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It is conjectured that the average energy provides an upper bound on the rate at which the complexity of a
holographic boundary state grows. In this paper, we perturb a holographic CFT by a relevant operator with
a time-dependent coupling, and study the complexity of the time-dependent state using the complexity
equals action and the complexity equals volume conjectures. We find that the rate of complexification
according to both of these conjectures has UV divergences, whereas the instantaneous energy is UV finite.
This implies that neither the complexity equals action nor complexity equals volume conjecture is
consistent with the conjectured bound on the rate of complexification.
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I. INTRODUCTION

The complexity of a quantum state is defined as the
minimum number of gates that map a reference state to that
quantum state [1–3]. It was conjectured in [1,2] that the
growth of the complexity of a boundary CFT state as a
function of time is holographically dual to the stretching of
the interior of a black hole in the bulk. To make this
connection more concrete, various holographic definitions
for the complexity have been put forward. One such
proposal, known as the complexity equals action (CA)
conjecture, relates the holographic complexity with the
on-shell gravitational action of a certain bulk region [3,4].
This region, called the Wheeler-DeWitt (WDW) patch, is
defined as the domain of dependence of a bulk Cauchy
surface. More precisely, this conjecture states that the
complexity of a CFT state at time t is related to the on-
shell action of the WDW patch corresponding to time t,
AðtÞ, as [3,4]

CAðtÞ ¼
AðtÞ
π

: ð1:1Þ

Another such proposal relates the complexity with the
volume of an extremal Cauchy surface [5,6]. In particular,
it is conjectured that the complexity of a CFT state at time t
is related to the volume of an extremal Cauchy surface
anchored on the boundary at time t, VextðtÞ, according
to [5]

CVðtÞ≡ VextðtÞ
GlAdS

: ð1:2Þ

This proposal is called the complexity equals volume (CV)
conjecture.
The earliest checks [3,4] for these conjectures were the

observations that the rate of growth of these holographic
complexities at late times are consistent with a universal
bound by Lloyd. The Lloyd bound conjectures that the rate
of complexification is bounded from above by the energy
of the system [7]. That is,

d
dt

CðtÞ ≤ 2

π
E; ð1:3Þ

where E is the instantaneous average energy of the system.
The consistency of the holographic conjectures for complex-
ity, Eqs. (1.1) and (1.2), with the Lloyd conjecture, Eq. (1.3),
has been verified in various contexts; e.g., see [8–12].
However, some cases have been identified where the CA
conjecture and the Lloyd bound are not compatiblewith each
other [13–15]. Moreover, it has been argued that the holo-
graphic gates for which the CA conjecture is true do not
satisfy the assumptions of the Lloyd bound [16]. In particu-
lar, these holographic gates are infinitesimal unitary trans-
formations whereas the Lloyd bound is applicable for
quantum gates that map a state into an orthogonal state
[16]. Therefore, there is no reason to expect that the holo-
graphic complexity conjectures satisfy the Lloyd bound.
In this paper, our goal is to present another example

where the growth of the complexity computed using either
the CA or the CV conjecture does not respect the Lloyd
bound. More precisely, we consider starting from the
vacuum state of a (3þ 1)-dimensional CFT and perturb
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the Hamiltonian at t ¼ 0 by a relevant operator with a time-
dependent coupling. The Hamiltonian is given by

HðtÞ ¼ HCFT þ λðtÞO; ð1:4Þ

where λðt ≤ 0Þ ¼ 0. For simplicity, we only consider the
case where the conformal dimension of the relevant
operator is Δ ¼ 3. The subsequent state evolves according
to the perturbed Hamiltonian. We claim that the complexity
of the evolved state has time-dependent UV divergences.
As a result, the rate of complexification is UV divergent.
The instantaneous energy, on the other hand, is UV finite.
Therefore, it does not even make sense to compare the rate
of complexification with the instantaneous energy of the
state as required by the Lloyd bound. For this reason, we
consider this example to be a more violent violation of the
Lloyd bound than those discussed in [13–15].
This time-dependent perturbation of a CFT is described

using the anti–de Sitter (AdS)-CFT correspondence by the
introduction of a (tachyonic) scalar field in the bulk
[17–19]. The conformal dimension Δ of the relevant
operator fixes the mass whereas the coupling “constant”
λðtÞ fixes the boundary condition for this scalar field. The
scalar field backreacts on the bulk spacetime and changes
the bulk geometry. Since the boundary condition for the
scalar field is time dependent, the bulk geometry is also
time dependent. Consequently, the on-shell action of the
WDW patch and the volume of a Cauchy slice evolve as a
function of time.
The bulk geometry is determined by solving the

