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In this work, we consider expressions for the masses and decay constants of the pseudoscalar mesons in
SU(3) chiral perturbation theory. These involve sunset diagrams and their derivatives evaluated at p> = m?3
(P = x, K, n). Recalling that there are three mass scales in this theory, m,, mg and my, there are instances
when the finite part of the sunset diagrams do not admit an expression in terms of elementary functions, and
have therefore been evaluated numerically in the past. In a recent publication, an expansion in the external
momentum was performed to obtain approximate analytic expressions for m, and F, the pion mass and
decay constant. We provide fully analytic exact expressions for mg and m,, the kaon and eta masses, and
Fyand F, P the kaon and eta decay constants. These expressions, calculated using Mellin-Barnes methods,
are in the form of double series in terms of two mass ratios. A numerical analysis of the results to evaluate
the relative size of contributions coming from loops, chiral logarithms as well as phenomenological low-
energy constants is presented. We also present a set of approximate analytic expressions for my, Fg, m,
and F, that facilitate comparisons with lattice results. Finally, we show how exact analytic expressions for
m, and F; may be obtained, the latter having been used in conjunction with the results for Fx to produce a

recently published analytic representation of Fg/F,,.

DOI: 10.1103/PhysRevD.97.114004

I. INTRODUCTION

In a recent publication, the important ratio Fg/F, was
evaluated in a scheme that allows for the derivation of
compact analytic approximations in two loop chiral per-
turbation theory (ChPT) [1], based on the Mellin-Barnes
(MB) approach detailed in [2]. In a prior work, a different
scheme was employed to obtain analytic approximations of
m, and F, in SU(3) ChPT at two loops [3]. Recall that
ChPT is an effective field theory for the pseudoscalar octet
degrees of freedom, namely the pions, kaons and eta. At
one-loop order, this theory was elucidated in [4,5]. At two-
loop order, the SU(2) theory with just the pion degrees of
freedom was worked out in [6], while the significantly
more complicated SU(3) theory has been described in [7].
For many observables and processes of interest in the
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SU(2) theory, there is a single mass scale in the problem
when isospin violation and electromagnetic corrections are
neglected, namely the pion mass. At the two-loop order,
integrals that arise in this context have been discussed in
[8]. In the SU(3) theory, all three masses of the pseudo-
scalar mesons may appear in quantities of interest. Of the
relevant integrals in the latter case, the self-energy diagram,
which is known as the sunset, and which is shown in Fig. 1,
may be represented as

Ht{ia.ﬂ.y}{ml7m27m3;p2}
_l/ dlq dr
2 ) 2n)(2n)?
1

R R G U T e

In our conventions for dimensional
d=4-2e.

Tarasov established that integration by parts allows one
to express all sunset integrals using a minimal set of four

master integrals (MI) [9]. For some configurations, such as

regularization,
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FIG. 1. Sunset diagram.

the one mass scale case, the representation of the sunset in
terms of MI may require fewer than the full set of four.
For quantities of interest in SU(3) ChPT, such as the
masses and decay constants of the pion, kaon and eta
(denoted by m,, F,, mg, Fg, m, and F,, respectively),
several variations of the basic sunset diagram of Eq. (1)
appear in their expressions. These include H, H,, and
H,,, which are the scalar integrals appearing from the
Passarino-Veltman decomposition of the tensor sunset
integrals:

Hﬁ = puHy,
Hﬁy = pﬂvaZI + g/wH227 (2)
where

H,‘f{ml,mz,m3;p2}

_l/ dlq dr qu
i*J (2n)! (2n)![q* = mi][r* =m3][(q + r— p)* —m3]

Hﬁu{ml»m2»m3§P2}

1 / dlqg dir 04,
2 ay i —mi —mil[(g + r—pP -]

(3)

These may be expressed in terms of the MI. Similarly,
while the meson masses require the evaluation of only basic
sunset integrals, the decay constants also need calculation
of the derivatives of the sunsets with respect to the square of
the external momentum. However, it is possible to discuss
both the mass and decay constant on an equal footing by
reducing the task to evaluating just the MI.

It is of interest to obtain representations of the mp and Fp
that do not require numerical evaluation of the higher order
loop integrals. Such analytic approaches allow for more
widespread use of these expressions, and facilitate cross-
disciplinary studies. An example of the latter would be
comparisons with lattice simulations as the quark masses
are varied in order to obtain insights into the behavior of
these quantities. In [10,11], for example, an approximation
for Fg/F, was obtained by means of a large-N approach at
the Lagrangian level, and the resulting expression was used
to fit lattice data to extract values of several ChPT
parameters. In [12], m, was treated by taking an

approximation at the level of the loop integral [12]. In
[3], some of the present authors extended the former work
to the case of F,, and were able to integrate out the s-quark
from the expressions of the pion mass and decay constant,
in the same way as the SU(3) ChPT reduces to the SU(2)
version, reproducing known results in the chiral limit, as
well as evaluating the departure from the chiral limit to
leading order in the light quark mass.

The goal of this paper is in the same spirit of furthering
studies in the area of analytic approaches to observables
and other quantities of interest. In particular, the aims of the
current work are the following:

(i) To extend the work of [3,12] to the case of the kaon
and eta, and provide approximate analytic expres-
sions for mg, m,, Fg and F, that are easily amenable
to fitting with lattice data.

(i) To provide exact (nonapproximate) two loop ana-
Iytic expressions for all the pseusoscalar meson
masses and decay constants.

(iii) To perform a first order study of the numerics of m,
m,, Fy and Fn to determine the relative contribu-
tions to them of their different components, as well
as their dependence on the values of parameters such
as the low energy constants of ChPT.

Although this work is a sequel to [3], the approach taken
here is completely different and novel. In the aforemen-
tioned work, as well as in [12], the three mass scale sunset
integrals were approximated by taking an expansion in the
external momentum p?> = m2 around zero. In the case of
the kaon and eta, however, such an expansion around P> =
m or p* = m; results in a poorly converging series due to
the presence of the much smaller m2 in the propagator. An
expansion about the propagator mass m2 = 0 is also not
feasible as this gives rise to an infrared divergence. In this
work, therefore, we turn to the MB approach to evaluate the
three-mass scale sunset integrals.

The analytic evaluation of a sunset integral depends on its
mass configuration. For special cases, with up to two distinct
mass scales, closed form results are available [13—15].1 With
two mass scales not falling into the threshold or pseudo-
threshold configurations [2], or with three distinct mass
scales, the sunsets cannot be written in terms of elementary
functions. In fact, the sunset diagram with three different
masses and arbitrary p> cannot even be expressed entirely in
terms of multiple polylogarithms. In [16], for nonzero e,
expressions in terms of Lauricella functions are given but, as
emphasized in [17], none of the present methods allows for
an expansion of the Lauricella functions in terms of multiple
polylogarithms. Indeed, it seems that, as shown in [18], the
sunset diagram requires the introduction of yet another
generalization of the polylogarithms, the so-called elliptic

1By complete results, we refer only to the finite O(e®) term
obtained using dimensional regularization. The O(e~!) and
O(e7?) terms are known exactly for all mass configurations [15].
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polylogarithms (see also [19] for more details on elliptic
integrals in the context of sunset integrals). In this work, we
adopt a more utilitarian approach to get the analytical
expressions needed for our analysis. We keep to the spirit
of [16] where, once the ¢ — 0 limit of the Lauricella
functions is taken, one stays with triple series in powers
and logarithms of the mass ratios that one may truncate to
achieve a desired level of accuracy. Note, however, that the
expressions given in [ 16] cannot be used to obtain an analytic
expression of the sunset valid in the context of ChPT, since
the triple series given there do not converge for the physical
values of the pseudoscalar meson masses. In this work, we
therefore present the full analytic expressions valid for the
kaon and eta masses and decay constants in terms of double
infinite series involving two mass ratios, thus completing the
program first initiated in [20] of evaluating the three mass
scale sunset diagrams in SU(3) ChPT.* Here, we present only
the results, and the complete derivation will be given in an
upcoming paper [23]. An overview of the method used is
given in [2], and detailed descriptions can be found
in [24,25].

One of the possible applications of fully analytic
representations of the quantities considered here is their
use to obtain different analytic approximations that may
easily be fitted with data coming from various lattice
simulations in conjunction with various lattice data. In
addition to the full results, we therefore also present a set of
analytic approximations that may easily be fitted with data
from lattice simulations. These approximations are
obtained by suitably truncating the infinite series so that
their omitted tails are numerically smaller than a chosen
percentage of the central value obtained from the exact
expression” for the inputs being considered. And as these
inputs will depend on the precise lattice set being used, the
approximations will need to be changed accordingly.
Therefore, we present along with this paper
Supplemental Material that contains Mathematica files
[26] and that automates the task of finding a suitable
truncation for the sunsets, given a set of (lattice) input
masses and a permissible error threshold value. The lattice
expressions given in Sec. VI are suitable for fits with the
data given in [27], and an illustrative fit with these
expressions is presented in [1].

The structure of this paper is as follows. In Sec. II, we
present our notation and a short discussion on convergence
properties of our series representations of the sunset
integrals. In Sec. III A, the expression for the kaon mass
is given, in Sec. III B the same is given for the kaon decay

“Some years ago, there had been an attempt to pursue such a
program [21]. However, the investigations were not completed
and publications did not result [22].

By exact expression we mean the partial sum where a big
number of terms is retained such that it is assured that by adding
more terms the corresponding numerical result stays stable within
the standard numerical precision of Mathematica.

constant, in Sec. Il C we give the expression for the eta
mass, and in Sec. [II D we give the expression for the eta
decay constant. In these sections, the expressions presented
are simplified using the Gell-Mann-Okubo (GMO) for-
mula. The same expressions, in which the eta mass has
been retained, are presented in Appendix A. Simplified
analytic results for each of the two sets of four master
integrals appearing in the expressions for the kaon and eta
masses and decay constants, obtained from the ancillary
Mathematica code [26], are discussed in Sec. V, while full
results for these master integrals are given in Appendix B.
Numerical implications of the expressions presented in the
paper are also shown in Sec. V. This work closes by
presenting a set of compact expressions for each of m%, m%,
Fg and F,, which may be used for easy fitting with lattice
data, in Sec. VI, which is followed by a detailed summary
and conclusion section. In Appendix C, we explain how
exact expressions may be obtained for m, and F,, and also
provide a set of truncated three mass scale sunset results
that may be used to produce approximate analytic expres-
sions for m,, F, and Fg/F,.

II. SUNSET MASTER INTEGRALS: NOTATION
AND CONVERGENCE PROPERTIES OF THE
SERIES REPRESENTATIONS

The four three-mass-scale sunset master integrals that
arise in the kaon mass and decay constant expressions are
d C 2 2
H{l,l,l}{mK7mn"mn’p - mK}’
d C 2 2
H{z,],l}{vammmn’p - mK}’
d S )
H{]_z,l}{ml(vmn’mn’p = my},

= mi} (4)

H?l,l,z}{va my, m”l; P

and the three independent three-mass-scale sunset master
integrals that arise in the eta mass and decay constant
expressions are
d c2 2
H{1,1,1}{mm Mg, Mg, P~ = mn}v
H?zvl,l}{m,,, my, m; p* = m2},
d C2 2
H{l,z,l}{mmmk’mk,P =my}. (5)
In ChPT, the renormalization is normally done using a

modified form of the MS scheme, and involves multiplying
the sunset integral with the factor (u2)*, where

eyl:'_l
dr

= p

(6)

We therefore define

HE = () H’ 9
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FIG. 2. Region of convergence for results presented in Appendix B (blue area).

which is the sunset integral suitably renormalized. In this
paper, we denote the sunset integrals normalized using the
MiS)( scheme by HZ, to differentiate it from the unrenor-
malized sunset integral H¢ defined in Eq. (1). This
renormalization introduces in each of these integrals terms
containing chiral logarithms:

1 2
I = log ['Z;’] P=nKn (8

2(4r)?

We denote the chiral log terms of a sunset integral using a
log superscript, i.e. H'°2, and the rest of the integral by a
bar, i.e. H. Therefore we have, for instance,

HY = A% + Hros, 9)

We also adopt the notation of [12] and denote the sunset
integrals in this paper by means of the abbreviation

Hppocr = H{a,b.c}{mP, mo, mp; p* = mg}  (10)

where we normally omit the numerical index a, b, ¢ on the
left-hand side of the above when their values are unity, and
with either the log superscript or bar over the H, as well as
either a y or a d superscript on it, as appropriate.

The H*'°¢ for the master integrals considered in this
paper are given by

H 5% = Am3 (1) + dm?) (15)? + 4m (1)

2 2 2
—%1;, -550 —é%zg +%ﬂzl§,
HEfn = 403 + ¢ 5l
Hiyle = 4(15)% + él’Q,
H 55 = 4(15)% + ézg, (11)

where s = p?, and I} = [} or [y as the case may be.

The full expressions for these master integrals are given
in Appendix B in the form of linear combinations of
independent terms, single infinite series, and double infinite
series. These series do not converge for all values of the
masses. Rather, they converge for values of the masses that
satisfy the following set of inequalities: (m, < m,)/\
(mg 4+ m, < 2mg), which is graphically described by the
blue areas in Fig. 2, plotted with two different sets of mass
ratio axes. The black line in the left panel denotes mass
values that obey the GMO formula, while the red dot in
both panels marks the physical values of the meson masses.

