
 

Role of neutrino mixing in accelerated proton decay
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The decay of accelerated protons has been analyzed both in the laboratory frame (where the proton is
accelerated) and in the comoving frame (where the proton is at rest and interacts with the Fulling-Davies-
Unruh thermal bath of electrons and neutrinos). The equality between the two rates has been exhibited as an
evidence of the necessity of Fulling-Davies-Unruh effect for the consistency of quantum field theory
formalism. Recently, it has been argued that neutrino mixing can spoil such a result, potentially opening
new scenarios in neutrino physics. In the present paper, we analyze in detail this problem, and we find that,
assuming flavor neutrinos to be fundamental and working within a certain approximation, the agreement
can be restored.
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I. INTRODUCTION

It was pointed out by Müller [1] that the decay properties
of particles can be changed by acceleration. In particular, it
was shown that usually forbidden processes such as the
decay of the proton become kinematically possible under
the influence of acceleration, thus leading to a finite
lifetime for even supposedly stable particles. Drawing
inspiration from this idea, Matsas and Vanzella [2–4]
analyzed the decay of uniformly accelerated protons in
both the laboratory and comoving frames, showing that the
two rates perfectly agree only when one considers
Minkowski vacuum to appear as a thermal bath of neutrinos
and electrons for the accelerated observer (comoving
frame). This has been exhibited1 as a “theoretical check”
of the Fulling-Davies-Unruh (FDU) effect [8], the impli-
cations in quantum field theory (QFT) of which are still a

matter of study [9,10]. For technical reasons, the analysis of
Refs. [2,4] was performed in two dimensions and taking the
neutrino to be massless. Subsequently, Suzuki and Yamada
[11] confirmed these results by extending the discussion to
the four-dimensional case with a massive neutrino.
Recently, Ahluwalia et al. [12] made the very intriguing

observation that neutrino mixing can have nontrivial
consequences in this context. They indeed found that the
decay rates in the two frames could possibly not agree due
to mixing terms; in particular, this happens when neutrinos’
mass eigenstates are taken as asymptotic states in the
comoving frame, a choice that is compatible with the Kubo-
Martin-Schwinger (KMS) condition for thermal states
[6,13]. On the other hand, the authors of Ref. [12] also
affirmed that the choice of flavor states in the above
calculation would lead to an equality of the two decay
rates, but in that case, the accelerated neutrino vacuum
would not be thermal, contradicting the essential character-
istic of the FDU effect. They finally concluded that such a
contradiction has to be resolved experimentally.
Motivated by the idea that the above question must

instead be settled at a theoretical level in order to guarantee
the consistency of the theory in conformity with the
principle of general covariance, in this paper, we carefully
analyze the proton decay process in the presence of
neutrino mixing. We show that in Ref. [12] calculations
performed in the laboratory frame neglected an important
contribution that is explicitly evaluated here. Then, we
prove that the choice of neutrinos with definite masses as
asymptotic states (in the comoving frame) inevitably leads
to a disagreement of the two decay rates. Finally, we
consider the case in which flavor states are taken into
account; here, technical difficulties that do not allow for an
exact evaluation of the decay rates arise. However, adopting
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1Similar arguments apply, for example, to the analysis of the
QED bremsstrahlung radiation. In this case, it has been shown
that the emission of a photon by accelerated charges in the inertial
frame can be seen as either the emission or the absorption of a
zero-energy photon in the FDU thermal bath of the comoving
observer [5,6]. A closely related discussion about whether or not
uniformly accelerated charges emit radiation according to inertial
observers can be found in Refs. [7], in which the problem is
addressed in a classical context.
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an appropriate approximation, we show that they perfectly
match again.
These conclusions are in line with results on the

quantization for mixed neutrino fields, whereby flavor
states are rigorously defined as eigenstates of the leptonic
charge operators [14]. Although the usual Pontecorvo states
turn out to be a good approximation of the exact flavor
eigenstates in the ultrarelativistic limit, the Hilbert space
associated to flavor neutrinos is actually orthogonal to the
one for massive neutrinos [15]. Consistency with the
Standard Model (SM) requires conservation (at tree level)
of the leptonic number in the charged current weak
interaction vertices, thus ruling out the choice of neutrino
mass eigenstates as asymptotic states.
Results of the present paper corroborate this view,

although further investigation is needed to go beyond
the aforementioned approximation. In particular, when
employing the exact neutrino flavor states, one should
take into account the nonthermal character of Unruh
radiation, as recently discussed in Refs. [16,17].
The paper is organized as follows. Section II is devoted to

briefly reviewing the standard calculation of the proton decay
rate in both the inertial and comoving frames. For this
purpose, we closely follow Ref. [11]. In Sec. III, we analyze
the same process in the context of neutrino flavor mixing.
Working within a suitable framework, we show that the
decay rates agree with each other. Our results shall thus be
critically compared with the ones of Ref. [12], in which a
contradiction is instead highlighted. Section IV contains
conclusions and an outlook at future developments of
present work.
Throughout the paper, we use natural units ℏ ¼ c ¼ 1

and the Minkowski metric with the conventional timelike
signature:

