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A cluster expansion model (CEM), representing a relativistic extension of Mayer’s cluster expansion, is
constructed to study baryon number fluctuations in QCD. The temperature dependent first two coefficients,
corresponding to the partial pressures in the baryon number B ¼ 1 and B ¼ 2 sectors, are the only model
input, which we fix by recent lattice data at imaginary baryochemical potential. All other coefficients are
constructed in terms of the first two and required to match the Stefan-Boltzmann limit of noninteracting
quarks and gluons at T → ∞. The CEM allows calculations of the baryon number susceptibilities χBk to
arbitrary order. We obtain excellent agreement with all available lattice data for the baryon number
fluctuation measures χB2 , χ

B
4 , χ

B
6 and predict higher order susceptibilities, that are not yet available from

Lattice QCD. The calculated susceptibilities are then used to extract the radius of convergence of the Taylor
expansion of the pressure. The commonly used ratio test fails due to the nontrivial asymptotic behavior of
the Taylor coefficients. At the same time, a more elaborate estimator provides finite convergence radii at all
considered temperatures and in agreement with the singularities of Padé approximants. The associated
singularities lie in the complex μB=T-plane and appear smoothly connected to the Roberge-Weiss transition
at high temperatures and imaginary chemical potential. No evidence for a phase transition at μB=T ≲ π and
T > 135 MeV is found.
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The grand canonical thermodynamic potential of QCD is
an even function of the real baryon chemical potential μB
because of the CP-symmetry. Taking the quantization of
the baryon charge into account, the QCD pressure has a
fugacity expansion

p=T4 ¼ 1

VT3
lnZ ¼

X∞

k¼0

pkðTÞ cosh
�
kμB
T

�
: ð1Þ

This relation can formally be viewed as a relativistic
extension of Mayer’s cluster expansion in fugacities [1].
A similar formalism is also employed in the canonical
approach [2–5], where the fugacity expansion is applied to
the partition function Z itself (see Refs. [6,7] for recent
developments).

The net baryon density reads

ρB
T3

¼ ∂ðp=T4Þ
∂ðμB=TÞ ¼

X∞

k¼1

bkðTÞ sinh
�
kμB
T

�
; ð2Þ

where bkðTÞ≡ kpkðTÞ. Analytic continuation to an imagi-
nary chemical potential yields a purely imaginary ρB=T3,
with bkðTÞ becoming its Fourier expansion coefficients. The
analytic continuation to/from imaginary μ is one of the
methods used to study QCD at finite net baryon density
[8–16]. The leading four Fourier coefficients bk were studied
in Refs. [17,18] using lattice simulations with physical quark
masses at imaginary μB, aswell as phenomenologicalmodels.
At low temperatures, below the crossover transition, a

behavior similar to an uncorrelated gas of hadrons, i.e.,
jbkðTÞ=b1ðTÞj ≪ 1 for k ≥ 2, is seen in lattice QCD
(LQCD) [17,18]. Lattice simulations at T > 135 MeV yield
negative b2ðTÞ values, which could be interpreted in terms of
repulsive baryonic interactions. The first four LQCD Fourier
coefficients, up to T ≃ 185 MeV, can indeed be described
rather well by a hadron resonance gas (HRG) model with
excluded-volume (EV) interactions between the (anti)
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baryons, with one canonical “eigenvolume” parameter b ≃
1 fm3 for all (anti)baryon species [18].
QCD in the high-temperature limit resembles an ideal

gas of massless quarks and gluons. In this Stefan-
Boltzmann (SB) limit, the quarks carry a fractional baryon
charge of 1=3, and the coefficients bk read [18]

bSBk ¼ ð−1Þkþ1

k
4½3þ 4ðπkÞ2�

27ðπkÞ2 : ð3Þ

The fugacity series (2) is a useful tool because it treats
the noninteracting hadron limit at low temperatures and the
noninteracting quark limit at high temperatures in the same
framework. In this work a model is constructed which
allows to calculate the coefficients bk at all intermediate
temperatures between these two limiting cases. This cluster
expansion model (CEM) is based on the following
assumptions:

(i) The first coefficient b1ðTÞ—the QCD partial pres-
sure in the jBj ¼ 1 sector—is taken as input. It is
interpreted as a temperature dependent density of
“free” excitations with B ¼ �1.