III. THE PSEUDOSCALAR MESON MASSES
AND DECAY CONSTANTS

The expression for the pseudoscalar meson masses is
given up to two loops in [28] as

6
m = m+ (m3) @)+ (m3) &+ (m3) o0, + O(%) - (12)

where P is the particle in question. The model independent
O(p®) contribution can be subdivided as

114004-4



ANALYTIC REPRESENTATIONS OF my, Fg, m

PHYS. REV. D 97, 114004 (2018)

4(,.21(6) P P P P
F ( )loop Csunset T Clogxlog + Clog + Clog xL;
P P
e, T L, (13)

P

where the ¢},

represents the terms containing the chiral
logarithms, cf,, ., are the bilinear chiral log terms, ¢ are
those terms proportional to the low energy constants L;,
c’L’[X L, are terms bilinear in the low energy constants
(LECs), and cf;g «1, Are those terms that contain a product

of the low energy constants and a chiral logarithm.
The expressions and breakup for their decay constants is
similar:

L= 14 FY + (Fo)& + (Fp)ioy + O(%)  (14)

constant. The expressions have been simplified by the use
of the GMO relation to rewrite the eta mass in terms of the
pion and kaon masses, except in the chiral logarithms,
in which the eta mass is understood to mean m%o =
(4m%, — m%,)/3. The full expressions, not simplified by

use of the GMO relation, are given in Appendix A.

A. The kaon mass

In this section, we use the expression for the kaon mass
to two loops given in Eqs. (A.5)—(A.7) of [28], and rewrite
the linear log terms, the bilinear log terms, and the terms
involving the sunset integrals (e.g. H, HY) in Eq. (A.7) of
[28] by applying Tarasov’s relations [9].

The kaon mass is given in [28] as

0
6 6
where mi = mio+ () + (M) &+ ()i + O(PY). (16)
Fa(F P)1<0()1p = dfinser + dlogxlog df;g + d]og xL; The expressions given here have been simplified using
L dP 4 ab (15) the GMO relation. See Appendix A for the full results. The
Li LixLj: full form of the components above are given by
In the following sections, we give explicit expressions 5 R
for each of the terms above for the kaon mass and decay m = Bo(m + /i), (17)
|
Fizf 2\(4) 2 2 r r 2 r r 2 r
2 (mi )Y = 8(mz 4 2my ) (2Lg — L) + 8my (2Lg — L) + 9 (4my — m3)1;, (18)
K
Fz (2@
m—;” (mg)er = =32my Cry = 32mg (2my + mz)Chy = 16(2my — 2mimy + m3)Cry — 16my (2my + mz)Cls
K
—16(4m% — dmzxm?2 + 3my)Ch o 4+ 16m2(m2 — 2m% ) Cr; + 48(2my, — 2mykm3 + my)Cl,
+ 16(8m% — 2mixm2 + 3m})Chy + 48(2m% + m2)>Ch, + 32my C5, + 32m% (2m% + m2)C5,, (19)
and
6
Féﬂ‘(m%()l(m))p = Cﬁ + cf,»ij + Cllf)g xL; + cllgg + CII(()gxlog + cgmset (20)
where
27(16a%)cf = 108m§ LY + 6mg (61my — 8mgmy + 28m3) L5 + my (89my — 4mgmz + 41my )L}
—32m%(my —m2)*(LL — 12L% — 6L}), (21)
cf_xL,_ = —128(4m% +dmym2 + mimy)(L;)? — 128(3m$ + 2m4m2 + mimy)LLLE +512(4m$ +4m§m2 + mikmy)LLLE

+128(8m$ +3mym2 + mimE)LiLE — 64(m$ +mim?2) (L
+128(3m% + mkm2)LELL — 512(4mS + d4mym? +mim?) (L )?

—512m$(L5)?,

K
clog XL;

= 2mym2{=3m2(16L} + 4L} + 5L%) + 4(8m% + 17Tm2)L}; + 4(4m% + 3m2) (L

£)2+256(3m$ +2mym2 + mympy)LELE
—256(8m$ + 3mim2 +mimy)LL L,
(22)

—2L%) — 8(8m% + 11m2) L},

— 4my{m%(36L} + 18L5 + 15L% — 16L% + 32L%) — 4(10m% + m2 )L}, + 8(8my + m2)L }HY

2
- §m%({(4m%( —m2)2(16L} + 4L5 + 7L%) — 12L5(32m}y, — 12mikm?2 + m3) — 4(32m% — 2mikm2 — 3m} )L

+ 8(64my — 20mEmi + my)LL + 96m2(myx — m2)Ly + 8(32my — 6mima — 5Smy)LE}H, (23)
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11 455 148 5 13 41 487
16 4 2 - 2 i I S’ ) I+ 2 .6 lr’ 24
(=167, = <4 " > n (27 M = MM = 3y Mk ”) (18 T K) ke (24)
11 47 1279 5 14 19 1
Cllggxlog - <_ﬁm?< —ﬁmﬁmﬁ +ﬁm%<mi g ><lr) (jm% + 18’"?‘(’”2 —Zme >lrlr
4 43 3 1 1 169 5
+ <§m‘}<m%+gm?()(l;()2— <2m‘}(m2—zm,(m )l’l’ <2 mymz +—— 13 me,—ﬁmé‘>(l’)2

55 97 5
<8 mhm?2 += §m4—]2 )mr (25)

The expressions of Egs. (24) and (25) above are a combination of the linear and bilinear chiral logarithms arising from the
evaluation of the sunset integrals, those stemming directly from the O(p®) kaon mass expression, as well as contributions
arising from the O(p*) term due to application of the GMO relation. Similarly, the cfi and c,’f)gx 1, components are also
made up of terms taken directly from the O(p®) kaon mass expression, and contributions arising from the O(p*) term due
to application of the GMO relation.

The ¢k . term itself has the following contributions to it, where the terms of the first line are a combination of terms
from the kaon mass expression as well as from the single mass sunset integrals:

p 1 767+4277z2 . 12307+275ﬂ2 o (571 +59n2 - 49+n2 .
=5 — memy; — | ——— Mg —\zcoct+—=— |mym; — | =+-——-|m
Sunset = 16,22 1 \108 " 1296 )K" T \ 3456 eas )"k T \288 " 216 )K" T \ 72 T 48 )"

+ CRar  Ckay T Ky (26)
where
3 9 9 _ 3 3
e = (=5t + gkt + gyt ) Bie + (g = gkt ) B @)
289 41 5 _ 73 11 5
Clom = <ﬁ M = 7g MM+ ﬁ"ﬁ) Higyy + ( 72"k g Mk = o M >H5K””’ 2%)
17 17 7 _ 5 1
cﬁm = <B my — ﬁm%(m,z, + 4—8mf,> Hipy = (m‘}(m2 _ Zme +- i )H)I{Qm7
1 7 7 1 _
6 4 2 24 6\ ir
- (im,(—%mkm,,—%m,(mﬂ—l—ﬁm”)HKﬂzﬂ. (29)

The terms cX ., c,’7f7 K> cﬁm are the result of applying Tarasov’s relations to the variety of sunset integrals appearing in
Eq. (A.7) of [28] and rewriting them in terms of the master integrals given in Appendix B.

B. The kaon decay constant

The treatment of the kaon decay constant is similar to that of the kaon mass in the previous section, except that the
expression for the kaon decay constant also involves derivatives of the sunsets with respect to the external momentum. The
kaon decay constant to two- oops is given in Egs. (A.15)—(A.17) of [28] as

F

4 6
o= THE + (PG + (Fi)iy + OY) (30)
where
2 (4) 2 2\7r 2r32r32r1 r
FiFy :4(2mK+m,,)L4—|—4mKL5—Zmﬂlﬂ—EmKlK 4(4mK—m ). (31)
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FA(Fi)&r = 8(2m = 2mim? + mi)Cly + 8mi (2m} + m3)Cs
+ 8(4m¥ — Amim% + 3m})Cl + 8m2(2m% — m2)C},

and

F4(FK>( _dK +d LixL; +d log XL; +dlog+dllggxlog+d§mS81

loop
where

—54(167%)df = 108myL] + 6(61m} — 8mgmy + 28my) L5 + (89my — 4mgm; + 41m3)L]
—72(m% — m2)2 (L, — 12L% — 6L),

df s, = S6(4mi + dmgmy + m3)(L})? + 16(10my + Tmimy + 4mz)L; LY
— 64(4my + 4mima + my)Li Ly — 64(2my + mjy)LLLE
+ 8(3my + 4mym2)(LL)* — 64(2my + mym2)LLLE — 64my LLLE,

dK

Nexr, = 148mzLy + 12my L5 + 15mz Ly — (38mgmy + 4Tmz) Ly — (19mimy; + 6mz) L5},

+ {72my L 4+ 36my Ly + 30my L} — 2m% (30m% + Tm2)L} — 2m% (Tmy + 6m2)LE}

1 1
+ {§ (4m% — m2)?(16L} +4L5 + TL%) — 3 (4m2% — m2)(22m3% — m2)L},

UJI»—

(4m + 3TmEm2 — 14m3)LL — 16(m3 — m2)*(2L7 + Lg)}l,;

3 53 19 65 3 245 173
(1672) log—<§m%m xtaom )l’ (Km‘}( 7 mimz + a5 )l’ <Km‘}<+ﬁm%(m%>l;(,

5mé 2 5 5mb 25 47
K — z 2.2 r b3 ) rr
dlogxlog - <l6m%<+3meﬂ:_48m )(l ) <8m%(_6me —ﬁm >l l

31 5mS 11 21 155 11
(G Tt g = mt) 5+ (7 ik + gk )
K

91 53 3 51 3
<18 K toom mima — g >l’l’ <§m%m%—§mﬁ>l;l;.

(32)

(33)

(34)

(35)

(36)

(37)

(38)

The linear and bilinear chiral log terms given in Egs. (37) and (38) are a combination of the terms coming directly
from the O(p®) kaon decay constant expression, the chiral logs arising from the sunset integrals, and contributions
stemming from the O(p*) term due to application of the GMO relation. dfi and d{gg «1, are similarly made up of terms

taken directly from the O(p®) expression, and contributions arising from the O(p*) term due to application of the GMO

relation.

As in the case of the kaon mass, we break up the sunset contribution as follows, in which the first line
contains contributions from the single mass sunsets, as well as terms arising from the free terms (i.e. not containing
a chiral logarithm or a low energy constant) from the expression for the O(p®) contribution to the kaon decay

constant:

P 17671, 11952\ (49 2\ mf (1625 68947 ,
et = 167222 |\ 2304 2592 )" T \a8 T 32) w2~ \ 144 " 1296 )"KME
2153 151z .
<576 + 432) }+dKﬂE+dKﬂn+dKﬂﬂ
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27m*  m%  9m2\ -
dl( — _ n 'K n
Ko (64m’;‘< 5 T 16 >

4 2.2 4
my mgmyz  9my
)l((mz + (1_ + ] )H)Z(Kmr’

16 (40)
15m}  1189m%  65m2) - 143m%  139mzm%  Sm}\ -
dK b3 K _ T 74 K _ K'"'nm 4 H;{ , 41
K = (64m%( TS5 48 ) N ( 43 72 16 ) km (41)
7mE 5 7 3mé 1 15
dK _ H)( T Zn2 02 T H)(
K = ( 32m 96m’(+6m> K”'7+<8m%( 4"k g m) Kamn
11 1 mé 41 11 1 _ 1 _
The terms d¥ ., dm/  and d¥

are the result of applying Tarasov’s relations to the sunset integrals appearing in Eq. (A.17)
of [28] and rewriting them in terms of the sunset diagram master integrals given in Appendix B

C. The eta mass
The eta mass is given in [28] as
6
my = mZy + (m3)® + (m)E + (md) 5+ O(p®) (43)
where
) 2 -
m; = §BO(2mS + ) (44)

and

F2 2\(4) _8 r r r r r 4 r r r r r 2.2

,,(mn) —§(3L4 —LL—6L;+48L; +18L§)m —E(3L4 —4LL—6L; +48L5 +24L ) mgm
r r r r 8 r 64 r r r 44 r
_E(3L4+2L5—6L6—6L7—6L8) <31K—ﬁl ) my — (Elﬂﬂ )m —i—ﬁl”m,{m (45)

The O(p®

) counterterm contribution is given by

256
Fi(m2)&) = 57 M(8Cy + 12CT; + 6CY, + 6CYs +9CTq + 6C}; + 6CY; = 27CY, = 27C,
16
~27C; ~ 18CY; — 18C}, — 18C%,) + 52 m8(2CY, = 6C; +9CT, = 3CYs +27C
32
+9C; + 24Cq; = 27Chy +27Ch = 27C5; — I18CS + 54C5,) = 5 mimi(4CY,
— 6C}y + 10CT, = 3CYs + 24C} + 10C}; 4 24C} — 54Cy — 18C}

20 T 36C§1 + 6C§2
mkm2(8Ct, + 10C7, + 15CT, + 10C}, + 18Clg — S4CTy — 27C5,
+27C5, —36C;, — 12C%, — 48CL)

—48C%;) +

(46)
and the model independent O(p®) contribution can be subdivided as
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40,,2\(6) n n U n
F ( )loop CSunSCt + Clogxlog + Clog + Clog xL; + CLi + CL,<><L,

where c?og represents the terms containing the chiral logarithms:

