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We reexamine the matter neutrino oscillation probabilities considering the decoherence phenomenon as
a subleading effect. In this paper we point out the relevance of having the correct interpretation of the
decoherence matrix in the different quantum bases, within the framework of neutrino oscillation
probabilities in matter. Based on this treatment we develop an analytical formula for matter neutrino
oscillation probabilities for three generations, with a range of application up to the decoherence parameter
Γ ∼ 10−23 GeV. We observe that, due to decoherence, the amplitudes of the neutrino/antineutrino
oscillation probabilities increase in an energy independent way. We also find that decoherence can
reduce the absolute value of the CP asymmetry, relative to its value at the pure oscillation case. As a side
effect we have found a degeneracy between the decoherence parameter Γ and the CP violation phase δ.
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I. INTRODUCTION

The neutrino oscillations caused by nonzero neutrino
mass is a well established phenomenon supported
by numerous experimental data accumulated since two
decades ago [1–7].
Even though all the evidence indicates that the neutrino

oscillation relies on the interference between different
neutrino mass eigenstates, the presence of an as yet
undetected subleading mechanism is still possible. Within
the context of new physics, there are various candidates that
can coexist with oscillations induced bymass, whichwewill
call from now on standard oscillations. Among them
we have neutrino decay [8–32], nonstandard interactions
[33–39], decoherence in oscillations [40–54], and other new
physics effects [55–59].
In particular, the general consequences of considering a

quantum system in interaction with its environment are
irreversibility and decoherence. The decoherence phe-
nomenon tends to destroy the interference pattern, through
the introduction of damping terms of the type of e−ΓL

(where Γ is a decoherence parameter and L is the neutrino
source-detector distance or baseline). It is also possible for
this phenomenon to modify the oscillation frequencies

through the appearance of new coherence terms. It has been
pointed out that the source of decoherence could be
originated by strings and branes [60,61], as well as
quantum gravity effects [62]. There have been several
papers that have included dissipative effects in the neutrino
system, treating this as an open quantum system, devel-
oping the oscillation probabilities formulas in two and three
generations, for vacuum and matter [40–45].
Decoherence has been proposed as a possible solution

for experimental data [46–49] and, on the other hand,
constraints on decoherence parameters have been obtained
from data [50–54,63]. More specifically, the bounds at
95% C.L. for atmospheric neutrinos and the MINOS long
baseline experiment are Γ < 4.10 × 10−23 GeV [46] and
Γ < 9.11 × 10−23 GeV [63], respectively. Similarly, for
solar neutrinos and reactor are Γ < 0.64 × 10−24 GeV
[52] and Γ < 6.8 × 10−22 GeV [53], respectively.
The main goal of this paper is to revisit the treatment for

obtaining a three neutrino oscillation formula in matter,
when dissipative effects are included. In this framework,
the neutrino Hamiltonian in matter can be written in the
vacuum mass eigenstates basis (VMB) or in the matter
mass eigenstates basis (MMB). The latter is the basis that
diagonalizes the neutrino matter Hamiltonian, for a con-
stant matter density. When solving the system in the MMB
we have to check if the decoherence matrix we propose
in this basis can be generated from a rotation of the
corresponding one in the VMB, where the decoherence
matrix is, in fact, defined. This very relevant detail has
been overlooked in some papers by assuming that the
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decoherence matrix can be written in MMB as diagonal and
energy independent. Wewill show that, in general, the latter
assumptions are fulfilled in only a few cases.
Considering this rotation appropriately, we provide a

three generation analytical formula valid for a decoherence
parameter Γ ≤ 10−23 GeV that corresponds to an upper
limit for ΓL of Oð10−1Þ with a baseline L of Oð103Þ km,
a source-detector distance compatible with long baseline
scenarios. We study the behavior of these probabilities,
using the DUNE baseline and energy range [64], and also
explore how a CP violation measurement would be
affected due to the presence of decoherence.

II. METHOD

A. General neutrino Hamiltonian

We work with N neutrino generations going through
matter with constant density. Sterile neutrinos get an
additional contribution from the neutral current matter
potential that cannot be ignored, since the latter cannot
be factorized out as a global phase as we do with the purely
active neutrinos scheme. The neutrino Hamiltonian in the
VMB for a neutrino of energy E can be written as

HV ¼ 1

2E
ðΔM2 þ U†AUÞ: ð1Þ

Here, ΔM2 ¼ Diagð0;Δm2
21;…;Δm2

N1Þ is the mass term
and Δm2

ij ¼ m2
i −m2

j is the squared mass difference. The
matter potential term isA ¼ DiagðACC; 0; 0; ANC;…; ANCÞ,
where ACC ¼ 2

ffiffiffi
2

p
EGFne and ANC ¼ ffiffiffi

2
p

EGFnn are the
charged current (CC) and neutral current (NC) potentials.
The parameters GF, ne, and nn are the Fermi coupling
constant, the electron and neutron number densities,
respectively. The mixing matrix U rotates the VMB mass
eigenstates into the flavor eigenstates.
The Hamiltonian HV given above is nondiagonal but is

diagonal in the MMB and can be written as

HM ¼ Diagð0; Δ̃21;…; Δ̃N1Þ; ð2Þ

where Δ̃ij becomes the effective value ofΔij ¼ Δm2
ij=2E in

matter.
We define UM as the matrix that rotates the MMB mass

eigenstates into the flavor eigenstates and can be expressed
in terms of effective mixing angles θ̃ij and effective phases
δ̃. We also introduce the matrix UT , which relates operators
ÔV in the VMB to operators ÔM in the MMB via

ÔM ¼ U†
TÔVUT; ð3Þ

where we have definedUT ¼ U†UM, the matrix that rotates
the mass eigenstates in the MMB into the mass eigenstates
in the VMB.

