and crossing then gives

ImðMtÞ ¼
m2

N

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
ðaþ bðt − 4m2Þ

þ cðt − 4m2Þ2 þ…Þ: ð3:11Þ

1Note that the quantity
ffiffiffiffiffiffiffiffiffiffi
s−4m2

p
4m ¼ q

m ≡ v taken in the center-of-
mass frame is the usual velocity of the X particle. It is common to
say that the squared matrix-element is “velocity-suppressed”
when e.g., a ¼ 0. The nucleons being by assumption heavier than
X, neither production nor annihilation of X can physically happen
at this threshold. However, formally, nothing forbids us to
perform the expansion.
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ImðMtÞ is related to ½Ṽ� by Eq. (3.6) and ½Ṽ� is related to
VðrÞ by Eq. (2.6). The potential in the long range limit
turns out to be2

VðrÞ¼−
1

32π5=2
e−2mr

�
a
m1=2

r5=2
þb

6m3=2

r7=2
þc

60m5=2

r9=2
þ…

�
:

ð3:13Þ

We can see that an extra factor of 1=r in VðrÞ is associated
to each factor of s − 4m2 in the expansion of
jMðNN̄ ↔ XX̄Þj2.

IV. FIFTH FORCE SEARCHES

This section describes how to interpret the results of a
number of experiments as bounds on an arbitrary fifth force.

A. Neutron scattering

Progress in measuring the scattering of cold neutrons off
nuclei have been recently made and have been used to put
bounds on short-distance modified gravity, [21–28]. The
cold neutron scattering cross section can be measured at
zero angle by “optical” methods, at nonzero angles using
Bragg diffraction, or over all angles by the “transmission”
method giving then the total cross section [29].
In the following, we adapt the analyses of [27] to the

Casimir-Polder forces of Eq. (2.2). At low energies the
standard neutron-nuclei interaction is a contact interaction
in the sense that it can be described by a four-fermion
operator O4N ¼ ðN̄NÞ2.3,4 New physics can in general
induce both contact and noncontact contributions to the
neutron-nuclei interaction. A noncontact contribution van-
ishes at zero momentum, while a contact contribution
remains non-null and can be described by O4N. It is
convenient to introduce the scattering length

ffiffiffiffiffiffiffiffiffiffi
σðqÞ
4π

r
≡ lðqÞ ¼ lCstd þ lCNP þ lNCNP ðqÞ; ð4:1Þ

where the lCstd, l
C
NP local terms are independent of momen-

tum transfer q and lNCNP ðqÞ, which satisfies lNCNP ðq ¼ 0Þ ¼ 0,
is the noncontact contribution. The lNCNP ðqÞ term contains

the Casimir-Polder force (see Sec. III), and log terms of
the form jqj2n logðm=ΛÞ. The new physics contribution
lNPðqÞ is related to the scattering potential Ṽ by lNPðqÞ ¼
2mNṼðqÞ, which is just the Born approximation.5

For the forces described in Eq. (2.2), the new physics
contributions are given by

laðjqj2Þ ¼
mN

16π2Λ2
f0; ð4:2Þ

lbðjqj2Þ ¼
mN

4π2Λ4
ðm2f0 þ jqj2f1Þ; ð4:3Þ

lcðjqj2Þ ¼
mN

16π2Λ6

��
3m4 −

m2jqj2
2

�
f0

þ
�jqj4

2
− 12m2jqj2

�
f1 þ 10jqj4f2

�
; ð4:4Þ

where the fn are the loop functions defined Eq. (2.3).
A convenient way to look for an anomalous interaction
is to search for lNCNP ðqÞ by comparing the scattering length
obtained by different methods, using for instance
lBragg − lopt, ltot − lopt. This approach eliminates the contact
contributions lCstd and lCNP, and is, therefore, only sensitive
to lNCNP ðqÞ.

(i) Opticalþ Bragg.—One approach is to compare the
forward and backward scattering lengths measured
respectively by optical and Bragg methods. Using the
analysis from [27], one has a 95% CL bound

1

2mN
ðlið0Þ − liðk2BraggÞÞ < ð0.01 fmÞ2; ð4:5Þ

with kBragg ¼ 2 keV.
(ii) Opticalþ total cross section.—The total cross

section measured by the transmission method pro-
vides the average scattering length

l̄iðkÞ ¼
1

2

Z
π

0

dθ sinðθÞlið4k2sin2ðθ=2ÞÞ: ð4:6Þ

Using information from optical method measure-
ment, we have the 95% CL bound

lið0Þ − l̄iðkexÞ < 6 × 10−4 fm; ð4:7Þ

with kex ¼ 40 keV.
For both methods, a dependence on the jqj2n logðm=ΛÞ
remains, which turns out to be mild in practice. Hence, our
results are still approximatively independent of the local

2The general case is obtained similarly using the identity
Z

∞

2m
dλλðλ2 − 4m2Þ12þp ¼

�
4m
r

�
pþ1 Γð3=2þ pÞffiffiffi

π
p Kpþ1ð2mrÞ:

ð3:12Þ
3Various contact operators can be written when differentiating

between neutrons and protons. However, this is not crucial for the
discussion hence we use only “N,” which refers to both protons
and neutrons.