Einstein-Klein-Gordon equations in the bulk. Finding the
full solution of these equations is not an easy task. Luckily,
the UV divergences in the on-shell action of the WDW
patch and in the volume of a Cauchy slice only depend on
the asymptotic geometry near the boundary [20,21]. This
means that it is sufficient to solve the bulk equations
perturbatively in the radial coordinate. This method was
also used in [22,23] to investigate the UV divergences in
the entanglement entropy. We perform this perturbative
analysis in Sec. II.
We calculate the divergences in the rate of complex-

ification in Secs. III and IV. In Sec. III, we find the
divergences in the time derivative of the action of theWDW
patch. This allows us to use the CA conjecture to find the
divergences in the rate of complexification. In Sec. IV, we
find the Cauchy slice with maximum volume anchored on
the boundary at time t, and extract the divergences from
its volume. Combining this result with the CV conjecture
yields the divergences in the rate of complexification. We
find that the structure of the divergences in the complexity
is the same as those identified in [20,21] but the coefficients
of these divergences depend on the instantaneous value of
the coupling constant, λðtÞ.
The instantaneous energy of the boundary state is the

expectation value of the Hamiltonian in Eq. (1.4). Like any

other correlation function, the energy is a UV finite
quantity once the renormalization procedure is performed.
The response of the one-point function of the boundary
stress tensor to the time-dependent perturbation is studied
using the AdS-CFT correspondence in [24,25]. This
requires variation of the on-shell renormalized action of
the bulk theory with respect to the metric of the boundary.
For our purposes in this paper, the details of the time
dependence of the energy are not significant. All we need to
know for the violation of the Lloyd bound is the fact that
the energy is a UV finite quantity.

II. HOLOGRAPHIC SETUP

In this paper, we consider starting with a CFT (with a
holographic dual) and deforming it by a relevant operator
with a time-dependent coupling. The Hamiltonian of the
perturbed theory is given in Eq. (1.4). The time-dependent
perturbation of a CFT is studied extensively using the
AdS-CFT correspondence in [23–26]. According to the
AdS-CFT correspondence, a relevant operator on the boun-
dary is dual to a (tachyonic) scalar field in the bulk [17–19].
This means that perturbing the boundary CFT by a relevant
operator can be described by a scalar field in the bulk. The
mass of this scalar field is fixed by the conformal dimension
Δ of the relevant operator according to1 [17–19]

m2 ¼ ΔðΔ − 4Þ: ð2:1Þ

For simplicity, we only focus on the relevant operator with
conformal dimension Δ ¼ 3 in this paper. In this case, we
have m2 ¼ −3.
This scalar field couples with the metric in the bulk, and

the bulk theory is governed by the action [22–26]

A½Φ; g� ¼ 1

16πG

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12 −

1

2
ð∂ΦÞ2 − VðΦÞ

�

þ 1

8πG

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
K; ð2:2Þ

where

VðΦÞ ¼ −
3

2
Φ2 þ

X
n

1

n!
κnΦn: ð2:3Þ

The Newton’s constant that appears in the overall factor of
the action in Eq. (2.2) can be fixed by demanding that the
boundary two-point function ofO matches the holographic
two-point function. That is, we can read offG from [17–19]

hOðxÞOðyÞi ¼ 1

2π3G
1

jx − yj6 : ð2:4Þ

1We set lAdS ¼ 1.
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Similarly, the coupling constants κn in Eq. (2.3) can be
determined by comparing the boundary n-point functions
with the holographic n-point functions. The term in the
second line of Eq. (2.2) is the standard Gibbons-Hawking-
York (GHY) boundary term without which the gravitational
action does not have a well-defined variation [27]. No such
boundary term is required for the scalar field with the
Dirichlet boundary conditions [28].
The on-shell value of the action in Eq. (2.2) has UV