41 961 3 61 1093
2\ r r r 4 2 r r r 2 .4 r
(167 )clog—<324l +1081 3lﬂ)m,( ms (486l 31K+27l,,>m,( my (7291

(2045, 931N
11664 " " 432"

The cﬁ,gxlog term refers to the collection of bilinear chiral log terms:

5717

_lr

2713 473 256 133
cﬁ)gxlog = ( —— (I + e+ =l ———(I%)? —l’ I ——(l’) )me2

108 54 27 18 6
1367 31 172 10 5
)i 2 _lrlr __lrlr )i — 37 lr i 4
+(162() o7 il = 7 e+ 5 () = 3l 2()>me

6185, 118” 103 o, ., 7.
(243 2 = =21+ (z)) K+< 575 (0 + 5 il

and ¢ are those terms proportional to the low energy constants L;:

1 256
(162%)c], = 7= <256L; + 54417 + 15215 + == Lf — 102415 - 512Lg> ms,

1 208
+3 <—64L{ ~88L5 —34L} — - L§ + 83215 + 416Lr>me2

1 160
+3 (16L; +88L5 + 3215 + —- L§ — 640L5 — 3201 >me4

L 112
+ 57 ( ~4L{ ~ S8L5 ~ 205 — —= L + 448L5 + 224L§> mS

while bilinears in the LECs are given by ¢} ,; :

128
€] e, = =5~ (36(LE)” + ISLGLE — 144LLLG + 144LLLE + 42LILG + 12(L5)° — 30L5LG
—A8LLLY —32LLL; + 144(Ly)* — 288LLL: — 84LLLY — 96L5LY — 48(Lg)?) mim?
128
— —"(BL4LL 4 6L, L — 10(LL)? — 6LLLL + 144LILY + T6LLLY — 121 L}

1024

—96L5LE — 48(LE)?)m%mi — 5

28
+ 7 (3L + L5 — 6L — 6Lg) (3LG — L — 6L +48L5 + 18L{)mS
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c?og «r, are those terms that contain a product of the low energy constants and a chiral log:

32
Chont, = {E (72L} + T2L5 + 36L} — 54L; — 113LL + 156L% + 684L5 + 422151,

8

+3 (161 +4L5 +7L5 — 1215 ~ 4L + 8L + 96L; + S6L{) I
256

+ 5 (3L§ +2L5 — 6L; — 6L; ~ 6L§)l;}m‘,‘(m,2,

16
+ {—ﬁ (36L} + 36L5 + 18L} — 27L} — 104L% + T8LL + 720L) + 404L5) 1/

16
—5 (2L + 18L5 + 1815 — 87L; + 8L§ + 1021y — 31215 — 120L))1;

16
— g (L= L5 — 6L +48L5 + 18L§)l;(}m§<mj‘,

512
- {—7 (6L} + 6L} + 3L; — 6L} — 6L + 16L, + 24L% 4 20L;)I;

32
— g (48L{ + 1215 + 2115 — 0L} — 2215 + T2L{ + 48L5 + 60L§)l;(}m‘§(

8
+ {ﬁ (6L} + 6L} + 3L% — 6L} — 32L% + 16L} + 240L% + 130L}) 1!
+8(4L; + Ly + L — 6L} + 8L} — 48L% — 18Lg)1;}mg. (52)
The contributions from the sunset integrals ¢/, can in turn be expressed as
, 1 8783 1157%\ N 62972 3515\ , , (1259 N 777,
c = - m —————— |\mymy — | ==+ —— |mxym
ST (1672)2 | \1944 162 ) K 1296 864 ) K77 (2592 " 216 ) K7

20183 7x?
_ <m + @> m,ﬁz} + Cir + Cog + Chgi (53)

where the contributions in the square brackets come from a combination of the single mass scale sunsets and the
free terms (i.e. those not involving a chiral log, a low energy constant, or arising from a sunset diagram) of O(p®), and
where

1
CZJTII = gmiH%ﬂm (54)
] 53 | 500 146 , 425 74 5 ) -
Chkkx = (% mim? — %4 mi — 24 mi) Hxx + <7 i = 54 iz + 27 ;= 18 m?,) o 2
] 9 , 13 23 ! 2
s = (k= b + 2y e+ (o St )
3 7 5

+ <— > mym2 + 3 XMy — 3 m2> H (56)
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D. The eta decay constant

The eta decay constant is given in [28] as
= (4 (6 (6
Fy = FUEY 4 (B )er + (FY Doop) +O(0%)

where the O(p*) term is

_ 2 1
F2FY =3 (L:1 + §Lg) m3 + 4 (Lg - §Lg) m2 — 3lm3

and the O(p®) counterterm contribution is given by

6 64 . 64 .64 64
Fi(F%)EZ'l)“ = (g Ciy + ?Cw +32C + ?Cn + ?Cm mi

64 16 64 128
+ <— 3 Ciy + 3 Cis —32C% - 3 iy - 3 Cfs) mim;

8 64
+ <8C{4 - §C{5 +24C'g +8CY; + ?C{S) m
and the model independent O(p®) contribution can be subdivided as

6
(F )() = Sunset+dlogx]og+d10g+dog><L +dn +dZXL

n/loop

where d!  represents the terms containing the chiral logarithms:

log

U
(167%)djo = | g Lx 1944 1944 " 24 7776 " ' 32

The dlogxlog term refers to the collection of bilinear chiral log terms:
1/23 167 43 99
(4 = )l 10 = E (% 02 =15 i+ 5 (02 = 930512 = (12

71 191
+ (l’) = 119015 +—(I%)? |m§ + < ((l’) +9(12)?)m8
3 2 8
- ((1,;)2 + Iyl + (I)* + 6l Ly + — >
and dzi are those terms proportional to the low energy constants L;:
9(16ﬂ2)d2i = 8(2L} 4+ 2L5 + Ly)mikm3 — (2L + 29L5 + 10L5)m3% — (32L} + 68L% + 19L;)m%

while bilinears in the LECs are given by d’L_X L
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256 512 256
dj . = <224(Lg)2 + 19215 L = 256L5LE — 12815 L5 + = L’L’)

5 (L5)? — 3 Lsle = Lsky
200 64 64
+ (56(L1)2 FABLGLE — GALGLE — GALGLE — == (L5 + L LELG + ?Lng> m

448 128

+ (224(Lg)2 +96L4L5 — 2561415 + — (L) - = L5k >me2 (64)

dfog «1, are those terms that contain a product of the low energy constants and a chiral log:

4 2 2
g, = {3 <2Lq +2L5+ L5 — L — §Lg) I+ 4(12L; +3L5+3L5— 111, + §Lg>l;}m4
32 2 13 32
- { 3 <2L’ +2L5 + L5 — L, - 5Lg> Iy + 4<5Lg + ?Lg> I + ?(3L£ + 2Lg)l;}m§<m,2,

64 2
+ {? <2L§ +2L5+ L5 — L) — ng> Iy +4(16L] +4L5 +7L% — 18L} — 4Lg)l;<}m‘}<. (65)
The contributions from the sunset integrals d,; can in turn be expressed as

2
K"

1
4 2 02 d’7 —
( My mn) sunset (16 2)2{(3888 + 36 1728 96
3377 3= 46099 7?
(5184 8 )m%‘mi i (m B %) m,‘;} e+ i+ o

where the contributions in the square brackets come from a combination of the single mass scale sunsets and the free terms
(i.e. those not involving a chiral log, a low energy constant, or arising from a sunset diagram) of O(p%), and where

65765 59;;2) . (13465 47;:2) A

1 1 1, -
dZim = <§ m%(m4 - ﬁ m )Hgmm - Z mﬁH)’;’m’ (67)

173 23 19 1 _
<7 m — ™M My mz — Eml(m t15 2) H g (68)

87 1 5 3 1
dlex = (16mK+4m%m2 + = T >HxKK+ <4me — dmim? —|—4m )HgnKK

33 5 _
+ (—jmK + 2m‘}(m2 - m%m“)H’fzzKK. (69)

IV. APPROXIMATE RESULTS FOR THE THREE MASS SUNSETS

We now present truncated results which numerically agree to within 1% of the full results of the master integrals given in
Appendix B for much of the range of masses we are interested in.

These partial sums have been obtained with the help of an ancillary Mathematica file, called truncation.nb,
provided with this paper [26]. In this file, as inputs one can choose the numerical values of the meson masses and the
maximum error acceptable due to the truncation. The file gives the partial sums for each of the master integrals accordingly
as an output.
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The truncation procedure that we use does not follow from a rigorous asymptotic analysis. Our aim here is more to give
simplified formulas that may be used in numerical simulations to save CPU time, mainly for interested lattice practitioners.
To get the simplified expressions, we use a simple criterion: for a given set of numerical values of the pseudoscalar masses,
in each of the different contributions of Egs. (B3)—(B9) we keep terms that are bigger than 1077, p > 1 being incremented
until we achieve the precision goal given by the numerical difference between the corresponding partial sum and the sum of
the first hundreds® of terms, the latter being defined as the “exact” value (notice that the very small uncertainties on the
pseudoscalar masses are neglected in this procedure). This way of getting truncations of course implies that for sufficiently
different sets of pseudoscalar masses one gets nonidentical simplified expressions of the master integrals. This however
does not detract from their numerical utility.

The truncated results presented below have been tested for all the sets of meson masses presented in the lattice study of
[27], and for the majority of these mass values, the truncated expressions give results that are accurate up to 1% of the exact
value. The numerical implications and accuracy of these approximate results are studied in more detail in Sec. V.

A. Truncated kaon sunsets

R B0 EL S o B A S OO Y L AR L P L

Ko™ 51224 6 4 4 my  my 2 )\m%k  mk 2m? m
1
2

K
2,2 2 2 2 2 2 4 2
my;m 2 m m
+ 7[4” 7+i—210g[—;’}—210g[m—g]+log{—g}log[m—;}>+——fl m—g]
mg 3 my myg my my K mg
2 212 m? m21? 8z m; —5.5| m2 1 m§ L1L2| m}
S <[] b ] 2]
my my my my 3 my 3 |4mg]  36myg 5.4 [4mg
2
; 1

1 m2m; m m2 m?2 L1 m2 m2 L1| m2
+ - log |—2%-| + log |—= —1F N+ =L F z
6 mk \Clamz| T % |am2| )\ 5 {amd] T2 3 |am2

15z mym; | m2 N 13 1 mymy (37 | m3 | m2
-— 0 — | -= — —log|—-| —log|—
512 m, \ cliem2] T 6) 20 my \15 %] T %2

Tmim;, m2 11 1 mZm2 (m2  m? 5
M (g | e | L 20) p L (P M (5 g gy |2
4 <°g[16m%;]*3>+12 m <m+m>< ’ "”[z])
mim m2 zmt/( m m 1 m2
2r—=1 (1 d 1) +——=2(8—E 431 )(=-1 ud , 70
Ter my <0g[16m3] - >+32m‘,‘(( m,7+ mg ) \2 o8 16m; (70)

m?2 o 1 m2 m2 m?
B, o~ 2 (T 0@ | T tog | K| Ly 1T
2K 5127:4{ 6 m%{( TR [m% +log m3 + L m3
r? m2 | m% m2 , m2 27 m; 13| m
(1% e e o] -1 =5 ) o [

K
7 1 721 2 2

— +mm"<4—log{m}+log[m§ —I—Em T"(l
| m n 2 my

n

n 7 m,zrm,% 11 41 m2 n r mi (1 ) m2 (71)
— —+1o — ~—1lo
16 my \3 " fl16m2)) T 16mim, \2 ¢ |16m2

1000 terms for single series and 10 000 terms for double series.
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_ m2 2
H%, { 1——2log{} log? {”} —<3 log{ ])
ny, m2 m2 ma2 m2 m 1,1,2
+—<5+——210g[—”] —l—log[—'(] —K} log[—” ) 2{ —]
m% m? ; z 2 12m‘}(3 3.3 |4mg
1 4 2 2 2 1m 5 5
e ) {12835 2 8)
6mi \TF 4m3 P 4m%| " 3mi \4 2
lmzm% m? m2 m2) 2m2m? (7
z 1 n n my ittt/ I | 4
g (oelin] + sl )or [ (i) =37 (5 o)
_ 15zmzm; m2 8 P ,3 ; 14 3z md m2 5
5 | log 2| T3) T a3 ~ 25 3 | log 7| 3
256 my 16m;, 3 4 my 3 32 mgm;, 16m;| 3
2mg \my  8my & 16m2| 10 m% 30 8 m% & m%
5 2 2
T omy my 86 m, ms
_ 2y 27 (] 2) L 7
s (el <135) =2 (oeling] +2)) ™
) | ) m "2 m2\ 1/2 a\2 o2
H —1-"+2log|—%| —log?|—& —7 4-—1) - —*
K2 ™ 512714{ 2 +elog [m,%} 8 {mﬁ} +ﬂ<m%(> < m%) m,mpg
2 22 2 2 2 2 2 2
22 (54 22+ 210g | K| —tog | 2] — g 2] tog K| ) -2 (3-+ 10g 4] )
my 3 n my my nmy X nmy
11 2 4 1.1.2| m2 1 mim2 /7
2l g |2 D P (T B T (T (4
g 1[% %) TT2n% 2 503 |amk) T10 mg \30 7 og(4)
2m2m% 7 3nm2m m2 7 2 m2
_zz _ —1 4 _ o 1 ﬂ 3 T 7
3 mb (6” og( )) 8 mk (Og{mmg_ + >+m,,mK Og[mmg}
Sz mym; m2 13 T mt m2
o 1 Sl ) e (21 1 +3
128 <°g[16m5] * 3>+1ﬁm3m,<< Og[mm%;] * )
1 m2 m} LL3| m2 m?2 m2
- 1T F 12y —1+1log|—%| +1 z . 73
st 1.2 ) (o1 velne] el ] ) m
B. Truncated eta sunsets
_ m2  [x? m2 m2 : my| 5 m% n’
s =5y 5 =3 =102 [t + 1ee |+ —z(“)g[m—z]*z e (6+5)
1 2 7 2 1 2 2 37 2 1 2 .2 1’1’2 2
) Gl a1
3my \6 my 10 myg myx \30 my 18 mz my - 5.4 [4mg
1m2 (8 L1 m2 2
——Z(Z—log[d] - ,F z z , 74
#3552 ) "
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H g ® 5107

p) 2

{ZIOg {m—g} —log2 {m—g} +
my my

2m2 (8 1,1

+—m—2<§—10g[4}—2F1[ 5 ’

2
1 m} (31 1 2,2
TN <——10g[4] _§2Fl|:

7
7,
630

i—Ho m_,z, +
140 " 8|2

ms

2 46
1 my; my

mt (11
IOm%(m‘}< 1
1 m2 m;
4

In the expressions above and elsewhere, the ,F  are the
generalized hypergeometric functions, which are defined in
Appendix B, and follow the standard conventions of
e.g. [29].