(ii) The second coefficient, b2ðTÞ, is also taken as input.
In the spirit of a cluster expansion it parametrizes the
baryon-baryon interactions. In the HRG-EV model
b2 is rewritten as

b2ðTÞ ¼ −bðTÞT3½b1ðTÞ�2; ð4Þ
where bðTÞ is a temperature dependent “coupling”
parameter.

(iii) Mayer’s cluster expansion assumes two-baryon inter-
actions only, expected to be a good approximation at
sufficiently low density or high temperature, i.e.,
moderate μB=T. The higher-order coefficients bkðTÞ
are then expressed in terms of the first two, motivated
by a HRG-EV-type system with two-particle hard
core interactions [18]:

bkðTÞ ¼ αk½−bðTÞT3�k−1½b1ðTÞ�k

¼ αk
½b2ðTÞ�k−1
½b1ðTÞ�k−2

; ð5Þ

the αk are temperature independent parameters.
(iv) The model is constrained by the SB limit (3) of

massless quarks and gluons at high temperatures,1

i.e., bkðTÞ → bSBk as T → ∞. Assuming b1ðTÞ →
bSB1 and b2ðTÞ → bSB2 , this condition fixes the
coefficients αk:

αk ¼
½bSB1 �k−2
½bSB2 �k−1 b

SB
k : ð6Þ

Equations (3)–(6) define all coefficients bkðTÞ in CEM,
using only b1ðTÞ and b2ðTÞ as input.
In what we term CEM-LQCD, b1ðTÞ and b2ðTÞ are fixed

by recent (2þ 1)-flavor, Nτ ¼ 12 lattice QCD simulations
at imaginary μB of the Wuppertal-Budapest collaboration
[18]. In an alternative CEM-HRG, b1ðTÞ and b2ðTÞ are
taken from the HRG-EV model with a constant bðTÞ ¼
1 fm3 value [18–20].
Note that, for a calculation of the pressure using the

CEM, also the partial pressure p0ðTÞ in the jBj ¼ 0 sector
is required as input. Here we only study baryon number
fluctuations for which this is not needed.
Temperature dependences of the first four coefficients

bkðTÞ, as calculated in lattice QCD simulations [18], the
CEM-LQCD model, and the CEM-HRG model, are
shown in Fig. 1 by the circles, the stars, and the dashed
lines, respectively. The CEM-LQCD parametrization
reproduces the lattice data for b1 and b2 by construction.
However, both b3 and b4 are predicted by the CEM-
LQCD model [Eq. (5)] and they agree quantitatively
with the lattice data for all temperatures 135 ≤ T ≤
230 MeV. The validity of Eq. (5) for higher-order
coefficients can be checked by future lattice simulations
at imaginary μB.
The CEM-HRG model reproduces the same coefficients

up to T ≃ 185–190 MeV, however, it rapidly diverges from
the lattice data at higher temperatures.
The criterion for the convergence of the expansion in

Eq. (2) within CEM is given by the ratio test:

lim
k→∞

����
bkþ1ðTÞ sinh½ðkþ1ÞμB

T �
bkðTÞ sinh½kμBT �

���� ¼
����
b2ðTÞbSB1
b1ðTÞbSB2

����e
jμB j
T < 1: ð7Þ

FIG. 1. The temperature dependence of the first four Fourier
coefficients bk (2). Lattice QCD results from imaginary μB
simulations [18] are depicted by the circles, the calculations of
b3 and b4 within the CEM-LQCD are depicted by the stars.
Predictions of the CEM-HRG model with bðTÞ ¼ 1 fm3 are
depicted by the dashed lines. The arrows correspond to the
Stefan-Boltzmann limit (3).

1This SB limit constraint is an important new element
compared to an earlier study in Ref. [18].
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This condition is violated at sufficiently highμB=T values.At
μB ¼ 0, the condition is satisfied at all temperatures consid-
ered for the CEM-LQCD. In the CEM-HRG at μB ¼ 0, it is
satisfied only up to T ≃ 195 MeV, which correlates with the
breakdown of CEM-HRG shown in Fig. 1.
In the following, the net baryon number susceptibilities

χB2nðTÞ are calculated at zero baryochemical potential. They
are defined as follows:

χB2nðTÞ≡ ∂2nðp=T4Þ
∂ðμB=TÞ2n

����
μB¼0

¼
X∞

k¼1

k2n−1bkðTÞ: ð8Þ

The χB2n are proportional to the coefficients of the Taylor
expansion of the QCD pressure with respect to μB=T. The
odd-order susceptibilities, χB2n−1ðTÞ, all vanish at μB ¼ 0.
The temperature dependence of the net baryon number

susceptibilities, up to χB12, is shown in Fig. 2 by red stars
(CEM-LQCD) and dashed black lines (CEM-HRG),
respectively. The error bars shown for the CEM-LQCD
calculations were obtained by standard statistical propaga-
tion of the uncertainties in the input data, i.e., by calculating
the derivatives of the observables with respect to b1ðTÞ and
b2ðTÞ. We cross checked the validity by varying b1ðTÞ and
b2ðTÞ within their uncertainties and observing consistent
variations in the observables.
In our calculations, the sum (8) is truncated at a suffi-

ciently high value k ¼ kmax, such that the terms with k >
kmax have negligible contributions to χB2n at a given temper-
ature T. Fig. 2(a) shows that the first two terms (kmax ¼ 2,
i.e., the lattice input), reproduce the full result for χB2 only at
moderate temperatures, T ≲ 160 MeV. Hence, a higher

number of terms is required to correctly calculate the
susceptibilities at higher temperatures: For kmax ¼ 20, the
full result for χB2 is reproduced up to T ≃ 200 MeV, while
kmax ≃ 80 is required to calculate χB2 at T ¼ 230 MeV. In
order to cope with the large round-off errors, which arise in
the numerical calculations, the arbitrary precision arithmetic
provided by the Mathematica package is employed.
Lattice QCD results for χB2 , χ

B
4 =χ

B
2 , and χB6 =χ

B
2 of the

Wuppertal-Budapest [21,22] and HotQCD [23,24] collab-
orations are also shown in Fig. 2, where available.
Comparing the CEM results with the lattice data elucidates
the excellent predictive power of the present CEM-LQCD
approach. A precise calculation of the χB2n values requires
summation over tens and, in some cases, hundreds of bkðTÞ
coefficients. All of them, except the first two, are predicted
by CEM. The CEM-LQCD predictions for χB8 , χ

B
10, and χ

B
12

are shown in Fig. 2(d)–2(f). The comparison with future
lattice data will be able to confirm (or refute) the validity of
the CEM approach presented here.
The CEM-HRG model results, as shown by the

dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ≃ 180 MeV, for all considered
observables. Hence, the drastic temperature dependence of
the baryon number fluctuations in this temperature range,
as well as the particularly strong deviations from the ideal
HRG baseline—the Skellam distribution—are convinc-
ingly interpreted in terms of repulsive baryonic interactions
(see also [18,19,25]).
The ability of the CEM-formalism to calculate baryon

number susceptibilities to very high order provides a unique
opportunity to analyze the radius of convergence of the
Taylor expansion of the QCD pressure,

(a)

(d) (e) (f)

(b) (c)

FIG. 2. The temperature dependences of the net baryon number susceptibilities at μB ¼ 0. These include (a) χB2 , (b) χ
B
4 =χ

B
2 , (c) χ

B
6 =χ

B
2 ,

(d) χB8 , (e) χ
B
10, and (f) χB12. Calculations within CEM-LQCD and CEM-HRG (b ¼ 1 fm3) models are depicted by the red stars and

dashed black lines, respectively. Lattice QCD results of the Wuppertal-Budapest [21,22] and HotQCD [23,24] collaborations are shown,
respectively, by the blue and green bands where available.
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pðT; μBÞ − pðT; 0Þ
T4

¼
X∞

n¼1

χ2nðTÞ
ð2nÞ!

�
μB
T

�
2n
: ð9Þ

The radius of convergence, rμ=T , of this series at a given
temperature corresponds to the distance to the nearest
singularity in the complex μB=T plane and this has been
used in various attempts to constrain the location of the
critical point of QCD by numerical evaluation of a few
leading coefficients in lattice QCD [26–28] or in effective
models [29–31].Derivatives of the pressure series expansion
may be used equally well. In the present work, estimates
based on the Taylor series of p=T4, χB2 , and χ

B
4 are analyzed.