divergences, which arise because the volume element
diverges near the asymptotic boundary [29]. To regulate
these divergences, we need to introduce a cutoff surface
near the asymptotic boundary. To make a choice of the
cutoff surface, we choose to work with the Fefferman-
Graham coordinates in the bulk [30,31]. The most general
metric of the asymptotically local AdS spacetime in these
coordinates is2

ds2 ¼ 1

z2
ðdz2 þGμνðz; xÞdxμdxνÞ; ð2:5Þ

where z ¼ 0 is the asymptotic boundary. In these coor-
dinate systems, a convenient choice of a cutoff surface is
z ¼ δ.
The backreaction of the scalar field on the bulk geometry

is determined using the Einstein-Klein-Gordon equations
in the bulk. The variation of the action in Eq. (2.2) with
respect to the bulk metric yields

Rab þ 4gab −
1

2
∂aΦ∂bΦ −

1

3
gabVðΦÞ ¼ 0; ð2:6Þ

whereas the variation of the action with respect to the bulk
scalar yields

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
gab∂bΦÞ − δ

δΦ
VðΦÞ ¼ 0: ð2:7Þ

These equations should be solved simultaneously to deter-
mine the bulk metric in Eq. (2.5). However, Eq. (2.5) is the
most general metric of the asymptotically local AdS
spacetime. Since the perturbation of the boundary CFT
is homogeneous and isotropic, we expect the bulk metric to
have translation and rotational invariance in the transverse
directions. Therefore, we make the following ansatz for the
bulk metric3 [23],

ds2 ¼ 1

z2

�
dz2 − fðz; tÞdt2 þ hðz; tÞ

X3
i¼1

dx2i

�
; ð2:8Þ

with the boundary conditions

fðz ¼ 0; tÞ ¼ hðz ¼ 0; tÞ ¼ 1; ð2:9Þ

fðz; t ≤ 0Þ ¼ hðz; t ≤ 0Þ ¼ 1: ð2:10Þ

Finding the full bulk geometry and the profile of the bulk
scalar field is a difficult exercise. However, as emphasized
in Sec. I, we are only required to solve for the bulk metric
and the bulk scalar near the asymptotic boundary. This
allows us to expand the metric and the scalar field as a
power series in z and solve for the bulk equations
perturbatively. These perturbative solutions were studied
in detail in [22], where the powers of z that appear in the
asymptotic solutions of the bulk metric and the scalar field
were identified. Furthermore, it was shown in [22] that the
power series solution for the scalar field breaks down at
order zΔ and that for the bulk metric breaks down at order
zd, where d is the dimensions of the boundary. Using these
results, we write for d ¼ 4 and Δ ¼ 3

fðz; tÞ ¼ 1þ z2f2ðtÞ þ z3f3ðtÞ þ z4Fðz; tÞ; ð2:11Þ

hðz; tÞ ¼ 1þ z2h2ðtÞ þ z3h3ðtÞ þ z4Hðz; tÞ; ð2:12Þ

Φðz; tÞ ¼ zϕ0ðtÞ þ z2ϕ1ðtÞ þ z3Ψðz; tÞ; ð2:13Þ

with the boundary condition [17–19]

ϕ0ðtÞ ¼ λðtÞ: ð2:14Þ

As we see in Secs. III and IV, the nonperturbative part of
the solution, that is, Fðz; tÞ in Eq. (2.11), Hðz; tÞ in
Eq. (2.12), and Ψðz; tÞ in Eq. (2.13), does not contribute
to the divergences of either the action of the WDW patch or
the volume of a Cauchy slice. So for our purpose, we ignore
the nonperturbative part of the solutions and insert the
perturbative ansatz in the bulk equations. Expanding the
Klein-Gordon equation, Eq. (2.7), to leading order in z
and using Eq. (2.14) yields

ϕ1ðtÞ ¼ −
κ3
2
ϕ2
0ðtÞ ¼ −

κ3
2
λ2ðtÞ: ð2:15Þ

Similarly, expanding the zt component and tt component
of the Einstein’s equations, Eq. (2.6), to the leading order
yields

f2ðtÞ ¼ h2ðtÞ ¼ −
1

12
λ2ðtÞ; ð2:16Þ

whereas expanding these equations to next to leading order
yields

2We follow the index convention that the greek letters (μ; ν;…)
denote boundary coordinates and latin letters (a; b;…) corre-
spond to bulk coordinates.

