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We show that, in the saturation/color glass condensate framework, odd azimuthal harmonics of the two-
gluon correlation function with a long-range separation in rapidity are generated by the higher-order
saturation corrections in the interactions with the projectile and the target. At the very least, the odd
harmonics require three scatterings in the projectile and three scatterings in the target. We derive the
leading-order expression for the two-gluon production cross section which generates odd harmonics: the
expression includes all-order interactions with the target and three interactions with the projectile. We
evaluate the obtained expression both analytically and numerically, confirming that the odd-harmonics
contribution to the two-gluon production in the saturation framework is nonzero.
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I. INTRODUCTION

Over the past decade long-range rapidity correlations
between the produced hadrons were observed in heavy ion
(AA) and high-multiplicity proton-nucleus (pA) and pro-
ton-proton (p p) collisions at RHIC [1-4] and LHC [5-8].
The novel di-hadron correlations enhance the A¢ = 0 and
A¢ = & regions of the azimuthal opening angle between
the hadrons and stretch over several units in the rapidity
interval Ay between the hadrons. Finding an explanation of
these previously unobserved correlations is important for
the understanding of the strong interactions dynamics in
high energy hadronic and nuclear collisions.

Since the long-range rapidity correlations were first
discovered in heavy ion collisions, it is natural to ascribe
their origin to the dynamics of quark-gluon plasma (QGP)
produced in such collisions. A vigorous activity is under
way to account for the long-range rapidity dihadron cor-
relations within hydrodynamic models of QGP [9-16].
However, these approaches suffer from one conceptual
problem: long-range rapidity correlations cannot originate
at later proper times in the collision, when plasma is
produced. There exists a causality argument [17] demon-
strating that the later the proper time of the interaction, the
narrower in Agn the corresponding correlation will be.
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Therefore, hydrodynamics, being applicable at relatively
late times, is not likely to generate these long-range rapidity
correlations: rather, the rapidity correlations have to be
included in the initial conditions for hydrodynamic evolu-
tion. Thus, the question about the origin of the long-range
rapidity correlations remains, with the initial-state early-
proper-time dynamics being the most probable suspect.

Long-range rapidity correlations were first advocated in
the saturation/color glass condensate (CGC) framework in
[17] (see also [18]). (See [19-25] for reviews of saturation/
CGC physics.) The weakly coupled CGC dynamics can
generate long-range correlations which at large rapidity
intervals An are independent of Az, in qualitative agree-
ment with the experimentally observed correlations. Efforts
to obtain similar correlation function behavior originating
in a different initial-state dynamics scenario so far came up
short: at strong coupling, calculations employing the anti—
de Sitter/conformal field theory (AdS/CFT) correspon-
dence [26,27] so far give a correlation function that grows
with Az [28], in disagreement with the experiment.

The ridge correlation may result from the CGC dynamics
giving long-range correlations in rapidity, with the sub-
sequent hydrodynamic evolution generating the azimuthal
collimation observed in the data [29]. This explanation of the
ridge phenomenon requires a thermal medium to be gen-
erated in high-multiplicity pp and pA collisions. Thermali-
zation of the medium produced in heavy ion collisions
requires multiple interactions between the quarks and gluons:
itis natural to assume that thermalization in high-multiplicity
pp and pA collisions, if it does take place, would require
similar multiparton interactions. Perhaps a more conservative
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way of generating the ridge correlation is due to the so-called
“glasma graphs” proposed in the saturation/CGC framework
in [17]: they require only a double interaction in both the
projectile and the target. The glasma graphs generate both the
long-range correlation in rapidity [17,29-41] and the near-
and away-side ridge correlations [42,43]. Since the glasma
graphs had originally been put forward in [17], the corre-
sponding two-gluon production cross section was improved
by including multiple interactions (saturation effects) with
one of the nuclei (the target) in [38,42]. As usual in the
saturation physics, the effect of extra rescatterings appears to
be mainly in screening the infrared (IR) divergences [43]. In
addition, one can show that multiple rescatterings violate the
ky-factorization formula one could conjecture for two-gluon
production based on the glasma graphs alone [43].