B. Density matrix formalism

We will consider the neutrino system coupled with the
environment and treated as an open quantum system. Thus,
its evolution is described by the Lindblad master equation

dρ̂ðtÞ
dt

¼ −i½H; ρ̂ðtÞ� þD½ρ̂ðtÞ�; ð4Þ

where ρ̂ðtÞ is the neutrino’s density matrix and H is the
Hamiltonian of the system. The dissipative term D is
written as

D½ρ̂ðtÞ� ¼ 1

2

X
j

ð½V̂j; ρ̂ðtÞV̂†
j � þ ½V̂jρ̂ðtÞ; V̂†

j �Þ; ð5Þ

where fV̂jg is a set of dissipative operators with j ¼
1; 2;…; N2 − 1 forN neutrino generations. The presence of
the operators V̂j causes the evolution of ρ̂ to be nonunitary.
The dissipative term must satisfy the requirements of
complete positivity and a von Neumann entropy that
increases with time. The second condition is achieved by
requiring V̂j to be Hermitian [65]. The usual approach is to
rewrite Eq. (4) by expanding all terms in the basis for
Hermitian matrices, which consists of the identity operator
I and the SUðNÞ generators ti, with i ¼ 1; 2;…; N2 − 1.
For this aim, we decompose all operators Ô, such as ρ̂, H,
and V̂j, as

Ô ¼ O0I þOktk; ð6Þ

where the generators ti satisfy ½ti; tj� ¼ i
P

kfijktk and fijk
are the structure constants of SUðNÞ. Then, we get

_ρ0 ¼ 0; _ρk ¼
X
j

ðMHÞkjρj þ
X
j

ðMDÞjkρj; ð7Þ

the elements of the matrix MH given by

ðMHÞkj ¼
X
i

hifijk; ð8Þ

where ρk and hi are the components of ρ̂ and H,
respectively, written on the basis of Eq. (6). The matrix
MD, which contains all the decoherence parameters, will be
called the decoherence matrix. In general, it satisfies the
following:
(1) MD ¼ MT

D is a symmetric matrix.
(2) −MD is a positive-semidefinite matrix.
(3) The entries MD satisfy a set of inequalities inherited

from the restrictions on V̂j.
From the second property, it follows that the diagonal
elements provide an upper bound to the off-diagonal ones.
The inequalities mentioned in the third property will be
explicitly written for only a few select cases to be discussed
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later. We point out that the entries of the decoherence
matrix are sometimes assumed to be of the form
ðMDÞij ¼ γijEn, where typical values of n are −1, 0,
and 1. In this paper, we restrict ourselves to analyzing
the case where n ¼ 0.
The component ρ0 ¼ 1=N is constant in time and is

relevant only when evaluating oscillation probabilities. The
evolution of the ρk can then be written in a compact form

_ρ ¼ ðMH þMDÞρ; ð9Þ

where ρ is an eight-dimensional column vector consisting
of the ρk. The solution to the differential equation is

ρðtÞ ¼ eðMHþMDÞtρð0Þ: ð10Þ

For a neutrino in a flavor eigenstate να, we can use Eq. (10)
to find the evolved vector ρναðtÞ. Finally, the probability
Pðνα → νβÞ≡ Pνανβ for a neutrino to be detected in the
flavor state νβ is calculated via inner products

Pνανβ ¼
1

N
þ 1

2
ðρνβÞTρναðtÞ: ð11Þ

We emphasize that for neutrinos, which are ultrarelativistic,
we have t ¼ L where L is the baseline.

C. Decoherence matrix relation between different
quantum bases

When we take into account matter effects in the open
neutrino system, it is expected that the decoherence matrix
in the VMB (MV

D), where the decoherence parameters are
defined, has a nontrivial relationship with the one written in
the MMB (MM

D ). The issue of moving to the MMB has been
pointed out previously [45]. However, the description and
the consequences of this relationship have been overlooked
and not properly treated. We will get the connection
between both decoherence matrices and explore the validity
of different forms for the decoherence matrix in the MMB
in the context of the neutrino oscillation system. We will
also show that some decoherence matrices presented in
literature are not allowed.
Starting from the Lindblad master equation and Eq. (7)

written in the VMB, we change to the MMB via the unitary
transformation in Eq. (3). Unitary transformations preserve
Hermiticity, so we follow the procedure in Sec. II B and
cast the transformed equation into the form shown in (7),
where the coefficients are now replaced with their corre-
sponding ones in the MMB. We also point out that the
properties of MD in Sec. II B are not affected by unitary
transformations.
The matrixMH given in the MMB is the simplest to deal

with since the Hamiltonian is diagonal. For the decoherence

term,we know thatU†
TD½ ρ̂�UT ¼ ðMM

D ÞjkρMj tk. On the other
hand

U†
TD½ ρ̂�UT ¼ ðMV

DÞjkρVj U†
TtkUT: ð12Þ

The labels V andM stand for VMB andMMB, respectively.
After a unitary transformation, the Gell-Mann matrices will
be a new superposition of the generators tk,

U†
TtkUT ¼ Pkjtj; ð13Þ

where Pkj will be an OðN2 − 1Þ matrix. Using this sub-
stitution, we find that

U†
TD½ ρ̂�UT ¼ ρMj ðMM

D Þjktk ¼ ρMj PjiðMV
DÞilPkltk: ð14Þ

Doing a similar treatment to ρMj andwriting it in terms of ρVj ,
we can prove that the decoherence matrix in the MMB is
obtained by performing an orthogonal transformation with
the matrix P,

