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We explore the possibility that dark matter (DM) is the lightest hadron made of two stable color octet
Dirac fermions Q. The cosmological DM abundance is reproduced for MQ ≈ 12.5 TeV, compatibly with
direct searches (the Rayleigh cross section, suppressed by 1=M6

Q, is close to present bounds), indirect

searches (enhanced by QQþ Q̄ Q̄ → QQ̄þQQ̄ recombination), and with collider searches (where Q
manifests as tracks, pair produced via QCD). Hybrid hadrons, made ofQ and of standard model quarks and
gluons, have large QCD cross sections, and do not reach underground detectors. Their cosmological
abundance is 105 times smaller than DM, such that their unusual signals seem compatible with bounds.
Those in the Earth and stars sank to their centers; the Earth crust and meteorites later accumulate a
secondary abundance, although their present abundance depends on nuclear and geological properties that
we cannot compute from first principles.
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I. INTRODUCTION

Many models of particle dark matter (DM) have been
proposed; one common feature is that DM is a new neutral
and uncolored particle. We challenge this view: can DM be
instead colored or charged, and be dominantly present
today in the form of neutral bound states kept together by
ordinary electromagnetic or strong interactions analogously
to hydrogen or neutrons? The answer is no for electric
binding: two charged particles with mass M ≫ me form a
negligible amount of neutral bound states, when their
thermal relic abundance matches the DM cosmological
abundance.
On the other hand, colored particles necessarily form

hadronic bound states. We add to the standard model (SM)
a new stable heavy colored particle Q, for simplicity
neutral. Q could be a heavy quark in the 3 ⊕ 3̄ represen-
tation of SUð3Þc, or a “Dirac gluino” in the 8 ⊕ 8 repre-
sentation, such that Q annihilates with Q̄, but not with
itself. We dub this neutral quark as quorn. Perturbative
annihilations and recombination between Q and Q̄ leave
a thermal relic density of order ΩQh2 ∼ 0.1MQ=7 TeV.

After the QCD phase transition at temperature T ≲
ΛQCD ≈ 0.27 GeV colored particles bind in hadrons.
Subsequent annihilations among hadrons reduce their
relic abundance, increasing the value of MQ such that
DM has the observed cosmological abundance, ΩDMh2 ∼
0.1 for MQ ≈ 10 TeV.
The quorn-onlyum hadrons made of Q only (QQ

if Q ∼ 8, and QQQ if Q ∼ 3) are acceptable DM
candidates, as they have a small Bohr-like radius
a ∼ 1=α3MQ. This scenario is believed to be excluded
because it predicts other hybrid hadrons where Q
binds with SM quarks q or gluons g. Such hybrids,
Qqq, QQq, Qq̄ (if Q ∼ 3) and Qg, Qqq̄0 (if Q ∼ 8), have
size of order 1=ΛQCD and thereby cross sections of
order σQCD ∼ 1=Λ2

QCD, can be charged, and are subject
to strong bounds. Their cosmological abundance must be
orders of magnitude smaller than the DM abundance
ΩDM ≈ 0.1, while naively one might expect that cosmo-
logical evolution results in Ωhybrid ≫ ΩDM, given that
quarks and gluons are much more abundant than
quorns Q.
We show that cosmological evolution gives Ωhybrid ∼

10−4ΩDM, such that this scenario is allowed. This is not
surprising, taking into account that quorn onlyum has a
binding energy EB ∼ α23MQ ∼ 200 GeV much larger than
hybrids, EB ∼ ΛQCD. Quorn onlyum thereby is the ground
state, reached by the Universe if it has enough time to
thermalize. This depends on two main factors.
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(i) Quorns are much rarer than quarks and gluons:
nQ ∼ 10−14nq;g when the DM abundance is
reproduced;

(ii) QCD interactions are much faster than the Hubble
rate H ∼ T2=MPl: a loose bound state with
a σQCD cross section recombines N ∼ nq;gσQCD=H ∼
MPl=ΛQCD ∼ 1019 times in a Hubble time at temper-
ature T ∼ ΛQCD.

Since 1019 is much bigger than 1014, chromodark synthesis
cosmologically results in quorn onlyum plus traces of
hybrids. This is analogous to big bang (BBN) nucleosyn-
thesis, which leads to the formation of deeply bounded
Helium plus traces of deuterium and tritium.
The paper is organized as follows. In Sec. II we

define the model, and summarize the main features of its
QCD interactions. In Sec. III we discuss how cosmology
leads to dominant formation of Q-onlyum hadrons. In
Sec. IV we show that the abundance of hybrids is small
enough to be compatible with bounds. In Sec. V we
show that Q-onlyum DM is compatible with bounds. A
summary of our results is given in the conclusions
in Sec. VI.

II. THE MODEL

We consider the following extension of the SM1:

L ¼ LSM þ Q̄ði=D −MQÞQ: ð1Þ

The only new ingredient is Q: a Dirac fermion with
quantum numbers ð8; 1Þ0 under SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞY , i.e., a neutral color octet. The only free parameter
is its mass MQ. Like in minimal dark matter models [3]
Q is automatically stable, as no renormalizable inter-
action with SM particles allows its decay, which can first
arise due to dimension-6 effective operators such as
QDDU and QLDQ where Q (L) is the SM quark
(lepton) doublet, and U (D) is the right-handed SM
up-type (down-type) quark. The decay rate is cosmologi-
cally negligible if such operators are suppressed by the
Planck scale.
After confinement Q forms bound states. For MQ ≫

ΛQCD=α3 states made by Q only are Coulombian. The
QQ̄ bound states are unstable: Q and Q̄ annihilate into
gluons and quarks. No such annihilation arises in QQ
bound states as we assumed that Q carries an unbroken
U(1) dark baryon number that enforces the Dirac struc-
ture such that QQ is stable. The DM candidate is the
quorn-onlyum QQ ground state, neutral, colorless and

with spin 0.2 As we see, if QQ is a thermal relic, the
observed cosmological DM abundance is reproduced for
MQ ∼ 12.5 TeV. This mass is large enough that Q does
not form QCD condensates. The QQ potential in the
color-singlet channel is VðrÞ ¼ −3α3=r, so the binding
energy is EB ¼ 9α23MQ=4n2 ≈ 200 GeV=n2, which is
bigger than ΛQCD up to n ∼ 20. We adopt the value
ΛQCD ≈ 0.27 GeV.
Thequantumnumbers of the hybrid hadrons,Qg andQqq̄0,

are not exotic. We expect that the isospin singletQg is lighter
thanQqq̄0 (isospin3 ⊕ 1) by an amount of orderΛQCD,which
accounts for the relative motion of q and q̄0, where
q; q0 ¼ fu; dg. A lattice computation is needed to safely
establishwho is lighter.Assuming thatQqq̄0 is heavier, then its
neutral componentQqq̄ decays toQgwith a lifetime of order
1=ΛQCD.The slightly heavier componentsQud̄ andQdūwith
electric charges �1 have a lifetime of order v4=Λ5

QCD.
The above DMmodel has possible extra motivations. The

fermion Q appears as a Dirac gluino in some N ¼ 2 super-
symmetric models [5], where sfermions can mediate its
decay, if R-parity is broken. Alternatively, the heavy quarks
Q could be identified with those introduced in Kim-Shifman-
Vainshtein-Zakharov axion models [6]. In such a case our
U(1) symmetry gets related to the Peccei-Quinn symmetry.
Corrections to the Higgs mass squared proportional to M2

Q
arise at three loops and are comparable to its measured value
for MQ ≈ 10 TeV [7].

A. Confinement

QCD confinement happens in cosmology through a
smooth crossover. In Cornell parametrization [8] the
QCD potential between two quarks in the F fundamental
representation at temperature T in the singlet configuration
is approximated as Vqq̄ðrÞ ≈ −αFeff=rþ σFr. In the per-
turbative limit one has αFeff ¼ CFα3 where CF¼ðN2

c−1Þ=
2Nc¼4=3 is the quadratic Casimir and α3 is renormalized
around 1=r. At r ∼ 1=ΛQCD lattice simulations find αFeff ¼
0.4 and σF ≈ ð0.45 GeVÞ2 [9]. The potential between two
adjoints is similarly approximated by a Coulombian term
plus a flux tube,

VQQðrÞ ≈ −
αeff
r

þ σr: ð2Þ

1Within the SM, QCD could give rise to dark matter
as “strangelets” made of many uds quarks [1] or as
“sexaquark” uuddss [2]. However there is neither experimental
nor lattice evidence that such objects exist. We thereby extend
the SM.

2Other assignments of quantum numbers of Q are possible. A
scalar would give similar physics. A fermionic Q ∼ ð3 ⊕ 3̄; 1Þ0
under SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY would give theQQQ baryonas
a viable DM candidate. As the gauge quantum numbers of a neutral
color triplet are exotic, theQQq,Qqq andQq̄ hadrons containing
light quarks would have fractional charges. Fractionally charged
hadrons are subject to stronger experimental bounds [4]. A
Q ∼ ð3; 2; 1=6Þ ¼ ðQu;QdÞ, with the same quantum numbers of
SM left-handed quarksQ, would give as the lightest state the neutral
DM candidate QuQdQd. This is excluded by direct detection
mediated at tree level by aZ, being aweakdoubletwith hypercharge
Y ≠ 0. Allowing for an additional confining group, aQ ∼ 8 can be
built out of Q ∼ 3 obtaining double composite dark matter.
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Perturbation theory implies VQQ=CA≈Vqq̄=CF [10] where
CA ¼ Nc ¼ 3. Thereby αeff ≈ 3α3 and σð0Þ ≈ 9σFð0Þ=4≈
ð0.67 GeVÞ2, as verified on the lattice [11]. At finite
temperature the Coulombian force gets screened by the
Debye mass and the string appears only below the critical
temperature Tc ≈ 170 MeV as σðTÞ≈σð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−T2=T2

c

p
[9].