The approach based on the glasma graphs with the
infrared screening provided by the saturation scale Q,
enjoyed successful phenomenology [39—41]. However, the
two-gluon production cross section given by the glasma
graphs [17] along with the saturation corrections in the
target hadron/nucleus [38,42] turned out to be invariant
under the k; <> k, interchange and, also, is separately
invariant under k; — —k; or k, — —k, replacements. Here
k; and k, are the transverse momenta of the two produced
gluons. The result of this symmetry is that the correspond-
ing gluon-gluon correlation function only contains even
azimuthal harmonics v3 {2}, with all the odd harmonics
v3,.,1{2} being zero. At the same time, odd azimuthal
harmonics have been observed in the dihadron correlators
measured at RHIC and at LHC [8,44,45]. Odd harmonics
are somewhat smaller than the even ones, but are nonzero.
This experimental result presented a conundrum for the
saturation community: can the saturation dynamics account
for the observed long-range rapidity correlations with the
nonzero odd azimuthal harmonics?

To resolve this ambiguity, several observations have
been put forward. In [46] the authors observed that the
symmetry of the digluon correlator under k; < k»,
k, — —k;,and k, — —k, is “accidental” and is not required
by the symmetries in the problem. They have then argued
that odd harmonics may arise if one includes saturation
effects in the wave function of the projectile: thus to find
odd harmonics one needs to augment the existing calcu-
lations of the two-gluon production cross section [38,42],
in which the saturation effects were only included in the
interaction with the target. The idea of saturation correc-
tions in the projectile being responsible for the odd
harmonics was developed in [47], where it was shown
that such corrections indeed have the potential to generate
odd harmonics by violating the k; — —k; and k, — —k,
symmetries of the two-gluon correlation function. In
addition, a numerical simulation of the classical gluon
fields produced in heavy ion collisions in the McLerran-
Venugopalan (MV) model [48-50] appears to generate odd
harmonics as well [51,52]: since the difference between this

numerical result for inclusive two-gluon production and the
expressions obtained in [38,42] is due to the saturation
effects in the projectile, and since the calculation in [38,42]
only gave even harmonics, it is natural to conclude that the
odd harmonics likely originate in the higher-order projec-
tile interactions.

Our goal in the present paper is to construct a complete
expression for the part of the two-gluon inclusive produc-
tion cross section responsible for the odd harmonics by
calculating the first saturation correction in the interactions
with the projectile. Our goal is complicated by the fact that
even for the single inclusive gluon production cross section
the first saturation correction in the projectile has not been
found yet. However, partial results exist in [53,54]. Let us
first consider the single inclusive gluon production cross
section. Suppressing the transverse momentum depend-
ence, the cross section in the classical MV model can be
written as (in the MV model power counting, using the
approach to it from [55,56])

do do
ZidbdB ~ \&xarpars PP
1 1/3 1/3
= f(@A @A), (1)

S

pp PT

where A; and A, are the atomic numbers of the projectile
and target nuclei, respectively, «, is the strong coupling
constant, B is the impact parameter between the nuclei, b is
the transverse position of the gluon, and the angle brackets
denote averaging in the wave functions of the projectile and
target nuclei, which is equivalent in the MV model
to averaging over their color charge densities p, and pr
[48-50,55,56]. The function f was only studied numeri-
cally [57-60]. Analytically we only know its expansion in
either one of its arguments. Assuming that the projectile is a

dilute object with a?A}/ 3 < 1 one can expand the cross
section in this parameter

do 1 1/3 13
PrdbdlB a—[O@Al/ f1(053A2/ )

+ (@A) (A )+ (2)

The function f| is known analytically from the gluon
production cross section in the proton-nucleus (pA) colli-
sions [61,62], since it comes in with the term involving only

one power of A:/ 3 that is, only one nucleon in the
projectile, making the projectile effectively a “proton” in
this power counting. Functions f», f3,... are not known
analytically at present.