4As described in [27], there is also a small electromagnetic
dipole interaction, which is taken into account in the analysis and
which we do not discuss here.

5We emphasize that no extra theoretical assumptions have been
made above, this formalism is a mere rewriting of the scattering
amplitude to highlight the important features and to put it in a
form more common to neutron experiments.
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four-nucleon operators, which are fixed by the unspecified
UV completion (see Sec. III).

B. Molecular spectroscopy

Impressive progress on both the experimental [30–37]
and the theoretical [38–49] sides of precision molecular
spectroscopy have been accomplished in the past decade,
opening the possibility of searching for extra forces below
the Å scale using transition frequencies of well-understood
simple molecular systems. Certain of these results have
recently been used to bound short distance modifications of
gravity, see Refs. [5,50–52].
The most relevant systems for which both precise

measurements and predictions are available are the hydro-
gen molecule H2, the molecular hydrogen-deuterium ion
HDþ and muonic molecular deuterium ion ddμþ, where d
is the deuteron. This last system is exotic in the sense that
a heavy particle, the muon, has been substituted for an
electron. As a result the internuclear distances are reduced,
providing a sensitivity to forces of shorter range, and thus
to heavier dark particles.
The presence of an extra force shifts the energy levels by

ΔEi ¼
Z

d3rΨ�ðrÞViðrÞΨðrÞ ð4:8Þ

at first order in perturbation theory. We have computed
these energy shifts for the transitions between the ðν ¼ 1;
J ¼ 0Þ − ðν ¼ 0; J ¼ 0Þ states for H2, the ðν ¼ 4; J ¼ 3Þ −
ðν ¼ 0; J ¼ 2Þ states of HDþ, and the binding energy of the
(ðν ¼ 1; J ¼ 0Þ) state of ddμþ using the wave functions
given in [5,51]. ν and J are respectively the rotational
and vibrational quantum numbers. For the quantum states
considered here, the typical internuclear distances are ∼1 Å
for H2 and HDþ, and ∼0.005–0.08Å for ddμþ.
The wave functions of these states are shown in

Appendix D. The bounds on the extra forces are obtained
by asking that ΔE be smaller than the combined uncer-
tainties given by δE ¼ δEexp ⊕ δEth. These experimental
and theoretical uncertainties are summarized in Table I, and
more details can be found in the original references. For the
transition energies, the experimental uncertainties are larger
than the theoretical ones by a factor of Oð1Þ to Oð10Þ. For
the binding energy of the ddμþ ground state, the exper-
imental uncertainty dominates by a Oð10Þ factor.

At small r, the wave functions of these states are constant
except for ddμþ which behaves as ∼r [53]. In all cases but
for the ðν ¼ 1; J ¼ 0Þ states of ddμþ, the wave function at
small r is so small that it is neglected—and its value is even
difficult to obtain numerically [51,53]. On the other hand for
ddμþ the tail at small r is not negligible. For a force in 1=r5

(resp. 1=r7) the predicted energy shift depends on logðrUVÞ
(resp. 1=r2UV). We have taken rUV to be the radius of the
deuteron, which is of order 2 × 10−5 Å. To get a concrete
idea of the dependence on the choice of the cut-off scale rUV,
one can compare with the result obtained when cutting the
wave function at a larger distance, taking as an example
rUV ¼ 10−3 Å. In terms of the sensitivity to Λ, we get that
the change is Oð10%Þ for the 1=r5 force, and of a factor ∼4
for the 1=r7 force. In the latter case, this follows from the
1=r2UVΛ6 dependence of the short distance contribution to
energy levels, which is the dominant one, unlike in the other
cases considered, and for which a change of rUV by a factor
of 50 leads to a change in Λ of order 501=3 ∼ 4.

C. Experiments with effective planar geometry

Avariety of experiments searching for new forces at sub-
millimeter scales are measuring the attraction between two
dense objects with typically planar or spherical geometries.
Whenever the distance between the objects is small with
respect to their size, these objects can be effectively
approximated as infinite plates, and the force becomes
proportional to the potential energy between the plates.
This is the proximity force (or Derjaguin’s) approximation
[54]. An important subtlety is that most of the experiments
are using objects coated with various layers of dense
materials, that should be taken into account in the compu-
tation of the force. Thus, we end up with calculating the
potential between two plates with various layers of density
for each. The effective plane-on-plane geometries are
summarized in Table II. It is convenient to describe all
these configurations at once using a piecewise mass density
function describing n layers over a bulk with density ρ,

γnðzÞ ¼

8>>>>><
>>>>>:

ρn if 0 < z < Δn

ρn−1 if 0 < z < Δn þ Δn−1

..

.