B. Eigenvalues in a linear plus Coulombian potential

We need the binding energies of a nonrelativistic QQ
hadron. We thereby consider the Hamiltonian H ¼
p⃗2=2μþ VðrÞ in three dimensions that describes its motion
around the center of mass, with reduced mass 2μ ≃MQ.
The potential is given by Eq. (2). As usual, wave functions
are decomposed in partial waves as ψðr; θ;ϕÞ ¼P

ñ;l;mRñlðrÞYlmðθ;ϕÞ where ñ is the principal quantum
number. For each l ¼ 0; 1; 2;… we define as ñ ¼ 1 the
state with lowest energy, so that ñ ¼ 1; 2; 3;…. The radial
wave function RñlðrÞ has ñ − 1 nodes. Unlike in the
hydrogen atom there are no free states: angular momentum
l is not restricted to l < ñ. In order to match with the
Coloumbian limit in its usual notation we define n≡ ñþ l
such that, at given l, only n ≥ lþ 1 is allowed.
The reduced wave function uñlðrÞ ¼ rRñlðrÞ obeys the

Schroedinger equation in one dimension in the effective
potential Veff ¼ V þ lðlþ 1Þℏ2=2μr2. Rescaling argu-
ments imply that energy eigenvalues have the form

Eñl ¼ α2effμ × fðε; ñ;lÞ;

where ε≡ σ

4α3effμ
2
¼ 10−8

σ

GeV2

�
10 TeV
MQ

�
2
�

1

αeff

�
3

:

ð3Þ

From [12] we extract the approximation valid at leading
order in ε ≪ 1,

Eñl ¼ α2effμ

2

�
−

1

n2
þ 8εnðlþ 1.37Þ þ � � �

�
: ð4Þ

The first term is Coulombian. The second term accounts for
the linear potential, and becomes relevant at large n;l. In
particular, assuming l ≃ n ≫ 1, Coulombian states with
negative binding energy exist up to l < α3=4eff M

1=2
Q =ð8σÞ1=4.

The ground state has binding energy EB ¼ −E10 ∼
200 GeV for MQ ∼ 10 TeV.
In the opposite limit where the linear force dominates

and the Coulomb-like force can be neglected, all energy
levels are positive and states with higher l have higher
energy [12],

Eñl ≈
3σ2=3

ð2μÞ1=3
�
0.897ñþ l

2
− 0.209

�
2=3

; ð5Þ

such that thermalization lowers l. The dependence on σ, μ
and the ground state energy can also be computed varia-
tionally, assuming a trial wave function ψðrÞ ¼ e−r=rc=r3=2c ,
such that the typical size is rc ∼ ðμσÞ−1=3. Figure 1 shows
the binding energies for relevant values of the parameters.
We next discuss a bound stateBQ made of a heavyQ and a

gluon. It cannot be described by nonrelativistic quantum
mechanics. Nevertheless, its binding energy can roughly be
obtained byEq. (5) taking a small reducedmassμ ∼

ffiffiffi
σ

p
. One

then expects that such states are in their ground states at
T ≲ ΛQCD, and that their mass is MBQ

¼ MQ þOðΛQCDÞ.

FIG. 1. Binding energies Eñl in GeV for a QQ in the singlet configuration. States with Eñl < −0.2 GeV (in green) are well
approximated by the Coulombian limit. IncreasingMQ leads to a larger number of Coulombian states and to a deeper ground state.QQ
states are cosmologically mostly produced in the region with larger l of the band E ∼ ΛQCD.
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C. Decay rates of excited bound states

Energy losses due to quantum decay of a QQ state with
n;l ≫ 1 into deeper states can be approximated with
classical Larmor radiation. This holds in dipole approxi-
mation, where a state can only decay to l0 ¼ l� 1.
To see this, we consider a hydrogenlike system with

V ¼ −α=r and reduced mass μ. Assuming a circular orbit
as in [13] one gets the emitted power

Wcirc
Larmor ¼

2αa2

3
¼ 2μ2α7

3n8
; ð6Þ

having inserted the acceleration a ¼ α=μr2 and converted
the orbital radius into n2 times the Bohr radius as r ¼
rn ¼ n2=αμ. Similarly, the binding energy is E ¼ −α=2r ¼
−α2μ=2n2.
At quantum level, a circular orbit corresponds to a state

with maximal l ¼ lcirc ¼ n. In dipole approximation such
a state decays only to n0 ¼ l0 ¼ n − 1, emitting a soft
photon with energy ΔELarmor ¼ jEn − En−1j ≃ α2μ=n3,
such that the decay rate is

Γcirc
Larmor ¼

Wcirc
Larmor

jΔELarmorj
¼ 2

3

�
α

n

�
5

μ: ð7Þ

This matches the quantum decay rate.
Let us now consider a generic state. Classically, a generic

elliptic orbit is parametrized by its energy E and by its
angular momentum l ≤ lcirc, where lcirc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2μ=2E

p
is

the value corresponding to a circular orbit. The Larmor
radiation power, averaged over the orbit, is

hWLarmori ¼ Wcirc
Larmor

3 − ðl=lcircÞ2
2ðl=lcircÞ5

: ð8Þ

Due to the larger acceleration at the point of minimal
distance, the radiated energy for l ≪ lcirc is much larger
than in the circular case: this is why eē colliders are built
circular.
This classical result for noncircular orbits agrees with the

quantum results for n;l ≫ 1, summarized in Appendix A
for the hydrogen atom, which can be approximated as

Γnl ≃
2α5μ

3n3l2
; Wnl ≃

2α7μ2

3n8
3 − ðl=nÞ2
2ðl=nÞ5 : ð9Þ

In the quantum computation the enhancement at small
l < n appears after summing over the available final
states with small n0 ≥ l − 1 which allows for energy jumps
jEn − En0 j larger than in the circular case.
In the opposite limit where the linear part of the potential

dominates over the Coulombian part, energy losses of
highly excited states are again well approximated by
classical Larmor radiation, which does not depend on
the shape of the orbit, given that the force does not depend

on the radius: WLarmor ¼ 8αeffσ
2=3M2

Q is negligibly small.
This is confirmed by numerical quantum computations.

D. Cross section for formation of a loose
QQ bound state

We here estimate the cross section σtotðBQ þ BQ →
BQQ þ XÞ for formation of a loose bound state containing
two heavy quarks Q, starting from two bound states BQ
containing one Q.
Assuming that BQ ¼ Qg can be approximated as aQ and

a gluon kept together by a flux tubewith length l ∼ 1=ΛQCD,
the following geometrical picture emerges. The cross section
is σtot ≈ πl2℘ at energies E ∼MQv2 ≲ ΛQCD such that there
is not enough energy for breaking the QCD flux tubes, and
the recombination probability of two flux tubes is ℘ ∼ 1, like
in string models. Independently from the above geometric
picture, the size of the bound state is of order 1=ΛQCD, and
thereby one expects a cross section σQCD ¼ c=Λ2

QCD, with
c ≈ π in the geometric picture. In the following we consider
c ¼ f1; π; 4πg. For example the measured pp cross section
corresponds to c ≈ 10.
While this expectation is solid at energies of order ΛQCD,

at lower temperatures the cross section might be drastically
suppressed if the residual van der Waals-like force has a
repulsive component, which prevents the particles coming
close enough. We ignore this possibility, which would
result into a higher abundance of hybrid relics.
More in general, processes that only require a small energy

exchange E can have large cross sections of order 1=E2.3

E. Cross section for formation of an unbreakable
QQ bound state

We can finally compute the quantity of interest for us: the
thermally averaged cross section σfallðTÞ for collisions
between two Qg states which produce an unbreakable QQ
hadron. This happens when the loose bound state discussed
in the previous section radiates more energy than ∼T in the
time Δt before the next collision, such that it becomes
unbreakable and later falls down to its deep ground state.
In view of the previous discussion, we proceed as

follows. A large total cross section σQCD ∼ π=Λ2
QCD needs

a large impact parameter b ∼ 1=ΛQCD, and thereby the QQ
state is produced with large angular momentum l ∼MQvb.
The issue is whether a bound state with large l gets

broken or radiates enough energy becoming unbreak-
able [13]. As discussed in Sec. II C, Abelian energy losses
are well approximated by classical Larmor radiation, and it
is crucial to take into account that noncircular orbits radiate

3The authors of [14] propose a quantum mechanical model
where processes analogous to σðBQ þ BQ → BQQ þ XÞ are
computed in terms of cross sections suppressed by 1=MQ.
This large suppression seems to derive from their arbitrary
assumption that the cross section should be dominated by an
s-channel resonance.
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much more than circular orbits. The QQ potential is given
by Eq. (2), with a large αeff ≈ 3α3ðμ̄Þ renormalized at
μ̄ ∼ 1=r ∼ ΛQCD.

4

The cross section for falling into an unbreakable QQ
bound state is computed as follows. We simulate classical
collisions, averaging over the velocity distribution at
temperature T and over the impact parameter b. We
numerically solve the classical equation of motion for
the QQ system, starting from an initial relative distance b
and an orthogonal relative velocity v. From the solution
x⃗ðtÞ we compute the radiated energy ΔE by integrating the
radiated power WLarmor ∼ 2αeff ̈x⃗

2=3 for a time Δt. We
impose ΔE≳ T where Δt is the average time between
two collisions at temperature T. We estimate it as Δt ∼
1=nπvπσQCD where nπ is the pion number density and
σQCD ¼ c=Λ2

QCD such that Δt ≃ Λ2
QCD=T

3 at T ≫ mπ ,
while the pion density is Boltzmann suppressed at lower T.
The resulting σfallðTÞ is plotted in Fig. 2, computed

varying the uncertain QCD parameters as αeff ,
c ¼ f1; π; 4πg. We see that even for αeff ∼ 1 the fall cross
section σfallðTÞ equals to the total cross section σQCD at
temperatures below ð0.1 − 0.3ÞΛQCD, and it is mildly
smaller at T ∼ ΛQCD. If instead αeff ∼ 4π one would have
σfall ¼ σQCD even at T ∼ ΛQCD. The value αeff ∼ 4π can
account for nonperturbative QCD effects: it is not unrea-
sonable to think that the bound state can quickly radiate the
maximal binding energy EB ∼ 200 GeV by emitting in one
shot a hundred gluons with energy E ∼ 2 GeV each.
A rough analytical estimate for σfallðTÞ can be obtained

as follows. As discussed above, states that radiate fast
enough arise only in the Coulombian part of the potential.
In view of Eq. (8), their energy loss rate is WLarmor ∼
α7effM

2
Q=l

8, which can be big enough only for relatively

small l ∼MQbv. ImposingΔE≳ T for v ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=MQ

p
gives

σfall ∼
c

Λ2
QCD

minð1; 0.3AÞ A ¼ α7=4eff Λ
5=2
QCD

M1=2
Q T2

; ð10Þ

where the order 1 numerical value was added by roughly
fitting to Fig. 2, for the values of the total QCD cross
section there assumed. The fall cross section is only
suppressed by a small power of MQ, explaining why we
find a large σfall ∼ σtot for MQ ∼ 12.5 TeV. In the analytic
estimate we neglected the fact thatmπ ∼ ΛQCD: this is taken
into account by the relatively large ad hoc numerical factor
added to Eq. (10) such that it provides a better agreement
with the numerical result in Fig. 2 for MQ ∼ 12.5 TeV.