The function f, gives the first saturation correction in the

projectile, since it comes in with two powers of Ai/ 3,

corresponding to interactions with two nucleons in the
projectile nucleus. The efforts to calculate f, analytically
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was started in [53] and more recently revisited in [54]. The

calculation of the order—(agAi/ %) correction implies
including an order-a? correction to the projectile interaction

as compared to the leading order—a%A}/ 3 term from [61].
This order-a? correction involves interaction with the extra
nucleon in the projectile, which brings in an additional Ai/ 3
factor. With the help of the retarded gluon Green function
one can rearrange the diagrams such that the order-a?
correction enters in two different ways: it may enter as an
order-a; correction in the amplitude and in the complex
conjugate amplitude, or as an order-a? correction either in
the amplitude or in the complex conjugate amplitude. The
former case was calculated in [53,54], where the order-a,
correction to the leading-order (pA) gluon production
amplitude was found. No one has yet analytically calcu-
lated the order-a? correction to the same amplitude to
complete the efforts to determine f».

The same philosophy applies to the two-gluon produc-
tion. For the classical two-gluon production cross section
one can write

do
d’k,d’b,d*k,d*b,d’B

_ L( )L( )
“\&k, 0,8 7T by T

1
— (@Al @) ()
s

Pp-PT

with the new unknown function /. Here k; and k, are the
gluons’ transverse momenta, while b; and b, are their
transverse positions. Again, assuming a dilute projectile we

expand in oA} getting

do
d’k,d*b,d*kyd*b,d*B

1
— (@A) by (@A) 4 (@A) x ()

S

+o. )

The function /; can be found from the results of [38,42].
As described above, this part of the two-gluon production
cross section generates only even harmonics. Finding the
function h, requires a rather lengthy calculation. However,
as we will argue below (basing our argument on [47]), the
part of &, responsible for the odd harmonics can be found
using the results of [54]. The corresponding diagrams are
shown below in Fig. 4. We thus find the part of the two-
gluon production cross section responsible for odd har-
monics at the order (O(?A}/ 3)3: it is given by Eq. (17). This
is the leading contribution to the odd harmonics resulting
from the two-gluon correlation function.

The paper is structured as follows: in Sec. II we derive
the contribution (17) to the two-gluon production cross
section giving the odd harmonics. We then proceed in
Sec. III by evaluating the expression (17) analytically to the
lowest order in the interactions with the target using the
Golec-Biernat—Wusthoff (GBW) [63,64] approximation to
the full MV interaction with the target. The resulting two-
gluon production cross section is given in Eq. (77). The
most important conclusion we draw here is that Eq. (77) is
nonzero: hence the saturation dynamics does generate
nontrivial odd harmonics. Interestingly, a prominent con-
tribution to the correlation function comes from the o-
functions resulting from the gluon Hanbury-Brown—Twiss
(HBT) [65] diagrams of the same general type as those
advocated in [43,66]. The odd-harmonics correlation func-
tion resulting from Eq. (17) with all-orders interactions
with the target is evaluated in Sec. IV numerically, with the
resulting odd harmonic coefficients plotted in Fig. 6 and the
odd part of the two-gluon correlation function shown in
Fig. 7. Keeping the interaction with the target to the lowest
nontrivial order in the numerical simulations we observe
qualitative and even quantitative agreement with Eq. (77).
We conclude in Sec. V by observing that saturation/CGC
dynamics does lead to the odd harmonics in digluon
correlation functions, which may allow for further suc-
cesses of the saturation approach to the correlation function
phenomenology.

II. APPEARANCE OF ODD HARMONICS IN
GLUON PRODUCTION DIAGRAMS

A. General discussion

Let us begin by analyzing how the two-gluon production
cross section involving two classical gluon fields can in
principle generate the odd azimuthal harmonics. As dis-
cussed in the Introduction, we need to violate the k; <> k»,
k;, — —k;, and k, — —k, symmetry of the two-gluon
production cross section. For two gluons originating from
two identical classical fields the k; <> k, symmetry appears
impossible to break: we thus conclude that the classical
two-gluon production cross section should always be
k; <> k, symmetric. This implies that the dependence on
the azimuthal angle A¢ between the two produced gluon
enters the cross section via terms proportional to cos(nA¢)
with the integer values of n, while terms proportional to
sin(nA¢) do not enter the cross section.