ημν ¼ diagðþ1;−1;−1;−1Þ: ð1Þ

II. DECAY OF ACCELERATED PROTONS:
A BRIEF REVIEW

In this section, we discuss the decay of accelerated
protons in both the laboratory and comoving frames.
Throughout the whole analysis, the neutron jni and proton
jpi are considered as excited and unexcited states of the
nucleon, respectively. Moreover, we assume that they are
energetic enough to have a well-defined trajectory. As a
consequence, the current-current interaction of Fermi
theory can be treated with a classical hadronic current

ĴμlĴh;μ → ĴμlĴ
ðclÞ
h;μ , where

ĴðclÞh;μ ¼ q̂ðτÞuμδðxÞδðyÞδðu − a−1Þ: ð2Þ

Here, u ¼ a−1 ¼ const is the spatial Rindler coordinate
describing the world line of the uniformly accelerated

nucleon with proper acceleration a, and τ ¼ v=a is its
proper time, with v being the Rindler time coordinate. The
nucleon’s 4-velocity uμ is given by

uμ ¼ ða; 0; 0; 0Þ; uμ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2t2 þ 1

p
; 0; 0; atÞ; ð3Þ

in Rindler and Minkowski coordinates, respectively.2

According to Refs. [2,18], the Hermitian monopole q̂ðτÞ
is defined as

q̂ðτÞ≡ eiĤτq̂0e−iĤτ; ð4Þ
where Ĥ is the nucleon Hamiltonian and q̂0 is related to the
Fermi constant GF by

GF ≡ hpjq̂0jni: ð5Þ
Next, the minimal coupling of the electron Ψ̂e and

neutrino Ψ̂νe fields to the nucleon current ĴðclÞh;μ can be
expressed through the Fermi action

ŜI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ĴðclÞh;μ ð ˆ̄Ψνeγ

μΨ̂e þ ˆ̄Ψeγ
μΨ̂νeÞ; ð6Þ

where g≡ detðgμνÞ and γμ are the gamma matrices in the
Dirac representation (see, e.g., Ref. [19]).

A. Inertial frame calculation

Let us first analyze the decay process in the inertial
frame. In this case, the proton is accelerated by an external
field and converts into a neutron by emitting a positron and
a neutrino, according to

p → nþ eþ þ νe: ð7Þ
To calculate the transition rate, we quantize fermionic fields
in the usual way [3],

Ψ̂ðt;xÞ ¼
X
σ¼�

Z
d3k½b̂kσψ ðþωÞ

kσ ðt;xÞ þ d̂†kσψ
ð−ωÞ
−k−σðt;xÞ�;

ð8Þ
where x≡ ðx; y; zÞ. Here, we have denoted by b̂kσ (d̂kσ)
the canonical annihilation operators of fermions (antifer-
mions) with momentum k≡ ðkx; ky; kzÞ, polarization
σ ¼ �, and frequency ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
> 0, m being the

mass of the field. The modes ψ ð�ωÞ
kσ are positive- and

negative-energy solutions of the Dirac equation in
Minkowski spacetime:

ðiγμ∂μ −mÞψ ð�ωÞ
kσ ðt;xÞ ¼ 0: ð9Þ

2We assume that the proton is accelerated along the z direction.
Hence, the Rindler coordinates ðv; x; y; uÞ are related with the
Minkowski coordinates ðt; x; y; zÞ by t ¼ u sinh v, z ¼ u cosh v,
with x and y left unchanged.
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In the adopted representation of γ matrices, they take the
form [3]

ψ ð�ωÞ
kσ ðt;xÞ ¼ eið∓ωtþk·xÞ

22π
3
2

uð�ωÞ
σ ðkÞ; ð10Þ

where

uð�ωÞ
þ ðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðω�mÞp
0
BBB@

m� ω

0

kz

kx þ iky

1
CCCA;

uð�ωÞ
− ðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðω�mÞp
0
BBB@

0

m� ω

kx − iky

−kz

1
CCCA: ð11Þ

It is easy to show that the modes Eq. (10) are orthonormal
with respect to the inner product

hψ ð�ωÞ
kσ ;ψ ð�ω0Þ

k0σ0 i ¼
Z
Σ
dΣμψ̄

ð�ωÞ
kσ γμψ ð�ω0Þ

k0σ0

¼ δσσ0δ
3ðk − k0Þδ�ω�ω0 ; ð12Þ

where ψ̄ ¼ ψ†γ0 and dΣμ ¼ nμdΣ, with nμ being a unit
vector orthogonal to the arbitrary spacelike hypersurface Σ
and pointing to the future.
Next, by using the definition, Eq. (6), of the Fermi action

and expanding leptonic fields according to Eq. (8), we
obtain the expression for the tree-level transition amplitude,

Ap→n
in ≡ hnj⊗ heþkeσe ;νkνσν jŜIj0i⊗ jpi¼ GF

24π3
Iσνσeðων;ωeÞ;