3We denote bulk time coordinate by t and boundary time
coordinate by t.
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f3ðtÞ ¼ h3ðtÞ ¼
2

27
κ3λ

3ðtÞ: ð2:17Þ

This finishes our discussion of the time-dependent bulk
geometry due to the backreaction of the scalar field. As we
see in the next two sections, the asymptotic results in
Eqs. (2.15)–(2.17) are sufficient to calculate the divergen-
ces in the rate of complexification.

III. COMPLEXITY USING CA CONJECTURE

In this section, we calculate the UV divergences in the
rate of complexification using the CA conjecture. That is,
we extract the time-dependent UV divergences that appear
in the action of the WDW patch corresponding to the
boundary time t. Although the details of the WDW patch
depend on the geometry far into the bulk, we are only
concerned with the structure of the patch near the
asymptotic boundary. We find the WDW patch near the
asymptotic boundary in Sec. III A and study its action in
Sec. III B.

A. Wheeler-DeWitt patch near the asymptotic
boundary

TheWDW patch corresponding to the boundary time t is
defined as the domain of dependence of a bulk Cauchy slice
anchored to the boundary at time t. This means that near the
asymptotic boundary, the WDW patch is bounded by two
null hypersurfaces, _J�ðtÞ. The null hypersurface _JþðtÞ
( _J−ðtÞ) is the boundary of the future (past) of the time slice
t on the asymptotic boundary. Due to the translation
invariance in the transverse directions, these codimen-
sion-1 null hypersurfaces can simply be described by

_J�ðtÞ∶ t ¼ t�ðz; tÞ; ð3:1Þ
with the boundary condition t�ðz ¼ 0; tÞ ¼ t. Using the
form of the bulk metric in Eq. (2.8), we deduce that the
functions t�ðz; tÞ satisfy

d
dz

t�ðz; tÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðz; t�ðz; tÞÞ

p : ð3:2Þ

The perturbative solutions of these differential equations
can be determined using the series expansion of fðz; tÞ
from Eq. (2.11). Solving these equations order by order in z
and using Eqs. (2.16) and (2.17) yields

t�ðz; tÞ ¼ t� z� 1

72
z3λ2ðtÞ

þ 1

96
z4
�
∓ 24κ3

27
λ3ðtÞ þ d

dt
λ2ðtÞ

�
þOðz5Þ:

ð3:3Þ
As we discussed in Sec. II, we introduce a cutoff surface

near the asymptotic boundary at z ¼ δ to regulate the UV

divergences. This means that the WDW patch is also
bounded by this cutoff surface. So to summarize, the
WDW near the asymptotic boundary is the region bounded
by the following inequalities:

WDW patch∶ z ≥ δ; and t−ðz; tÞ ≤ t ≤ tþðz; tÞ: ð3:4Þ

After finding the WDW patch near the asymptotic
boundary, we study the action of this patch in the next
subsection.

B. Calculation of the action

In addition to the action of the bulk theory given in
Eq. (2.2), the action of the WDW patch also has contri-
butions from the null boundaries, _J�ðtÞ, and from the
corners where these null boundaries intersect the cutoff
boundary, z ¼ δ [32]. That is, the action of the WDW patch
is given by the sum

AðtÞ ¼ AbulkðtÞ þAboundariesðtÞ þAcornersðtÞ; ð3:5Þ

whereAboundaries andAcorners include all the boundaries and
all the corners, respectively. In the following, we first
consider all the terms in Eq. (3.5) separately and then add
them together to get the total action.
The bulk contribution to the action of the region in