ρ if z >
P

n
i Δi:

: ð4:9Þ

In this notation, the layer labelled n is the closest to the
other plate. The potential between an infinite plate of
density structure γaðzÞ and a plate with area A and density
structure γbðzÞ at a distance s is then given by

Vplate
i ¼ 2πA

Z
∞

0

dρρ
Z

∞

0

dzaγðzaÞ
Z

∞

0

dzbγðzbÞ

× Vi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðsþ za þ zbÞ2

q �
: ð4:10Þ

TABLE I. Experimental and theoretical uncertainties for
molecular observables (transition or bin-ding energies) consid-
ered in this work.

δEexp δEth

H2 ðν ¼ 1; J ¼ 0Þ − ðν ¼ 0; J ¼ 0Þ
[50,51]

3.0 neV 1.5 neV

HDþ ðν ¼ 4; J ¼ 3Þ − ðν ¼ 0; J ¼ 2Þ
[50]

0.33 neV 0.044 neV

ddμþ ðν ¼ 1; J ¼ 0Þ [5] 0.7 meV < 0.1 meV
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In practice, most of these sub-millimeter experiments
have released their results as bounds on a Yukawa-like
force. In order to obtain consistent bounds on the strength
of the Casimir-Polder forces Λ as a function of the scalar
mass m, we have to compare the plane-on-plane potentials
from the Casimir-Polder forces to the plane-on-plane
potential from the Yukawa force. Bounds on the ðα; mÞ
parameters of the Yukawa force can be then translated into
bounds on the ðΛ; mÞ parameters of the Casimir-Polder
forces, using the limit-setting procedure provided by each
experiment.
The plane-on-plane potential for the Yukawa force is

straightforward to compute analytically and reads

Vplate
Yuk ¼2πA

1

m3
e−msKa

nKb
n0 ;

Kn¼ρnþ
Xn
l¼1

ðρl−1−ρlÞexp
�
−m

Xl

i¼1

Δn−iþ1

�
ð4:11Þ

with ρ0 ¼ ρ. In the case of the Casimir-Polder forces shown
in Eq. (2.2), the triple integral of Eq. (4.10) are much less
trivial to carry on analytically. A numerical integration is,
however, easily done.
It is worth noticing that the z-integrals on the Casimir-

Polder potentials can be realized using a different repre-
sentation for the potentials, which naturally occurs when
calculating the diagram of Fig. 1 in a mixed position-
momentum space formalism, which we will extensively use
in future work [62].

D. Bouncing neutrons

New forces can also be probed using bouncing ultracold
neutrons (i.e., neutrons with velocities of a few m/s)

[63–67]. The vertical motion of a neutron bouncing above
a mirror nicely realizes the situation of a quantum point
particle confined in a potential well, the gravitational
potential mNgz pulling the neutron down, and the mirror
pushing the neutron up. The properties of the discrete
stationary quantum states for the bouncing neutron can be
calculated exactly. The wave function of the kth state reads

ψkðzÞ ¼ CkAiðz=z0 − ϵkÞ; ð4:12Þ

where Ai is the Airy function, ϵk is the sequence of the
negative zeros of Ai and z0 ¼ ð2m2

Ng=ℏ
2Þ−1=3 ≈ 6 μm.

The first wave functions are shown in Appendix D. The
theoretical energies of the quantum states are

Ek¼mNgz0ϵk¼f1.41;2.46;3.21;4.08;…g peV: ð4:13Þ

Recently, a measurement of the energy difference E3 − E1

was performed at the Institut Laue Langevin in Grenoble
using a resonance technique [68]. The result is in agreement
with the theoretical predictions. From this experiment a
bound can be set on any new force which would modify the
energy levels, the experimental precision being

δðE3 − E1Þ < 10−14 eV: ð4:14Þ

Let us calculate the energy shift due to the new Casimir-
Polder dark force. The additional potential of a neutron at a
height z above a semi-infinite glass mirror is given by

Vi;zðzÞ ¼ 2π
ρglass
mN

Z
∞

z
dz0

Z
∞

0

ρdρViðrÞ ð4:15Þ

TABLE II. Summary of the fifth forces experiments with effective planar geometry used in this work. The reported densities which
differ from the nominal ones given in Table III are indicated in parentheses.

Experiment Plane a Separation Plane b

Stanford [55] − Au, 30 μm 25 μm Au

IUPUI [56] Sapphire Cr, 10 nm Au, 250 nm ½30–8000� nm Au, 250 nm Cr, 10 nm Si, 2.1 μm SiO2Au, 2.1 μm

Lamoreaux
[54,57]

SiOð2.23Þ
2 Cu, 0.5 μm Au, 0.5 μm ½0.6; 6� μm Au, 0.5 μm Cu, 0.5 μm SiOð2.40Þ

2

AFM [54,58] Polystyrene Auð18.88Þ, 86.6 nm [62, 350] nm Auð18.88Þ, 86.6 nm Sapphire
μ-oscillator
[54,59,60]

Sapphireð4.1Þ Cr, 10 nm Au, 180 nm [180, 450] nm Au, 210 nm Cr, 10 nm Si

Casimirless
[54,60,61] Sapphire Cr, 1 nm Au, 200 nm [150, 500] nm Au, 150 nm Pt, 1 nm Ge, 200 nm Ti, 1 nm SiAu, 200 nm

TABLE III. Densities of the materials used in the fifth force experiments listed in Table II.