ð13Þ

where

Iσνσeðων;ωeÞ ¼
Z þ∞

−∞
dτei½Δmτþa−1ðωνþωeÞ sinh aτ−a−1ðkzνþkzeÞ coshaτ�uμ½ūðþωνÞ

σν γμuð−ωeÞ
−σe �: ð14Þ

Here, Δm is the difference between the nucleon masses. By defining the differential transition rate as

d6Pp→n
in

d3kνd3ke
≡ X

σν;σe

jAp→n
in j2 ¼ G2

F

28π6

Z þ∞

−∞
dτ1

Z þ∞

−∞
dτ2uμuν

X
σν;σe

½ūðþωνÞ
σν γμuð−ωeÞ

−σe �½ūðþωνÞ
σν γνuð−ωeÞ

−σe ��

× ei½Δmðτ1−τ2Þþa−1ðωνþωeÞðsinh aτ1−sinh aτ2Þ−a−1ðkzνþkzeÞðcosh aτ1−coshaτ2Þ�; ð15Þ
the total transition rate is simply given by

Γp→n
in ¼ Pp→n

in =T; ð16Þ
where T ¼ Rþ∞

−∞ ds is the nucleon proper time. The above integrals can be solved by introducing the new variables

τ1 ¼ sþ ξ=2; τ2 ¼ s − ξ=2 ð17Þ
and using the spin sum

uμuν
X
σν;σe

½ūðþωνÞ
σν γμuð−ωeÞ

−σe �½ūðþωνÞ
σν γνuð−ωeÞ

−σe �� ¼ 22

ωνωe
½ðωνωe þ kzνkzeÞ cosh 2as − ðωνkze þ ωekzνÞ sinh 2as

þ ðkxνkxe þ kyνk
y
e −mνmeÞ cosh aξ�: ð18Þ

By explicit calculation, we obtain

Γp→n
in ¼ G2

F

aπ6eπΔm=a

Z
d3kν

Z
d3ke

�
K2iΔm=a

�
2ðων þ ωeÞ

a

�
þmνme

ωνωe
Re

�
K2iΔm=aþ2

�
2ðων þ ωeÞ

a

���
: ð19Þ

The analytic evaluation of the integral Eq. (19) can be found in Ref. [11].

B. Comoving frame calculation

We now analyze the same decay process in the proton comoving frame. As is well known, the natural manifold to
describe phenomena for uniformly accelerated observers is the Rindler wedge, i.e., the Minkowski spacetime region defined
by z > jtj. Within such a manifold, fermionic fields are expanded in terms of the positive- and negative-frequency solutions
of the Dirac equation with respect to the boost Killing vector ∂=∂v [11],
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Ψ̂ðv;xÞ ¼
X
σ¼�

Z þ∞

0

dω
Z

d2k½b̂wσψ ðþωÞ
wσ ðv;xÞ

þ d̂†wσψ
ð−ωÞ
w−σ ðv;xÞ�; ð20Þ

where now x≡ ðx; y; uÞ and w≡ ðω; kx; kyÞ. We recall that
the Rindler frequency ω may assume arbitrary positive real
values. In particular, unlike the inertial case, there are
massive Rindler particles with zero frequency.

The modes ψ ð�ωÞ
kσ in Eq. (20) are positive- and negative-

energy solutions of the Dirac equation in Rindler space-
time,

ðiγμR∇̃μ −mÞψ ðωÞ
wσ ðv;xÞ ¼ 0; ð21Þ

where

γμR ≡ ðeνÞμγν; ðe0Þμ ¼ u−1δμ0; ðeiÞμ ¼ δμi ;

∇̃μ ≡ ∂μ þ
1

8
½γα; γβ�ðeαÞλ∇μðeβÞλ: ð22Þ

By virtue of these relations and using the Rindler coor-
dinates, Eq. (21) becomes

i
∂ψ ðωÞ

wσ ðv;xÞ
∂v ¼

�
γ0mu −

iα3

2
− iuαi∂i

�
ψ ðωÞ
wσ ðv;xÞ;

αi ¼ γ0γi; i ¼ 1; 2; 3; ð23Þ

the solutions of which can be written in the form [11]

ψ ðωÞ
wσ ðv;xÞ ¼ eið−ωv=aþkαxαÞ

ð2πÞ32 uðωÞσ ðu;wÞ; α ¼ 1; 2; ð24Þ

with

uðωÞþ ðu;wÞ ¼ N

0
BBB@

ilKiω=a−1=2ðulÞ þmKiω=aþ1=2ðulÞ
−ðkx þ ikyÞKiω=aþ1=2ðulÞ

ilKiω=a−1=2ðulÞ −mKiω=aþ1=2ðulÞ
−ðkx þ ikyÞKiω=aþ1=2ðulÞ

1
CCCA;

uðωÞ− ðu;wÞ ¼ N

0
BBB@

ðkx − ikyÞKiωþ1=2ðulÞ
ilKiω=a−1=2ðulÞ þmKiω=aþ1=2ðulÞ

−ðkx − ikyÞKiωþ1=2ðulÞ
−ilKiω=a−1=2ðulÞ þmKiω=aþ1=2ðulÞ

1
CCCA:

ð25Þ

Here, we have denoted by Kiω=aþ1=2ðulÞ the modified
Bessel function of the second kind with complex order,

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a coshðπω=aÞ

πl

q
and l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðkxÞ2 þ ðkyÞ2

p
. Again,

one can verify that the modes in Eq. (24) are normalized
with respect to the inner product, Eq. (12), expressed in
Rindler coordinates.