First the ratio estimator, rn ¼ jcn=cnþ1j1=2, is used. The
square root in this estimator [as well as the extra square root
in Eq. (10)] appears due to the fact that the Taylor expansion
(9) is actually in ðμB=TÞ2 rather than just in μB=T. Here
cn ¼ χ2n=ð2nÞ! for thep=T4 expansion, cn ¼ χ2n=ð2n − 2Þ!
for the χB2 expansion, and cn ¼ χ2n=ð2n − 4Þ! for the χB4
expansion. The n → ∞ limit of rn, if it exists, is the same for
all three expansions and corresponds to the true radius of
convergence. This limit can be determined with the Domb-
Sykes presentation [32], by plotting 1=r2n−1 versus 1=n for a
finite number of terms, and then extrapolating the result
linearly to 1=n ¼ 0. To illustrate the behavior of the rμ=T
estimators we show T ¼ 160 MeV as an example, the
behavior at all other temperatures investigated is similar.
The Domb-Sykes plot for the Taylor series of p=T4, as
obtained within the CEM-LQCD model at T ¼ 160 MeV
by using the first 200 terms of the Taylor expansion, is
depicted in Fig. 3(a) by the open symbols. (The plots for χB2
and χB4 are similar and not shown). Note how the different
orders jump between several branches of 1=r2n−1 as 1=n
approaches zero, with no unique limiting value in sight. This
behavior is caused by the irregular asymptotic structure of
the Taylor coefficients. Convergence of a Domb-Sykes plot
for the ratio test requires the coefficients to asymptotically be
of the same sign or to alternate in sign. Neither of the two
scenarios is realized in the CEM-LQCD: even at very high
order, at least two positive- and at least two negative
coefficients appear regularly in a row. Therefore, the ratio
estimator does not give a correct estimate of rμ=T since the
limit limn→∞rn simply does not exist. (Note that the ratio
estimator is commonly used in the lattice QCD studies of the
Taylor expansion [23,33,34]).
More elaborate estimators do exist which deal with the

irregular asymptotic structure of the Taylor coefficients.
Consider the Mercer-Roberts estimator [35],

rn ¼
����
cnþ1cn−1 − c2n
cnþ2cn − c2nþ1

����
1=4

: ð10Þ

The corresponding 1=r2n−1 vs 1=n plot is shown by the full
symbols in Fig. 3(b). For all three Taylor expansions, the
Mercer-Roberts estimators appear to converge to the same

point as 1=n → 0. Linear extrapolations to 1=n → 0 give a
value for the radius of convergence rμ=T . The behavior of
both estimators shown in Fig. 3 is similar at all considered
temperatures.
The temperature dependence of the radius of conver-

gence, rμ=T , as calculated within the CEM-LQCD (red
stars) and the CEM-HRGmodel (dashed line) models using
the Mercer-Roberts procedure, is presented in Fig. 4. rμ=T is
a smooth function of T and it is finite, at all temperatures
considered. The corresponding limiting singularities lie at
complex μB=T values, as follows from the absence of a
regular asymptotic behavior of the Taylor expansion coef-
ficients. rμ=T decreases with temperature and it approaches
the asymptotic value of rμ=T ¼ π at higher temperatures,

(a)

(b)

FIG. 3. The Domb-Sykes 1=r2n−1 vs 1=n plots, calculated within
the CEM-LQCD model at T ¼ 160 MeV using (a) ratio (open
symbols) and (b) Mercer-Roberts (full symbols) estimators for
radius of convergence of the Taylor expansion of p=T4 (circles),
χB2 (squares), and χB4 (diamonds). The linear extrapolations of the
Mercer-Roberts estimators to 1=n ¼ 0 are depicted by the dashed
lines ending at a circle.

FIG. 4. The temperature dependence of the radius of conver-
gence rμ=T of the Taylor expansion in μB=T of the pressure,
calculated within the CEM-LQCD and CEM-HRG (b ¼ 1 fm3)
models. The dash-dotted blue line depicts the μB=T ¼ π value,
which corresponds to the Roberge-Weiss transition at imaginary
chemical potential. Various QCD critical point estimates [44–48]
are shown by the black symbols.
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T > 190 MeV. This value can be identified with the
Roberge-Weiss (R-W) transition [36], which was predicted
to appear at sufficiently high temperatures at imaginary
chemical potential values of Im½μB=T�c ¼ πð2kþ 1Þ, and
studied quite extensively in LQCD simulations [37–43].
This transition is a consequence of the R-W periodicity
of the QCD partition function, ZðμBÞ ¼ ZðμB þ i2πTÞ, due
to the center symmetry [36], which is fully respected by
the CEM.
We have cross-checked our results for rμ=T by construct-