MM
D ¼ PMV

DP
T: ð15Þ

From Eq. (15) a powerful property arises when the
elements of theMM

D are independent of the matter potential
ACC, which implies that they are also independent of
energy. In that case, any value of ACC, shall satisfy
Eq. (15), in particular ACC ¼ 0. As we can take PT jACC¼0 ¼
PjACC¼0 ¼ I we have that

MV
D ¼ MM

D : ð16Þ

For instance, the trivial case that fulfills the condition above
is when MV

D is proportional to the identity I.
When MM

D ¼ MV
D, the matter þ decoherence oscillation

probabilities can be directly obtained by replacing the
standard oscillation angles and masses in the vacuumþ
decoherence probability formula given in [42] with their
effective values in matter. From now on, this substitution
will be referred to as effective matter parameter substitution
(EMPS). We point out that if Eq. (16) is not fulfilled,MM

D is
ACC and energy dependent.
As we said before, the matricesMM

D that satisfy Eq. (16),
for the case of the potential ACC with constant matter
density, would also fulfill this equation regardless of the
value of ACC. This observation implies that the aforemen-
tioned MM

D matrices are the same even if ACCðxÞ depends
on the position x or the nonconstant matter density. In
particular, we can conclude that these matrices satisfying
the condition MV

D ¼ MM
D could be used within the frame-

work of the adiabatic or nonadiabatic case [41,54].
We must emphasize that all the results and discussions

that will be presented in this paper have been developed
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within the scheme of a potential ACC independent of the
position x.

III. TWO GENERATION MIXING

We first analyze the simple case of two generation
mixing to illustrate the effects of rotating the decoherence
matrix from the VMB to the MMB. The Hamiltonian in the
VMB HV and the mixing matrix U are given by

HV ¼ Δ
��

0 0

0 1

�
þU†

�
A 0

0 0

�
U

�
;

U ¼
�

cos θ sin θ

− sin θ cos θ

�
ð17Þ

with Δ ¼ Δm2=2E, and A ¼ VCC=Δ ¼ ACC=Δm2. In the
MMB, we have the effective value of Δ, given by Δ̃ and an
effective mixing angle θ̃,

Δ̃ ¼ Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ − AÞ2 þ sin22θ

q
;

tan 2θ̃ ¼ tan 2θ

�
1 −

A
cos 2θ

�
−1
: ð18Þ

The matrix UMðUTÞ is obtained directly from U by
performing the substitution θ → θ̃ðϕÞ. The matrix P that
performs the rotation from the VMB to the MMB in the
SUðNÞ basis is

P ¼

0
B@

cos 2ϕ 0 sin 2ϕ

0 1 0

− sin 2ϕ 0 cos 2ϕ

1
CA: ð19Þ

Using the notation in [41], we can rewrite P using the
following correspondences:

cos 2ϕ ¼ −
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ ν2
p ; sin 2ϕ ¼ νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ ν2
p ; ð20Þ

where

μ ¼ ΔðA cos 2θ − 1Þ; ν ¼ ΔA sin 2θ: ð21Þ

Taking a generic decoherence matrix

MV
D ¼ −

0
B@

a b c

b α β

c β γ

1
CA ð22Þ

with a, α, and γ non-negative, we have the following
inequalities that must be satisfied [41]:

2R≡ aþ α − γ ≥ 0; γ2 − ða − αÞ2 − 4b2 ≥ 0;

2S≡ aþ γ − α ≥ 0; α2 − ða − γÞ2 − 4c2 ≥ 0;

2T ≡ αþ γ − a ≥ 0; a2 − ðα − γÞ2 − 4β2 ≥ 0;

RST − 2bcβ − Rβ2 − Sc2 − Tb2 ≥ 0: ð23Þ

The corresponding matrix in the MMB is

MM
D ¼ −

0
B@

ã b̃ c̃

b̃ α β̃

c̃ β̃ γ̃

1
CA: ð24Þ

Given the form of P, we see that α is naturally not affected,
while the effective decoherence parameters are

ã ¼ aþ γ

2
þ a − γ

2
cos 4ϕ − c sin 4ϕ;

b̃ ¼ b cos 2ϕ − β sin 2ϕ;

c̃ ¼ c cos 4ϕþ a − γ

2
sin 4ϕ;

β̃ ¼ β cos 2ϕþ b sin 2ϕ;

γ̃ ¼ aþ γ

2
−
a − γ

2
cos 4ϕþ c sin 4ϕ: ð25Þ

From this equation, we see that a diagonal decoherence
matrix in the VMB, which is b ¼ c ¼ β ¼ 0, can have off-
diagonal entries in the MMB. Also, since the matrix P
depends on θ̃, the decoherence matrix in the MMB is
inherently dependent on E and A. It is interesting to note
that some models provide a power law energy dependence
to the decoherence parameters, which will not hold in
the MMB.
We continue by analyzing some features of 2ν oscil-

lations in the presence of decoherence. We will also present
a few numerical examples, which will use the standard
oscillation parameters summarized in Table I. Decoherence
parameters are assigned on a case-by-case basis.

A. Conditions for effective matter
parameter substitution

From Eq. (25), we see that the only decoherence matrix
that satisfies Eq. (16) for the two neutrino generations
case is

TABLE I. Standard oscillation parameters used for 2ν oscil-
lation examples.