As will be shown, in the comoving frame, the proton
decay is represented as the combination of the three
following processes in terms of the Rindler particles [2]:

ðiÞpþ þ e− → nþ νe;

ðiiÞpþ þ ν̄e → nþ eþ;

ðiiiÞpþ þ e− þ ν̄e → n: ð26Þ
These processes are characterized by the conversion of
protons in neutrons due to the absorption of e− and ν̄e and
emission of eþ and ν̄e from and to the FDU thermal bath
[8]. Since the strategy for calculating the transition ampli-
tude is the same for each of these processes, by way of
illustration, we shall focus on the first.
By exploiting the Rindler expansion, Eq. (20), for the

electron and neutrino fields, it can be shown that

Ap→n
ðiÞ ≡ hnj ⊗ hνωνσν jŜIje−ωe−σe− i ⊗ jpi

¼ GF

ð2πÞ2 J σνσeðων;ωeÞ; ð27Þ

where ŜI is given by Eq. (6) with γμ replaced by the Rindler
gamma matrices γμR defined in Eq. (22) and

J σνσeðων;ωeÞ ¼ δðωe − ων − ΔmÞūðωνÞ
σν γ0uðωeÞ

σe : ð28Þ
Now, bearing in mind that the probability for the proton

to absorb (emit) a particle of frequency ω from (to) the
thermal bath is nFðωÞ ¼ 1

e2πω=aþ1
ð1 − nFðωÞÞ [2–4], the

differential transition rate per unit time for process i can be
readily evaluated, thus leading to

1

T

d6Pp→n
ðiÞ

dωνdωed2kνd2ke

≡ 1

T

X
σν;σe

jAp→n
ðiÞ j2nFðωeÞ½1 − nFðωνÞ�

¼ G2
F

27π5

P
σν;σe jū

ðωνÞ
σν γ0uðωeÞ

σe j2δðωe − ων − ΔmÞ
eπΔm=a coshðπων=aÞ coshðπωe=aÞ

; ð29Þ

where T ¼ 2πδð0Þ is the total proper time of the proton. To
finalize the evaluation of the transition rate, we observe thatX
σν;σe

jūðωνÞ
σν γ0uðωeÞ

σe j2

¼ 24

ðaπÞ2 coshðπων=aÞ coshðπωe=aÞ

×

�
lνle

				Kiων=aþ1=2

�
lν
a

�
Kiωe=aþ1=2

�
le
a

�				
2

þ ðkxνkxe þ kyνk
y
e þmνmeÞ

× Re

�
K2

iων=a−1=2

�
lν
a

�
K2

iωe=aþ1=2

�
le
a

���
: ð30Þ

Using this equation, the differential transition rate for
process i takes the form
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1

T

d6Pp→n
ðiÞ

dωνdωed2kνd2ke
≡ G2

F

23a2π7eπΔm=a δðωe − ων − ΔmÞ
�
lνle

				Kiων=aþ1=2

�
lν
a

�
Kiωe=aþ1=2

�
le
a

�				
2

þmνmeRe

�
K2

iων=a−1=2

�
lν
a

�
K2

iωe=aþ1=2

�
le
a

���
: ð31Þ

Next, by performing a similar calculation for the proc-
esses ii and iii and adding up the three contributions, we
end up with the integral expression for the total decay rate
in the comoving frame,

Γp→n
acc ≡ Γp→n

ðiÞ þ Γp→n
ðiiÞ þ Γp→n

ðiiiÞ

¼ 2G2
F

a2π7eπΔm=a

Z þ∞

−∞
dωRðωÞ; ð32Þ

where

RðωÞ ¼
Z

d2kνlν

				Kiðω−ΔmÞ=aþ1=2

�
lν
a

�				
2

×
Z

d2kele

				Kiω=aþ1=2

�
le
a

�				
2

þmνmeRe

�Z
d2kνK2

iðω−ΔmÞ=a−1=2

�
lν
a

�

×
Z

d2keK2
iω=aþ1=2

�
le
a

��
: ð33Þ

The analytic resolution of the integral Eq. (32) is performed
in Ref. [11]. Comparing this result to the one in the inertial
frame [Eq. (19)], it is possible to show that the resulting
expressions for the decay rates perfectly agree with each
other, thus corroborating the necessity of the FDU effect for
the consistency of QFT.

III. PROTON DECAY INVOLVING
MIXED NEUTRINOS

So far, in the evaluation of the transition amplitude, we
have treated the electron neutrino as a particle with definite
mass mν. However, it is well known that neutrinos exhibit
flavor mixing; in a simplified two-flavor model, by denot-
ing with θ the mixing angle, the transformations relating the
flavor eigenstates jνli (l ¼ e, μ) and mass eigenstates jνii
(i ¼ 1, 2) are determined by the Pontecorvo unitary mixing
matrix3 [20]

� jνei
jνμi

�
¼

�
cos θ sin θ

− sin θ cos θ

�� jν1i
jν2i

�
: ð34Þ

Along the lines of Ref. [12], the question thus arises
whether such a transformation is consistent with the
framework of Sec. II.