Polyester SiO2 Si Sapphire Ti Ge Cr Cu Au

ρ ½g cm−3� 1.06 2.23 2.33 3.98 4.51 5.32 7.14 8.96 19.32

ρ ½106 · keV4� 4.75 9.99 1.04 1.78 2.02 2.38 3.20 4.01 8.66
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where ρglass
mN

¼ 1010 eV3 is the number density of nucleons
in the glass, ViðrÞ is the potential between the neutron and
one nucleon at a distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z02

p
. The double

integral in the expression of the potential can be simplified
to a single integral:

Vi;zðzÞ ¼ 2π
ρglass
mN

Z
∞

z
rðr − zÞViðrÞdr: ð4:16Þ

In the case of the potentials Va and Vb, the integrals cannot
be calculated analytically. However, we found suitable
analytical approximations having the correct asymptotic
behavior at zero and infinite height,

Va;zðzÞ ¼ −
ρglass
mN

1

32π2Λ2

Z
∞

2mz

u − 2mz
u

K1ðuÞdu

≈ −
ρglass
mN

1

32π2Λ2

K0ð2mzÞ
1þ 2mz

; ð4:17Þ

and

Vb;zðzÞ ¼
ρglass
mN

m2

4π2Λ4

Z
∞

2mz

u − 2mz
u2

K2ðuÞdu

≈
ρglass
mN

m2

4π2Λ4

K1ð2mzÞ
2mzð3þ 2mzÞ : ð4:18Þ

The approximate expressions have a relative precision of
better than 50% for Va;z and better than 3% in the case of
Vb;z, for all values of z. The case of Vc;z remains to be done.
Using the approximate expressions, we have computed

the shift in the energy levels of the neutron quantum
bouncer using first order perturbation theory:

δEk ¼
Z

∞

0

jψkðzÞj2VzðzÞdz: ð4:19Þ

These predictions are UV-insensitive. The bounds on the
extra forces Va and Vb as a function of the mediator massm
are obtained from the experimental constraint (4.14). They
are reported in Figs. 2 and 3.

E. Moon perihelion precession

The existence of a fifth force at astrophysical scales
would imply a slight modification of planetary motions.
Any such fifth force can be treated perturbatively whenever
it is small with respect to gravity at the distance between the
two bodies. The modification of the equation of motion
implies, among other effects, an anomalous precession of
the perihelion of the orbit. In the case of the Moon, this
precession is experimentally measured to high precision by
lunar laser ranging experiments [69].
The fundamental Casimir-Polder forces of Eq. (2.2) are

between two nucleons. For macroscopic bodies, the poten-
tials are given by m1m2

m2
N
Vi. Let us calculate the planetary

motion in the presence of these new forces. We follow the
formalism of Ref. [1]. The radial component of the
Casimir-Polder forces between Earth and Moon is given
by FiðrÞ ¼ − m☾m⨁

m2
N

∂rViðrÞ. Introducing u ¼ 1
r, the Earth-

Moon orbital equation reads

d2u
dθ2

þ u ¼ m2
☾

L2u2
ðm☾m⨁Gu2 − Fið1=uÞÞ; ð4:20Þ

where L≡m☾r2 dθ
dt is the conserved angular momentum

and the first term in the parenthesis is the gravitational
force. The solution of the unperturbed equation reads

Eöt–Wash
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Bouncing neutrons
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IUPUI

μ–oscillators
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(Neutron scattering)
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FIG. 2. Bounds on a scalar coupled to nucleons via the Oa
interaction. The yellow region is excluded at 95% CL. See
Sec. IV for details on exclusion regions.
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FIG. 3. Bounds on a scalar coupled to nucleons via the Ob
interaction. Same conventions as Fig. 2.

BOUNDING QUANTUM DARK FORCES PHYS. REV. D 97, 115034 (2018)

115034-9



uðθÞ¼u☾ð1þϵcosðθ−θ0ÞÞ; u☾¼
m3

☾m⨁G

L2
; ð4:21Þ

where ϵ is the orbital eccentricity (ϵ ¼ 0.0549 for the
Moon), θ0 indicates the perihelion of the ellipse, and the
major semiaxis a☾ is given by a−1☾ ¼ u☾ð1 − ϵ2Þ. At first
order in perturbation theory, the extra force is just as a
constant, Fið1=a☾Þ, which only modifies u☾, the overall size
of the orbit. At second order in perturbation theory, one has

Fið1=uÞ¼Fið1=a☾Þþ
�
u−

1

a☾

�∂Fið1=uÞ
∂u

����
u¼1=a☾

: ð4:22Þ

The term linear in u modifies the frequency of the orbit on
the left-hand side of the equation of motion. The motion is
now given by

uðθÞ ¼ u☾ð1þ ϵ cosωðθ − θ0ÞÞð1þ…Þ;