III. COSMOLOGICAL RELIC DENSITIES

We can now compute how strong QCD interactions lead
to an abundance of theQ-onlyum DM candidateQQmuch
larger than the severely constrained hybrid bound states
Qg. We describe what happens during the cosmological
evolution, from the usual decoupling of free Q at T ∼
MQ=25 (Sec. III A), to recoupling (Sec. III B) at T ≳ ΛQCD,
to T ∼ ΛQCD (Sec. III C), to redecoupling at T ≲ ΛQCD

(Sec. III D), to nucleosynthesis at T ∼ 0.1 MeV (Sec. III E).

A. Q decoupling at T ∼MQ=25

As usual, at T ≳MQ the free Q annihilate into SM
particles much faster than the Hubble rate, remaining in
thermal equilibrium until they decouple at T ¼ Tdec ≈
MQ=25, leaving the usual relic abundance, determined
by their annihilation cross section in this decoupling phase.
The nonrelativistic s-wave cross section reads

σannvrel ¼
σQQ̄vrel

2
¼ 63

64

�
1

14
S3 þ

10

14
S3=2 þ

3

14
S−1

�
πα23
M2

Q

;

ð11Þ

FIG. 2. Thermally averaged cross section for falling in an
unbreakable bound state as computed numerically for MQ ¼
12.5 TeV and for different values of αeff ¼ 0.3 (dot-dashed) 1
(dashed), 3 (continuous) and for different values of the total
QCD cross section, σQCD ¼ c=Λ2

QCD, c ¼ 1 (green), π (blue), 4π
(red). Equation (10) approximates this numerical result.

4We do not know how to generalize Abelian Larmor radiation
to gluon emission. While emission of one soft photon negligibly
affects the state of the system, the situation is different for gluon
emission: gluons are colored, so that emitting one gluon changes
the potential: a singlet state becomes an octet. The only soft
particles that can be radiated are gg color singlets. Using
perturbative QCD techniques [15] we computed the singlet-to-
singlet transition rate through gg emission (and subsequent
hadronization) between Coulombian bound states, finding values
not much below our naive Larmor estimate. However, we cannot
apply such techniques to the states with large n;l relevant for us,
affected by confinement. Possibly, the Abelian Larmor result
correctly approximates the rate for emitting soft gluons that
remain within the bound state, such that the QQ singlet becomes
a ðQgÞQ singlet. If this picture is correct,QQwould fall to a deep
bound state by losing energy to a cloud of gluons that surrounds
the bound state.

COLORED DARK MATTER PHYS. REV. D 97, 115024 (2018)

115024-5



where the strong coupling is renormalized around MQ,
while it is renormalized around α3MQ in the Sommerfeld
factors Sn corresponding to the various color channels,

Sn ¼
2πnα3=vrel

1 − e−2πnα3=vrel
: ð12Þ

We define YQ ≡ ðnQ þ nQ̄Þ=s, where s is the entropy
density, and assume no dark baryon asymmetry, nQ ¼ nQ̄.
Bound-state formation gives an order 1 correction to the

relic abundance, as discussed in Ref. [16], which consid-
eredMajorana gluinos. The bound states made by our Dirac
gluinos can be divided into stable QQ or Q̄Q̄ states that
carry two units of dark baryon number, and unstable QQ̄
states, where Q and Q̄ annihilate. The latter come into

spin-0 and spin-1 combinations, while the stable states have
only the spin allowed by Fermi statistics: in particular, the
singlet ground state has spin 0. Among the unstable bound
states the most relevant for the relic abundance at T ≫
ΛQCD are the ones that decay faster and have larger binding
energy. These are listed in Table I. The corresponding
effective rates are plotted in Fig. 3. We only estimated the
annihilation widths of those states that exist only as QQ̄;
they are suppressed by Oðα23Þ making these states negli-
gible (the formation cross section does not depend on spin)
unless numerical factors compensate for the suppression.
These rates determine a network of Boltzmann equations

for the abundance of free Q and for the abundances YI ¼
nI=s of the various bound states I as a function of
z ¼ MQ=T. In the notations of [16] such equations are

8><
>:

sHz dYQ

dz ¼ −2γann
h
Y2
Q

Yeq2
Q

− 1
i
− 2

P
I
γI
h
Y2
Q

Yeq2
Q

− YI
Yeq
I

i
;

sHz dYI
dz ¼ neqI

n
hΓIbreaki

h
Y2
Q

Yeq2
Q

− YI
Yeq
I

i
þ hΓIanni

h
1 − YI

Yeq
I

i
þP

J
hΓI→Ji

h
YJ
Yeq
J
− YI

Yeq
I

io : ð13Þ

Here γI is the thermal-equilibrium space-time density of
formations of bound state I, related to the thermal average
hΓIbreaki of the breaking rate ΓIbreak as described in [16].
Furthermore ΓIann is the decay rate of bound state I due to
annihilations between its Q and Q̄ constituents: it vanishes
for the QQ and Q̄Q̄ states. Finally, ΓI→J ¼ −ΓJ→I is the
decay rate from state I to state J. Taking into account that
the annihilation and decay rates are much larger than the
Hubble rate, Ref. [16] used thermal-equilibrium conditions
to substitute the network of Boltzmann equations with a
single equation for the total DM density, in terms of an
effective annihilation rate γeffann. This strategy needs to be
extended including the QQ and Q̄Q̄ states. Their annihi-
lation rates Γann vanish, so we can now only reduce the
network of Boltzmann equations to two equations: one for
YQ (density of free Q) and one for YQQ ¼ P

I∈QQYI (total
density of stable bound states, which satisfies YQQ=Y

eq
QQ ¼

YI=Y
eq
I for all stable states I). The equations are

8><
>:

sHz dYQ
dz ¼ −2γeffann

h
Y2
Q

Yeq2
Q

− 1
i
− 2γfall

h
Y2
Q

Yeq2
Q

− YQQ

Yeq
QQ

i
sHz dYQQ

dz ¼ neqQQhΓbreaki
h
Y2
Q

Yeq2
Q

− YQQ

Yeq
QQ

i
;

ð14Þ

where γeffann includes the effects of QQ̄ bound states and is
given by the same expression as in [16]. The total fall rate
that accounts for the cumulative effect of all QQ and Q̄Q̄
bound states is given by the sum of the formation rates of all

such states, γfall ¼
P

I∈QQγI , which equals neqQQhΓbreaki≡P
I∈QQhΓIbreakineqI . Notice that YQ þ 2YQQ remains con-

stant when a QQ bound state is formed.
We now derive an approximated analytic solution by

computing the deviation from equilibrium of the stable
bound states. First, we appreciate that at temperatures at
which the quorn annihilation goes out of equilibrium the
second of the above equations is still in equilibrium and
thus the effect of stable bound states can be ignored in the
solution for the first equation. The asymptotic solution in
this phase is

8><
>:

YQðzÞ≈
h
YQðzdecÞ−1 þ λ

R
z
zdec

hσeffannvreli
z02 dz0

i
−1

YQQðzÞ≈ Y0
QQðzÞ þ 1

λY
1
QQðzÞ ¼ YQðzÞ2 Yeq

QQ

Yeq2
Q

þ 1
λY

1
QQðzÞ;

ð15Þ

where zdec ≈ 25 and 1=λ ¼ H=sjT¼MQ
. Expanding in small

1=λ one finds Y1
QQðzÞ and determines the temperature at

which Y0
QQðzÞ ≈ Y1

QQðzÞ=λ, finding

1 ≈
hΓbreakiMQ

EBHðTÞz ≈
hΓbreaki

HðT ≈ EBÞ
: ð16Þ

This gives the asymptotic solution for ΛQCD ≪ T ≪ MQ,
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8<
:

Y−1
Q ðzÞ ≈ Y−1

Q ðzdecÞ þ λ
R
z
zdec

dz0
z02

h
hσeffannvreli þ hσfallvreli

�
1þ hΓbreakiMQ

EBHðz0Þz0
�
−1
i

YQQðzÞ ≈ 1
2

h
ðY−1

Q ðzdecÞ þ λ
R
z
zdec

dz0
z02 hσeffannvreliÞ−1 − YQðzÞ

i
:

ð17Þ

Using the specific rates for the main perturbative bound
states listed in Table I we obtain the values of YQ and of
YQQ at temperatures T ≫ ΛQCD. The result is shown in
Fig. 4(b), where they are denoted as perturbative. We see
that such an effect can be neglected. At confinement,
nonperturbative QCD effects force all free Q to bind with
SM quarks and gluons to form strongly interacting hadrons,
as discussed in the following.

B. Q recoupling at T ≳ ΛQCD

DM annihilations recouple below the decoupling temper-
ature Tdec if the thermally averaged DM annihilation cross
section σannðTÞ grows at low temperatures faster than 1=T. In
such a case DM recouples, and its abundance nDM is further
reduced. A tree-level cross section σann ∼ g4=M2

DM does not

recouple. A Sommerfeld enhancement S ∼ 1=vrel ∝ 1=
ffiffiffiffi
T

p

TABLE I. Properties of lowest lying Coulombian bound states made of QQ̄ (upper) and QQ (lower). The subscript S or A denotes if
the state is obtained as a symmetric or antisymmetric combination in color space. Slower rates have only been estimated.