A. Inertial frame

Let us then implement the Pontecorvo rotation, Eq. (34),
on both the neutrino fields and states appearing in Eq. (13).
Note that in Ref. [12] this step is missing in the inertial
frame calculation since Ψ̂νe is treated as a free field even
when taking into account flavor mixing, and indeed the
same result as in the case of unmixed fields is obtained. We
explicitly show that the decay rate exhibits a dependence on
θ in the inertial frame, a feature that is not present in the
analysis of Ref. [12].
By assuming equal momenta and polarizations for the

two neutrino mass eigenstates, the transition amplitude,
Eq. (13), now becomes

Ap→n
in ¼ GF

24π3

�
cos2θIσνσeðων1 ;ωeÞþ sin2θIσνσeðων2 ;ωeÞ

�
;

ð35Þ

where Iσνσeðωνj ;ωeÞ, j ¼ 1, 2, is defined as in Eq. (14) for
each of the two mass eigenstates and we have rotated the
electron neutrino field according to

Ψ̂νeðt;xÞ ¼ cos θΨ̂ν1ðt;xÞ þ sin θΨ̂ν2ðt;xÞ: ð36Þ

Using Eq. (15), the differential transition rate takes the form

d6Pp→n
in

d3kνd3ke
¼

X
σν;σe

GF
2

28π6

�
cos4θjIσνσeðων1 ;ωeÞj2

þ sin4θjIσνσeðων2 ;ωeÞj2
þ cos2θsin2θ½Iσνσeðων1 ;ωeÞ

× I�
σνσeðων2 ;ωeÞ þ c:c:�

�
: ð37Þ

The total decay rate Γp→n
in is obtained after inserting this

equation into the definition, Eq. (16),

Γp→n
in ¼ cos4θΓp→n

1 þ sin4θΓp→n
2 þ cos2θsin2θΓp→n

12 ; ð38Þ

where we have introduced the shorthand notation
3Note that the number of neutrino generations does not affect

the results of our analysis.
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Γp→n
j ≡ 1

T

X
σν;σe

GF
2

28π6

Z
d3kν

Z
d3kejIσνσeðωνj ;ωeÞj2;

j ¼ 1; 2; ð39Þ
and

Γp→n
12 ≡ 1

T

X
σν;σe

GF
2

28π6

Z
d3kν

Z
d3ke½Iσνσeðων1 ;ωeÞ

× I�
σνσeðων2 ;ωeÞ þ c:c:�: ð40Þ

We observe that, for θ → 0, the obtained result correctly
reduces to Eq. (19), as it should in the absence of mixing.
Unfortunately, because of technical difficulties in the
evaluation of the integral, Eq. (40), at this stage, we are

not able to give the exact expression of the inertial decay
rate, Eq. (38). A preliminary result, however, can be
obtained in the limit of small neutrino mass difference
δm
mν1

≡ mν2
−mν1
mν1

≪ 1. In this case, indeed, we can expand

Γp→n
12 according to

Γp→n
12 ¼ 2Γp→n

1 þ δm
mν1

Γð1Þ þO
�
δm2

m2
ν1

�
; ð41Þ

where Γp→n
1 is defined as in Eq. (39) and we have denoted

by Γð1Þ the first-order term of the Taylor expansion. The
explicit expression of Γð1Þ is rather awkward to exhibit.
Nevertheless, for mν1 → 0, it can be substantially simpli-
fied, thus giving

Γð1Þ

mν1

¼ 1

T
GF

2me

27π6

Z
d3kν
jkνj

Z
d3ke
ωe

Z þ∞

−∞
ds

Z þ∞

−∞
dξ coshaξ½eifΔmξþ2 sinh aξ=2

a ½ðjkνjþωeÞ coshas−ðkzνþkzeÞ sinh as�g þ c:c:�; ð42Þ

where s and ξ are defined in Eq. (17). By performing a boost along the z direction,

k0xl ¼ kxl; k0yl ¼ kyl; k0zl ¼ −ωl sinh asþ kzl coshas; l ¼ ν1; e; ð43Þ
Equation (42) can be cast in the form

Γð1Þ

mν1

¼ lim
ε→0

2G2
Fme

aπ6eπΔm=a

Z
d3kν
ωε

Z
d3ke
ωe

Re

�
K2iΔm=aþ2

�
2ðωε þ ωeÞ

a

��
; ð44Þ

where ωε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
ν þ ε2

p
, with ε acting as a regulator. To perform k integration, we use the representation of the modified

Bessel function

KμðzÞ ¼
1

2

Z
C1

ds
2πi

Γð−sÞΓð−s − μÞ
�
z
2

�
2sþμ

; ð45Þ

where Γ is the Euler’s Gamma function. C1 is the path in the complex plane including all the poles of Γð−sÞ and Γð−s − μÞ,
chosen in such a way that the integration with respect to the momentum variables does not diverge [11].
Using spherical coordinates, Eq. (44) becomes