ω2 ¼ 1þ u☾a4☾
Gm2

N
∂2
rViðrÞjr¼a☾ ; ð4:23Þ

where the ellipsis denotes irrelevant corrections to the overall
magnitude of the orbit. Havingω ≠ 1 implies a precession of
the perihelion, which can be seen using cosωðθ − θ0Þ ¼
cosωðθ − θ0 þ 2πn

ω Þ. The precession angle between two
rotations is finally given by

δθi ¼ −π
a3☾

Gm2
Nð1 − ϵ2Þ ∂

2
rViðrÞjr¼a☾ : ð4:24Þ

We apply this general formula to the Casimir-Polder
potentials of Eq. (2.2). Interestingly, the Va and Vc poten-
tials, which are attractive, induce an advance of the peri-
helion while Vb, which is repulsive, induces a delay of the
perihelion.
The Moon precession angle is constrained by lunar laser

ranging experiments. Other well-understood perturbations
induce Moon’s orbit precession: the quadrupole field of
the Earth, other bodies of the solar system, and general
relativity. Once all these effects are taken into account, one
obtains a bound on an extra, anomalous precession angle.
Following Ref. [2], an experimental limit from lunar laser
ranging is given as

δθi < 2π × 1.6 × 10−11: ð4:25Þ

V. BOUNDS ON FORCES FROM
DARK SCALARS

Let us apply the experimental bounds obtained in Sec. IV
to the Casimir-Polder forces from a dark scalar given
in Eq. (2.2).
It is instructive first to understand qualitatively the

landscape of exclusion regions on the Casimir-Polder

forces. Let us consider the exclusion regions for the
Yukawa force (see e.g., [3]). Starting from large scales,
the reach of the experiment starts to decrease very steeply
below the scale of the Eöt-Wash experiment, at roughly
λ < Oð10−4 mÞ down to atomic scales. In this region of λ,
the bound on the strength of the Yukawa force α scales very
roughly as α < 10−22ð1mλ Þ5, demonstrating the increasing
difficulties in measuring forces at small distances. The
Casimir-Polder forces behave as 1=rn with n ≥ 3 at short
distance. This has the crucial implication that the con-
straints from short distance experiments will gain impor-
tance and those from long distance will lose importance
compared to the exclusion regions on the Yukawa-like
force. In particular, one can expect the Eöt-Wash bound to
dominate over the bounds from all experiments at larger
scale, to the possible exception of lunar laser ranging.
Moreover, when n ¼ 7, the decrease of sensitivity in λ−5 is
expected to be overwhelmed by the increase of the force
in r−7, implying that bounds from the experiments at the
smallest scales (from neutron scattering and molecular
spectroscopy) dominate over all the bounds from higher
distances.
The exclusion regions for the Va, Vb, Vc Casimir-Polder

potentials are respectively presented in Figs. 2, 3, 4. For the
Va potential, we obtain that the Eöt-Wash bound (deduced
from [70], Sec. IX B) is the dominant one for λ > 10−3 m.
For both Vb and Vc potentials, we obtain indeed an
inversion in the hierarchy of bounds. The two leading
bounds turn out to be from the ddμþ molecular ion and
from the neutron scattering bound combining optical and
total cross sections. This fact can be taken as an incentive to
pursue and develop such small scale experiments. We
remind that, as explained in Sec. IV B, for the Vb and
Vc potential, the ddμþ observable has some dependence in
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FIG. 4. Bounds on a scalar coupled to nucleons via the Oc
interaction. Same conventions as Fig. 2.
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rUV. In our computations, as is customarily done, rUV is
taken to be the radius of the deuteron.
Using the calculation given in 4.5, we obtain that limits

from lunar laser ranging are indeed subleading. At zero
mass, the bounds on Λ for the Va, Vb, Vc potentials are
found to be respectively Λ > 2 GeV, 6 × 10−5 eV,
2 × 10−8 eV. All these bounds are overwhelmed by
stronger ones from shorter distance experiments.

VI. CONCLUSIONS

There are many motivations—including dark matter
and dark energy—for speculating on the existence of a
dark sector containing particles with a bilinear coupling to
the Standard Model particles. Whenever one of the dark
particles is light enough and couples to nucleons in a spin-
independent way, it induces forces of the Casimir-Polder
type, that are potentially accessible by fifth force experi-
ments across many scales. The short- and long-range
behaviors of these forces as well as their sign can all be
understood and predicted using dimensional analysis and
the optical theorem. We provide a comprehensive
(re)interpretation of bounds from neutron scattering to
the Moon perihelion precession, applicable to any kind
of potential. We then focus on the case of a scalar with a
variety of couplings to nucleons, generating forces with
1=r3, 1=r5, 1=r7 short-distance behaviors. It turns out
that forces in 1=r5, 1=r7 are best constrained by neutron
scattering and molecular spectroscopy, which provides
extra motivation to pursue these kind of low-scale experi-
ments. Implications for dark matter searches have been
discussed in Ref. [6].
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APPENDIX A: UV COMPLETIONS

In this Appendix, we consider models which lead to the
operators O0

a;b;c at low energy. We first show a simple
model giving rise to O0

b, then we readily present a more
general setting, which can be described in five dimensions
using the AdS=CFT correspondence, and which can
provide viable UV completions to any kind of dark particle
and low-energy interaction we have considered in this
paper and in [6].