Made of Color S n l EB=MQ Γann=MQ Γdec=MQ Annihilation

QQ̄ 1S 0 1 0 9α23=4 243α53=2 0 gg

QQ̄ 1S 1 1 0 9α23=4 ∼α73 ∼α63 gggg

QQ̄ 8A 1 1 0 9α23=16 243α53=32 ∼α63 ðqq̄ÞðHH�Þ
QQ̄ 8A 0 1 0 9α23=16 ∼α63 ∼α63 ggg

QQ̄ 8S 0 1 0 9α23=16 243α53=64 ∼α63 gg

QQ̄ 8S 1 1 0 9α23=16 ∼α73 ∼α63 gggg

QQ̄ 1S 0 2 0 9α23=16 243α53=16 ∼α63 gg

QQ̄ 1S 1 2 0 9α23=16 ∼α73 ∼α63 gggg

QQ̄ 8A 1 2 0 9α23=64 243α53=256 ∼α63 ðqq̄ÞðHH�Þ
QQ̄ 8A 0 2 0 9α23=64 ∼α63 ∼α63 ggg

QQ̄ 8S 0 2 0 9α23=64 243α53=512 ∼α63 gg

QQ̄ 8S 1 2 0 9α23=64 ∼α73 ∼α63 gggg

QQ̄ 1S 0 2 1 9α23=16 ∼0 ∼α63
QQ̄ 1S 1 2 1 9α23=16 ∼α73 ∼α63 gg

QQ̄ 8A 1 2 1 9α23=64 ∼0 ≈0.1α53
QQ̄ 8A 0 2 1 9α23=64 ∼α73 ≈0.1α53 ðqq̄ÞðHH�Þ
QQ̄ 8S 0 2 1 9α23=64 ∼0 ≈0.1α53
QQ̄ 8S 1 2 1 9α23=64 ∼α73 ≈0.1α53 gg

QQ 1S 0 1 0 9α23=4 0 0 DM candidate

QQ 8A 1 1 0 9α23=16 0 0

QQ 8S 0 1 0 9α23=16 0 0

QQ 1S 0 2 0 9α23=16 0 ∼α63
QQ 8A 1 2 0 9α23=64 0 ∼α63
QQ 8S 0 2 0 9α23=64 0 ∼α63
QQ 1S 1 2 1 9α23=16 0 ∼α63
QQ 8A 0 2 1 9α23=64 0 ≈0.1α53
QQ 8S 1 2 1 9α23=64 0 ≈0.1α53
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leads to order 1 effects, but not to recoupling (unless
enhanced by some resonance). Formation of bound states
with small quantumnumber n ∼ 1 gives other similar effects.
In the previous section we included such order 1 corrections,
adapting the results of [16].5 At this stage Q can form

relatively deep bound states with heavy quarks, which
eventually decay.
The QCD coupling grows nonperturbative at T ≳ ΛQCD

giving a more dramatic recoupling effect: bound states
with binding energy EBn ∼ ðα3=nÞ2MQ can be formed
through a large cross section σann ∼ 1=E2

Bn, having omitted
powers of the strong coupling. The increase of the cross
section as n → ∞ is tamed by a competing effect:
only bound states with EBn ≳ T are actually formed at
temperature T (as better discussed in Appendix B), leading
to a recoupling cross section that grows as σann ∼ 1=T2

for T ≳ ΛQCD.

FIG. 3. Thermally averaged effective annihilation cross section in units of σ0 ¼ πα23=M
2
Q for MQ ¼ 12.5 TeV. The horizontal line is

the tree-level value in s wave; the black curve is the result obtained adding Sommerfeld corrections; the thick gray curve is the result
adding also QQ̄ bound-state corrections. The other curves show the contributions from the main bound states among those listed in
Table I. The orange curve is an estimate of confinement effects that lead to recoupling at low T ≲ 10 GeV.

FIG. 4. Thermal relic abundances of the DMQQ hadron (upper) and of hybridQg hadrons (lower band, as obtained varying αeff and
σQCDΛ2

QCD between 1 and 4π). Left: mass densities. The desired DM abundance is reproduced for MQ ∼ 12.5 TeV. The subdominant
abundance of hybrid Qg hadrons and the relative experimental upper bounds are subject to large and undefined nuclear, cosmological
and geological uncertainties; see Sec. IV. Right: number densities Y ¼ n=s of QQ DM states and of Q hybrids. We also show the
abundance of QQ bound states before confinement (dashed curve).

5This reference considered neutralino DM in the presence of
neutralino/gluino coannihilations. This related scenario is not
affected by the new effects at T ≲ ΛQCD discussed in this paper as
long as the gluino/neutralino mass difference is larger than ΛQCD.
The effects discussed in this paper drastically reduce the
cosmological bounds on a long-lived gluino with respect to
previous studies [17].
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C. Chromodark synthesis at T ∼ ΛQCD

This effect culminates after confinement. Cosmological
effects of confinement begin when the Coulombian force
αeff=r2 becomes weaker than the string tension σðTÞ at
the typical distance r ∼ 1=T. Given that gluons and
quarks are much more abundant than Q, the free Q
form Qg and Qqq̄0 bound states, which have a binding
energy of order ΛQCD and scatter among themselves and
with other hadrons with cross sections of typical QCD
size, σQCD ¼ c=Λ2

QCD with c ∼ 1. In this stage
H ∼ Λ2

QCD=MPl ∼ 10−20ΛQCD, such that a Qg hadron
experiences 1020 QCD scatterings. Given that the relative
abundance of Q is YQ ∼ 10−14, two Qg meet, forming
either deep QQ hadrons (which remain as DM)
or QQ̄ hadrons (which annihilate into SM particles).
The abundance of Q-only hadrons gets dramatically
suppressed, until they decouple.
While most DM particles form in this phase, a precise

description is not needed to compute the final abundan-
ces, which are dominantly determined by what happens
during the final redecoupling, where the dominant SM
degrees of freedom are semirelativistic pions, while the
baryon abundance is negligible, in view of the Boltzmann
factor e−mp=T and of the small asymmetry.

D. Q redecoupling at T ≲ ΛQCD

We need a precise description of the final redecoupling
which occurs at temperatures of tens of MeV. One might
think that the simplified Boltzmann equations for the
density of free Q and of QQ bound states, Eq. (14), can
be replaced with corresponding equations for the total
density of BQ bound states (Qg andQqq̄0) and for the total
density of BQQ bound states.
A slightly different strategy is needed. Indeed, the

simplification that allowed us to reduce the network of
Boltzmann equations (one for each bound state) to 2 is
valid under the following conditions: all BQ bound states
are in thermal equilibrium among them; all BQQ bound
states are in thermal equilibrium among them. Bound
states are subject to QCD interactions, with large σQCD
cross sections, such that the corresponding interaction
rates are much faster than the Hubble rate. However, as
discussed in Sec. II C, nonperturbative QCD interactions
now lead to the formation of a large variety of bound
states, with large n and l quantum numbers which
suppress the decay rates among them. Some decay rates
can be slower than the Hubble rate. This issue was solved
in Sec. II E where we computed an effective cross section
for the formation of all unbreakable QQ bound states,
which later fall to the QQ ground state. The same cross
section, almost as large as the QCD cross section, holds
for the formation of unbreakable QQ̄, which later
annihilate,

σfall ¼ σann ≲ σQCD: ð18Þ

The equality of the classical nonperturbative total cross
section for forming QQ̄ bound states with the total cross
section for forming QQ bound states is compatible with
the perturbative quantum cross sections computed in
Sec. III A. Indeed, because of Fermi antisymmetrization
in the QQ case cross sections are twice bigger, while
the number of QQ̄ states is twice bigger (after restricting
to color-singlet bound states and averaging odd with
even l).
One extra process can take place: annihilations between

QQ and Q̄ Q̄ in their ground states. In Sec. V B we
compute its cross section, finding that it can be neglected in
our present cosmological context. Together with Eq. (18)
this implies a simple result: half of the Q and Q̄ present
before redecoupling annihilate, and half end up in our DM
candidates, the QQ and Q̄ Q̄ ground states. Boltzmann
equations are only needed to compute how small the
residual fraction of Q is in loose hybrid hadrons, which
are phenomenologically relevant in view of their large
detection cross sections.
We thereby group bound states in two categories. We

define YQQ as the density of all unbreakable QQ bound
states, produced with cross section σfall. We define YQ as
the density of Q in loose bound states: the Q in bound
states containing a singleQ (Qg,Qqq̄0), and those in loose
QQ and QQ̄ bound states at relative distances ∼1=ΛQCD,
which get broken by QCD scatterings.
The relevant Boltzmann equation is

sHz
dYQ

dz
¼ −2ðγefffall þ γeffannÞ

�
Y2
Q

Yeq2
Q

− 1

�
;

sHz
dYQQ

dz
¼ γefffall

�
Y2
Q

Yeq2
Q

− 1

�
; ð19Þ

valid for T ≲ ΛQCD, i.e., z≳ zQCD ≡MQ=ΛQCD. In the
nonrelativistic limit the space-time density of interactions is
determined by the cross sections as 2γ ≃ ðneqBQ

Þ2hσvreli. The
asymptotic solutions to this system of equations are

8<
:

Y−1
Q ð∞Þ ≈ Y−1

Q ðzQCDÞ þ λ
R
∞
zQCD

hσefffallvreliþhσeffannvreli
z02 dz0;

YQQð∞Þ ≈ YQQðzQCDÞ þ 1
2

YQðzQCDÞhσefffallvreli
hσefffallvreliþhσeffannvreliþzQCD=λYQðzQCDÞ

ð20Þ
with the last term roughly equaling YQðzQCDÞ=4. Figure 4
shows our final result: the DM abundance and the hybrid
abundance as a function of the only free parameter, MQ.
The left panel shows the mass abundances Ω ¼ ρ=ρcr; the
right panel shows the number abundances Y ¼ n=s. The
hybrid abundances are plotted as bands, given that they are
affected by QCD uncertainties; smaller values are obtained
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for larger c ¼ σQCDΛ2
QCD and for larger αeff. Varying them

between 1 and 4π, the hybrid abundance changes by a
factor 100. The DM abundance, less affected by QCD
uncertainties, is plotted as a blue curve. The right panel
shows that the DM QQ abundance is mostly made at
nonperturbative level; the perturbative bound states com-
puted in Sec. III A only play a significant role in enhancing
QQ̄ annihilations.
The observed DM abundance is reproduced for

MQ ≈ ð12.5� 1Þ TeV ð21Þ

and the hybrid mass abundance is about 104 smaller than
the DM abundance (between 103 and 105 within our
assumed range of QCD parameters). For such a mass,
Fig. 5 shows the cosmological evolution of the abundances.
It also shows how large uncertainties at T ∼ ΛQCD before
redecoupling have a negligible impact on the final abun-
dances, which is dominantly determined by redecoupling.
An analytic argument that shows that Ωhybrid ≪ ΩDM is

unavoidable and that gives the dependence of the final
abundances on MQ;MPl, ΛQCD [Eq. (B4)] is confined to
Appendix B because it follows a logic different from the
one used in the more accurate numerical computation
presented here.

E. Nucleodark synthesis

Redecoupling is completed at temperatures T∼10MeV.
Later nucleons bind into light nuclei at the BBN temper-
ature TBBN ∼ 0.1 MeV. Various authors tried to compute
what happens to strongly interacting massive particles
(SIMPs) during BBN, and how SIMPs affect ordinary

BBN [18–21].6 Our predicted amount of strongly interact-
ing massive particles, YSIMP ∼ 10−18, has negligible effects
on ordinary BBN, which constrains YSIMP ≲ 10−12. Such
studies however disagree on what happens to SIMPs during
BBN. Do SIMPs bind with (some) nuclei? Does a signifi-
cant fraction of SIMPs remain free?
We present our understanding, but we cannot provide a

safe answer. Indeed, nuclear forces are not understood from
first principles, not even for ordinary p and n [22]. Long-
range nuclear properties are determined by couplings to
pions, known thanks to chiral perturbation theory [23].
Heavier QCD states contribute to short-range nuclear
forces: however QCD is here only used as inspiration to
write phenomenological nuclear potentials to be fitted to p,
n data; see e.g., [24].
In our scenario there are two types of SIMPs with distinct

properties. The Qg hybrids are an isospin singlet and
thereby do not couple to pions. The Qqq̄ hybrids form an
isospin triplet (with charges 0;�1) coupled to pions.
PresumablyQqq̄0 are heavier and decay promptly toQg.