Eq. (3.4) is given by

AbulkðtÞ ¼
1

16πG

Z
d3x

Z
δ
dz

Z
tþðz;tÞ

t−ðz;tÞ

× dt
ffiffiffiffiffiffi
−g

p �
Rþ 12 −

1

2
ð∂ΦÞ2 − VðΦÞ

�
: ð3:6Þ

Using the trace part of the Einstein’s equations, Eq. (2.6),
and using the form of the metric in Eq. (2.8), we write the
above expression as

AbulkðtÞ ¼
L3

16πG

Z
δ
dz

1

z5

Z
tþðz;tÞ

t−ðz;tÞ

× dtf1=2ðz; tÞh3=2ðz; tÞ
�
−8þ 2

3
VðΦÞ

�
; ð3:7Þ

where we have also defined

L3 ≡
Z

d3x ð3:8Þ

as the volume of our boundary system. Evaluating the
integrals in Eq. (3.7) is not possible without knowing an
explicit form of the time-dependent coupling, λðtÞ.
Nevertheless, we can still calculate the contribution of
the bulk action to the rate of complexification. To do this,
we take the time derivative of bulk contribution in Eq. (3.7).
This yields

MUDASSIR MOOSA PHYS. REV. D 97, 106016 (2018)

106016-4



d
dt

AbulkðtÞ ¼
L3

16πG

Z
δ
dz

1

z5

�
dtþðz; tÞ

dt

�
f1=2ðz; tÞh3=2ðz; tÞ

�
−8þ 2

3
VðΦÞ

������
t¼tþðz;tÞ

−
dt−ðz; tÞ

dt

�
f1=2ðz; tÞh3=2ðz; tÞ

�
−8þ 2

3
VðΦÞ

������
t¼t−ðz;tÞ

	
: ð3:9Þ

The integrand in the above expansion can be expanded as a
power series in z using Eqs. (2.11)–(2.13) and Eq. (3.3).
This allows us to extract the UV divergences in Eq. (3.9).
Performing this analysis and using Eqs. (2.14)–(2.17) gives
us the following time-dependent divergence in the bulk
action:

d
dt

AbulkðtÞ ¼
L3

36πG
1

δ

d
dt

λ2ðtÞ: ð3:10Þ

We now consider the boundary terms in the action,
Eq. (3.5). The region in Eq. (3.4) is bounded by three
boundaries. One of these in the timelike cutoff surface at
z ¼ δ, whereas the other two boundaries are null hyper-
surfaces, _J�ðtÞ. We first consider the contributions from the
null boundaries. This contribution is [32]

AnullðtÞ ¼ −
1

8πG

Z
_JþðtÞ

d3xdλþ
ffiffiffiffiffiffi
qþ

p ðκþ þ θþ log θþÞ

þ 1

8πG

Z
_J−ðtÞ

d3xdλ−
ffiffiffiffiffiffi
q−

p ðκ− þ θ− log θ−Þ;

ð3:11Þ

where λ� is a null parameter on _J�ðtÞ and
ffiffiffiffiffiffi
q�

p ¼ 1

z3
h3=2ðz; t�ðz; tÞÞ; ð3:12Þ

¼ 1

z3
−
1

8
λ2ðtÞ 1

z
þ
�
κ3
9
λ3ðtÞ ∓ 1

8

d
dt

λ2ðtÞ
�
þOðzÞ

ð3:13Þ

is the volume measure on a cross section of _J�ðtÞ. The
“surface gravity,” κ�, of a null generator ka� ≡ dxa=dλ� is
defined as

ka�∇akb� ≡ κ�kb�; ð3:14Þ

whereas the null expansion, θ�, is defined as

θ� ≡ d
dλ�

log
ffiffiffiffiffiffi
q�

p
: ð3:15Þ

Note that if we choose λ� to be an affine parameter, then κ�
vanishes and we only have to worry about the terms with
the null expansion. Therefore, we choose the null gener-
ators of _J�ðtÞ to be affine parametrized,

ka�ðtÞ ¼ N�ðz; tÞ
�
�z2ð∂zÞa þ

z2

f1=2ðz; t�ðz; tÞÞ
ð∂tÞa

�
;