ing Padé approximants [49,50] for the Taylor expansion
of χB2 in μB=T within the CEM-LQCD model, and in all
cases observe poles corresponding to the limiting singu-
larity of the Taylor expansion. These poles are located at
Im½μB=T�c ¼ π, at all temperatures, while Re½μB=T�c val-
ues decrease towards zero at high temperatures. The
absolute values, j½μB=T�cj, agree perfectly with the rμ=T
values in Fig. 4.
It is interesting that numerical lattice studies at purely

imaginary μ indicate TRW ¼ 208� 5 MeV for the endpoint
temperature of the R-W transition [43], a temperature value
where rμ=T is already almost indistinguishable from π in
CEM-LQCD.We conclude that the radius of convergence of
the Taylor series at T > 135 MeV is only determined by the
singularities in the complex plane which appear to be
smoothly connected to the R-W transition at high temper-
atures, a scenario suggested in Refs. [8,10]. The CEM-
LQCD “knows” about the spontaneous breaking of the
center symmetry at the high temperature R-W transition
indirectly, being matched to baryonic excitations at low
temperatures and to quark degrees of freedom at high
temperatures. The exact nature and relation to the R-W
transition of the singularities at intermediate temperatures
still need to be clarified. We note that CEM also inherits
aspects of the chiral symmetry restoration, in the form of the
input coefficients b1ðTÞ and b2ðTÞ taken from the lattice.
In any case, our analysis within CEM-LQCD and CEM-

HRG shows no evidence for the existence of a phase
transition or a critical point at real μB=T < rμ=T , with
rμ=T ≥ π at all temperatures considered. This is consistent
with all available lattice results at zero and imaginary
chemical potential, but in contrast to various other QCD
critical point estimates available in the literature: these are
based on lattice reweighting techniques [44], experimental
finite-size scaling analyses [45], the Dyson-Schwinger [46]
or holographic [47,48] approaches, which are also shown in
Fig. 4. We note that CEM is not full QCD, therefore we do
not rule out conclusively these other estimates. Note also
that our results at T < 135 MeV are based on the HRG
extrapolation of the lattice data, and therefore should be
treated with care.
The particular CEM formulation presented here is simple

and powerful, but it has limitations. The relation (5)
expressing the higher-order Fourier coefficients through
the first two is likely to get modified whenever effects of

genuine many-body interactions become important. We
therefore expect the model to break down at large μB=T
values, e.g., in the dense nuclear matter region. Note that
the formalism itself can accommodate any pressure func-
tion periodic under the μB → μB þ i2πT transformation, as
required by the Zð3Þ symmetry of QCD. The CEM model
can thus be extended once new and possibly contradicting
lattice data become available. However, given that CEM is
consistent with all presently available lattice data we
conclude that its range of applicability is at least as large
as that of current lattice methods.
To summarize, a novel cluster expansion model for the

QCD equation of state has been developed and applied to
calculate the baryon number susceptibilities at μ ¼ 0, to
very high order. The only model inputs are the partial
pressures in the jBj ¼ 1 and jBj ¼ 2 sectors, taken from the
lattice simulations at imaginary μB. The model yields
excellent agreement with the available lattice data for χB2 ,
χB4 =χ

B
2 , and χB6 =χ

B
2 . The extended model predictions for χB8 ,

χB10, and χB12 shall be verified by future lattice data. The
commonly used ratio estimator is unable to determine the
radius of convergence of the Taylor series of the pressure in
μB=T, due to a nontrivial asymptotic behavior of the Taylor
coefficients. The radius of convergence is instead deter-
mined with the more elaborate Mercer-Roberts estimator,
which provides finite values of the convergence radii at all
temperature values considered, 135 < T < 230 MeV, in
full agreement with the singularities of Padé approximants.
These singularities lie in the complex plane and appear to be
smoothly connected to the Roberge-Weiss transition at high
temperatures and imaginary (baryo)chemical potential. The
analysis within CEM shows no evidence for the existence of
a phase transition or a critical point at real values of the
baryochemical potential at μB=T ≲ π for temperatures
above 135 MeV.
The CEM model can be straightforwardly extended to

calculate the equation of state of QCD at finite μB=T, by
supplying the B ¼ 0 partial pressure p0ðTÞ as additional
model input. Furthermore, the CEM formalism is rather
flexible, and the model assumptions and input can be
modified if new and contradicting lattice data becomes
available.2
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