Parameter Value

θ 9°
Δm2 2.3 × 10−3 eV2

Matter density ρ 2.97 g cm−3

Baseline L 1300 km
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MV
D ¼ −Diagðγ; α; γÞ ¼ MM

D ð26Þ

constrained by the condition α ≤ 2γ.
As we have already mentioned, when Eq. (16) is fulfilled

the matter oscillationþ decoherence probabilities can be
easily obtained through the EMPS (i.e., Δ → Δ̃, θ → θ̃).
In order to exemplify what happens when the afore-

mentioned replacement is misused, we take the following
decoherence matrix, given in [45]:

MV
D ¼ −Diagða; a; 0Þ: ð27Þ

This matrix, written in the MMB, is

MM
D ¼ −

0
B@

acos22ϕ 0 a
2
sin 4ϕ

0 a 0
a
2
sin 4ϕ 0 asin22ϕ

1
CA: ð28Þ

Then, the identity given in Eq. (16) that allows us to make
the EMPS breaks down. This is illustrated through three
curves presented in Fig. 1: one is the vacuumþ
decoherence oscillation probability; the other is the exact
matter þ decoherence oscillation probability, obtained
numerically; the last one is doing the EMPS—this is the
substitution of Δ → Δ̃ and θ → θ̃ into the vacuum formula
Pνμνe ¼ sin22θð1−e−at cosΔtÞ=2. Comparing these curves,
we see how the EMPS fails to describe the decoherence
phenomenon, producing a fake peak in the probability
around the energy region where θ̃ ¼ π=4 that allows
maximal neutrino mixing. At lower energies we observe
that the exact matter þ decoherence formula and the direct
substitution formula coincide very well. This is explained
because at this part of the energy spectrum we have that

ã → a, γ̃ ¼ b̃ ¼ β̃ ¼ c̃ ¼ 0, making the direct substitution
valid for these energies.

B. Relevance of off-diagonal
decoherence parameters

As we have pointed out in Sec. II B, the decoherence
matrix parameters are bound by the diagonal elements.
Based on this, it is tempting to say that off-diagonal
parameters can be neglected. In light of Eq. (25), we see
that in the MMB the diagonal entries of the decoherence
matrix also receive contributions from c.
We revisit this point to view the impact of off-diagonal

parameters on oscillation probabilities, by considering the
matrix proposed in [41]

MV
D ¼ −

0
B@

γ b 0

b γ β

0 β γ

1
CA ð29Þ

with b2 þ β2 ≤ γ2=4, from which the following transition
probability is obtained:

Pνμνe ¼
1

2
ð1 − e−γtÞ þ

�
ν̄2 − β̄2

Ω2

�
e−γtsin2

�
Ωt
2

�
; ð30Þ

where we defined

ν̄ ¼ Δ sin 2θ; β̄ ¼ β cos 2θ þ b sin 2θ;

Ω ¼ ðμ2 þ ν2 − b2 − β2Þ1=2: ð31Þ

The interesting feature is that b, β affect the oscillation
frequency. A simple extension where c ≠ 0 is

MV
D ¼ −

0
B@

γ b c

b γ β

c β γ

1
CA ð32Þ

with the following constraints:

b2 ≤ γ2=4; β2 ≤ γ2=4; c2 ≤ γ2=4;

γ

2

�
γ2

4
− ðb2 þ c2 þ β2Þ

�
− 2bcβ ≥ 0: ð33Þ

For this scenario, there is no simple form for the matrix
exponential [Eq. (10)], even if b ¼ β ¼ 0 or A ¼ 0. An
alternative is to assume that the decoherence parameters are
small γ ≪ Δ; γt ≪ 1. Expanding to first order in the
decoherence parameters

FIG. 1. Example of misuse of the EMPS on the transition
probability for MV

D ¼ −Diagða; a; 0Þ with a ¼ 1 × 10−23 GeV
and with the other parameters fixed according to the values given
at Table I. The vacuum and matter oscillation probability are also
included and were calculated numerically.

REVISITING QUANTUM DECOHERENCE FOR NEUTRINO … PHYS. REV. D 97, 115017 (2018)

115017-5



Pνeνμ ¼ sin22θ̃

�
sin2

Ωt
2
þ
�
γ þ cμν

Ω2

�
t cosΔtþ cμν

ΔΩ2

�

þ 1

2
cos22θ̃

�
γ −

cμν
Ω2

�
t

þ c
2Δ

sin 4θ̃
μ2 − ν2

Ω2
sinΔt; ð34Þ

where μ, ν are defined in (21) and Ω ¼ ðμ2 þ ν2Þ1=2. Note
that the parameters b, β do not contribute to the oscillation
probability at first order. This feature is independent of the
particular form of MV

D. The vacuum limit is recovered by
setting μ → −Δ, ν → 0, Ω → Δ, and θ̃ → θ,

PA¼0
νeνμ ¼ 1

2
γtþ sin22θð1 − γtÞsin2Δt

2

þ c
2Δ

sin 4θ sinΔt: ð35Þ

We appreciate that the off-diagonal parameter c has a
contribution comparable to the diagonal element γ even in
the vacuum. In Fig. 2, we present the probability when
b ¼ β ¼ 0 and γ ¼ 10−23 GeV, which is appropriate for
the DUNE baseline. The values chosen for c are zero and
γ=2, and we display the results after propagation in vacuum
and in matter. In both cases, it is clear that the contribution
from c cannot be neglected. The discrepancy between
c ¼ 0 and c ¼ γ=2 starts from approximately 4.0 GeV and
increases with energy.

C. Conservation of energy

In literature, the possibility of choosing a decoherence
matrix such that energy is conserved has also been sug-
gested. Conservation of energy implies that Trð_ρHÞ¼0

which requires _ρM3 ¼ 0 if we work in the MMB. This
conditions reads

−c̃ρM1 − β̃ρM2 − γ̃ρM3 ¼ 0: ð36Þ

For this to be valid at all t requires c̃ ¼ β̃ ¼ γ̃ ¼ 0. We
also need these three parameters to be E-independent,
meaning that a ¼ b ¼ c ¼ β ¼ γ ¼ 0 and α arbitrary [see
Eq. (25)]. The decoherence matrix must also satisfy the
inequalities 2R ≥ 0 and 2S ≥ 0, given in Eq. (23), which is
achieved only if α ¼ 0 (the remaining inequalities are
automatically satisfied). We therefore conclude that there
is no decoherence phenomenon that allows for energy
conservation in matter at all energies.