We thus see that the only way to generate odd harmonics
is to violate the k; — —k; and/or k, — —k, symmetries.
Let us describe how this violation may happen in general.
Imagine a production cross section for a particle with the
transverse momentum k = (k', k?), possibly alongside
with a number of other particles whose momenta we do
not explicitly display below for brevity. The production
cross section is proportional to
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%NW(@)P = / Pxd?ye M EDM(x)M*(y). (5)

Here M(x) is the Fourier transform of the scattering
amplitude M (k) into transverse coordinate space and the
asterisk denotes complex conjugation. We want to find a
condition under which this cross section has a contribution
that changes sign under k — —k. To do this, imagine that
the scattering amplitude in the transverse coordinate space
can be written as

M(x) = My(x) + M3(x) + -, (6)

for instance due to an expansion in the coupling constant
(that is, M is the leading contribution, and M3 is one of the
higher-order corrections with the ellipsis denoting other
higher-order corrections). Using Eq. (6) in Eq. (5) (while
keeping only M and M) one can easily see that only the
interference terms between M; and M; may lead to a
contribution odd under k — —k. Keeping only the inter-
ference terms we write their contribution to Eq. (5) as

/ dxdye VM, (x)M5(y) + M ()M (p)].  (7)

Requiring that the expression (7) changes sign under
k — —k results in the following condition on M; and Mj;:

M (x)M5(y) + M3(x)M;(y)
= =M, (y)M;3(x) — M3(y)M7(x). (8)

Since M, and M3, in general, are very different functions of
their arguments, Eq. (8) is most easily satisfied by requiring
that

M (x)M5(y) = —M3(y) M7 (x), )

which, in turn, means that M;(x)M3(y) is imaginary.
Therefore, we conclude that the phases of M; and M;
(in transverse coordinate space) should be off by z. More
generally, for the higher-order corrections to the leading-
order amplitude M, to generate a k — —k odd contribution
one needs a phase difference between M; and the full
higher-order amplitude M5+ ---, where the ellipsis
denotes other higher-order corrections, some of them
possibly of the same order as M;. Hence, to find the
odd harmonics we need to find a higher-order correction to
the results of [38,42] that generates a phase difference
between the higher- and leading-order amplitudes (see also
Appendix A).

The situation is not dissimilar to the single transverse
spin asymmetry (STSA) which is observed in the scattering
of the transversely polarized protons on the unpolarized
ones and in semi-inclusive deep inelastic scattering
(SIDIS) on a transversely polarized proton [67-73].

There, generating the asymmetry requires the amplitude
dependence on the transverse proton polarization and a
phase difference between the leading-order amplitude and
the higher-order correction to it: the asymmetry is then
given by the interference between the two amplitude
contributions [74—78]. The difference between the STSA
case and the odd harmonics problem at hand is that the
phase difference in the former case is between the
momentum-space amplitudes, while for the latter, Eq. (9)
implies a phase difference between the Fourier transforms
of the amplitudes into the transverse coordinate space.

B. Order g* amplitudes

Let us now apply the insight we obtained in the previous
section to the calculation of gluon production in the
saturation framework. As discussed in the Introduction,
we will assume that our calculation resums all orders in the
interaction with the target via the Wilson lines for quarks
and gluons traversing the target. We will perform expansion
of the gluon production amplitude to the first two nontrivial
orders in the interaction with the projectile.