Then, the Qg singlet states, which do not feel the pion
force, are expected to behave similarly to the Λ baryon,
which does not bind to protons to form heavy deuterons
[25]. Maybe such SIMPs do not bind with any nuclei, or
maybe they find a way to form bound states with big
enough nuclei. An attractive force can be provided by
exchange of an isospon-singlet scalar meson, such as the σ
(mass M ∼ 0.6 GeV) or glueballs (mass M ∼ 1.5 GeV)
provided that their effective Yukawa couplings ySIMP and
yN to the SIMP and to nucleons are large enough and have
the same sign. In spherical well and Born approximation
and for MQ ≫ M, the hybrid can form a bound state in a
nucleus with atomic number A if [26]

ySIMPyN >
12π

A5=3

M2

GeV2
: ð22Þ

If SIMPs bind to light nuclei, after BBN they dominantly
end up in Helium or free, with a relatively large amount in
Beryllium, according to [19,20].
The Qqq̄0 states, which feel the pion force, have an

interaction potential of approximately 2 fm. If they are the
lighter stable bound states, during BBN they get incorpo-
rated into nuclei with an efficiency close to 100% [21].
In the Milky Way, SIMPs in charged nuclei can lose a
significant fraction of their energy by interactions with
ambient matter.
No SIMP searches have yet been performed in galactic

clouds, which would probe the SIMP primordial abun-
dance. After BBN, SM matter forms stars and planets:
primordial SIMPs sink to their center before these objects
possibly solidify. Stars (rather than BBN) later produce the

FIG. 5. Cosmological evolution of the abundances of Q states
and of QQ DM states for MQ ¼ 12.5 TeV. The uncertain phase
at T ≳ ΛQCD negligibly affects the final relic abundances: the
dashed curves assume nonperturbative effects before confinement
estimated as σ ¼ σQCDðΛQCD=TÞ2; the solid curves neglect such
effects. The mass abundance on the right axis is computed
assuming QQ particles with mass 2MQ.

6Here and in the following, by SIMP we mean particles that
interact strongly with SM particles.
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observed elements heavier than He. In the next section we
estimate the present geological abundance of SIMPs.

IV. SIGNALS OF RELIC HYBRID HADRON

In our model Q-onlyum DM is accompanied by hybrid
hadrons, containing heavy colored Q bound together with
SM quarks or gluons. In this section we discuss their
signals. While SIMP DM has been excluded long ago, in
our model SIMPs have a subdominant abundance, fSIMP ≡
ρSIMP=ρDM below 10−3, possibly a few orders of magnitude
smaller. Such a small value of ρSIMP makes indirect SIMP
detection signals negligible (f2SIMPσQCD ≲ 10−24 cm3= sec)
despite the fact SIMPs interact with matter nucleons and
with themselves through large cross sections of order
σQCD ∼ 1=Λ2

QCD. See also [27]. In some models SIMPs
can have electric charge (fractional in exotic models).
As discussed in Sec. IVA, galactic SIMPs are stopped by

the upper atmosphere of the Earth and slowly sink. Thereby
SIMPs are not visible in direct detection experiments
performed underground. Their later behavior depends on
whether SIMPs bind with nuclei: if yes they indirectly feel
atomic forces; otherwise they sink even within solid bodies,
such as the present Earth. In Sec. IV B we summarize
bounds on the SIMP abundance, to be compared with their
present abundance, estimated in Secs. IV C and IV D.

A. Direct detection of hybrid hadrons

Despite their reduced abundance, SIMPs would be
excluded by a dozen orders of magnitude, if they reached
the underground direct detection detectors with enough
energy to trigger events. This is not the case. The energy
loss of a neutral SIMP in matter is [28]

dE
dx

¼ −E
X
A

nAσA
2mA

MQ
for mA ≪ MQ; ð23Þ

where nA is the number density of nuclei with atomic
number A and mass mA ≈ Amp; 2mA=MQ is the fractional
energy loss per collision and σA ≈ σpA2ðmA=mpÞ2 is the
SIMP cross section on a nucleus [29], written in terms
of the SIMP scattering cross section on protons, σp ≈
π=Λ2

QCD ≈ 1.6 10−26 cm2. The cross section σA is coher-
ently enhanced at the energies of interest for us, E ¼
MQv2=2 ∼MeV for v ∼ 10−3. The densities nA in the
Earth’s crust can be written as nA ¼ fAρ=mA where ρ is
the total mass density and fA is the mass fraction of
material A,

P
AfA ¼ 1. The energy loss following from

Eq. (23) is

EðxÞ ¼ E0 exp

�
−
Z

ρdx
m2

70 kg
hA4i
16.64

10 TeV
MQ

σp
π=Λ2

QCD

�
:

ð24Þ

Thereby SIMPs with MQ ≈ 10 TeV thermalize in the
Earth’s atmosphere, which has a column depth of
104 kg=m2 and hA4i1=4 ≈ 16.6, before reaching the crust
with hA4i1=4 ≈ 31 and density ρ ≈ 3 g=cm3. SIMPs do not
reach direct detection experiments, situated about a km
underground.
Some direct detection searches have been performed by

balloon experiments at high altitudes. The authors of [30]
claim that it is questionable whether such experiments
exclude a SIMP with density ρSIMP ¼ ρDM. Our predicted
abundance ρSIMP ∼ 10−4ρDM is allowed.
After thermalization, SIMPs diffuse with thermal velocity

vthermal ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6T=MQ

p
≈ 40 m=s at temperature T ≈ 300 K.

In the Earth’s gravitational field g ¼ 9.8 m=s2, SIMPs not
bound to nuclei sink with a small drift velocity that can be
estimated as follows. Each collision randomizes the SIMP
velocity because vdrift ≪ vthermal. Thereby the drift velocity
is the velocity vdrift ≈ gτ=2 acquired during the time τ ≈ d=
vthermal between two scatterings, where d ¼ 1=ðPAnAσAÞ ∼
0.1 mm in the Earth’s crust. Thereby the sinking velocity is

vdrift ≈ 0.1 km=yr: ð25Þ

Diffusion gives a nonuniform SIMP density on the length
scale T=MQg ≈ 25 m dictated by the Boltzmann factor
e−MQgh=T .
Finally, SIMPs concentrate around the center of the

Earth, where they annihilate heating of the Earth [30].
Bounds on such an effect imply that the SIMP abundance
must be subdominant with respect to the DM abundance,
ρSIMP < 10−3ρDM. This bound is satisfied in our model,
where ρSIMP ∼ 10−4ρDM.
The situation is somehow different if SIMPs bind with

(some) nuclei, either during BBN (mostly forming He), or
by colliding with nuclei in the Earth’s atmosphere (possibly
mostly forming N, O, He, H) or crust. A SIMP contained in
a hybrid nucleus with charge z ∼ 1 has a much bigger
energy loss in matter, as computed by Bethe,

dE
dx

≈
Kz2

β2
ln
2meβ

2

I
; K ¼ 4πα2ne

me
; I ∼ Z10 eV:

ð26Þ

The mean free path in Earth of a SIMP in a charged state
is thereby L� ∼MQβ

4=K ∼ 2 10−5 cmðβ=0.001Þ4. Again,
SIMPs do not reach underground detectors. The main
difference is that SIMPs bound in nuclei sink in the ocean
and in the primordial Earth, but not in the solid crust, where
electric atomic forces keep their positions fixed on geo-
logical time scales.

B. Searches for accumulated hybrid hadrons

Experimental searches for accumulated SIMPs consist in
taking a sample of matter, and searching if some atom has
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an anomalous mass or charge; see [31] for a recent review.
The results, detailed below, imply relative abundances
smaller than Oð1=NAÞ (inverse of the Avogadro number)
in the selected samples.
The searches often involve a first phase of sample

enrichment in hybrids (for example centrifuge treatment
of a sample of water, or use of radioactive materials),
followed by a second phase of hybrid detection, with
the most successful being the mass spectroscopy and
Rutherford backscattering [32].
Limits on the SIMP fraction in the sample depend on the

SIMP mass: in the range GeV to TeV best bounds are
derived from mass spectroscopy of enriched seawater
samples [33]. Here the hypothetical particle is a positively
charged SIMP, which could form heavy water replacing a
proton. The bounds on the relative abundance are of order
NSIMPþ=NN < 10−27 where NN is the number of nuclei.
For heavier SIMPs, mass spectroscopy seems to provide

weaker limits. The stringent limit stems from studies of
material from meteorites. In [32] the Rutherford back-
scattering technique was used to set a limit on the SIMP-to-
nucleon number density in the tested meteorites that covers
the range 100 GeV < MSIMP < 107 GeV. This technique
does not depend on the SIMP charge and thus also applies
to neutral SIMPs. For MSIMP ∼ 10 TeV the limit is [32]

NSIMP

Nn
≲ 3 10−14

10 TeV
MSIMP

ðmeteoritesÞ ð27Þ

where Nn is the number of nucleons.
These bounds should be compared with the predicted

SIMP abundance in the selected samples. If the tested
samples were representative of the average cosmological
composition, our model would predict

NSIMP

Nn

				
cosmo

¼ mN

MQ

ΩSIMP

Ωb
¼ 5 10−9

10 TeV
MQ

fSIMP

10−5
; ð28Þ

having used the cosmological density of baryonic matter,
Ωbh2 ≈ 0.022, and of DM, ΩDMh2 ≈ 0.12. The predicted
abundance in the selected samples is much lower than the
cosmological average and depends on their geological
history.