1. Minimal scenario for O0
b: A light leptophobic Z0

For operator O0
b, let us assume that the quarks and ϕ are

charged under an extra Uð1Þ, whose gauge boson Z0 has a
mass mZ0 . Then, we have

L ⊃ gBQqZμJ
μ
q þ gBQϕZμJ

μ
ϕ: ðA1Þ

At low energy, the quarks go into nucleons, and the theory
takes the form

L ⊃ gBQNZμJ
μ
N þ gBQϕZμJ

μ
ϕ: ðA2Þ

For E < mZ0, one integrates out the Z0 and the low-energy
effective theory takes the form

L ⊃ −
1

2m2
Z0
ðgBQNJ

μ
N þ gBQϕJ

μ
ϕÞ2: ðA3Þ

This gives

1=Λ2 ¼ −gBQNgϕQϕm−2
Z0 ðA4Þ

and also a four-nucleon interaction that could be tested by
neutron scattering.
A light-enough Z0 is inaccessible at the LHC [71]. Other

bounds have been discussed in [6,72–76]. The Z0 is
assumed to be leptophobic; hence, the theory has gauge
anomalies, which should be canceled by new chiral
fermions which cannot be arbitrarily heavy. Recent devel-
opment on meson decays via Z0 [77,78] seem also to put
challenging bounds on Λ (see [77]), in which case the fifth
force bounds would need to be improved by several order
of magnitudes to be competitive on this minimal Z0
scenario. However, this scenario can be embedded in the
framework of next section, in which case experimental
constraints from mesons, colliders are relaxed.

2. UV completion from a sub-GeV warped
extra dimension

There is a scenario in which the dark particles auto-
matically decouple from the SM sector above a scale which
can be chosen arbitrarily low. This scenario is fully general
in the sense that it applies to any kind of dark particle and
of operators considered in this paper. This decoupling
property was first noted in [15] in a different context. This
automatic decoupling between the SM and the dark sector
happens when the latter is a strongly interacting theory
which is conformal in the UV and which develops bound
states in the IR. Although the mechanism may apply in
other cases, we focus here on large Nc and large t’Hooft
coupling, in which case the AdS=CFT correspondence
applies and quantitative features can thus be easily
obtained.
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The CFT bound states identified as the dark particles
appear below a scale μ—which will typically be below
ΛQCD in our context. All the SM fields are assumed to be
elementary, and the CFT bound states will form the dark
sector. The key feature of this scenario is that above the
scale of conformal breaking μ, the CFT bound states
become invisible to elementary SM fields. This scenario
has a number of attractive features which do not need to be
discussed here. In this Appendix, we lay down only the
aspects relevant in order to UV-complete the operators
studied in this paper, and the five-dimensional computa-
tions are not detailed.
Let us use a five-dimensional model to illustrate con-

cretely what happens. We consider a slice of AdS5 with
curvature k ∼MPl where the nucleons—and the other SM
fields remaining below ΛQCD— are on the UV brane, at
z0 ¼ 1=k. We assume that the ϕ field is purely composite
and lies thus on the IR brane at z1 ¼ 1=μ. The mediator X is
a bulk field, chosen here to be a scalar Φ with Neumann
boundary conditions, and which induces interactions
between the fields of two branes i.e., between the SM
and the dark sector.
The Lagrangian including brane interactions is

S ¼
Z

d4xμdz
ffiffiffiffiffiffi
−g

p �
1

2
∇MΦ∇MΦ −

1

2
m2

ΦΦ2

þ λδðz − z0ÞN̄NΦþ κδðz − z1Þϕ2Φ
�
: ðA5Þ

The typical values of the parameters are λ ¼ 1=
ffiffiffi
k

p
, κ ¼

μ=
ffiffiffi
k

p
The bulk mass has to satisfy the Breitenlohner-

Freedman bound, m2
Φ ≥ −4k2 to prevent tachyonic insta-

bilities in AdS5.
For further convenience the bulk mass will be para-

metrized as m2
Φ ¼ ð−3 − 2ϵþ ϵ2Þk2. If the boundary con-

ditions were tuned it could have a zero mode, but here such
an assumption is unnecessary, our interest rather lies in
the Kaluza-Klein modes. The KK mode wave functions
have values on the UV brane which are the largest for
ϵ ¼ 0, and decrease exponentially for jϵj > 0. For con-
creteness we consider the case with a nonzero IR brane
mass δðz − z1ÞbIRkΦ2=2 and a zero UV brane mass.
To illustrate our point, we consider the Nϕ → Nϕ

amplitude for q > μ, where q is the center of mass energy
of the process. For ϵ slightly larger than zero (so that
ðμ=kÞϵ ≪ 1), one finds

iM ∝ iλκ
ffiffiffi
π

p
ΓðϵÞ

1ffiffiffiffiffi
kμ

p
�
2k
q

�
3=2−ϵ

e−
q
μ: ðA6Þ

We see that an exponential suppression of the amplitude
occurs. This shows how the CFT states become invisible to
the elementary fields above μ.