IV. THREE GENERATION MIXING

A. Perturbative approach

We now write the decoherence matrix in the VMB as
MV

D ¼ ΓMV
Γ , where Γ ¼ max jðMDÞiij. In order to develop

our perturbative approach we treat ΓL as a small parameter,
with ΓL ∼ 0.1 being the upper limit for the validity of our
probability formula. For a DUNE baseline of 1300 km this
corresponds to Γ ∼ 10−23 GeV. Likewise, the leading term
in MH is of order OðΔ31Þ and, for an energy E ¼ 10 GeV,
Γ=Δ31 ∼ 0.08.
The matrix UT uses the effective oscillation parameters,

which are expanded in power series of α ¼ Δm2
21=Δm2

31

and θ13 [see Eqs. (A1) and (A2)]. The matrix MM
D ¼

PMV
DP

T will admit a similar expansion,

MM
D ¼ PMV

DP
T ¼ ΓMΓ þΓαMΓα þΓθ13MΓθ þ � � � : ð37Þ

The standard oscillation contribution can be solved exactly
in the MMB, so we rewrite Eq. (9) as

_̃ρðtÞ ¼ ðΓM̃Γ þ ΓαM̃Γα þ Γθ13M̃Γθ þ � � �Þρ̃ðtÞ; ð38Þ

where ρ̃ðtÞ ¼ e−MHtρMðtÞ and the matrices M̃ are related to
the previous M via M̃ ¼ e−MHtMeMHt. This equation is
then solved perturbatively by expanding the solution ρ̃ as a
power series,

ρ̃ ¼ ρð0Þ þ αρðαÞ þ θ13ρ
ðθÞ þ ΓρðΓÞ

þ αθ13ρ
ðαθÞ þ θ213ρ

ðθ2Þ þ α2ρðα2Þ

þ Γθ13ρðΓθÞ þ ΓαρðΓαÞ þ Γ2ρðΓ2Þ þ � � � ; ð39Þ

yielding a sequence of first order differential equations by
substituting (39) into (38) and grouping terms of equal
powers. The solutions can be found with software such as
Mathematica and will only be shown for a particular
decoherence matrix in Sec. IV C.
We must note that all Γ-independent terms (ρð0Þ, ρðθÞ,

etc.) in the solution of (39) do not evolve in time and will
contribute to the standard neutrino oscillation probability in
matter. Although we do not write these terms explicitly in
the probability formula, since the standard oscillation

FIG. 2. Oscillation probabilities for the decoherence matrix
given in (32). All the probabilities presented in the plot were
numerically found.
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contribution is calculated numerically, these Γ-independent
terms are still required to calculate terms of higher order
that involve Γ. For example, we need to find ρðαÞ to
calculate ρðΓαÞ.
The initial condition ρ̃ð0Þ ¼ ρð0Þ ¼ ρνβ depends on UM

only and is Γ independent. Any term proportional to Γ
(ρðΓÞ; ρðΓαÞ, etc.) will therefore vanish at t ¼ 0. After
calculating ρ̃, oscillation probabilities are found using

Pνβνβ0 ¼
1

3
þ 1

2
ðρMνβ0 ÞTeMHtρ̃νβðtÞ: ð40Þ

Given our method, the probability is also a power series in
α, θ13, and the elements in the decoherence matrix.

B. Decoherence matrix

Starting from a diagonal matrixMV
D, with all its elements

different, and demandingMV
D ¼ MM

D in Eqs. (B2) and (B4)
given in Appendix B we find that for δ ¼ 0, π,

MV
D ¼ MM

D ¼ −DiagðΓ1;Γ2;Γ1;Γ1;Γ2;Γ1;Γ2;Γ1Þ; ð41Þ

and for δ ¼ π=2, 3π=2,

MV
D ¼ MM

D ¼ −DiagðΓ1;Γ2;Γ1;Γ2;Γ1;Γ2;Γ1;Γ1Þ; ð42Þ

subject to the condition Γ1=3 ≤ Γ2 ≤ 5Γ1=3.
We have verified numerically that the diagonal cases

above are the only ones that remain unchanged after being
rotated into the MMB. Besides these cases we have the
trivial one when MV

D is proportional to the I. As we have
already mentioned in Sec. II C, only for these diagonalMM

D
matrices can we apply the EMPS to obtain the matter þ
decoherence oscillation probabilities.
We notice that the latter procedure has been misleadingly

applied in recent papers. For instance, the MM
D given

in [45],

MM
D ¼ −DiagðΓ1;Γ1; 0;Γ2;Γ2;Γ3;Γ3; 0Þ; ð43Þ

or

MM
D ¼ −Diagð0; 0; 0;Γ;Γ;Γ;Γ; 0Þ ð44Þ

used in [66], do not depend on A or E and must follow the
relationMV

D ¼ MM
D . The matrix changes form when rotated

back to the VMB and the resultingMV
D is A dependent. The

latter does not make sense since decoherence, which is
actually defined in the VMB, is an effect independent of the
matter potential. Therefore the matrices MM

D given in
Eqs. (43) and (44) cannot be derived from a realistic
decoherence scenario. On the other hand, if we consider the
matrices in Eqs. (43) and (44) asMV

D, decoherence matrices
defined in the VMB, they certainly meet all the physical
conditions required to be a decoherence matrix in vacuum.