C. Abundance of hybrid hadrons in the Earth

Testing a sample of sea water does not lead to bounds,
because the atoms that contain heavy hybrid hadrons sink
to the bottom. Similarly, the Earth once was liquid, so that
the primordial heavy hybrids sank to the core of the Earth.7

Objects made of normal matter accumulate SIMPs due to
collisions with SIMP relics in the interstellar medium.
Heavy hybrids accumulated in the Earth’s crust, if captured
by nuclei, presumably stopped sinking after which the crust
solidified. In order to set bounds, we thereby consider the
SIMPs captured by the Earth in the time Δt ∼ 4 Gyr passed
since it is geologically quasistable. We ignore convective
geological motion. The Earth is big enough to stop all
SIMPs, so that the total mass of accumulated SIMPs is

M ∼ ρSIMPvrelπR2
EΔt ∼ 2.5 1010 kg

fSIMP

10−5
ð29Þ

having inserted the escape velocity from the Galaxy
v ∼ 10−3 and assuming that the SIMP galactic density
follows the DM matter halo density ρDM ≈ 0.3 GeV=cm3

as nSIMP ¼ fSIMPρDM=MSIMP. The rate ofQQ̄ annihilations
of stopped SIMPs is negligible, because suppressed by
e−MQr where r is the macroscopic distance between Q
and Q̄.8

The number of SIMPs accumulated in the Earth is

NSIMP

Nn

				
Earth

¼ M
MQ

mN

MEarth
≈ 4 10−19

10 TeV
MQ

fSIMP

10−5
vrel
10−3

:

ð30Þ

If SIMPs are not captured by nuclei and sink as in Eq. (25),
their present density in the crust is negligibly small,
NSIMP=Nn ∼ 10−23. If SIMPs get captured in nuclei, a
significant fraction of such SIMPs could be in the crust,
with a local number density higher by some orders of
magnitude. In Fig. 4 we plot the bound from Earth searches
assuming that all SIMPs stop in the atmosphere and sink
slowly through Earth until captured by a nucleus, which
might happen in the upper 10 km. The capture cross section
with nuclei is discussed below.

D. Abundance of hybrid hadrons in meteorites

Meteorites result from accumulation of interstellar dust
and contain heavy elements. The tested meteorites consist
mainly of carbon and/or iron. These elements have not been
produced by big bang nucleosynthesis, which produced H
and He (Z ≤ 2), or by cosmic ray fission, which produced
Li, Be, B (Z ≤ 5). Heavier elements have been synthesized
from nuclear burning in stars and have later been dispersed
away through various explosive processes: core-collapse
supernovæ, accretion supernovæ, merging neutron stars
and r-process nucleosynthesis. Primordial SIMPs would
have sunk to the center of stars, and would have presum-
ably remained trapped there, undergoingQQ̄ annihilations.

7The Earth’s crust contains significant abundances of some
heavier elements: those that preferentially form chemical bounds
with light elements, reducing the average density. This possibility
does not hold for too heavy hybrids with mass ∼10 TeV.

8The SIMP thermonuclear energy content Mc2 could be
artificially released through QQ̄ annihilations, and is about
104 times larger than the world fossil energy reserve, 1023 J.
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Thereby, the SIMP relative abundance in meteorites
made of heavy elements is expected to be significantly
smaller than the average relative cosmological abundance.
In order to set bounds we compute the amount of SIMPs

accumulated in meteorites. Meteorites are the oldest objects
in the Solar System and are so small that heavy hybrids do
not sink in them. While the Earth is large enough that it
captures all SIMPs intercepted by its surface, we consider
meteorites small enough that the opposite limit applies:
SIMPs are captured by all nuclei within the volume of the
meteorite. Thus we need to estimate the probability ℘ that a
nucleus captured a SIMP in a time Δt,

NSIMP

Nn

				
meteorite

¼ ℘¼ nSIMPσcapturevrelΔt

≈ 710−12
σcapture
1=Λ2

QCD

10 TeV
MSIMP

fSIMP

10−5
Δt

5 Gyr
vrel
10−3

:

ð31Þ

This value is roughly 2 orders of magnitude above the
meteorite bound in Eq. (27).
However, the capture cross sections of SIMP by nuclei

are very uncertain. Taking into account that they are not
coherently enhanced, the maximal value is the area of the
nucleus, σcapture ∼ A2=3=Λ2

QCD [34]. The measured capture
cross sections of neutrons by nuclei are smaller: in most
cases σcapture ∼ 0.01=Λ2

QCD at MeVenergies. Assuming this
capture cross section we obtain the possible meteorite
bound

fSIMP ¼
ρSIMP

ρDM
≲ 10−5

σcapture
0.01=Λ2

QCD
ð32Þ

plotted in Fig. 4 and summarized in Table II. Our SIMPs
have MeV energies, but the long-distance attractive force
mediated by pions (present for neutrons, where it is the only
effect understood from first principles) is absent for Qg
SIMPs, which are isospin singlets. Their capture cross

section could be much smaller, and possibly our SIMPs do
not form bound states with nuclei, such that meteorite
bounds are not applicable.

V. DARK MATTER SIGNALS

In our model DM is a QQ hadron. In this section we
discuss the DM signals: direct detection (Sec. VA), indirect
detection (Sec. V B) and collider (Sec. V C).

A. Direct detection of DM

Direct detection of DM is a low-energy process, con-
veniently described through effective operators. Composite
DM gives operators which can be unusual with respect to
those characteristic of elementary DM with tree-level-
mediated interactions to matter. For example, a fermionic
bound state can have a magnetic dipole moment, which is
strongly constrained. In our case DM is a nonrelativistic
scalar bound state QQ made of two colored neutral
fermions Q. Its dominant interaction with low-energy
gluons is analogous to the Rayleigh scattering of photons
from neutral hydrogen. Describing ourQQ bound state as a
relativistic field B with canonical dimension 1, the effective
Lagrangian is

Leff ¼ Cg
SO

g
S þ Cg

T2
Og

T2
¼ MDMB̄B½cEE⃗a2 þ cBB⃗

a2�:
ð33Þ

The first expression employs the conventional basis of
operators

Og
S ¼

α3
π
B̄BðGa

μνÞ2;

Og
T2

¼ −
B̄∂μ∂νB
M2

DM
Og

μν ≃
E≪MQ −

B̄B
2

½ðGa
0iÞ2 þ ðGa

ijÞ2�; ð34Þ

where ðGa
μνÞ2 ¼ 2ðB⃗a2 − E⃗a2Þ and Og

μν ≡Gaρ
μ Ga

νρ −
1
4
ημνGa

ρσGaρσ . In the second expression we rewrote them
in terms of the chromoelectric Ea

i ¼ Ga
0i and chromomag-

netic B⃗a components, such that cE is 4π times the chromo-
electric polarizability of the bound state, cE ∼ 4πa3 where
a ¼ 2=ð3α3MQÞ is its Bohr-like radius. Furthermore
cB ≪ cE is suppressed by the velocity v ∼ α3 of the Q
in the bound state. Neglecting the chromomagnetic inter-
action, the coefficients renormalized at the high scale (that
we approximate with MZ) are

Cg
T2
ðMZÞ ¼ −MDMcE; Cg

SðMZÞ ¼
Cg
T2
ðMZÞ
4

π

α3
: ð35Þ

The low-energy effective coupling of DM to nucleons is
fN jBj2N̄N [37] with

TABLE II. Experimental bounds on the density of strongly
interacting massive particles with nonexotic electric charges,
compared to the expected abundance of our hybrid, roughly
estimated assuming that it binds in nuclei (otherwise they sink),
and assuming fSIMP ≈ 10−5.

Element NSIMP=NN atMSIMP ¼ 10 TeV Formation
studied Bound Expectation? mechanism

He space … 10−10 BBN
Be Earth 710−9 [35] No BBN
Oxygen water 310−14 [35] No Accumulation
Enriched petro-C14 10−16 [35] 10−15? Accumulation
Iron Earth 10−12 [36] 10−15? Accumulation
Meteorites 410−14 [32] 10−14? Capture
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fN
mN

¼ −12Cg
SðMZÞfg −

3

4
Cg
T2
ðMZÞgð2;MZÞ ð36Þ

where fg ¼ 0.064 and gð2;MZÞ ¼ 0.464. The spin-
independent direct detection cross section is

σSI ¼
f2N
4π

m2
N

M2
DM

≈ 2.3 10−45 cm2 ×

�
20 TeV
MDM

�
6
�
0.1
α3

�
8
�

cE
1.5πa3

�
2

:

ð37Þ

This is close to the XENON1T bound [38], σSI ≲
3 10−44 cm2 ×MDM=20 TeV, that holds at MDM ≫
100 GeV up to the standard assumptions about the DM
galactic halo.
Thereby we perform a dedicated computation of the cE

coefficient, which is possible in perturbative QCD. Adapting
the techniques developed for the hydrogen atom and for
bottomonium [39], the effective Lagrangian of Eq. (33) also
describes the shift in theQQ ground state energy induced by
external chromoelectric and chromomagnetic fields,

Heff ¼ −
1

2
½cEE⃗a2 þ cBB⃗

a2�: ð38Þ

The external field E⃗a adds a chromodipole interaction to the
nonrelativistic Hamiltonian of the QQ bound state, as well
as the associated non-Abelian effects. Perturbation theory at
second order then gives a shift in the ground state energy
E10, which allows us to reconstruct cE as

cE ¼ 8πα3
3

C
N2

c − 1
hBjr⃗ 1

H8 − E10

r⃗jBi ð39Þ

where jBi is the QQ ground state, Nc ¼ 3 and C is the
Casimir coefficient, defined by Cδij ¼ ðTaTaÞij and equal
to 3 for our assumed octet representation. Summing over all
allowed intermediate states with free Hamiltonian H8 in the
octet channel we find (see Appendix C)

cEjDM ¼ ð0.36þ 1.17Þπa3 ð40Þ

where the first (second) contribution arises from intermediate
bound (free) states. The non-Abelian nature of QCD
manifests in the fact that the allowed intermediate states
are p-wave color octets: they are less bound (relatively to the
ground state) than in the hydrogen atom case, such that our
cE coefficient is significantly smaller than what would be
suggested by a naive rescaling of the Abelian result.
Equation (40) is the coefficient used as a reference value

in the cross section of Eq. (37). Higher order QCD
interactions and relativistic effects conservatively amount
to a 50% uncertainty. As plotted in Fig. 6(a) our predicted
DM mass MDM ≈ 25 TeV is higher than the DM mass
excluded by direct detection, MDM ≳ 14 TeV.

B. Indirect detection of DM

Two DM particles in the galactic halo can annihilate into
gluons and quarks giving rise to indirect detection signals.
The energy spectra of the resulting final-state stable
particles (p̄, ē, γ, ν) are well approximated by the general
results of nonrelativistic annihilations computed in [41].