Let us now consider q ≪ μ and compute the nucleon-
dark particle interaction induced by the KK modes, i.e., by
the CFT bound states in the dual picture. All the KK modes
are integrated out, and for ϵ slightly larger than 0, we find
the nucleon–dark particle interaction to be

L4D ⊃ −
�
1

2
λ2

kð2þ 2ϵ − bIRÞ
μ2bIRð2þ 2ϵÞk

�
μ

k

�
2ϵ

ðN̄NÞ2

þ λκ
k

bIRμ2

�
μ

k

�
ϵ

N̄Nϕ2 þ 1

2
κ2

k
bIRμ2

ϕ4

�
ðA7Þ

∼ −
�

1

2μ2

�
μ

k

�
2ϵ

ðN̄NÞ2 þ 1

μ

�
μ

k

�
ϵ

N̄Nϕ2 þ 1

2
ϕ4

�
:

ðA8Þ

where the O0
a contact operator between SM and dark

particle appears, with effective scale

Λ ¼ μ

�
k
μ

�
ϵ

: ðA9Þ

We can see a hierarchy between the contact interactions,
simply because the mediators couple strongly to the DS and
weakly to the SM. The SM self interaction is suppressed
with respect to the SM-dark particle interaction, and the
dark particle is strongly self-interacting.
A very similar analysis can be done for any kind of IR

brane operator and bulk mediator. For example a derivative
coupling of the form δðz − z1ÞΦð∂μϕÞ2 would occur if ϕ is
a Nambu-Goldstone boson. This generates theO0

c operator.
In our setup, there is no source of explicit breaking of the
global symmetry; hence, the GB is massless. However, a
mass term parametrizing a source of explicit symmetry
breaking can always be introduced—in which case brane
operators of the form δðz − z1Þm2ϕ2Φ should also taken
into account, which will contribute to O0

a. Finally, we note
that the CFT sector can be approximately supersymmetric,
as first noticed in [15], letting a scalar dark particle be
arbitrarily lighter than μ. One can verify using [6] that there
are no cancellations in the Casimir-Polder force in presence
of superpartners.

APPENDIX B: CALCULATION OF THE
POTENTIALS

This Appendix contains details of the computation for
the potentials in Eq. (2.2) and those given in Ref. [6]. The
full set of operators considered is
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O0
a ¼

1

Λ
N̄Njϕj2; O0

b ¼
1

Λ2
N̄γμNϕ�i∂↔μϕ;

O0
c ¼

1

Λ3
N̄N∂μϕ�∂μϕ; O½

a ¼ 1

Λ2
N̄Nχ̄χ;

O½
b ¼ 1

Λ2
N̄γμNχ̄γμχ; O½

c ¼ 1

Λ2
N̄γμNχ̄γμγ5χ;

O1
a ¼

1

Λ3
N̄NjmXμ þ ∂μπj2;

O1
b ¼

1

Λ2
2N̄γμNImðXμνXν� þ ∂νðXνX�

μÞ þ ∂μc̄c�Þ;

O1
c ¼

1

Λ3
N̄NjXμνj2; O1

d ¼
1

Λ3
N̄NXμνX̃�

μν: ðB1Þ

A dark particle of spin 0, 1=2, 1 is denoted by ϕ, χ, X. π and
c, c̄ are respectively the Goldstone bosons and ghosts
accompanying X. At that point the dark particle can be self-
conjugate (real scalar or vector, Majorana fermion) or not
(complex scalar or vector, Dirac fermion). When X is
complex, so are π, c and c̄. We will give the results for all
cases. We introduce

η ¼
�
0 if self-conjugate

1 otherwise:
ðB2Þ

We calculate the loop diagram of Fig. 1 induced by each of
these operators using dimensional regularization. The
matching of the effective theory with the UV theory being
done at the scale Λ, we can readily identify the divergent
integrals as (see [79,80])6

Z
d4l
ð2πÞ4

1

ðl2 − ΔÞ2 →
−i

ð4πÞ2 logðΔ=Λ
2Þ; ðB3Þ

Z
d4l
ð2πÞ4

l2

ðl2 − ΔÞ2 →
−2i
ð4πÞ2Δ logðΔ=Λ2Þ; ðB4Þ

Z
d4l
ð2πÞ4

ðl2Þ2
ðl2 − ΔÞ2 →

−3i
ð4πÞ2Δ

2 logðΔ=Λ2Þ: ðB5Þ

From these amplitudes, the discontinuities in the non-
relativistic scattering potential Ṽ are given by Eq. (2.4) and
are found to be