V. NUMERICAL ANALYSIS

Several numerical analyses are performed in this section.
We first perform a study to determine the relative con-
tribution of the various classes of terms making up the next-
to-next-to-leading order (NNLO) piece of mg, Fg, m, and
F,, while also examining the difference that arises due to
use of the GMO simplified, as contrasted to the physical,
expressions. Next, by means of numerical tests, we justify
the use of the truncated sunset expressions of Sec. IV
instead of the exact expressions of Appendix B in potential
studies involving fits with lattice data. In both these studies,
we do not provide uncertainties for the values provided, as
the numerics are comparative rather than absolute in nature.
In the last part of this section, we compute values for my,
F, m, and F, using our expressions, and physical meson
mass values as inputs. Since our aim in this last part is to
provide numbers that can be used to check our expressions,
rather than to present new and carefully recalculated values
of the mp and Fp, and in keeping with the convention used
in [30], with whose values our own are compared, we give
only central values for the calculated quantities.

o

2
m_} log
K

my
log [—2} ) +
my
3 mymi (533
35m% m%

my
log {—2} > +
my

30 m% m%
1 m2 m} <1

=l

(75)

1 mé 2,2
7

comg>" | 1
Goreeli])-
30 m%
o)) e |
6 my

L1 m2 m?
4m?% m_%(

m

2
]
4m?%

5 (76)

2

A. Breakup of the contributions

We begin by giving a numerical breakup of the various
terms that make up the masses and decay constants to show
their relative contributions. As the expressions given earlier
in this paper are “renormalized” ones, we can directly
substitute physical values for the meson masses and the
pion decay constant in them, and the error is of O(p?).

Table I gives numerical values for the various compo-
nents of the two loop contributions to the kaon and eta
masses and decay constants for two different sets of values
of the LECs, i.e. the free fit and the BE14 fit, obtained from
continuum fits at NNLO, and the results of which are
summarized in [30]. These numbers have been obtained by
using the full m,% dependent expressions (i.e. that have not
been simplified by use of the GMO relation), and by
summing the first 1000 terms of the single series, and the
first 10 000 terms of the double series, of the expressions
given in Appendix B for the three mass scale sunsets.

For the kaon mass, we see that the largest contribution
arises from the pure log term and the pure sunset con-
tributions. The contribution from the terms involving both
the chiral logs as well as the low energy constants is also
large, but its negative sign serves to reduce the contribution
rather than augment it. The contribution of the bilinear log
terms is also substantial. The large uncertainty due to the
L;, however, means that the contribution to full loop
contribution of both the L; x L; term and the log XL; term
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TABLE 1. Contribution (in units of 107°) of NNLO component terms to m% and Fp. The inputs are m, = m, = 0.1350,
mg = my® = 0.4955, m, =0.5479 and F; = F s = 0.0922, all in GeV. The renormalization scale is y = 0.77 GeV.

Fit Sunset log x log log log XL; L; L;xL; Sum
Free fit —2.8763 0.1178 -0.3124 3.3396
2
Mk BE14 2:4100 0.9420 3.0586 —4.3794 0.2768 0.0665 2.3745
Free fit 18.3342 —0.2398 3.1301 14.4631
Fx BE14 12220 17648 —7.3042 15.0591 —-0.5637 1.2018 8.9358
Free fit —7.1642 0.2018 —1.1207 3.5228
2
iy BE14 41105 1.5896 39059 102003 03845  —0.6144 1.1668
Free fit 21.0153 —0.3140 3.2022 18.7690
Fy BE14 —1.1654 3.7423 —7113 18.2380 —0.5984 1.1407 13.6459
TABLEIL Contribution (in units of 107°) of NNLO component terms to m% and F p for physical and GMO-calculated eta masses. The
inputs are the same as those used for Table I. The L; used are the BE14 fit values.
Input masses Sunset log x log log log xXL; L; L;xL; Sum
5 Physical 2.4100 0.9420 3.0586 —4.3794 0.2768 0.0665 2.3745
"k GMO 2.5102 0.9289 3.0225 —4.0554 0.0587 ’ 2.5313
F Physical —1.2220 1.7648 —7.3042 15.0591 —0.5637 12018 8.9358
K GMO —1.2939 1.7698 —7.2988 14.3140 0.4358 ' 9.1287
2 Physical 4.1105 1.5896 5.9059 —10.2093 0.3845 -0.6144 1.1668
"y GMO 4.8962 1.3989 5.9110 —9.7738 0.9473 0.9980 4.3775
Physical —1.1654 3.7423 -7.7113 18.2380 13.6459
Fy GMO —1.6868 3.6814 —7.2386 18.1138 —0.5984 11407 13.4122

may be significantly different from what their central values
suggest.

In the case of the kaon decay constant, the largest
contribution is from the log XL; terms, and is an order
of magnitude greater than the next largest positive con-
tributions, coming from the bilinear LEC and bilinear log
terms. The linear chiral log terms and the pure sunset terms
reduce the two-loop contribution due to their negative sign.
As in the case of the kaon mass, the contribution of the
L; x L; term may be significantly different due to the large
uncertainty of its central value. Similarly, with both the eta

Tables III and I'V: The inputs for the physical and GMO
case are the same as for Table 1. The inputs for the lattice
column are m, = 0.4023 and my = 0.5574, both in GeV.

The column labeled “lattice” in Tables III and IV gives
values for the sunset integrals and various components
making up the NNLO contributions to m% and Fg using
as input a particular set of meson mass values used in the

TABLE III.  Contribution (in units of 1076) of various compo-
nents to m3 and Fp.

mass and decay constant, the largest contribution in Physical GMO Lattice
absolute terms comes from the. log xLi. terms. For the i, 501058 523059 52,6996
eta mass, though, the negative sign of this term serves to o
S . H 47.1145 43.9569 25.3240
reduce the contributions from the log and sunset contri- H’%KW 558 6690 2648780 25 340
butions that have the next largest values. In the eta decay _ K2my ' ‘ :
constant, however, the log xL; dominates the overall value Hico 63.0648 65.3259 38.1248
of the O(pﬁ) contribution. Cllgzn; 3.0345 3.1439 3.7614
In Tables II, III and IV, we justify the use of the GMO  dkm —2.3367 —2.2692 6.3472
relation to obtain simplified expressions for the masses and ~ Cunsets 2.4100 2.5102 4.1692
decay constants. In all three tables, we see that the differ-  ddnsers —1.2220 —1.2939 —-1.1516
ence between quantities calculated using GMO masses 1:1)7(:1(1( 44.7862 44.7750 49.4563
varies from those using the physical masses by a maximum flgﬂxx —236.5110 —234.5361 29.5042
of around 4% in most calculated quantities, exceptions I-{;rZKK 58.2355 59.1524 32.2094
being Hy s €] » €] ;. [and consequently in (m,%)l(ggp], and  “zkK 4.0771 4.0273 47771
d! ¢k [thus also in (d”jsumets]. However, at the level of the d,ﬂKK 0.1336 0.3386 11.6803
total NNLO contribution, the difference is negligible for the Chunsets 4.1105 4.8962 6.0683
’ A ers ~1.1654 —1.6868 —1.8894

kaon mass and small for the kaon and eta decay constants.

114004-16



ANALYTIC REPRESENTATIONS OF myg, Fg, m, ...

PHYS. REV. D 97, 114004 (2018)

TABLEIV. Contribution of various components to m% and Fp.

Physical GMO Lattice
6
(m%)l(ogp 0.0329 0.0350 0.0656
(F%()]@ 0.1237 0.1263 0.3305
oop
(m? )(6) —0.0437 —0.0437 —-0.0276
K)CT
(F%()(Cf’T) 0.0238 0.0238 —0.0097
(m%)l(é) 0.0161 0.0606 0.0779
oop
(Fz)(6) 0.1888 0.1856 0.3678
1 /1loop
(m'zl)(céT) -0.0115 -0.0115 0.0035
(F2) (6) 0.0009 0.0009 —0.0302
n)CT

lattice simulations of [27]. The large divergence between the
numbers obtained using the physical and GMO mass inputs
on one hand, and the lattice mass inputs on the other hand,
demonstrate the necessity to use lattice results carefully when
comparing with the expressions presented in this paper.
Of special interest are the results of Table III, for the
following reasons. For the kaon and eta sunsets, the lightest
scale is the pion mass. On this scale, the kaon and eta
masses are quite close to one another. Noting that the kaon
and eta sunsets are evaluated ab initio completely inde-
pendently (from different MB representations), a useful
check would arise from imagining a world where the kaon
and eta masses are actually equal. In such a world, the
families of sunsets would necessarily be numerically equal.
In the real world, due to the proximity of their masses on
the scale of the pion, a given member of one family would
have to be close to the corresponding member of the other.

An inspection of Table III reveals that this is indeed the
case. This therefore provides a check on our results.

We now summarize some of the results of this section. The
relative contribution of each component to F is similar to
that of the corresponding component to F,, including in
magnitude and sign. The relative contribution of each
component to mg is different from those to m,, although
both follow a similar pattern except in the bilinear log terms.
The masses of the kaon and eta and their decay constants
come from different sources in the effective Lagrangians.
The eta corresponds in the /5-S plane to the origin while the
kaons lie on vertices of the hexagon with § = +1 and
I; = £1/2. The charged pions lie on the vertices corre-
sponding to § = 0, I3 = %1, while the neutral pion accom-
panies the eta at the origin. The group theory factors are
different when the masses and decay constants are read off
from the effective Lagrangians after renormalization.
Therefore, it may not be possible to obtain a heuristic
understanding of the relative contributions to each of them.

B. Simplified expressions for three mass
scale sunset results

We show here that the approximate expressions for the
sunset integrals presented in Sec. IV, made by truncating
the infinite series at suitable points, is sufficiently precise
for purposes of data fitting against the results of the lattice
simulations presented in [27,31].

In Tables V and VI are shown the results for three sets of
mass inputs, all taken from [27]. The “Lattice low” columns
have as inputs m, = 0.1830 GeV, mg = 0.4964 GeV,
which are values representative of the lower end of the

TABLE V. Contribution (in units of 107°) of various components to m3 and Fp for three sets of meson mass inputs
from lattice simulations. For “Lattice low,” m, = 0.1830 and my = 0.4964; for “Lattice mid,” m, = 0.3010 and
myg = 0.5625; for “Lattice high,” m, = 0.4023 and mg = 0.5574; all in GeV.

Lattice low

Lattice mid

Lattice high

Approximate Exact Approximate Exact Approximate Exact
H’,‘WI 49.1972 49.2763 57.3564 57.4264 52.6594 52.6996
H’EKW 40.3584 40.3898 33.4005 33.5287 25.3936 25.3240
H’,@zm —181.192 —180.8920 -94.4140 -94.5730 —37.4788 —37.7974
H’,f(ﬁn 60.6167 60.8187 51.0392 51.2868 37.9694 38.1248
Chmy 2.9267 2.9300 5.1472 5.1522 3.7574 3.7614
- —1.2676 —1.2730 1.6939 1.6774 6.3404 6.3472
ck sets 2.4126 2.4158 4.6864 4.6914 4.1651 4.1692
dX et —1.2508 —-1.2562 —-1.6999 —-1.7164 —1.1584 —1.1516
HY i 42.5595 42.6486 51.1414 51.3158 49.1902 49.4563
H: px —157.3080 —157.1500 —=79.1677 —79.2012 —29.5237 —29.5042
H ek 54.2419 54.1775 44.4467 44.3589 32.3957 32.2094
ek 3.7206 3.7247 6.4170 6.4305 4.7598 47771
dl 1.0047 1.0522 5.3347 5.4545 11.4664 11.6803
cl nsets 4.5926 4.5967 8.1678 8.1813 6.0509 6.0683
Al et —1.8788 —1.8313 —2.9205 —2.8007 —2.1033 —1.8894
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TABLE VI.  Contribution (in units of 10°) of various components
to m% and Fp for three sets of meson mass inputs from lattice
simulations. For “Lattice low,” m, = 0.1830 and myx = 0.4964;
for “Lattice mid,” m, = 0.3010 and mg = 0.5625; for “Lattice
high,” m, = 0.4023 and myx = 0.5574; all in GeV.