FIG. 6. Left: Direct detection signals of QQ dark matter, as computed in Sec. VA. We also show the neutrino floor, which eventually
limits future direct searches. Right: Indirect detection signals as computed in Sec. V B. We show the current dwarf galaxy constraints
by FermiLAT, which have only a mild systematic uncertainty due to the dark matter J-factor, and the future sensitivity of the CTA [40]
experiment to photons from dwarf galaxies.
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We need to compute the annihilation cross section
between the DM ¼ QQ Coloumbian bound state and
DM ¼ Q̄ Q̄. It is enhanced and dominated by the recombi-
nation process

ðQQÞ þ ðQ̄ Q̄Þ → ðQQ̄Þ þ ðQQ̄Þ ð41Þ

followed by later QQ̄ annihilations to SM particles.
This is similar to what happens for hydrogen/antihydrogen
annihilation, which proceeds through recombination
ðepÞ þ ðēp̄Þ → ðeēÞ þ ðpp̄Þ followed by later eē and pp̄
annihilations, giving rise to a large σann, of atomic-physics
size, rather than of particle-physics size, σann ∼ α2=m2

e;p.
The DM recombination cross section can be estimated

as follows. At relative velocities vrel comparable to the
orbital velocity α3 (which corresponds to a center-of-mass
kinetic energy K ¼ MQv2rel=2 comparable to the binding
energy EB) the cross section is given by the Bohr radius
squared,

σannvrel ∼ πa2vrel ∼
1

α3M2
Q

ðvrel ∼ α3Þ: ð42Þ

At larger velocities vrel ≳ α3 the cross section gets pro-
gressively suppressed by ðEB=KÞ2, reducing at vrel ∼ 1 to
the particle-physics cross section σann ∼ α23=M

2
Q.

At smaller vrel ≪ α3 recombination is enhanced by a
classical Sommerfeld effect which can be estimated as
follows. The interaction between two neutral atoms at
distance r ≫ a is given by the non-Abelian Van der Waals
electric attraction, Vel ≈ −0.7a6=r7 [39,42,43], having used
Eq. (40) for the numerical coefficient. A four-particle
intermediate state forms if K > maxrVeffðrÞ where Veff ¼
Vel þ L2=2MQr2 is the usual effective potential. This
determines the maximal impact parameter bmax, and
thereby the cross section9

σannvrel ∼ πb2maxvrel ∼
v3=7rel

α12=73 M2
Q

ðα5=23 ≪ vrel ≪ α3Þ:

ð43Þ

At astrophysically low velocities vrel ∼ 10−3 ≲ α5=23 the
magnetic dipole interaction Vmag ∼ α3=r3M2

Q becomes as

important as the electric interaction, giving σannvrel ∼
α2=33 =M2

Qv
1=3
rel . Detailed quantum computations suggest that

a reasonable estimate consistent with Wigner’s threshold
law is [44]

σannvrel ∼
πa2vrel=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekin=EB

p ¼
ffiffiffi
2

p
π

3M2
Qα3

¼ 1.5 10−24
cm3

sec
×

�
20 TeV
MDM

�
2
�
0.1
α3

�
: ð44Þ

The 1=α3 enhancement is numerically mild, given that
α3 ∼ 0.1. As a consequence indirect detection signals are
below present bounds, as shown in Fig. 6(b). We plotted
bounds on gamma ray emission from dwarfs, given that
searches in the Galactic center region are subject to large
astrophysical uncertainties, and other bounds are weaker.

C. Collider signals of DM

While DM usually gives missing-energy signals which
are hardly detectable at hadron colliders, DM made of
colored quorns Q gives very visible signals. Indeed, DM
constituents Q are pair produced at colliders via QCD
interactions. After hadronization they form hadrons.
Presumably the neutral Qg is stable, and the charged
Qqq̄0 are long lived on collider time scales, giving rise
to tracks. This is the dream of LHC experimentalists.
Experiments at the LHC pp collider at

ffiffiffi
s

p ¼ 13 TeV set
the bound MQ ≳ 2 TeV [45]. A larger

ffiffiffi
s

p
∼ 85 TeV is

needed to discover the quorn with the mass expected from
cosmology, MQ ∼ 12.5 TeV. A pp collider with

ffiffiffi
s

p ¼
100 TeV would be sensitive up to MQ ≲ 15 TeV [46], as
long as the detector can see the signal.
Furthermore, we explore the possibility of detecting

collisions of protons in collider beams with ambient QQ
DM. The QQ binding energy is EB ∼ 200 GeV. Protons
with energies much larger than EB see the QQ system as
two free Q and the QCD cross section is suppressed by the
energy squared. Protons with energies comparable to EB
see the system as a ball with Bohr radius a ¼ 2=3α3MQ.
The cross section for the excitation of the ground state
through the absorption of a gluon can be estimated as the
cross section for ionization computed in [16,47]

σ ¼ 36π2α3a2
�
EB

Eg

�
4 1þ 9=4ζ2

1þ 9ζ2
e−6ζarccotð3ζÞ

1 − e−3πζ
; ð45Þ

where Eg is the gluon energy and ζ¼α3=vrel¼1=ð3apDMÞ
parametrizes the momentum of Q in the final state. Energy
conservation implies Eg ≈ EB þMDMv2rel=4. Figure 7
shows the proton-DM cross section obtained convoluting
with parton distribution functions. The event rate in a beam
containing Np protons is small,

9A more precise result can be obtained from a classical
computation. Focusing on the color-singlet channel, we numeri-
cally compute the classical motion of a QQ bound state in its
ground state (circular orbit with radius a in some plane) which
collides with relative velocity vrel and impact parameter b with a
similar Q̄ Q̄ system. When the two bound states get closer and
interact they can produce two QQ̄ bound states, which later
annihilate. Confinement takes place at larger distances and plays
a negligible role. Averaging over the relative orientations of the
two systems and over the impact parameter gives the classical
probability for this process, encoded into a velocity dependent
cross section.
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dNp

dt
¼ Npσ

ρDM
2MQ

¼ 3

year

Np

1020
ρDM

0.3 GeV=cm3

20 TeV
2MQ

σ

10−33 cm2
: ð46Þ

QQ dark matter excitation by cosmic rays is negligible on
cosmological time scales.

VI. CONCLUSIONS

We have shown that dark matter can be obtained from a
colored neutral quarkQ (dubbed quorn) that, after the QCD
phase transition, forms deeply bound hadrons made of Q
only (dubbed quorn onlyum), plus traces of hybrid hadrons
made of Q together with SM gluons or quarks (dubbed
SIMPs). We explored the simplest model, where Q is an
automatically stable neutral Dirac fermion in the adjoint
representation of SUð3Þc. Such a state could be a Dirac
gluino, or appear in natural axion models (see Sec. II).
Figure 5 shows the cosmological evolution of the DM

and hybrid abundances for the value of the quorn mass,
MQ ≈ 12.5 TeV, which reproduces the DM cosmological
abundance as discussed in Sec. III. A first decoupling
occurs, as usual, at T ∼MQ=25. Quorns recouple while the
Universe cools approaching the QCD phase transition at
T ∼ ΛQCD. This opens a phase of chromodark synthesis:
quorns fall into QQ singlet bound states, which have a
binding energy EB ∼ 200 GeV. The cross sections grow
large, up to σQCD ∼ 1=Λ2

QCD, because excited states with
large angular momenta l are formed. Such states efficiently
cool falling to the ground state before being broken, as
computed in Sec. II E where we show that quantum states
with n;l ≫ 1 are well approximated by classical physics. It
is important to take into account that (non-Abelian) Larmor
radiation from elliptic orbits is much larger than for circular
orbits.
Details of this uncertain phase are not very important for

the final result: one half of free quorns annihilate, and one

half end up inQQDM; the small residual abundance ofQg
hybrids, ρSIMP=ρDM between 10−3 and 10−6, is mostly
determined at T ∼ 30 MeV, when the states decouple
again.
In Sec. V we studied DM phenomenology. The quorn-

onlyum DM state QQ with mass MDM ≈ 2MQ ≈ 25 TeV
has small residual interactions suppressed by powers of
1=MQ. The cross section for direct DM detection is of
Rayleigh type, suppressed by 1=M6

Q. In Sec. VA we
performed a nontrivial QCD bound-state computation,
finding a cross section just below present bounds. The
cross section for indirect DM detection is enhanced by
recombination, ðQQÞ þ ðQ̄ Q̄Þ → ðQQ̄Þ þ ðQQ̄Þ, and still
compatible with bounds (Sec. V B). At colliders quorns
manifest as (quasi)stable charged tracks: the LHC sets the
bound MQ ≳ 2 TeV.
In Sec. IV we studied the SIMP hybrid states, which

have large cross sections of order 1=Λ2
QCD and a relic

abundance 3 or more orders of magnitude smaller than DM.
In view of this, they seem still allowed by the experiments
which excluded SIMP DM (ρSIMP ¼ ρDM), although a
Manhattan-like project would be needed to predict their
properties. Our model contains two kind of SIMPs: the
isospin-singlet Qg with no interaction to pions, and the
isospin triplet Qqq̄0. Presumably the latter are heavier and
decay. We do not know whether Qg can bind with (large
enough?) nuclei, and how they would bind during big bang
nucleosynthesis, given that there is no first-principle under-
standing of nuclear potentials. The following statements are
safe: our predicted SIMP abundance is so small that they
negligibly affect ordinary BBN; SIMPs get stopped by the
Earth’s atmosphere and are not visible in underground
detectors; SIMP annihilations negligibly heat the Earth.
The interpretation of searches for rare hybrid heavy

nuclei in samples of materials depends on the history of
SIMPs and of the selected samples: from the big bang, to
star burning, through Earth geology. The primordial abun-
dance of SIMPs in the Earth and in stars sank down to their
centers, undergoingQQ̄ annihilations. Thereby, in order to
set bounds, we consider the smaller secondary abundance
of SIMPs. Presumably most primordial SIMPs still are in
galactic clouds, and the Earth is big enough to capture all
SIMPs encountered along its trajectory. The total energy
stored in captured SIMPs likely exceeds the energy of the
world fossil fuel reserve by 104. What happens after capture
is unclear. If SIMPs do not bind in nuclei, they sink in the
Earth’s ocean and crust with drift velocity v ∼ 0.2 km=yr,
such that their ground-level abundance is much below
existing bounds. They can be searched for through dedi-
cated enrichment processes and Rutherford backscattering
experiments. If instead SIMPs bind within nuclei, electro-
magnetic interactions keep them in the crust since the crust
becomes geologically stable. Then, the local SIMP density
can be comparable to present bounds, depending on the
capture cross section by nuclei, which is highly uncertain.