However, they are not suitable for the application of
the EMPS.
For simplicity, we will assume for our calculations the

decoherence matrix in the VMB as diagonal. We assume
one of the simpler forms

MV
D ¼ −DiagðΓ2;Γ2; 0;Γ4;Γ4;Γ4;Γ4; 0Þ; ð45Þ

which is subject to the condition Γ2 ≤ 4Γ4.

C. Matter+decoherence oscillation probabilities

We set t ¼ L and, in the context of DUNE, L ¼
1300 km is going to be the baseline of the experiment.
As a first scenario, we will assume there is no decoherence
and define Δ ¼ Δ31L=2. Defining Γ̄i ¼ ΓiL, we obtain the
neutrino oscillation probabilities, where the appearance
probability is given by

Pνμνe ¼Pð0Þ
νμνe þ

1

2
Γ̄2cos2θ23sin22θ12

−
1

4
cos2θ23Γ̄2

2

�
sin42θ12þsin24θ12

sin2ðAΔÞ
4A2Δ2

�

þ Γ̄2θ13 sin2θ23 sin4θ12
4ð1−AÞAΔ ½sinðAΔÞcosðδþAΔÞ

−A2 sinΔcosðδþΔÞ�− αΓ̄2

2A2Δ
cos2θ12cos2θ23sin22θ12

×ðsin2AΔ−2AΔÞ ð46Þ

and the survival probability is

Pνμνμ ¼ Pð0Þ
νμνμ −

1

2
sin22θ23

�
Γ̄4 −

1

2
Γ̄2
4

�
cosð2ΔÞ

þ 1

4
cos4θ23Γ̄2

2

�
sin42θ12 þ sin24θ12

sin2ðAΔÞ
4A2Δ2

�

þ Γ̄2α cos 2θ12cos4θ23sin22θ12
2A2Δ

ðsin 2AΔ − 2AΔÞ

−
Γ̄2θ13 sin 2θ23cos2θ23 sin 4θ12 cos δ

4ð1 − AÞΔ
× ðsin 2AΔ − A2 sin 2ΔÞ: ð47Þ

The probabilities Pð0Þ
νμνe and Pð0Þ

νμνe are, respectively, the
appearance and survival probabilities in the absence of
decoherence (Γi ¼ 0). These can be calculated numerically
by any standard neutrino oscillation package. The anti-
neutrino channels are found via the replacement δ → −δ
and A → −A. We have also compared this result to
numerical simulations, with an error lower than 5% in
the energy range 0.3≤E=GeV≤ 10.0when Γ ≤ 10−23 GeV
for all channels, assuming the central values of the standard
oscillation parameters. We therefore use these formulas to
describe new features arising from decoherence.
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In this case, we see that Γ4 does not contribute to the
survival probability at the lowest order. Note that both
the appearance and survival probabilities exhibit A and
E-independent terms proportional to Γ2 or Γ2

2. We will call
these effects a shift. A second term proportional to Γ2

2 is also
present, which depends on sinðAΔÞ, and becomes a matter-
dependent term that vanishes for vacuum oscillations.
One of the more interesting features is CP violation

induced by decoherence. Looking at Eq. (46), the CP
violating terms are proportional to Γ2α and Γ2θ13, in

addition to the standard CP violation arising from Pð0Þ
νμνe .

In the limitA → 0, decoherence inducedCP violating terms
vanish at second order and the effect becomes subdominant.

D. Results

To present our results, we calculate the 3ν neutrino
oscillation probabilities, including decoherence effects,
using the NUSQUIDS package [67]. We compare the case
of no decoherence with the decoherence biparameter model
given in Eq. (45). We set Γ2 ¼ 10−23 GeV and Γ4 to the

following values: 2.5 × 10−24, 10−23, and 10−22 GeV.
These values of Γ4 are chosen in order to satisfy
Γ2 ≤ 4Γ4, where Γ4 ¼ 2.5 × 10−24 GeV is the limit value.
Standard neutrino oscillation parameters are fixed to the
central values in [64] (see Table II) with the exception of δ.
Normal hierarchy (NH) is assumed throughout.
The appearance probabilities with the aforementioned

set of values are shown in Fig. 3, for both neutrinos and
antineutrinos. As we can see, the appearance probability
has no significant change in shape after introducing
decoherence. We do observe that the probabilities are
higher in the presence of decoherence at all energies,
whether it is the neutrino or antineutrino channel. The
term responsible for this shift is the energy independent
term proportional to Γ2 which dominates the decoherence
contribution appearing in our (46). It is important to recall
that this formula is valid up to values Γ ∼ 10−23 GeV. We
also note that for values of Γ4 between 2.5 × 10−24 and
10−23 GeV, this parameter has a negligible influence on the
probabilities. Our analytical formula (46) reflects this since
it has no decoherence contribution involving Γ4. On the
other hand, when Γ4 is raised to 10−22 GeV, past the
validity of our formula, the damping effect due to
decoherence begins to take control in the oscillation
probabilities, diminishing its amplitudes.
Additionally, using our numerical approach, we have

tested the results given in [45]. We do not reproduce the
different peaks exhibited in the plots given in this reference,
and its probabilities do not have the energy independent
shift predicted by our numerical and analytical results (see
Fig. 4 in [45]). Similar to the two generation case, in [45]
the effects of rotating the decoherence matrix in the three
generation framework were not properly treated. The latter
is the root of the appearance of these strange peaks.

TABLE II. Standard neutrino oscillation parameters obtained
from global fits [64] and DUNE baseline parameters.