Lattice low Lattice mid Lattice high

Approximate Exact Approximate Exact Approximate Exact

(m%()l(g))p 0.0353 0.0353 0.0710 0.0711 0.0655 0.0656
(F%()fsgp 0.1536 0.1536 0.2559 0.2557 0.3304 0.3305
(m%)g) —0.0384 —-0.0384 —0.0560 —0.0560 —0.0276 —-0.0276
(p%()g) 0.0183 0.0183 0.0108 0.0108 —0.0097 —0.0097
(m%)l(sgp 0.0217 0.0218 0.0544 0.0544 0.0776 0.0779
(j:%)l(ggp 0.2102 0.2109 0.3152 0.3169 0.3649 0.3678
(mgl)g) —0.0076 —0.0076 —0.0023 —0.0023 0.0035 0.0035
(p%)((:ﬁT) —0.0034 —0.0034 —-0.0197 —0.0197 —0.0302 —0.0302

range of values of masses used in [27]. The “Lattice mid”
columns have as inputs m, = 0.3010 GeV, my =
0.5625 GeV, and the “Lattice high” columns have as
inputs m, = 0.4023 GeV, myg = 0.5574 GeV, which
are values representative of the middle and upper end,
respectively, of the range of masses used in the aforemen-
tioned lattice study. For each of these three sets of masses,
the values of various quantities are calculated in two ways
—using the exact values of the sunsets (as given by the
results of Appendix B, and using the approximate expres-
sions for the sunsets [as given by Eq. (70)—(73)].

It can be seen from the results of these tables that the
deviation from the exact results is less than 1% in all cases
apart from (m%()l(fgp calculated using the “Lattice low”
values. Indeed, the truncations were performed on the full
expressions of the sunsets in such a manner that the
numerical deviation of the approximations from the exact
values was less than 1% for the majority of the meson
masses used in [27]. More specifically, for A% _ Eq. (70)

Krn
differs from Eq. (B3) by less than 0.5% for all 47 sets of

Relative Error (%)

FIG. 3.

masses used in [27]. For H% km Eq. (71) differs from
Eq. (B4) by more than 1% for seven of these sets of masses,
and by less than 0.4% for 38 sets. And for Hf,,, and H,,

both, the truncated results differ from the exact ones by
more than 1% for the same 3 sets of masses. Similarly, for
the eta sunsets, A% ;. differs from Eq. (74) by less than 1%
for all sets of masses, and H ., and H, . differ from
Egs. (75) and (76) by less than 1% for all but (the same) six
sets of masses.

Figure 3 gives a graphical representation of the relative
errors of the truncated sunset expressions over a range of
values of p. The points on the curves are the specific mass
points used in [27]. It is seen that for values of p < 0.5,
which constitutes the majority of the mass values in the
simulation of [27], the relative error is less than 1%.

C. Comparison with prior determinations

In this section, we give numerical values for the
quantities discussed in this paper in the form of LO +
NLO + NNLO for both the BE14 and free fits. These have
been calculated with the input parameters given under the
tables of the previous section. We give both the values
calculated using our GMO-simplified expressions, as well
as the full ones.

The input values used in this section are mg py=
0.4955GeV, m,, ;,,s=0.5479GeV, /Bym, = 0.484 GeV
[32] and mg/m = 27.5 [11]. Our choice of the latter two
parameters is due to their explicitness. In contrast to [11],
where the value of m,//m emerges from the fits, here it is an
input. A complete study using the expressions of this work
and lattice data as inputs is beyond the scope of the present
investigation.

Note that in this section, we have a fixed input at tree
level for mg and m,, justification of which comes from the
fact that this work is concerned with aspects of NNLO,
rather than LO and NLO, contributions to meson masses
and decay constants.

Relative Error (%)

Relative errors of the truncated sunset kaon (left) and eta (right) integrals.
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2
1. my

Using the full expressions of Sec. IIl A and the BE14
(free fit) LECs, we get the following values:

(6)

2 2 4 (6)
Mg Mgo + (mK)( ) i (mK)loop (mg)er
2 - 2 2 2 2
mK,phys mK.phys mK,phys mK,phys mK,phys

= 0.9889 — 0.0690(--0.0229) + 0.1338(0.1882)
—0.1779(=0.2049) (77)

which in the form LO + NLO + NNLO is
0.9889 — 0.0690(40.0229) — 0.0441(-0.0167).  (78)

Using the GMO-simplified expressions

2
mg

2
mK.phys

= 0.9889 — 0.0704(+0.0215) + 0.1427(0.1959)
—0.1779(—0.2049) (79)
which in the form LO 4+ NLO 4 NNLO is
0.9889 — 0.0704(40.0215) — 0.0352(—0.009).  (80)

These numbers are close to the literature values [11]

2
< 7K ) — 1.112(0.0994) — 0.069(+0.022)
MK phys/ it

—0.043(—0.016) (81)

for the BE14 case, and although less so for the free fit case,
are still close to them.
2. Fg

For the kaon decay constant, using the BE14 (free fit)
low energy constants and the expressions of Sec. III B, we
obtain

F
Ff =1+ F¢ + (FO© + (FOS
= 1+ 0.3849(0.4355) + 0.1237(0.2001)

+0.0238(0.0422). (82)

Using the using the BE14 (free fit) low energy constants
and GMO-simplified expressions, we get

F
F—K = 14 0.3828(0.4334) + 0.1263(0.2012)
0

+0.0238(0.0423). (83)

To obtain Fg/F,, we use the expansion presented
in [33]:

F F F
_K:H(_K Fy )
F, F0p4 F0p4 NLO
+<FK Fﬂ FK Flr Fﬂ2>
Fols  Folye Folp Foly  Folp) o

(84)
and values for the F,/F calculated in [3]. We get

F
F—K = 1+0.1764(0.1208) 4 0.0226(0.0769)  (85)

/

using the full expressions and the BE14 (free fit) LEC values.
These values agree well with the numbers presented in [11]:

F
(F_K> = 1+0.176(0.121) + 0.023(0.077).  (86)
n/ lit

2
3. my

Using the full expressions of Sec. III C and the BE14
(free fit) LECs, we get the following values:

(6) 6
m,27 _ mf/O (mﬂ)(4) (mﬂ)kmp (mﬂ)(Cl)“
m? Com? + m2 + m?2 + m?
n.phys n.phys 1.phys n.phys n.phys
=1.0617 — 0.2126(—0.0736) + 0.0538(0.1624)
- 0.0383(—0.1498) (87)

which in the form LO + NLO + NNLO is
1.0617 — 0.2126(—-0.0736) + 0.0155(0.0126) (88)

and using the GMO-simplified expressions

2

ny
5 = 1.0617 — 0.2595(—0.1250) +0.2018(0.2919)

m 7n,phys

—0.0383(—0.1498) (89)
or in the form LO + NLO + NNLO
1.0617 — 0.2595(-0.1250) + 0.1635(0.1421).  (90)

While the LO and NLO terms are compatible with the
literature values [11], the NNLO values are significantly
different for both fits:

2
< i ) = 1.197(0.938) — 0.214(~0.076)
My phys/ 1t

+0.017(0.014). (91)
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4. F,

Using the full expressions of Sec. III D and the BE14
(free fit) LECs, we get the following values:

We await an alternatively calculated order-by-order
numerical breakup of Fj/F} , = with which to compare
the above values.

VI. LATTICE FITTINGS
% =1+ Fn)(4) +( Fﬂ)ffg)p +( Fﬂ)<C6”l)“ We present in this section a simplified form of the

0 expressions for mg, Fg, m, and F, that may conveniently
=1+ 0.4672(0.4996) + 0.1888(0.2597) be used in fits with lattice data. For this purpose, we used the
simplified expressions of the sunset master integrals of

+0.0009(0.0254) 92)  Sec, IV, and expanded the cf, and d%, ., terms around

the mass ratio m;/my = 0. Though the integrals H%,,, and
H” ik diverge in the m2 — 0 limit, that they are multiplied by

factors of m2 ensures analyticity of the expressions in
this limit.

and using the GMO-simplified expressions

F

—1 =1+ 0.4672(0.4996) + 0.1797(0.2508)

Fy A. m}
+ 0.0009(0.0254). (93) The GMO expressions for the kaon mass can be

written as

4 1 ~ ~ N N N N
my = my, + m%({ <§§K - §§n> Ay +ExLiy + fnLEM} + m%({ Az + Khydzdx + Kiydody + Kipydg

2

+ K5y Ak hy + KGp 22 + EFy [%} + Cimdr + CoAg + Capgdy + C4M} (94)
K

where &, = m2/(162>F2), & = m%/(162*F2) and 4; = log(m?/u?). The coefficients L), are functions of the NLO LECs

L’. Each of the K?,,, Ch, has three terms proportional to &2, &, &, &% respectively. The Ky, and F), are fully determined, the

C -1 = 1,2, 3 depend linearly on the NLO LECs and Cam depends up to quadratically on the NLO LECS and linearly on the

NNLO LECs. There is some ambiguity in dividing the terms not depending on LECs between the various terms since

log(m?/m%) = A; — Ag for i = m, n.

The F; can be subdivided as

Filp] = ay; + (as; + asloglp] + aglog?(p])p + (as; + ae logp] + az/log?[p])p?
+ (ag; + agrloglp] + ajolog?[p))p + (ayy; + ayaloglp] + azlog?lp])p* + O(p°) (95)

where p = m2/m%, and for the kaon mass, [ = M.

For a more detailed discussion of the various possible ways in which the above expressions may be expressed for fitting
with lattice data, see [3]. Note that unlike in [3] where F,[p] was truncated after O(p?), here we retain up to O(p*) terms.
Our justification for doing so is that only at O(p*) does the expansion converge to the desired level of accuracy. This is
shown graphically in Fig. 4, where the expression F';, which contains the terms ¢gypeers OF dgunsets @nd terms from the bilinear

L L S B S S B S —— 77—
46 ]
Exact 04r Exact ]
44r p Truncated .
Truncated 0.2} Lo b
42 N\ e Truncated: O(p0°) 4 e Truncated: O(p%)
0.0 ]
27 e ———— . 4
T 40f N = mm——- Truncated: O(p*) S T Truncated: O(p")
< &
3.8
3.6
34+
1 1 1 n 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. F); (left) and F (right) plotted against p using exact and truncated sunset integral values, as well as expansions of the latter up
to O(p*) and O(p*).
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chiral logs that are proportional to powers of p, are plotted with four different inputs. The blue plot was calculated using the

exact values of the sunset integrals, the red using the approximate expressions of Sec. IV, and the dotted and dashed plots

using the truncated sunset expressions expanded in p up to O(p?) and O(p*) respectively. It is seen that only at O(p*) do the

expansions converge reasonably well to the exact ones over the entire range of interest of p, i.e. for p < 0.5.
Explicitly, for mg, we have

Lty = —8(4m)> (2L} + LL — 4L — 2L}), Lhy = —8(4m)2 (L} — 2LY), (96)
. 169 . 1 . 11 1279
Kiy = §H§K+192§ Koy = 166 5;;51(, K6M:_3§5 324§n§K 5184 2
1, . 55 97

kZM :ﬁf%(‘f'génél(, fng 21—8§%<+7—2§ﬂfl<—1—6 T Ky = —7—2@:51(—@ T (97)

R 11
= (16(4;:)2(2L5 +L5—4Lg —2Lg) - §> 2198

455
- <(4ﬂ)2(48L; + 1215 + 15L% — 68L% — 12L% + 88L! + 24L%) + @> (98)

A

41
Cou = (864211 - 20) = 3¢ e

487
- (2(4n)2(36L{ + 18L5 + 1515~ 40Lf — 16L% + 64L; +32Lf) + 1 4) &, (99)

. 8
Chpr = (5 (47)2(16L! + 4L% + L% — 18L] — LE + 20LL — 12L% + 6L%) + )5,,51(
- <— (47)2(16L} 4 4L5 + TL5 — 24L% — 8L + 32L% + 16L5) + )51(

3 1
+ <@ - 5(47:)2(16LI +4L5 +T7L5 —12L) + 12LL + 8L — 96L% — 40L§)) 2, (100)

Ciy = % (47)2{(108L} + 366L5 + 89L% — 32L% + 384L% + 192L5)E%
— (48L5 + 4Ly — 64L5 + T68LY + 384Lg)E,E + (168L5 + 4115 — 3215 + 384L5 + 192L5) &2}
—16(1672)2{2(Ct, + 2Ct5 + Chy + Chs + 2Chg — 3Chq — 4Chy — 6Ch — C5, — 2C5, + 16(L})?
+ 12L45LL — 64L,LE — 32145 4+ 2(LL)? —24LLL, — 12L5L% + 64(L;)> + 64LLLE + 16(L)%)E%
+ (2C; = 2Ct, + Chs — 4C) g + 2C1, + 6Ch + 2Ch) — 12C5, — 2C%, + 32(L;)? + 16L;LE
—128L,LE — 241,15 + 4(L5)* — 32L5LE — 8LLLY + 128(LE)? + 48LLLE)E &k

(Gl +3CYg = Cy = 3Cly = 3Ch — 3C, + 8(L, — 2LE)(L] + L — 2L — LE)E, (101)
165 (10 B3] ogiaitog 4] 4 257 2665 | 23 103, ,14) 163 r4
p 4 _103 o4 _163, . [4
= 2500 \ 25| TIOBIOB13] ) T g8 3456 T 10z 192 08 (3] T 216 2|3
|
—ﬂarccosecz[\/g} (%—W_>arccosec[\/§], (102)
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689/  [3 47\ | 1l 386y 71687 20z 3277z 5V2
(le M +log[4] 1ogH) e 386y r_Z2 7, ;C”

T 72 135 16200 108v2 4320V3
53 41 55 4 1 Tr 64 19
1 +=1 — —log[4] — log|=| +— 2
+ 142108 [ } = og[ } %0 og[4] 2883 ogL} + 5 arccosec V3]
43v2 17y 19z 1[5
_ - w2 103
+ < 77t 35 24 >arccosec[\/_] 74 [2] (103)
11 r 1 4 1 169 3 9
a3M:§+m_§10g[§:|’ a4M:_§» 07M=—@, alOM:E7 013M:av (104)

1031 3 4 237 479393 65 706841 21737
= (L‘z 4_1] + log[4] log [—]) ﬂ ? ﬂ !