ð3:16Þ

where N�ðz; tÞ near the asymptotic boundary is given by

N�ðz; tÞ ¼ 1þ 1

24
z2λ2ðtÞ

−
�
κ3
27

λ3ðtÞ ∓ 1

36

d
dt

λ2ðtÞ
�
z3 þOðz4Þ:

ð3:17Þ

With this choice of the parametrization, the null expansions
are

θ�ðz; tÞ ¼∓ 3z ∓ 3

8
z3λ2ðtÞ

þ
�
� 4

9
κ3λ

3ðtÞ − 11

24

d
dt

λ2ðtÞ
�
z4 þOðz5Þ:

ð3:18Þ

Using these asymptotic series expansions, we extract the
following divergences in Eq. (3.11),

AnullðtÞ ¼
L3

4πG

�
1þ 3 logð3δÞ

3δ3
þ 2 − logð3δÞ

8δ
λ2ðtÞ

þ 4κ3
9

log δλ3ðtÞ
�
; ð3:19Þ

where we have also used Eq. (3.8). We take the time
derivative of this result to get

d
dt
AnullðtÞ¼

L3

4πG

�
2− logð3δÞ

8δ

d
dt
λ2ðtÞþ4κ3

9
logδ

d
dt
λ3ðtÞ

�
:

ð3:20Þ

We now focus on the timelike cutoff boundary. The
action of this boundary is given by the standard GHY term

Az¼δðtÞ ¼
1

8πG

Z
d3x

Z
tþðδ;tÞ

t−ðδ;tÞ
dt

ffiffiffiffiffiffi
−γ

p
γab∇asb; ð3:21Þ

where
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sa ¼ −δð∂zÞa ð3:22Þ

is the normal vector to the cutoff surface and γab ≡ gab −
sasb is the inverse induced metric on the boundary.
Evaluating the integral in Eq. (3.21) is not possible.
Despite that, we can still calculate its contribution to the
rate of complexification. Taking the time derivative of
Eq. (3.21) yields

d
dt

Az¼δðtÞ ¼
L3

8πG

�
dtþðδ; tÞ

dt
ð ffiffiffiffiffiffi

−γ
p

γab∇asbÞjt¼tþðδ;tÞ

−
dt−ðδ; tÞ

dt
ð ffiffiffiffiffiffi

−γ
p

γab∇asbÞjt¼t−ðδ;tÞ

	
; ð3:23Þ

where we have also used Eq. (3.8). To extract the UV
divergences in Eq. (3.23), we simply expand the right-hand
side in the power series of δ. We get

d
dt

Az¼δðtÞ ¼ −
5L3

72πG
1

δ

d
dt

λ2ðtÞ: ð3:24Þ

Lastly, we consider the corner terms in the action,
Eq. (3.5). The corners that contribute to the divergences
in the action of the WDW patch are the codimension-2
surfaces where the cutoff surface intersects the null
boundaries, _J�ðtÞ. The action of these two corners is [32]

AcornersðtÞ ¼ −
1

8πG

Z
d3x

ffiffiffiffiffiffi
qþ

p
aþðtÞ

−
1

8πG

Z
d3x

ffiffiffiffiffiffi
q−

p
a−ðtÞ; ð3:25Þ

where the volume element is given by

ffiffiffiffiffiffi
q�

p ¼ 1

δ3
h3=2ðδ; t�ðδ; tÞÞ; ð3:26Þ

¼ 1

δ3
−
1

8
λ2ðtÞ 1

δ
þ
�
κ3
9
λ3ðtÞ ∓ 1

8

d
dt

λ2ðtÞ
�
þOðδÞ;

ð3:27Þ

and [32]

a�ðtÞ ¼ log js · k�jjz¼δ;t¼t�ðδ;tÞ: ð3:28Þ

Using the null vectors from Eq. (3.16) and normal vector
from Eq. (3.22), we get

a�ðtÞ ¼ log δþ 1

24
λ2ðtÞδ2 þOðδ3Þ: ð3:29Þ

We combine this result with Eq. (3.27) to simplify
Eq. (3.25) as

AcornersðtÞ ¼ −
L3

4πG

�
log δ
δ3

−
1

8
λ2ðtÞ log δ

δ
þ 1

24
λ2ðtÞ 1

δ

þ κ3
9
λ3ðtÞ log δ

�
: ð3:30Þ

We take the time derivative of this result to get

d
dt

AcornersðtÞ ¼
L3

32πG
log δ
δ

d
dt

λ2ðtÞ − L3

96πG
1

δ

d
dt

λ2ðtÞ

−
L3

36πG
κ3 log δ

d
dt

λ3ðtÞ: ð3:31Þ

To get the time-dependent divergences in the total action,
we add the contributions from the bulk in Eq. (3.10), null
boundaries in Eq. (3.20), cutoff boundary in Eq. (3.24),
and corners in Eq. (3.31). We get