Γð1Þ

mν1

¼ lim
ε→0

23G2
Fme

aπ4eπΔm=a

Z þ∞

0

dkν
k2ν
ωε

Z þ∞

0

dke
k2e
ωe

Z
Cs

ds
2πi

�
ωε þ ωe

a

�
2s

×

�
Γ
�
−sþ iΔm

a
þ 1

�
Γ
�
−s −

iΔm
a

− 1

�
þ Γ

�
−sþ iΔm

a
− 1

�
Γ
�
−s −

iΔm
a

þ 1

��
: ð46Þ

Let us observe at this point that [11]�
ωε þ ωe

a

�
2s
¼

Z
C2

dt
2πi

Γð−tÞΓðt − 2sÞ
Γð−2sÞ

�
ωε

a

�
−tþ2s

�
ωe

a

�
t
; ð47Þ

where C2 is the contour in the complex plane separating the poles of Γð−tÞ from the ones of Γðt − 2sÞ. Exploiting this
relation and properly redefining the integration variables, we finally obtain

Γð1Þ

mν1

¼ lim
ε→0

G2
Fmea3

π3eπΔm=a

Z
Cs

ds
2πi

Z
Ct

dt
2πi

�
ε

a

�
2sþ2

�
me

a

�
2tþ2 Γð−2sÞΓð−2tÞΓð−t − 1ÞΓð−s − 1Þ

Γð−sþ 1
2
ÞΓð−tþ 1

2
ÞΓð−2s − 2tÞ

×

�
Γ
�
−s − tþ 1þ i

Δm
a

�
Γ
�
−s − t − 1 − i

Δm
a

�
þ Γ

�
−s − tþ 1 − i

Δm
a

�
Γ
�
−s − t − 1þ i

Δm
a

��
; ð48Þ

where the contour CsðtÞ includes all poles of gamma functions in the s (t) complex plane.
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From Eqs. (41) and (48), we thus infer that the off-
diagonal term Γp→n

12 is nonvanishing, thereby leading to a
structure of the inertial decay rate, Eq. (38), that is different
from the corresponding one in Ref. [12].

B. Comoving frame calculation

Let us now extend the above discussion to the proton
comoving frame. As done in the inertial case, we require
the asymptotic neutrino states to be flavor eigenstates (the
choice of mass eigenstates would inevitably lead to a
contradiction, as shown in the Appendix). Note that the
same assumption is contemplated also in Ref. [12]. In spite
of this, those authors excluded such an alternative on the
basis of the KMS condition, claiming that the accelerated
neutrino vacuum must be a thermal state of neutrinos with
definite masses rather than definite flavors. Actually, this

argument does not apply, at least within the first-order
approximation with which we are dealing [see Eq. (41)].
Indeed, as shown in Refs. [16,17], nonthermal corrections
to the Unruh spectrum for flavor (mixed) neutrinos only
appear at orders higher than Oðδmm Þ.
Relying on these considerations, let us evaluate the

decay rate in the comoving frame. A straightforward
calculation leads to the expression for the transition
amplitude, Eq. (27),

Ap→n
ðiÞ ¼ GF

ð2πÞ2 ½cos
2θJ ð1Þ

σνσeðων;ωeÞ þ sin2θJ ð2Þ
σνσeðων;ωeÞ�;

ð49Þ
where J ðjÞ

σνσeðων;ωeÞ, j ¼ 1, 2, is defined as in Eq. (28) for
each of the two neutrino mass eigenstates. The differential
transition rate per unit time thus reads

1

T

d6Pp→n
ðiÞ

dωνdωed2kνd2ke
¼ 1

T
G2

F

26π4
1

eπΔm=a coshðπων=aÞ coshðπωe=aÞ
X
σν;σe

fcos4θjJ ð1Þ
σνσeðων;ωeÞj2 þ sin4θjJ ð2Þ

σνσeðων;ωeÞj2

þ cos2θsin2θ½J ð1Þ
σνσeðων;ωeÞJ ð2Þ�

σνσeðων;ωeÞ þ c:c:�g: ð50Þ

The spin sum for the process i is given by

1

T

X
σν;σe

½J ð1Þ
σνσeðων;ωeÞJ ð2Þ�

σνσeðων;ωeÞ þ c:c:�

¼ 23δðωe − ων − ΔmÞ
a2π3

ffiffiffiffiffiffiffiffiffiffi
lν1lν2

p cosh ðπω=aÞ cosh ðπωe=aÞ

×

�
leðκ2ν þmν1mν2 þ lν1lν2Þ

				Kiωe=aþ1=2

�
le
a

�				
2

Re

�
Kiων=aþ1=2

�
lν1
a

�
Kiων=a−1=2

�
lν2
a

��

þ ½ðkxνkxe þ kyνk
y
eÞðlν1 þ lν2Þ þmeðlν1mν2 þ lν2mν1Þ�Re

�
K2

iωe=aþ1=2

�
le
a

�
Kiων=aþ1=2

�
lν1
a

�
Kiων=aþ1=2

�
lν2
a

���
; ð51Þ

where κν ≡ ðkxν; kyνÞ.
Next, by performing similar calculations for the other two processes and adding up the three contributions, we finally

obtain the total transition rate in the comoving frame,

Γp→n
acc ¼ cos4θΓ̃p→n

1 þ sin4θΓ̃p→n
2 þ cos2θsin2θΓ̃p→n

12 ; ð52Þ
where Γ̃p→n

j , j ¼ 1, 2, is defined as

Γ̃p→n
j ≡ 2G2

F

a2π7eπΔm=a

Z þ∞

−∞
dωRjðωÞ; j ¼ 1; 2; ð53Þ

with RjðωÞ being defined as in Eq. (33) for each of the two neutrino mass eigenstates, and