Parameter Value

θ12 0.5843
θ23 (NH) 0.738
θ13 0.148
Δm2

21 7.5 × 10−5 eV2

Δm2
31 (NH) 2.457 × 10−3 eV2

Matter density ρ 2.97 g cm−3

Baseline L 1300 km

FIG. 3. Effects of decoherence on appearance probabilities assuming DUNE’s baseline, δ ¼ 0°, and normal hierarchy for neutrino
(left) and antineutrino (right) channels.
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After assessing the decoherence effects on the proba-
bilities, we look into its effects on CP violation. For this
study we use the CP asymmetry defined as

A ¼ jPðνμ → νeÞ − Pðν̄μ → ν̄eÞj
Pðνμ → νeÞ þ Pðν̄μ → ν̄eÞ

: ð48Þ

In Fig. 4, we show four contour plots of the CP
asymmetry A, in the plane δ and Γ, corresponding to four
neutrino energies: 0.5, 2.7, 4.0, and 6.0 GeV. The latter
values are representatives of the energy range of DUNE’s
neutrino beam spectrum. We set the decoherence param-
eters as follows: Γ ¼ Γ2 ¼ 4Γ4. In each plot of this figure,
we have highlighted the isocontours A produced by

evaluating all the combinations between δ¼ fπ=2;3π=2g
and Γ ¼ f0; 1; 2g × 10−23 GeV. We do not display the
isocontour that contains (3π=2, 0), given that this is
practically a dot at this pair.
First, we observe a common feature of the asymmetry A

for these energies: as we increase the Γ, the asymmetry
decreases with respect to its values at Γ ¼ 0 (the pure
standard oscillation case), for any δ. For example, looking
at 2.7 GeV, we see that for Γ ¼ 0 and δ ¼ π=2ð3π=2Þ, the
asymmetry has values of 0.11 (0.64). Meanwhile, for
Γ ¼ 2 × 10−23 and δ ¼ π=2ð3π=2Þ, the value of the asym-
metry is 0.08 (0.42), turning out in a decrement of the
asymmetry by 28% (35%). Therefore, the tendency of this
observable to vanish could be a signature of the decoherence

FIG. 4. Effects of decoherence on CP asymmetry, assuming DUNE’s baseline and normal hierarchy for various energies. The blue
(black) lines correspond to δ ¼ 3π=2ðπ=2Þ contours at select values of the decoherence parameter Γ, using solid (dot-dashed) lines for
Γ ¼ 10−23 GeVð2 × 10−23 GeVÞ. The dashed line is the(π=2, 0) contour.

REVISITING QUANTUM DECOHERENCE FOR NEUTRINO … PHYS. REV. D 97, 115017 (2018)

115017-9



phenomena. The degradation of the asymmetry can be
explained by the term proportional to Γ̄2θ13 in our approxi-
mate formula that was verified numerically.
Second, the isocontour curves, which contain points with

the same CP asymmetry A, reveal the existence of a
degeneracy in the values of ðδ;ΓÞ. Taking, for instance, the
2.7 GeV curves, we appreciate that the isocontour produced
by the pair ð3π=2; 2 × 10−23 GeVÞ gives the same value of
A as pairs like (1.12π, 0) and (1.84π, 0), which refer to the
pure standard oscillation case. The values of A at these
pairs are lower than the one at (3π=2, 0). Likewise, for
(π=2, 0) we note that the same value of A is obtained for
(0.6π, 2 × 10−23 GeV) and (0.36π, 2 × 10−23 GeV). For
this last case, the value of A is higher than the one at
(π=2, 2 × 10−23 GeV).
Now we explore the possibility of lifting these degen-

eracies for the following ðδ;ΓÞ pairs: (π=2, 10−23 GeV) and
(3π=2, 10−23 GeV), shown in Fig. 5. In these figures we
displayed various isocontours corresponding to different
energies, 0.5 GeV, 2.7 GeV, 4.0 GeV, and 6 GeV. We
observe that for both ðδ;ΓÞ pairs these four curves intersect
only at the true point, thus solving the degeneracy. The
clarity of the solution to the degeneracy problem in ðδ;ΓÞ
would be affected if we consider a detailed experimental
context. For the latter case we expect allowed regions
around the true point and possibly around others (at some
confidence level), being difficult to predict at what con-
fidence level we may identify the true solution. An
implication of this is the possibility of imposing upper
limits in Γ.
Although it is not shown, we also looked at ΔP¼

Pðνμ→νeÞ−Pðν̄μ→ ν̄eÞ. Here the decrement is 13% (16%)
for values of Γ¼2×10−23GeV and δ¼π=2ð3π=2Þ. In the

asymmetry A these differences are magnified due to the
increment in the denominator when decoherence is present.
In the latest global analysis of neutrino data, using the

standard oscillation hypothesis, a hint for δ ¼ 1.3π has
been found [68]. If decoherence is present as a subleading
effect, the latter result has to be taken with care, due to the
degeneracy introduced by decoherence in the measurement
of δ. In fact, it would be valuable to assess this distortion in
the context of a simulation that convolutes the neutrino
probabilities with the cross section, fluxes, efficiencies,
resolutions, etc., in facilities such as DUNE [69].