M 1296 I 48 +388800+72\/§ +331776\/§ T 76480
55 (4] 151 551 4 624377 64| 23
— o2 |=| — ——log[4] - ——1log|~| - —"log|—| - = 2
195108 _3} 90 og[4] 758 18 [3} 5529673 0g[3} 5 recosec (V3]
251 |5 173 1009y  23x 23
——y|= - + —|— log[12] |arccosec[v/3], 105
57 ) (oo et o e ploelia] Jarecosecl V] (105)

79  62437x 43

4 23
ey = ——+—-——=+—log|= ——arccosecx/g, 106
M 48 T 55206v/3 96 gM 16v2 [v3] (106)

BB o 4 +11n2 199933y 9347509 563z 8967451
a = —_ —_ —_ —_ J—
M 016\ 4 Blog 3 72 207360 6220800 23042 13271040v/3

L0889,y 9653 | T 8T9r 6] S 1A
51840 2 T 34560 8 (3] T 4423683 °| 3| 24 14472

sn 1015 6313;/ 175
+ (- arccosec[v/3 , 107
( it 1024{ 46082 768\/_ ogll ]) V3] (107)

5681 2841797 1

4
= +— arccosec[v/3], 108
M T 717280 4423683 24 © H 768\/_ V3l (108)

. 5 (1 [2] & togiaytog[1]) 4 257 21213043 | 1981x 331627 166979
M = ogg \ 2 a) TIOBOR 3] ) T 88 T 33177600 1 11059272 | 424673283 | 1105920

61451 41 737789 70891 1% 64 7 5
- log|>| = zomnmsnlogld] — —————=log A e
1548288 (3| 3870720 7077888+/3 72712
2309y 8057 527 )
+ 12] ) arccosec[v/3], 109
( 73728v2 44236812 24576\/_ og[12] V3] (109)

arccosec[v/3]. (110)

499231 N 70891 1x 1 o [4} 527
a = — —_—— _ -
I2M = T 1548288 ' 70778883 96 C|3) 24576\
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B. Fy

We can fit Fg in a similar manner as follows:

F 3 1 1 3 o ~
7’( =1+ {_85”/1” + (8§n —251()/1;1 —151«11( +&kLiFp +§;:L£F}

+ {IA{?F/LZ: + K5 ddg + f(gFﬂMq + KGpik + ngﬂkﬂn + ngﬂ%

2

+EF, {m } + Crpdn + Copdy + Caphy + C4F}

my

where
Lip =4(4n)? (L5 + L}), L = 4(4n)’L},

5

192

o s 9l
Kyp = 288§K+ 4‘§n§1<’ KSF:_ﬁ

1 53
(__747; 2L4+L’)>§ﬂ€1<+(5(4”)2(48LT+12L£+15L§—47L4 6L5) + 64)2

173

. 245
Chp = ( + (47)2(36L% + 18L5 + 15L% — 30L; — 7Lg)>§%< + < — (4m)2(7L; + 6Lg)>§,,§K,

144

R 19 2
Chr = (— + = (47)2(64LF + 16L} + 28L% — 66L} — 3LL — 2L — 36L§)> £

65 1
- (— +— (47)2(128L7 + 32L5 + 56L% — 78L} + 111L% — 57617 — 288L§)> E.Ex

144 " 18
3
+ (64 7g (4m)? (1617 +4L5 + 7L — 3L; + 4215 — 288L5 ~ 144Lg))§,%,

Chp = 8(162%)2{(=2C}, + C}s — 4C}¢ + 2C}5 + 28(L})? + 14LLLE — 32L5L% + 4(LL)? — 8LLLE)E &k

+ (2C7, +2Cs +4C o + (2L5 + LL)(14L; + 3LL — 16L% — 8L%)E%
+ (Ct, +3Ctg = C, + T(LG)* + 8LLLE — 8LLLE — 8LLLE)EX}

27

1831 89L!
- <27LI+ 7 T3 3_18L§+216LH108L§)§%{}'

We subdivide Fr as in Eq. (95) with I = F, and with the a;r given by

£ - 51 3 . 31 11 21
Kir = 5,,51( 5 Ky = 3—2§an - —572” KgF = %5?( - 7—2§an - a ;2;,

N 25 47
2 2 ro__
&k — 288 5;:51( + fm Kip = A &bk + %

2 41
+= (4n)2{(12Lg + L% — 36L% + 432L7 + 216L5)E,Ex — (42L5 L5 = 18L5 + 2161 + 108Lg) £

7 4 4172 112 1052 11
633 <L12 B] + log[4] log{g])+ T \/_ﬂ+ 05 5— on

— - 1
“NF = 75184 192 27 6912 216v2 1152 ¢
127 41 41 295 41
+Kl gL] ﬁarccosecz[\/g] + <108\/_ 48ﬂ> arccosec[v/3],
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The divergence of F as given above from its exact value is shown in Fig. 4.
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C. m%
The GMO expressions for the eta mass can similarly be expressed as

647> 35272 51272 567> 16 ~ 8 ..
= g + { &l = BTGy + ( bl =7k - @) S L~ bt + 55,%L§m}
2
{ P2 K Andg + Rodnhy + Kid% + K5 dghy + Kb 22+ mAELF,, [%]
K
+ Cihe + Comdi + Cady + 674,,,}. (128)

Note that in contrast with the kaon, there is an extra m% prefactor to F,, aside from the £%. Furthermore, each of the

K?,.Cr, have six terms proportional to &2, £,Ex., £ and m2 multiplied by either m2 or m>.
Explicitly, for m,, we have

L7y = (4m)* (3L} + 2LL — 6L; — 6L% — 6L}),
Lhy = (4n)* (3L} — 4L, — 6L + 48L5 + 24L%),
L5y, = (4m)* (3L} — L% — 6L + 48L% + 18L}), (129)

. 5 65 3

Kiy = (gfsz + 13 %) ms — <E§H€K) my.

. 3 55

Ky = <Z§ﬂ§l(> m2 + <ﬁ§ﬂ§[() m%,

. 7 43 64

Ky = <%§% - Efné:[() m2 + (ﬁfﬂ@() mz,

. 5 103 133

Ky = <6§nfl<> 24+ <—52 fan) mi.

. 473
Ry = - (1085,,§K> (2165,& :K)m%(,

N 1367 911 6185 2713
Kr . = _ 2 2 2 2 130
oM <648 gnéK 3888 5;‘[) my + <972 ‘f éﬂé[{) mg, ( 3 )
. 61 128 . 256 . 256 . 256 . 256
M= (5—4§H§K @52> §n§1<mk (167[2){ <TL4 tg s Le——5Li——5 L )é’ncfxmk
232 64 272 832 320
- <64L{ + 1615 + 1615 = ==L + - Ly + = L === L5 — >§,,§Km
+ (16L7 + 4L5 + 4L% — 24L) + 32L% — 192L" — 72Lg)§,2,m,2,}, (131)

A 3 961 577 64 16 28 16
Chyg = =3 ndim + <2165,,5K éK) + <16n2>{ (gLI g Ls Ly = 161 - LS

3 3 - 3
32 224 256 64 112 320 352
+3 Lo+ 12817 + T%)@&’"i - <TLT txy byt 5 L= Li-— L5
256 320 8 8 16 128
+ 128Lg+TL§+TL§> 22+ <—§L4+9L’ + S L——Li- 16L§>§,[(§Km,2[}, (132)
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~ 371 2045 1093
Ciy = ( &k —maano > m3 + <6485n5k 51()

972 23328 1458
128 128 64 1808 832 1216 6752
+ (16 ){ ( = L+ ?Lg - 321} - —7 L4 L+ - L, +=- L + 7L L’)cfﬂmei
512 12 256 512 512 4096 2048 5120
r r _Lr — _Lr — _Lr Lr Ll’ L
( 9 2 + 9 3 9 4 9 5 + 27 6 + 9 7 + 27 ) KfK
32 I Lr N 16L, oL 832 Ly 208 L 640Lr N 3232L’ s
- - - — — m?
shit gLt 47 9 6T 3 77T 9y K
8 4 8 128 64 320 520
L+ Ly~ Ly —— Ly — L. L’ L+ =L , 133
+(9 ttghatghsmglam oy b taglet gt g by )”} (133)

T 2 r r r r r r
Ciu =7 (162%){(384L{ +816L5 +228L5 + 128LE — 153615 — T68L} ) &g m}

— (288L7 +396L; + 15315 +312L% — 3744L5 — 1872L5)E, Exm
+ (7217 439615 + 144L% +240L% — 2880L5 — 1440L}) &, m2
+(—6L} —87L; —30L% —56L% +672L" +336L})E2m2

128
+ (1672)? {27 (3L4+5LL—6L;—6L%) (3L, —LL—6L; +48L% + 18LY)E2m?

256
=57 BCT +12C; +6CT, +6C]5 +9C7 +6C]; +6CT; —27Cy —27C5 —27C3,
1024
—18C%, — 18C%, — 18CL, ) Exm% — (6Lg +LL—12LF —6LL) (3L, +2LL —6L; —6L5 —6L%)Exmy
16
+37(2C1, =6C13+9C7, = 3CY5 +27C1 +9C]; +24C1g = 27Cly +27C5 = 27C;, — 18C5, + 54C%,)E2m?
32

9 ——(4C}, —6C1, +10C, —3C}s +24Ch + 10CT; 4+ 24Chg — 54Chy — 18Chy — 36Ch, + 6Ch, —48Ch3 ) E,Exm?

64
+3(8C{2 +10C}, +15C7 ¢+ 10C}, +18Cg — 54Chg — 27Ch +27Ch, —36C5, — 12C%, —48C53 ) EExm%

128
— g (36(L5) + 1SLLLE ~ 14415 LG + 144LLL5 + 42LLLG +12(L§)* ~30L5 Ly — 48L5L,

128
—32LLLL+ 144(LE)* —288LE L, —84LLLE —96L, L —48(LG)?)EExm% — 5 ——(BL,LL+6L; L, —10(LE)?
—6LILL+144LL5 +T6LELE — 120 L —96L5 LY —48(L§)2)§,,§Km,2,}. (134)
The F,, can be subdivided as

F'f?" [/0} =daiy, + (aZm + a3y IOgLO] + Ay logz[p])p + (aSm + [ IOg[ﬂ] + A7 10g2[p])p2
+ (g + a9y 10g[p] + @10, 10g%[p])p> + (@11 + arom loglp] + ass, log?p))p* + O(p°). (135)

Note that we omit the factor of 1/(1622)? in this definition in contrast to Eq. (95). In Fig. 5, we see that the O(p*)
expansion version of F,, agrees with the exact valued F,, well within our desired range of p.

ayy, = 1165 < 3 022[2V/3 — 3] — log E log [3 +2V/3] — 2Li, [?} +2Li,[2V/3 — 3})

864

875 1157 4 19 4 1 23

T ol || = Zog|= Zoge—l 2 7 el 1
+ 186 38q 1% {3} 3 og[J +gese V3] +2\/§csc V3], (136)
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FIG.5. F, (left) and F; (right) plotted against p using exact and truncated sunset integral values, as well as expansions of the latter up

to O(p?) and O(p*).
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D. F,

The expression for F, can be written as

F 8 rr 4 rr 3 or or or or or r
Fﬂ =1+ {ggKLlf + gg,,sz — EéjKﬂK} + {KIF/I,% + Ky i Aihg + K pddy + Kipdg + K5 pAgchy + Kiphy