Γ̃p→n
12 ¼ 2G2

F

a2π7
ffiffiffiffiffiffiffiffiffiffi
lν1lν2

p
eπΔm=a

Z þ∞

−∞
dω

�Z
d2kele

				Kiω=aþ1=2

�
le
a

�				
2
Z

d2kνðκ2ν þmν1mν2 þ lν1lν2Þ

× Re

�
Kiðω−ΔmÞ=aþ1=2

�
lν1
a

�
Kiðω−ΔmÞ=a−1=2

�
lν2
a

��
þme

Z
d2ke

Z
d2kνðlν1mν2 þ lν2mν1Þ

× Re

�
K2

iω=aþ1=2

�
le
a

�
Kiðω−ΔmÞ=a−1=2

�
lν1
a

�
Kiðω−ΔmÞ=a−1=2

�
lν2
a

���
: ð54Þ
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It is now possible to verify that

Γp→n
j ¼ Γ̃p→n

j j ¼ 1; 2: ð55Þ

By comparing Eqs. (38) and (52) and using the above
equality, we thus realize that inertial and comoving calcu-
lations would match, provided that the integrals, Eqs. (40)
and (54), coincide. As in the inertial case, however, the
treatment of the Γ̃p→n

12 is absolutely nontrivial. A clue to a

preliminary solution can be found by expanding Γ̃p→n
12 in

the limit of small neutrino mass difference, as in Sec. III A,

Γ̃p→n
12 ¼ 2Γ̃p→n

1 þ δm
mν1

Γ̃ð1Þ þO
�
δm2

m2
ν1

�
; ð56Þ

where Γ̃p→n
1 is defined in Eq. (53) and we have denoted by

Γ̃ð1Þ the first-order term of the expansion. For mν1 → 0, it is
possible to show that

Γ̃ð1Þ

mν1

¼ lim
ε→0

22G2
Fme

a2π7eπΔm=a

Z þ∞

−∞
dωRe

�Z
d2kνK2

iðω−ΔmÞ=a−1=2

�
lε
a

�Z
d2keK2

iω=aþ1=2

�
le
a

��
; ð57Þ

where lε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxνÞ2 þ ðkyνÞ2 þ ε2

p
, with ε acting as a regulator.

Equation (57) can be now further manipulated by introducing the following relation involving the Meijer G function (see,
e.g., Ref. [21]):

xσKνðxÞKμðxÞ ¼
ffiffiffi
π

p
2

G40
24

�
x2
			

1
2
σ; 1

2
σ þ 1

2

1
2
ðνþ μþ σÞ; 1

2
ðν − μþ σÞ; 1

2
ð−νþ μþ σÞ; 1

2
ð−ν − μþ σÞ

�
: ð58Þ

A somewhat laborious calculation then leads to

Γ̃ð1Þ

mν1

¼ lim
ε→0

2G2
Fme

a2π4eπΔm=a

Z þ∞

−∞
dω

Z
Cs

ds
2πi

Z
Ct

dt
2πi

Z þ∞

0

dkνkνl2sε

Z þ∞

0

dkekel2te

×

�
Γð−sÞΓð−tÞΓðiωa þ 1

2
− tÞΓð− iω

a − 1
2
− tÞΓðiðω−ΔmÞ

a − 1
2
− sÞΓð− iðω−ΔmÞ

a þ 1
2
− sÞ

Γð−sþ 1
2
ÞΓð−tþ 1

2
Þ

þ Γð−sÞΓð−tÞΓðiωa − 1
2
− tÞΓð− iω

a þ 1
2
− tÞΓðiðω−ΔmÞ

a þ 1
2
− sÞΓð− iðω−ΔmÞ

a − 1
2
− sÞ

Γð−sþ 1
2
ÞΓð−tþ 1

2
Þ

�
: ð59Þ

To perform the integration with respect to ω, let us use the first Barnes lemma, according to which [21]
Z þi∞

−i∞
dωΓðaþ ωÞΓðbþ ωÞΓðc − ωÞΓðd − ωÞ ¼ 2πi

Γðaþ cÞΓðaþ dÞΓðbþ cÞΓðbþ dÞ
Γðaþ bþ cþ dÞ : ð60Þ

Inserting this relation into Eq. (59), it follows that

Γ̃ð1Þ

mν1

¼ lim
ε→0

G2
Fmea3

π3eπΔm=a

Z
Cs

ds
2πi

Z
Ct

dt
2πi

�
ε

a

�
2sþ2

�
me

a

�
2tþ2 Γð−2sÞΓð−2tÞΓð−t − 1ÞΓð−s − 1Þ

Γð−sþ 1
2
ÞΓð−tþ 1

2
ÞΓð−2s − 2tÞ

×
�
Γ
�
−s − tþ 1þ i

Δm
a

�
Γ
�
−s − t − 1 − i

Δm
a

�
þ Γ

�
−s − tþ 1 − i

Δm
a

�
Γ
�
−s − t − 1þ i

Δm
a

��
; ð61Þ

which is exactly the same expression obtained in the inertial frame, Eq. (48).