d
dt

AðtÞ ¼ L3

96πG
1 − 3 logð3Þ

δ

d
dt

λ2ðtÞ

þ L3

12πG
κ3 log δ

d
dt

λ3ðtÞ: ð3:32Þ

The CA conjecture, Eq. (1.1), then implies that the UV
divergences in the rate of complexification at time t are

d
dt

CAðtÞ ¼
L3

96π2G
1 − 3 logð3Þ

δ

d
dt

λ2ðtÞ

þ L3

12π2G
κ3 log δ

d
dt

λ3ðtÞ: ð3:33Þ

This is one of the main results of this paper. This verifies
our claim from Sec. I that the rate of complexification of the
state following the time-dependent perturbation of a CFT
has UV divergences. As argued in Sec. I, this result violates
the Lloyd bound, Eq. (1.3). To see this, note that the
instantaneous energy of the state is UV finite [24,25].
Hence, it is meaningless to expect a bound between the UV
divergent rate of complexification and the UV finite energy
of the state.
We end this section by noting that the time-dependent

divergences in Eq. (3.33) can be removed by the addition of
an appropriate set of holographic counterterms in the total
action, Eq. (3.5). These counterterms would be similar to
those that appear in [25]. Therefore, we can save the Lloyd
bound, Eq. (1.3), if we define the holographic complexity
by the renormalized action of the WDW patch. However,
this would imply that the holographic complexity would be
UV finite for any state of a QFT. This is problematic if we
follow [33,34] and assume that the reference state is a
product state, i.e., it has no spatial entanglement, as we
would require a UV divergent number of quantum gates to
map this reference state to any target state.
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IV. COMPLEXITY USING CV CONJECTURE

In this section, we use the CV conjecture to calculate the
time-dependent UV divergences in the complexity of the
boundary state. Our approach here is to first find an
extremal Cauchy surface anchored on the boundary at
time t and then to extract the UV divergences in the volume
of that surface.
Due to translation symmetry in the transverse directions,

we consider a bulk Cauchy surface anchored on the
boundary at time t that can be described by

Σt∶ t ¼ Tðz; tÞ; ð4:1Þ

with the boundary conditions Tðz ¼ 0; tÞ ¼ t. The future-
directed normal vector to Σt is

na ¼ N ðð∂tÞa þ fðz; Tðz; tÞÞT 0ðz; tÞð∂zÞaÞ; ð4:2Þ

where prime denotes derivative with respect to z, and the
normalization factor

N −1 ¼ 1

z
f1=2ðz; Tðz; tÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðz; Tðz; tÞÞðT 0ðz; tÞÞ2

q
:

ð4:3Þ

The extrinsic curvature of Σt is defined as

KΣt
≡ hab∇anb; ð4:4Þ

where hab ≡ gab þ nanb is the inverse induced metric on
Σt. Finding an extremal bulk Cauchy surface is equivalent
to demanding that the extrinsic curvature in Eq. (4.4)
vanishes. This yields the following equation,

0 ¼
�
T 00 þ 1

2

f0

f
T 0 þ 1

2

_f
f
T 02 þ ð1 − fT 02Þ

×

�
1

2

f0

f
T 0 þ 3

2

h0

h
T 0 þ 3

2

1

f

_h
h
−
4

z
T 0
�	����

t¼Tðz;tÞ
; ð4:5Þ

where the dot denotes the derivative with respect to the bulk
time coordinate, t. Solving this equation for Tðz; tÞ is not
feasible. However, we are only interested in the profile of
the extremal Cauchy surface near the asymptotic boundary.
This means we only need to solve Eq. (4.5) perturbatively.
Demanding a series solution for Tðz; tÞ and solving
Eq. (4.5) order by order yields