½Ṽ0
a�¼2η

½f0�
32π2Λ2

½Ṽ0
b�¼η

m2½f0�−λ2½f1�
8π2Λ4

½Ṽ0
c�¼2η

ð6m4þm2λ2Þ½f0�−ð24m2λ2þλ4Þ½f1�þ20λ4½f2�
64π2Λ6

½Ṽ1=2
a �¼2η

3ðλ2½f1�−m2½f0�Þ
8π2Λ4

½Ṽ1=2
b �¼η

−λ2½f1�
2π2Λ4

½Ṽ1=2
c �¼2η

m2½f0�−λ2½f1�
4π2Λ4

½Ṽ1
a�¼2η

ð6m4−m2λ2Þ½f0�−ð12m2λ2þλ4Þ½f1�þ20λ4½f2�
64π2Λ6

½Ṽ1
b�¼η

ð8m2þ5λ2Þ½f0�−10λ2½f1�
16π2Λ4

½Ṽ1
c�¼2η

ð9m4þ3m2λ2Þ½f0�−ð36m2λ2þ3λ4Þ½f1�þ30λ4½f2�
8π2Λ6

½Ṽ1
d�¼2η

3ðλ4½f1�−λ2m2½f0�Þ
8π2Λ6

ðB6Þ

where the discontinuities of f0;1;2 are given in Eq. (2.3).
These loop functions are explicitly given by

f0ðm2; q2;ΛÞ ¼ 2L

�
4m2

q2

�
þ log

�
m2

Λ2

�
ðB7Þ

f1ðm2; q2;ΛÞ ¼ 2m2 þ q2

3q2
L

�
4m2

q2

�
þ 1

18
þ 1

6
log

�
m2

Λ2

�

ðB8Þ

f2ðm2; q2;ΛÞ ¼ 6m4 þ 2m2q2 þ q4

15q4
L

�
4m2

q2

�

þ 13

900
þ m2

30q2
þ 1

30
log

�
m2

Λ2

�
ðB9Þ

with

LðxÞ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
arctan

�
1ffiffiffiffiffiffi
x−1

p
�
− 1 if x > 1

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p �
iπ þ 1

2
log

�
1þ ffiffiffiffiffiffi

1−x
p

1−
ffiffiffiffiffiffi
1−x

p
��

− 1 if x < 1.

ðB10Þ

The ½fn� discontinuities can be obtained by noticing that
lnΔ ¼ lnðx − xþÞðx − x−Þ where

x� ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4m2

p
2q

ðB11Þ6The running of the Wilson coefficients is taken into account at
leading-log order with this method.
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has a branch cut between x− and xþ and a discontinuity of
2πi. This leads to

½fn� ¼ 2πi
Z

xþ

x−

ðxð1 − xÞÞndx ðB12Þ

Finally, the spatial potential is given by Eq. (2.6). The
integrals over λ needed in the last step of the calculation are

Z
∞

2m
dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4m2

p
e−λr ¼ 2m

r
K1ð2mrÞ ðB13Þ

Z
∞

2m
dλλ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4m2

p
e−λr¼8m3

r
K1ð2mrÞþ12m2

r2
K2ð2mrÞ

ðB14Þ

Z
∞

2m
dλλ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4m2

p
e−λr

¼ 32m4

r2
K2ð2mrÞ þ

�
120m3

r3
þ 32m5

r

�
K3ð2mrÞ:

ðB15Þ

APPENDIX C: AMPLITUDES

The one-loop amplitudes induced by the operators Oa,
Ob, Oc are

iMa ¼
1

2Λ2
ūðp1Þuðp2Þūðp0

1Þuðp0
2Þ

×
Z

d4k
ð2πÞ4

1

ðk2 −m2Þððkþ qÞ2 −m2Þ ðC1Þ

iMb ¼
1

Λ4
ūðp1Þγμuðp2Þūðp0

1Þγνuðp0
2Þ

×
Z

d4k
ð2πÞ4

ðqþ 2kÞμðqþ 2kÞν
ðk2 −m2Þððkþ qÞ2 −m2Þ ðC2Þ

iMc ¼
1

2Λ6
ūðp1Þuðp2Þūðp0

1Þuðp0
2Þ

×
Z

d4k
ð2πÞ4

ðq:ðqþ kÞÞ2
ðk2 −m2Þððkþ qÞ2 −m2Þ ðC3Þ

with q ¼ p1 − p2. These integrals can be reduced to the
basis shown in Eqs. (B3)–(B5) using textbook techniques
(see [79], including Feynman trick).

APPENDIX D: WAVE FUNCTIONS

This section displays the wave functions of the molecular and nuclear systems (respectively Figs. 5–7) used in Secs. IV B
and IV D.

100

r [Å]

r2
|

|
(r

)
2

FIG. 5. Wave function densities of states considered for molecular spectroscopy in Sec. IV B. Orange: H2, ðν ¼ 0; J ¼ 0Þ (plain) and
ðν ¼ 1; J ¼ 0Þ (dashed) states. Blue: HDþ, ðν ¼ 0; J ¼ 2Þ (plain) and ðν ¼ 4; J ¼ 3Þ (dashed) states.
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