2
+ myELF [m ] + Ciphg + Copd + Cyph, +C4f} (143)
where
IZ{f = (47)2(3L} + 2L%), Iigf = (47)?(3L} - L%), (144)
X 99 141 3 3 .
Kr.:_ _ 2 - Kr:()
=128 " 5127 T a0as” tRi0a” OV 3
g B3 3 3 X 119 1
= p—— - K, =———24_
=54 " 256" " To2a” " agoe” T OV ST T8 Ty
191 35 3 3 3 7111
kr D 2y P 3L 0 40 kr —— 2 145
Y =96 T 128" T512” T 20as” T g102”" T O o 968" 3" (145)
o i_& 2 r r % 2 r r r 47 2
Ciy = (g =5 4mP(LE+2L5) )&k + 5 (4mP(36L] + 9L +9L5 = 33L+2L5) + )& (146)
. , 17\, (3 2,
Cip = (2(4mP2(16L] +4Lj +TLE = 18LG —4LE) + 12 )& + ( ;=3 (4m>(I5L5 + 13L5) ) &dx. (147)
. 32 o ), 1663
Chp = (9 (4m)* (6L} + 6L, + 3L5 — 3L} —2LY) + 3gs8 )g
16 4363
- <§ (47)2(6L} + 6L} + 3L% — 3L} — 2LY) 3888) £ Ex
2 371
+ (9 (47)2(6L} + 6L5 + 3L% — 3L; — 2L1) >§ , (148)
Ol = = (Am)>{8(2LT + 2L} + L)EEx — (32L7 + 68L5 + 19L5)E% — (2L] + 2915 + 10L5)E2}

I

9
8

+ 5 (4m)*{4(6C1, + 6CTs + 9CYs + 6CY; + 6CT; + (3Lj +2L5) (2115 + 4Lg = 241 — 12L5))é,

— (24C}, — 6C's + 36C ¢ + 24C", + 48Chg — 252(L})* — 108L,LE + 288L, L — 56(LL)? + 48LLLE)EEx
+ (9C1y = 3Chs + 27Ch + 9C}; + 24Chg + (3L4 — L) (2115 + 25L% — 24L% — 24L%))E2 ). (149)
Due to the numerically large prefactors of the masses in the expression for d” ., the errors that arise due to the use of the
truncated sunset expressions get magnified significantly, resulting in a poorly converging expression if these approximate
results for the sunsets are used. This can be seen in Fig. 5, where the divergence between the truncated and exact values is
significant even for small values of p. Therefore, in this case of F;, we present an expansion in p taken from the sunset

integral series evaluated to a high order (and which therefore results in rapid convergence to the exact result), but an
expansion which is numerical.

Flp] = 9.03816 + (=7.82805 + 1.51852log(p) + 0.1875log?(p))p
+ (2.69955 + 0.250529 log(p) — 0.625 log?(p))p>
+ (=1.08218 + 0.00176579 log(p) — 0.229167 log?(p))p°
+ (0.722228 — 0.306794 log(p) + 0.0625 log?(p))p* + O(p°). (150)
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VII. SUMMARY AND CONCLUSION

To summarize, SU(3) ChPT is the effective theory of the
strong interactions at low energies and describes the
pseudoscalar octet degrees of freedom and their inter-
actions. It may be recalled that in the limit of m; — O,
i =u,d, s, the QCD Lagrangian has a symmetry given by
SU(3), x SU(3)g (chiral symmetry). The quark conden-
sate (qg) leads to the spontaneous-symmetry breaking

pattern SU(3), x SU(3)R<@>>SU(3)V, where V =L + R,
and the axial-vector currents associated with L — R are
spontaneously broken, giving rise to eight massless pseu-
doscalar Goldstone bosons, namely the pions, kaons and
the eta. In the presence of small, nonvanishing quark
masses, many of the predictions of exact chiral symmetry
are corrected, and simultaneously provide important quali-
tative and quantitative constraints that continue to be valid
at two-loop order. Of the many properties associated with
this sector, the masses and decay constants are amongst the
most fundamental. Thus, the predictions for these from the
effective theory and from the lattice constitute some of the
most important tests of this part of the standard model and
the standard picture of spontaneous symmetry breaking of
the axial-vector symmetries associated with the massless
limit of the theory as mentioned above.

At two-loop order, the meson mass expressions involve
the computation of the sunset diagrams, while the decay
constants also require calculation of the energy derivative
of the sunsets, all evaluated on shell. Sunset integrals have
been investigated in great detail independently of ChPT,
and much is known about them. In the most general mass
configuration, it has been shown that any sunset can be
expressed in terms of at most four ML If some of the
masses are equal, then the number of MI reduces. On the
other hand, if any of the masses is set to zero, the sunset is
known to suffer from infrared problems. All the above
features contribute to the complexity of analyzing the
masses and decay constants in ChPT, where in the limit
of isospin invariance (m; = m,, e = 0), there are three
masses in the theory, namely m,, my and m,,.

Analytic treatments of the pion mass and decay constant
have been performed in [3,12], where due to strangeness
conservation, the only configuration not corresponding to a
pseudothreshold is a sunset with a kaon pair and an 7 in the
propagators. Since the pion mass is the smallest parameter
in the theory, it is possible in this case to provide an
expansion in this parameter to get the corresponding
analytic expression. On the other hand, for the eta, in
which a similar configuration appears, except with the pion
mass in the propagator and the eta mass in the external
momentum, it is not possible to expand in the small
parameter without encountering IR divergences. In the
case of the kaon, the sole configuration not of the
pseudothreshold type is one in which all the three particles
are present in the propagators. For the quantities of interest,
there are then two mass ratios present and one may wish to

provide a double series representation in these mass ratios.
In this work we have carried out precisely this exercise, by
introducing MB representation for the sunset diagrams at
hand (see [23] for details). Whereas for problems with a
single MB parameter, a simple approach exists which
allows one to carry out the evaluation and summation of
residues of poles, closing the contour in the complex plane
to the left or to the right, and then using simple ratio tests to
figure out the regions of convergence in the single
parameter, a more sophisticated analysis is required when
two or (especially) more MB parameters appear. The case
at hand is a concrete realization of this scenario with two
parameters. Our work follows several steps which will be
summarized now.

(1) We decompose the vector, tensor and derivative
sunsets integrals appearing in the expressions for
the mp and Fp by applying integration by parts to
express then in terms of the MI.

(2) The resulting MI are of various mass configurations,
and appear with up to three distinct mass scales.
Each of these MI are then evaluated by using MB
representations. The solutions of the one and two
mass scale MI appearing in this analysis can all be
written in closed form. The solutions of the three
mass scale master integrals, however, are expressed
as linear combinations of single and double infinite
series. The full results are given in Appendix B; see
also [1] for an equivalent rewriting of these results in
terms of Kampé de Fériet series. We show in
Appendix C how to get analytic results valid for
the pion case.

(3) We substitute the sunset integrals results into the
expressions of the mp and Fp.

(4) The GMO relation is then applied to these expres-
sions. As the GMO is a tree-level relation, and we
wish to express the mp and Fp in terms of physical
meson masses, this involves calculating and includ-
ing contributions from lower O(p*) terms to the
higher orders ones O(p®). The motivation for
applying the GMO relation stems partly from the
desire to provide simple expressions that can be
compared against lattice simulations, in which the
eta mass is generally calculated using the GMO
relation and is not an independent parameter.

(5) We isolate the contributions to the mp and Fp from
different terms, e.g. linear chiral log terms, bilinear
chiral logs, terms involving the O(p*) LEC, etc., to
determine their relative weight in the final expres-
sions of the masses and decay constants.

(6) The mp and Fp expressions for P = K, n without
application of the GMO relation, but separated into
terms of different classes, is given in Appendix A.

(7) A set of results are given for the three mass scale
sunsets that are truncations of the exact results, but
which are numerically close to the latter for the
lattice input sets of [31]. The approximate results for
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the sunsets appearing in the kaon and eta expressions
is given in Sec. V B, and those for the pion are given
in Appendix C. The numerical justification for some
of these approximations is presented in Sec. V.

(8) Also presented as an ancillary tool to this paper is a
Mathematica based code that allows one to obtain a
truncated expression for the three mass master
sunset integrals when the level of precision and
values of the input meson masses are provided. This
allows lattice practitioners, amongst others, to obtain
analytic approximations for the sunsets for any given
set of lattice inputs. These can then be used to
construct relatively compact analytic expressions for
easy comparison with lattice or experimental data.

(9) A numerical study is done in Sec. V for mg, Fg, m,
and F), to provide a breakup of the relative numerical
contributions to the NNLO part of their different
constituents. This shows that the sunset integral
contribution is significant.

(10) In Sec. V, we also numerically justify the use of our
GMO-simplified expressions by showing that the
error on various components constituting the NNLO
contribution due to the use of the GMO relation does
not exceed 5% in most cases, and that the final error
on the NNLO contribution is effectively zero for the
kaon mass, and very small for the kaon and eta decay
constants.

(11) We provide in Sec. VI a set of expressions for m,
m,, Fg and F, that can be easily fit with lattice data,
and in which the term that depends on the approxi-
mation of the loop integrals may easily be substi-
tuted by other approximations (calculated, for
example, using tools such as the aforementioned
Supplemental Material Mathematica files [26]).

(12) We also calculate values of my, Fg, m, and F),, and
see that the comparison of our results with prior
determinations shows good agreement when the
BE14 LEC values are used. When the free fit
LEC values are used, our results show some diver-
gence with some literature values.

In this paper, we adopt a phenomenology practitioners
perspective, and provide principally the final results that are
of relevance in this respect. The results given in
Appendix B, for example, are for the O(¢?) term, and
are only convergent for the values of mass ratios shown in
Fig. 2. In a forthcoming publication [23], we describe the
calculation of the three mass scale sunset integrals in detail,
and give the complete e-expansion for all possible values of
the meson masses.

An important field where analytic expressions may be of
use, and one which we have emphasised strongly in this
work, is in lattice QCD. In [I], the use of analytic
expressions to determine values of ChPT parameters was
demonstrated. Data from recent lattice simulations for my,
m,, Fg and F, is not publicly available, but we hope that

the expressions and tools provided in this work will
encourage and assist lattice practitioners to perform such
a cross-disciplinary study.
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APPENDIX A: EXPRESSIONS WITHOUT
THE USE OF GMO

We present here the expressions for the masses and
decay constants in which the physical eta mass has been
retained and not simplified by use of the GMO relation. We
give only those terms that change when the GMO relation
is used.

1. Kaon mass

The expression for the kaon mass, not simplified using
the GMO relation, is

6 6
M3 =+ (1)@ + () &+ (m)io +O(p®)

(A1)

where m? is given by Eq. (17), (m3)) is given by Eq. (19),

F2
"2 () = 8(m2 + 2m%) (2L — L) + 8m (2L — LY)
K
m* mm?
+ L 2 A2
2m% T 6m% " (42)
and
6
F;‘r(m%()l(oc))p = Cf- + clliij + cllgg XL; + Cllgg
+ cllggx log + Cgmset (A3)
where
27(167%)cf =108m L]
+3(122m8 — 16mEm? + 56m%mi)L}
+ (89m8 — dmym% +41m%m3) L5, (A4)
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c{f)g L, = —2mim2(48m3Ly + 12maL5 + 15m3aL5 — 4(8m% + 17m2)L; — 4(4m% + 3m2)L:

+ 8(8m% + 11m2)L; + 8(4m% + 3m2)LE)1,
— 4m% (36m% L} + 18m% L5 + 15m% L5 — 4(10m% + m2)L} — 16m3% L%
+ 8(8m% + m2)Ly + 32m3 L)1y
2
- §m%(48m%(4m§( —m2)L} + 12m% (4m% — m2)Ly + 21m% (4m% — m3) L}
+36m%(m2 — 8m% )L} — 4(28mYy — 3mikm2 + 2my)LL + 24m% (16m% — m2)L,

+96(2mY — 3mikm2 + my) Ly + 24(12m% — Tmikm2 + 2mE) LY,

3 13 45
(167°)cf, = <§ mamymz — Im‘}(m,z, - Bm%mﬁ‘,) I

487 9 3 7 3
- (—m%—l——mgm%——mzm‘}(—l—zlmzm%(m +4m§<m —|—16me )l’

9 9 .
+4me +4me (12)?