IV. CONCLUSIONS

In the present paper, we have discussed the decay of
uniformly accelerated protons. Following the line of reason-
ing of Refs. [4,11], we have reviewed the calculation of the
total decay rate in both the laboratory and comoving frames,
highlighting the incompatibility between the two results
when taking into account neutrino flavor mixing [12]. Such
an inconsistency would not be striking if the underlying
theory were not generally covariant, but this is not the case,

since the fundamental ingredients for analyzing the process,
namely, the SM and QFT in curved spacetime, are by
construction generally covariant. On the other hand, the
authors of Ref. [12] argued their result, claiming that mixed
neutrinos are not representations of the Lorentz group with a
well-defined invariantP2 and that themathematical origin of
the disagreement arises from the noncommutativity of weak
and energy-momentum currents. Furthermore, they pro-
posed the experimental investigation as the only way to
resolve such a controversial issue. Even assuming there are
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no flaws in this reasoning, we believe the last statement to be
basically incorrect; an experiment, indeed, should not be
used as a tool for checking the internal consistency of theory
against a theoretical paradox.
Led by these considerations, we have thus revised

calculations of Ref. [12], modifying some of the key
assumptions of that work. In particular, we have required
the asymptotic neutrino states to be flavor rather than mass
eigenstates. Within this framework, by comparing the
obtained expressions for the two decay rates, it has been
shown that they would coincide, provided that the off-
diagonal terms, Eqs. (40) and (54), are equal to each other.
To check whether this is the case, we have performed the
reasonable approximation of small neutrino mass differ-
ence, pushing our analysis up to the first order in δm

mν
.

However, because of computational difficulties, the further
assumption of vanishing neutrino massmν1 → 0 has proven
to be necessary for getting information about these terms.
In such a regime, we have found that Eqs. (48) and (61) are
perfectly in agreement, thus removing the aforementioned
ambiguity at a purely theoretical level.
Relying on this, one can state that the theoretical

framework underlying our result is the correct one in the
context of neutrino mixing, provided flavor neutrinos are
considered to be the fundamental objects populating the

thermal FDU state. Further aspects of the fascinating
problem first addressed in Ref. [12] can be investigated
only when an exact evaluation of the two decay rates
becomes available; work is in progress along this direction
[22], also in view of the nontrivial nature of neutrino flavor
states in QFT [15].
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APPENDIX: EVALUATION OF THE DECAY
RATE IN THE COMOVING FRAME USING

MASS EIGENSTATES

For the purpose of comparison with the results of
Ref. [12], in this Appendix, we explicitly perform the
calculation of the decay rate in the comoving frame using
neutrino mass eigenstates as asymptotic states. Such a
choice was adopted in Ref. [12] in order to preserve the
thermal KMS condition for the accelerated neutrino vac-
uum. As was done in Sec. III, we shall limit ourselves to
analyzing process i in Eq. (26). Following Ref. [12], it can
be shown that the differential transition rate takes the form

1

T

d6Pp→n
ðiÞ

dωνdωed2kνd2ke
¼ 1

T
G2

F

26π4

P
σν;σe ½cos2θjJ

ð1Þ
σνσeðων;ωeÞj2 þ sin2θjJ ð2Þ

σνσeðων;ωeÞj2�
eπΔm=a coshðπων=aÞ coshðπωe=aÞ

; ðA1Þ

where J ðjÞ
σνσeðων;ωeÞ, j ¼ 1, 2, is defined as in Eq. (28) for

each of the two neutrino mass eigenstates. By performing
similar calculations for processes ii and iii and adding up
the three contributions, we thus obtain

Γp→n
acc ≡ Γp→n

ðiÞ þ Γp→n
ðiiÞ þ Γp→n

ðiiiÞ ¼ cos2θΓ̃p→n
1 þ sin2θΓ̃p→n

2 ;

ðA2Þ

where we have used the shorthand notation, Eq. (53).
By comparing Eqs. (38) and (A2), it is clear that the two

decay rates are not in agreement with each other—a result

that is incompatible with the general covariance of the
underlying formalism. As long as the asymptotic neutrino
states in the comoving frame are assumed to be mass
eigenstates, however, such a contradiction cannot be
resolved, as is evident for at least two reasons. First, in
Eq. (A2), there is no counterpart of the off-diagonal term
found in Eq. (38). Furthermore, although the partial decay
rates, Eqs. (39) and (53), are verified to coincide with each
other [see Eq. (55)], Pontecorvo matrix elements appear in
Eqs. (38) and (A2) with different powers, thereby also
preventing the identification of the diagonal terms.
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