V. SUMMARY AND CONCLUSIONS

We have reexamined neutrino oscillation probabilities in
matter in the presence of subleading decoherence effects.
The effect of rotating from the VMB to the MMB was
mentioned, pointing out that such a rotation inevitably
changes the form of the decoherence matrix in the new
basis. The inability of substituting oscillation parameters in
the vacuum oscillation formula with their effective values in
matter for arbitrary decoherence matrices has been heavily
emphasized, providing strict conditions that must be
satisfied for this method to be viable. In the context of
three generation mixing, we have presented a perturbative
approach to the decoherence problem, valid for Γ <
10−23 GeV for the DUNE baseline, which explains the
prominent features of the oscillation probabilities. More
importantly, we show that a term proportional to Γθ13
connects decoherence with CP violation. This term causes
a ðδ;ΓÞ degeneracy associated with a reduction of the CP
asymmetry, when the decoherence parameter increases. We
have shown that it is possible to lift these degeneracies, at
the level of neutrino oscillation probabilities, combining

FIG. 5. Intersection of the isocontours in Fig. 4 for ðδ ¼ ΓÞ ¼ ðπ=2; 10−23 GeVÞ (left panel) and ðδ ¼ ΓÞ ¼ ð3π=2; 10−23 GeVÞ (right
panel) at the selected energies.
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a set of energies from the DUNE neutrino energy beam.
However, to give a more precise answer, a realistic analysis
is needed. Without a doubt, a future measurement of theCP
asymmetry is going to be a useful tool for either bringing to
light the decoherence phenomena or constraining it.
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APPENDIX A: EFFECTIVE MIXING
ANGLES AND MASSES

In Ref. [70], m̃2
ij and θ̃ij were expressed as functions of

the small parameters α ¼ Δm2
21=Δm2

31 and sin θ13. We
follow a similar approach, the difference being that we
rewrite the effective quantities as power series in α, θ13 up
to second order

sin θ̃13 ¼
1

1 − A
θ13 þ αθ13Asin22θ12;

sin θ̃23 ¼ sin θ23 þ αθ13
A cos δ cos θ23 sin 2θ12

2ð1 − AÞ ;

sin θ̃12 ¼ −α
cos θ12 sin θ12

A
− α2

sin 4θ12
4A2

− αθ13
sin 2θ12
2A

;

sin δ̃ ¼ sin δ; ðA1Þ

which facilitates the calculations presented in our method.
Similarly, the effective masses are expanded as follows:

Δ̃21 ¼ Δ31

�
−Aþ α cos 2θ12 þ

Aθ213
1 − A

�
;

Δ̃32 ¼ Δ31

�
1 − αcos2θ12 þ

α2 sin 2θ12
2A

þ Aθ213
2ð1 − AÞ

�
;

Δ̃31 ¼ Δ31

�
1 − A −

αsin2θ12
1 − A

�
: ðA2Þ

APPENDIX B: DECOHERENCE MATRICES
INVARIANT TO MMB ROTATIONS

FOR THREE GENERATIONS

Suppose we wish to find a matrix that remains invariant
after performing rotations of the form (15). As an example,
we choose the matrix MV

D ¼ −DiagðΓ1;Γ2;…;Γ8Þ. We
will work in a power series of α; θ13 as outlined in IV, using
the approximate formulas for the effective angles and
masses. The rotated matrix MM

D is expressed as a power

series as shown in Eq. (37). If we demandMM
D ¼ MV

D, and a
diagonal form for these matrices, it follows that
MΓ;MΓα;MΓθ;… are all diagonal. Starting off with the
leading term, we have

MΓ ¼ −

0
BBBBBBBBBBBBB@

X 0 P1 0 0 0 0 0

0 Γ2 0 0 0 0 0 0

P1 0 X 0 0 0 0 0

0 0 0 X 0 P2 0 0

0 0 0 0 X 0 P3 0

0 0 0 P2 0 X 0 0

0 0 0 0 P3 0 X 0

0 0 0 0 0 0 0 Γ8

1
CCCCCCCCCCCCCA

; ðB1Þ

where

P1 ¼
1

2
sinð4θ12ÞðΓ3 − Γ1Þ;

P2 ¼
1

2
sinð2θ12ÞðΓ6 − Γ4Þ;

P3 ¼
1

2
sinð2θ12ÞðΓ7 − Γ5Þ; ðB2Þ

and X are expressions that we are not currently interested
in, since they belong to the main diagonal. If MΓ is
diagonal, it follows that Γ1 ¼ Γ3, Γ4 ¼ Γ6, and Γ5 ¼ Γ7.
Imposing this condition on MΓθ, we find that

MΓθ ¼
Aθ13
A − 1

0
BBBBBBBBBBBBB@

0 0 0 0 0 Q1 Q2 0

0 0 0 0 0 Q3 Q4 0

0 0 0 Q1 Q2 0 0 0

0 0 Q1 0 0 0 0 Q5

0 0 Q2 0 0 0 0 Q6

Q1 Q3 0 0 0 0 0 0

Q2 Q4 0 0 0 0 0 0

0 0 0 Q5 Q6 0 0 0

1
CCCCCCCCCCCCCA

ðB3Þ

with

Q1 ¼ðΓ1−Γ4Þcosδ; Q2¼ðΓ1−Γ5Þsinδ;
Q3 ¼ðΓ2−Γ4Þsinδ; Q4¼ðΓ5−Γ2Þcosδ;
Q5 ¼

ffiffiffi
3

p
ðΓ8−Γ3Þcosδ; Q5 ¼

ffiffiffi
3

p
ðΓ8−Γ5Þsinδ: ðB4Þ

For this matrix to be diagonal, MΓθ must vanish, and this
turns into three possibilities:
(1) All Γi are equal andMM

D (orMV
D) are proportional to

the identity.
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(2) For the case δ ¼ 0, π, we have Γ1 ¼ Γ4, Γ3 ¼ Γ8,
and Γ2 ¼ Γ5.

(3) For the case δ ¼ π=2, 3π=2, we have Γ1 ¼ Γ5,
Γ2 ¼ Γ4, and Γ5 ¼ Γ8,

plus the extra conditions given for a diagonal MΓ, relevant
for the second and third cases. The explicit expressions for
MM

D (or MV
D) are given in Eqs. (41) and (42) for δ ¼ 0, π

and δ ¼ π=2, 3π=2, respectively.
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