Textðz; tÞ ¼ t −
1

32
z4

d
dt

λ2ðtÞ þOðz5Þ: ð4:6Þ

After finding the extremal surface near the asymptotic
boundary, we now find the divergences that appear in its
volume. The volume of this extremal surface is given by

VextðtÞ ¼
Z

d3x
Z
δ
dz

1

z4
h3=2ðz; Textðz; tÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðz; Textðz; tÞÞðT 0

extðz; tÞÞ2
q

: ð4:7Þ

Since the z dependence in Eq. (4.6) appears at z4 order, it
does not contribute to the divergences in Eq. (4.7).
Therefore, we simply replace Textðz; tÞ with t in Eq. (4.7)
and get

VextðtÞ ¼ L3

Z
δ
dz

1

z4
h3=2ðz; tÞ; ð4:8Þ

where we have also used Eq. (3.8). Using the series
expansion in Eq. (2.12) and using Eqs. (2.16) and
(2.17), we find that the divergences in the volume of the
extremal Cauchy surface are

VextðtÞ ¼
L3

3

1

δ3
−
L3

8

1

δ
λ2ðtÞ − L3κ3

9
log δλ3ðtÞ: ð4:9Þ

The CV conjecture, Eq. (1.2), then implies that the
divergences in the complexity at time t are

CVðtÞ ¼
L3

3G
1

δ3
−
L3

8G
1

δ
λ2ðtÞ − L3κ3

9G
log δλ3ðtÞ; ð4:10Þ

whereas the divergences in the rate of complexification are

d
dt

CVðtÞ ¼ −
L3

8G
1

δ

d
dt

λ2ðtÞ − L3κ3
9G

log δ
d
dt

λ3ðtÞ: ð4:11Þ

This is another main result of this paper. This result shows
that the CV conjecture, Eq. (1.2), and the Lloyd bound,
Eq. (1.3), are not consistent with each other. This follows
from the fact that the energy of the state after the time-
dependent perturbation is UV finite [24,25]. This means
that one of the sides of the Lloyd bound has UV
divergences, whereas the other side does not. Hence, the
bound is not satisfied.

V. DISCUSSION

Our goal in this paper was to present a simple example
where the holographic complexity computed either using
the CA conjecture, Eq. (1.1), or the CV conjecture,
Eq. (1.2), has time-dependent UV divergences. The exam-
ple that we studied was a time-dependent deformation of
a CFT Hamiltonian by a relevant operator with the
assumption that the system was initially in the ground
state of the unperturbed CFT. The bulk description of this
perturbation involves a scalar field which backreacts on the
bulk geometry [17–19]. Due to this backreaction, the bulk
geometry becomes time dependent. Since we were only
interested in the divergences in the holographic complexity,
we only had to calculate the backreaction of the scalar
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field near the asymptotic boundary in Sec. II. With the time-
dependent geometry near the asymptotic boundary, we
were able to use the CA conjecture in Sec. III to determine
the time-dependent divergences in the rate of complex-
ification. This result is given in Eq. (3.33). Similarly, we
used the CV conjecture in Sec. IV to find the divergences
that appear in the complexity. This result is given in
Eq. (4.11). We find that the structure of the divergences
in Eqs. (3.33) and (4.11) is the same as the one identified
in [20,21].
The significance of our result is that it shows that neither

the CA conjecture nor the CV conjecture is consistent with
the Lloyd bound, Eq. (1.3). The Lloyd bound demands that
the average energy of the system bounds the rate of
complexification from above. However, the energy of the
system following the time-dependent perturbation is a UV
finite quantity. The time dependence of the energy of the
perturbed system has been studied using the AdS-CFT

correspondence in [24,25]. Since the rate of complexification
according to both the CA conjecture and CV conjecture
is UV divergent, whereas the energy of the system is not, the
Lloyd bound cannot be satisfied. This is the main message
of this paper. Although, note that the inconsistency of the
CA conjecture and the Lloyd bound were also recently
discovered in [13–15].
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