3 143 7 3
rmy +—mimy — 2m,%me +— 8 K+Z Km2—§m%<m )(IK)
2, 5 205 L, 4L, 227
= Bl = I
7 My 5 gy S my = e mymini + segmymy | (I;)*

2 2 2

24
P 43, 977\ L, (33 1SE (427 179
Coumset = 16,22 1 \128 384 )"K T \8 T ea )" T (3456 T 648 ) K
29 x? 9 4 3 3z 6 3 572 9. 4 3 57° 4.2
+(a‘3—z>’"n’" <+6_4) 8 6 )M \8 e )™

T+

N 209 2657%\ , , 67 +9n .
—_—— mygmy — | —— xm
1728 2592 ) K77 \384 ' 128

K K K
+ Cknrn + CKrm + CKmy’

mymy + — mamy.ms — — mam )l,rrl,;,

45 19 25 _ 15 4 13 _
= (33714 = 1g i + @mz)m@w - (; i = 3 = 3 ) B

+ A e my +39mm —I—lm mz—l—m my+ . H
16" TR 32 g "k Me T 3p MK Ma T 3y e ) ok

where ¢, is given by Eq. (22) and cf,, by Eq. (27).
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2. Kaon decay constant
The expression for the kaon decay constant, not simplified using the GMO relation, is

F
ol F& + (F)& + ()i + O(1%)
where
3 3 3
F2F\) = 4(2m2 + m2)L} + 4m% L — il =S mid = mil;

and (F K)éﬁT) is given by Eq. (32). We also have

F4(FK)I(0(>)p = dﬁ + d LixL; + dlog xL; + dllgg + dﬁgxlog + dgmset

where

~54(167%)d5 = (108my) L] + 6(61my — 8mym? + 28m?)L; + (89my — dm¥m? + 41m%)L5,

dK

1
+ (5 (4m% —m2)(16L; +4L5 + TLY) — (22m% — m2 )L}, — 3(m% + 2m,2,)Lg> mal,,

9 9 39 27 41 5
+ 27m —|—imm +2 +643 4+27 mim? +2m I
32 48 kKTg 142"k T 16K 32 k>
A5mim2  45mim: 103 9 51
K _ ntr notw 2.2 2.2 r\2
lOg“‘)g_<_32 w32 w32 e TgMkMa R >(l”)

27 , 11,

9 3 3 9
6™ ﬁmnm%+1m5m%+§m§< ;M ’2’+E )(lr)

ASmim? 45

+ —l——m“——ﬂ—gm +7mm (I)?
32 k16732 mk 6 2"

16 m 16 m%

w1 99 45T\ my (9 152\ mimi (1111 26387
et = (16222 \\16 128 ) m%  \16 128 m§< 256 ' 768 )"

(9 ISP\ mimk (67 1852\ L, (9 139
16~ 128 ) my \192 " 1728 )"k T4 T3ga )

+ ﬂ_i_?)i 4_|_ 2+9_”2 m_g_ i_&ﬂz mZm? + E_Fiﬂz
2304 32 8 128 m%( 192 192 K= 768 256

+ dKIUZ + d + dl(im’

Knn
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135 m 25 229 45 41 37 _
dx,, = < —L+Zm - )H)I(Om + <E my — —mamy, + —m‘}<> H s (A19)

=N

64 m% 16" " 576" 144

Ghms '8 mk 16

3 ]
2 Tt T3y T 1 Mk + g M | Hi
64ml 64 mi 64 " 32 mi 16 64 w2

27mymy  UTmymy 123 ) 9 mf 13 . 29\ i
I - ___”__ - A20
+( 2wk 6h mk ek " e 16" g | Hiam (A20)
where dL <L, is given by Eq. (35) and d%_. by Eq. (40).
3. Eta mass

The expression for the eta mass, not simplified using the GMO relation, is

M3 = m2 + (m2)@ + (m2) &) + (m2)\S) + O(p®) (A21)

where m; is given by Eq. (17), (m;) T) is given by Eq. (19),

F2 8 16
p~3 (m%)(4) = —8m}(2m% + mZ)L} + gm%(m,zr —4my)LL + ) (8m% + 2mixm2 — my)L
1
128 16
+ KR (m% — m2)2L5 + ?Lg(Sm‘}( —8mim2 + 3mk) — mil,
2 1
+ 5m§<(3m§ +m2)lk + §m§(7m,2, — 16m%)l; (A22)
and
6
F4( )](ogp = CL + CL XL + Clog xL; + Clog + Clogx]og + Csunset (A23)
where
AmSmZ  Smimt 7T mimb 1 md 2 41
(167%)crop = <_§ :12 3 :12 12 :12 + 16m2 2y + 3 migity = ﬂmf;) I
1 1
20m  10mSm2 5 mim? 82
+ (§m—§—§ ”;2 +5 ”;2 — 24m ?(Jr?m‘}(m —3mim? )z'
n 1 1
20my  14mGgmy  25mymy 262 T mgm§ 823
* <‘?m—g 3w 12l 23T T T age kM
1 mé 83 16 16 5 1
_Em—mm%mﬁ—kgmﬁ _Em‘}(m,zr—i—gm%mi—gmg) Iy, (A24)
n
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o _ _20m§<m,2, 22mbm} 29me6 I mim? m%m,z,_ﬂm‘,%mf, llme +3m2mt +65 AL
logxlog 3 my 3 my 12 my 4 my my 3 mp 12 m] ik 12
_2Om§<m,2r gm%mi_ﬁmeg 1m%<m§,_20m§( gm%m,z,
3 my 3 my 12 m 4 mp  3mi 3 m
61me4 1mimé 100 ¢ 11 4 2 23
T - _ - lr
o 12wz o kT Mkt ) (5)”
25 , 5, 55 , , 20m% 10m§mi: 5 mimi 2312 ,
+( 3 il g e 3m5 3 mg 12 mg AT
1636 619 8 4 1
40mém2  44mSmt  29mims lme8 m§m?2 28m‘}(mf, 1imim§ 32 , , 8 i
- - ——mymiz ——mym}
3 mi 3 omi 6 mi 2 om m: 3 om: 6 mp 3 KT 3R
4Om§(_20m§(m,2, Sme4 64 . +_8 ) 2 —Emﬁ —§m4m2
3m2 3 mE 6 mE 9 KT 9 K 9K
1 64 3
+3me )l;(l,; (Emzm,(mz_? ) nlr, (A25)
A 12 2{_(80+20ﬂ> K < > 3 < 1175) %4§
(167°) 3 9 12 n,
N 49+27r mygmy (7 . 7’ me§,+ 1 ml° + 91+177r2 mb
249 ) m} 12 °48) my  16m 6 9 m,27
71 2371 mbm2 (127  73z? me4 455
+
m} 96 ' 144 m,27 324
(45 llzr mKTé &_’_28712 i 2+Qm_2
144 m;, 648 = 243 384 m;,

1547 4927\ , (6095 767 s+ 8572 451\ ,
5184 1944 T 972 T 729 108~ 144) K"

+
2857 4577*\ , 1417  9lx 6 p p 0
— (==L . , A26
(2592 972 )m’( ” (7776 11664) Ma o+ Comn + Craen + Cak (A26)
m O m2  Smimt 20mé mim2 1 mim: 2 11 5
n 10__ My DMghty  ZUMg K K S Sy O )24
Ckkn = ( my my +8 my 3 m} m3 12 m; 3mK+ g "KM 24m nkk
40ms  20mGm2  Smimi: 56 44 5 64 16 _
+ (___K V'K K - 2m4 _ _mmem 4+ m2m4 + — ?{ m%m2>Hg KK (A27)
3 m%, 3 m% 6 m2 9 "M 9 6 9 9 g
4. Eta decay constant
The expression for the eta decay constant, not simplified using the GMO relation, is
=1+ R+ (F)8 + (Fio, + 0% (A28)

0

where
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4
F2FY) = 4(2m2 + m2)L; + 3 (4 = m2)LE = 3mily (A29)
and (F K)E:GT) is given by Eq. (32). We also have
F; (FK)I(oop = dK + d LixL; + dlog xL; + dll(()g + dllggxlog + dgmset (A30)
where
n, 2 my, 8 m C32mt m m, 6 m 48 m,7 8
m$ mm2  Smimt  4mS 10mim: 1 mim} 9
_lo_K 5 K'"'n K B iy Sl 1 - K™ 6 4 ) I
*( ST TR T O T 9 a2 a4 a2 ORI )
(1o ma 25wt Twnt 3k 4n 19mind 25w
. my 8 my 8 my 32my 9m; 9 m; 12 m;
3 , ., 19m¢ 3 i 550 mh 1331 s 2221
- — - — — Iy, A3l
+4m,7 K +48 my 4" +243 C 972 +3888 (A31)
m$ mém2  Smimt 9 8m& 4mimi 1mim? 3
dﬂ 10_[( -5 K% ~KT'm 24 2K TTKT'x K™ 3m 2 I
log xlog ( my m; 8 my +8m'7 O9m2 9 m +6 m3 —|—4mm ()
1Omf}(m2 T mgmy 29 mgmG  3mgmi _mgm: Em‘,tm“ 19 mgm§; 9 )y
m§ m§ 8 m§ 8 mf my 3 my 24 my 8
50 §<+1Om?(m2_§m‘}(mi Em_% §m‘}(m%_lmkm4 I
m,7 m,7 4 m3 9 m,% 9 m,% 3 ,7
1Omilimz 1 m%m4 n @m‘,‘(m,ﬁr 3 ém%(mg IOm—i 3 mGm2 @m‘,‘(mﬁ
m§ m§ 8 m§ 8 mf my, m 24 my
_Qm%{mg_§m_?(_é_1m‘}(m% lme4+3 4o Zm2m2 ) (1)
24 m} 9m2 9 md 6 m K
+ (=20 m§m?2 ) mGm _@m‘}(mg 3me8 +4m?(m2 22 mymi 1_9m%(m,6r
m m 4 md 4 mb m 3 md 12 mp
n n n n n n n
+12m Km,%) Ie 1, (A32)
1 1072 mim2 Nz m§ms (49 22\ mbm?
d! = 404+ — | =K _ (29 1+ 31 z 9 K T KMz
sunset (]677:2)2{( + 3 ) m” ( + ) 2 + < + 8 > m76] <16+ 3) mg
n 7 n a2\ mim$ 3 ml? 91 437r mb 151 497r mGm?2
8 32 m,? 32 mg f; 36 mf1L
125 n 13122\ mym? 301 4 197 1922 %(m?, 277m 572 23\ m$
192 288 my 192 288 m, 768 m 27 12
n 13 n n*\ mym? 331 n n?\ mim} n 59 . 7 mg n 12349 n 572 4
24z (=L RS B4 =L
4 18) m; 192 48) m; 384 72) m; 7776 ' 24 ) K
ot 4133\ , 6761  5x°
o il Itadl dl., + d! dle ., A33
* <48 7776> K (15552 * 96> } G ¥ Gy T Ak (A33)
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1 _ 1 mj
dZmy = <Emi> H2r]mr - (12 2> H)ig;m’ (A34)
my  15m§mZ  15mim: 28mS 10mim2 1mim: 8mk 2mim2 1mi 3 3 _
d! _ _15_1( K K 2K YK 'm K™z K _ K™"n T_ 2.2 > 2 yZis
Kkn < mg+2 m§ 16 m§ +3m3 3 mp "3 my o 9m? 9 m? +12m5 3"E 16" ) Mk
8 6 1,2 4 6 4.2 4
my mm2  Smpmr 88mS 28mim2 1mimi 8 2 5 501 4\
(202—10 4 +Z mi; —?mig‘l—? m% —6 2 +9 K—|—9me,,—Emﬂ HKK2I1’ (A35)
I 5m§( 9m§m?  A5mimiy  TmimS 3 md m&  10mpm2 55 mimi
HET\TmS 2 mb 16 m§ 8 m§ 32mb Tmi o 3 mi 24 m]

19mé 1my 1mim2 25mi 9
Mr Mg Mgy DO 70\ g
TRBwt T Im 6 M %6m 16’”) =KK

+(_20m}<0+25m§<m,2,_5_9m§(mj‘, 63mymf, 3mgmi 9 o TTmgm;

m$ m$ 4 m§ 16 mé 8 mf ke my

@m‘}(m“ 19 mgms m% 1 mimg 25me4) »

48 mi 16 mi  om2 3 m: 48 mi ) KK

_’_(_m%rgfti_m‘}(?g Emeg 3 m} +m?<m2 3me4+%m%(m,6[
mg m§ 16 m§  32mb " mi 2 mb 48 m)

Lok _Lni Lo _29nd) 6

A8mb 2 m2 6 m:  96mi) KK

where dZ.xL, is given by Eq. (35).

APPENDIX B: SUNSET INTEGRAL RESULTS

The results presented in this appendix have been checked by doing the calculations analytically in two different
ways (see [23] for details). They have also been checked numerically using AMBRE [34,35] and other related Mathematica
packages, as well as using CHIRON [36]. Equivalent expressions in terms of Kampé de Fériet series may be found in [1].
In the expressions below, as well as in those of Sec. 1V, the generalized hypergeometric function ,F' g is defined as
(see e.g. [29])

x:| _ i (al)m(az);n::'.((ap)m;_wz (Bl)

where (a),, is the Pochammer symbol defined by

(B2)
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1. Three mass scale kaon sunsets
_ m2 1 522 7(mé mt a2\ [m2  m? mt m2]  m2 m? 27> m2
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2. Three mass scale eta sunsets
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APPENDIX C: THE PION MASS AND DECAY CONSTANT

Analytic expressions for the pion mass and decay constant in ChPT at two loops are presented in [3]. The expressions
given there are approximations obtained by taking an expansion of the three mass scale sunsets around zero external
momentum p> = m2 = 0. To go beyond these approximations, one may use the exact result presented in Eq. (17) of [1], as
well as its derivatives, and substitute them into Egs. (28) and (46) of [3]. We would like to emphasize that it is proved in [23]
that although the expression in Eq. (B7) of the present paper and the one in Eq. (17) of [1] do not come from summing up
the same sets of residues in the Mellin-Barnes intermediate computations, each may be derived from the other by the swap
m2 < m% This is also true for Egs. (B8) and (B9) and their pion analogues.

In [1], some results of this paper and of [3] are used to obtain an expression for the quantity Fy/F,. An approximate
analytic expression that can be readily fit with lattice data is also presented there. The truncated three mass sunsets used to
produce Eqgs. (18) and (19) of [1] are
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