FIG. 7. Cross section for excitation of theQQ DM ground state
with a proton beam at 0.5 (red), 2 (purple), and 7 (blue) TeV.
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SIMP searches have been also performed in meteorites,
where SIMPs cannot sink. Despite this, meteorites are
made of heavy elements synthesized by stars: primordial
SIMPs sank to the center of stars, and never come back.
The secondary abundance of SIMPs in meteorites depends
on the SIMP capture cross section by individual nuclei,
which is highly uncertain and possibly vanishing. Present
bounds are satisfied assuming SIMP capture cross sections
comparable to the one of neutrons with similar MeV
energy, σcapture ∼ 0.01=Λ2

QCD.
In conclusion, colored DM seems still allowed, although

close to various bounds. Direct detection seems to provide
the strongest and safest probe.
We discussed the apparently nicer model of colored DM:

a neutral Dirac fermion Q in the adjoint representation of
color. A scalar would give a similar phenomenology, and
the DM abundance would be reproduced thermally for a
similarMQ ∼ 12.5 TeV. A smaller mass would be obtained
for quorns in the fundamental SUð3Þc, although the mass of
the quorn-onlyum DM state QQQ would be MDM ≈ 3MQ.
In models where Q has an asymmetry, the DM abundance
can be obtained for lower MQ.
Finally, we notice that the fall of free Q down to deep

multi-Q bound states occurs around the QCD phase
transition out of thermal equilibrium. It could thereby
contribute to baryogengesis, provided that violation of
baryon number can be added at an acceptable model,
possibly assuming that B is a gauge symmetry sponta-
neously broken giving rise to processes that vio-
late ΔB ≠ 1.
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APPENDIX A: HYDROGEN DECAY RATES

We summarize the known results for the hydrogen decay
rates in dipole tree-level approximation [48]. We denote the
initial state as ðn;lÞ, and the final states as ðn0;l0Þ. Their
energy gap is

ΔEðn; n0Þ ¼ α2μ

2

�
1

n2
−

1

n02

�
; ðA1Þ

where μ is the reduced mass. The spontaneous emission
rate, in dipole approximation, is

Γðn;l → n0;l0Þ ¼ 4α

3

ΔE3

2lþ 1

X
m;m0

jhn0;l0; m0jr⃗jn;l; mij2:

ðA2Þ

Selection rules imply Δl ¼ �1, and the matrix elements
are

X
m0

jhn0;l − 1; m0jr⃗jn;l; mij2 ¼ lþ 1

2lþ 1

1

ðαμÞ2
�
Rn0;l−1
n;l

�
2
;

ðA3Þ
X
m0

jhn0;l; m0jr⃗jn;l − 1; mij2 ¼ l
2lþ 1

1

ðαμÞ2
�
Rn0;l
n;l−1

�
2
;

ðA4Þ

where

Rn0l0
nl ¼

Z
∞

0

drr3RnlRn0l0 ðA5Þ

with RnlðrÞ being the radial part of the hydrogen wave
function. These integrals are given by

Rn0;l−1
nl ¼ ð−1Þn0−l

4ð2l − 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ l − 1Þ!ðnþ lÞ!
ðn0 − lÞ!ðn − l − 1Þ!

s
ð4nn0Þlþ1ðn − n0Þnþn0−2l−2

ðnþ n0Þnþn0

×

�
2F1

�
−nþ lþ 1;−n0 þ l; 2l;−

4nn0

ðn − n0Þ2
�
−

þ
�
n − n0

nþ n0

�
2

2F1

�
−nþ l − 1;−n0 þ l; 2l;−

4nn0

ðn − n0Þ2
��

; ðA6Þ

where 2F1 is the Hypergeometric2F1 function. A

similar formula can be obtained for Rn0;l
n;l−1 by the inter-

change of the indices n and n0. The total decay rate and
energy loss rate from an initial state ðn;lÞ is obtained by
summing over all available lower-energy states with n0 < n.

APPENDIX B: TOY REDECOUPLING

We here show that the chromodark-synthesis mechanism
is absolutely unavoidable by discussing a toy model that
allows us to analytically understand some of its features.
We consider formation of one bound state BQQ containing
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two DM quarks Q from two bound states BQ containing
one DM quark,10

BQ þ BQ ↔ BQQ þ X; ðB1Þ

where X denotes any other SM particles, such as pions. We
define δ≡ 2MBQ

−MBQQ
. In the real situation described in

Sec. III, many bound states with a semiclassical discretuum
of binding factors δ can be produced. We simplify the
problem by considering just one of them, with δ ∼ ΛQCD

such that the QCD cross section for the above process is
large, σQQ ∼ 1=δ2. One then reaches thermal equilibrium

nBQQ

n2BQ

¼ neqBQQ

neq2BQ

¼ gBQQ

g2BQ

�
4π

MQT

�
3=2

eδ=T: ðB2Þ

This means that the BQ dominantly form BQQ at the
redecoupling temperature

Tredec ¼
δ

A
where A ¼ ln

Yπ

YQ
∼ 40 ðB3Þ

is an entropy factor that describes how much formation of
BQQ gets delayed by having a plasma with many more
particles X that can break it, than particles BQ that can form
it. This is analogous to how e, p bind in hydrogen at
T ≲ δ= lnðnγ=npÞ, and to how p, n bind in deuterium at
T ≲ δ= lnðnγ=npÞ, where δ are the binding energies of
hydrogen and deuterium respectively.11

In the toy model, the residual density of BQ is estimated
as its thermal equilibrium value at the redecoupling temper-
ature where the interaction rate ΓQQ ∼ nBQ

σQQvrel for the
process of Eq. (B1) becomes smaller than the Hubble rate.
Imposing ΓQQ ∼H with H ∼ T2=MPl, vrel ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=MQ

p
and

nBQ
∼ YBQ

T3 gives

Yrelic
BQ

jtoy ∼
1

σQQMPlTredec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tredec=MQ

p
∼ A3=2

ffiffiffiffiffiffiffiffiffiffi
δMQ

p
MPl

∼ 10−16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MQ

10 TeV
δ

ΛQCD

s
: ðB4Þ

This shows that reannihilation is dominated by bound states
with smaller δ ∼ ΛQCD, rather than by deep states. In the

full computation many bound states contribute to the
depletion of YBQ

, which gets about 2 orders of magnitude
smaller than the toy-model estimate of Eq. (B4). In turn, the
unavoidable toy value is much smaller than what is
obtained by including only perturbative QCD annihilations
at T ∼ Tdec ≫ ΛQCD.

APPENDIX C: CHROMOPOLARIZABILITY
OF QQ DM

Equation (39) provides the formula for the polarizability
of a QCD bound state. We here evaluate it for our DM,
the QQ singlet bound state jBi ¼ j1; s; αeffi with energy
E10 ¼ −α2effMQ=4, where αeff ¼ 3α3. By emitting a gluon
it becomes a p-wave octet, with free Hamiltonian H8 ¼
p⃗2=MQ − α8=r where α8 ¼ 3α3=2, whose eigenvalues are
E8n ¼ −α28MQ=4n2 for bound states and p⃗2=MQ for
positive energy states. To evaluate the matrix element in
Eq. (39) we insert the completeness relation for the octet
eigenstates

18 ¼
X
n;l;m

jn;l; m; α8ihn;l; m; α8j

þ 1

3

X
l;m

Z
d3p
ð2πÞ3 jp⃗;l; m; α8ihp⃗;l; m; α8j ðC1Þ

where the first (second) term is the contribution from
bound (free) states. The factor 1=3 is introduced not to
double count the angular momentum states. In coordinate
space hr⃗jn;l; mi ¼ RnlðrÞYlmðθ;ϕÞ for bound states and
hr⃗jp⃗;l; mi ¼ RplðrÞYlmðθ;ϕÞ for continuum positive
energy states, where Ylmðθ;ϕÞ are spherical harmonics.
The Coulombian wave functions are

RnlαiðrÞ ¼
�

2

nai

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − l − 1Þ!
2nðnþ lÞ!

s

× e−r=nai
�
2r
nai

�
l
L2lþ1
n−l−1

�
2r
nai

�
; ðC2Þ

RplαiðrÞ ¼
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Γ½1þ l − i=aip�
Γ½2ðlþ 1Þ�

× eπ=ð2aipÞe−iprð2iprÞl

× 1F1

h
1þ lþ i

aip
; 2ðlþ 1Þ; 2ipr

i
; ðC3Þ

where 1F1 is the Hypergeometric1F1 function;
ai ¼ 2=ðαiMQÞ are the Bohr radii in each channel with
effective coupling αi ¼ fαeff ; α8g and L2lþ1

n−l−1 are Laguerre
polynomials.
Angular momentum conservation implies that only

p-wave intermediate states contribute to the polarizability.
The bound-state contribution thereby is

10Similar considerations apply to formation of BQQ from free
Q at T ≳ ΛQCD, but this phase is not relevant for the final DM
abundance.

11In the numerical computation such an entropy factor was
accounted in Sec. II E by imposing a small time allowed to radiate
enough energy down to an unbreakable state. To keep the
argument simple we here ignore the Boltzmann suppression in
the π abundance at T ≲mπ (in the full numerical computation this
is taken into account and increases the σfall computed in Sec. II E,
consequently suppressing the hybrid abundances).
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hBjr⃗ 1

H8 − E10

r⃗jBibound ¼
X
n≥2

jh1; s; αeff jr⃗jn; p; α8ij2
E8n − E10

;

ðC4Þ

where the matrix element is

jh1; s; α1jr⃗jn; p; α8ij2 ¼
				
Z

∞

0

drr3R10αeff ðrÞRn1α8ðrÞ
				2:
ðC5Þ

Performing numerically the integral and the sum one finds

hBjr⃗ α3
H8 − E10

r⃗jBibound ¼ 0.359a3: ðC6Þ

The contribution of unbound E > 0 intermediate states is
found generalizing the formulas in [49],

hBjr⃗ α3
H8 − E10

r⃗jBifree

¼ 1

3

Z
d3p
ð2πÞ3

α3
p2=MQ − E10

				
Z

∞

0

drr3R10αeff ðrÞRp1α8ðrÞ
				2

¼ a3
512

C
ρðρþ 2Þ2

×
Z

∞

0

p3
ð1þ ρ2=p2Þe−4ρ=p arctanp

ðe2πρ=p − 1Þð1þ p2Þ7 dp ¼ 1.17a3;

ðC7Þ

whereC¼3 and ρ ¼ −α8=αeff ¼ −1=2 for our color octets.
In the case of the hydrogen atom (C ¼ 1, ρ ¼ −1) one finds
[39] cEjhydrogen ¼ 8πð5.49þ 1.26Þa3=3 ¼ 18πa3. The QQ
chromopolarizability is smaller than what is suggested by a
naive rescaling of the Abelian result computed for the
hydrogen atom cEjnaive ¼ 18πa3C=ðN2

c − 1Þ ¼ 6.75πa3.
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