The leading-order gluon production is described by the
amplitude €} - M| which is given by the diagrams shown in
Fig. 1. They yield [61]

ige; - (z—b)

€ Mi(z,b) = . |Z—b|2

[ugh - Ugb](vér”) (10)

with the adjoint

) ab
Ugb = (Pexp {ig/ dxtTCA (xt,z7 = 0,;)})
(11)

and fundamental

V, =Pexp {ig/oo dx 1A (xT,b” =0, Q)} (12)

Wilson lines directed along the “+” light cone, defined by
the direction of the projectile motion. All the notation is
explained in Fig. 1: the outgoing gluon has polarization 4
with €; = —(4,1)/+/2 and color a. The horizontal straight
lines in Fig. 1 represent (valence) quarks in the nucleons of
the projectile nucleus. The vertical bar denotes the target,

; +
by
%mmmw 2 i

by
@%QQQ%_Q@A

21
FIG. 1. The diagrams contributing to the amplitude M, given
by Eq. (10).
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which is Lorentz contracted to a shock wave, whose
interaction with the projectile quark and emitted gluon
is very fast, practically instantaneous on the time scales
of the projectile wave functions: hence the gluon pro-
duced in Fig. 1 can be emitted either before or after the
interaction with the target, but not during that interaction
[61]. The gluon can be emitted by either one of the many
projectile quarks: we show the emission by only one of the
quarks, with the sum over other emissions implied
implicitly.

Following the power counting from [54,56] we assume
that the interaction with the target is strong, afAé/ I =
O(1), and, therefore, all the Wilson lines are also of order
one, U~V = O(1). Hence we see that M| = O(g).

The next order correction to M, could be an order-g*
amplitude with two gluons emitted by the quarks (with only
one of these gluons being tagged on if one wants to
calculate the single inclusive gluon production cross
section). However, such a contribution in the counting of
2A, I/3 can be rearranged and absorbed into the

|

powers of a

3
% g
& == L [ Ptz - ) % (2 - )

: by by vee
e + +

z@m 2 OO 2,
]
by by

FIG. 2. A sample of diagrams contributing to the amplitude M3
involving interactions with two nucleons in the projectile, given
by Eq. (13).

complex conjugate amplitude where one uses retarded
Green functions instead of Feynman propagators for the
gluons (see [53,54]). This way, the first correction to M is
O(g?). Some of (the large number of) the relevant diagrams
are shown in Fig. 2: in the notation of the previous
subsection, these are the diagrams contributing to M;.

The diagrams contributing to M5 and involving two
nucleons from the projectile, as shown in Fig. 2, were
calculated in [54], with the result

|:§/1*’(£2_£1) X —by  X%-b € (xi—-b) z—x X —b
|£2—£1‘2 |£1—Ql|2 |£2—Qz|2 |£1—Ql|2 |§—£1|2 |£2—Qz|2
€ (—by) xy,—b z- ] belprbd _ rbd][y e ~ d
eyt — Uy U = Use|(Vy %) (V1€
P U AL IS
3 *
g abc d e 2 bd ce ce (Z_—> X = bl E_Q2
- Vi t4) (V. t d"x | Uy (U = U;,
+47£3f Vo1, (V, )2/ x[ b )< z—x |x—b]* [x-b
_g-(z-b) z- E x—by €-(z-b) x—-b; E‘Q)
lz=bi* [z—x Ix—bzl Ig—bll2 lx=bi]* |x— by
bd d\7rce ) x—b -b, €-(z-b) z—x x-b
_(Uz Ub)U( 2 52 y_ph 12 _ 52 — 2 0y _h 12
XI |x = by Ix by lz=bo|* |z—x[* [x—b]
e (z—=by)) x—b, x—b, i
== 2 = A= = — =5 [V, 1), (V) 1
BN ey | AR KN
Y (z—-Dby) € - (z—by) 1
X Ubd_ Ubd Uee € (g Z1 I _ Ubd Uge —yee =1 \& =
(- o S s v~ SR P

i g3

d2 Uab_
471 [ E

Ugb]fbde(vél td)] (ngte)Z X

%) x—b b,
€ (z2-%) x-b  x- Sign(by — b).

13
-2 -bF x-bF (13)

The label MABC reflects the fact that Eq. (13) contains contributions of the diagrams A, B, and C in the notation of [54]. Here

A is the IR cutoff

There are also order-g* diagrams involving interaction with only one nucleon in the projectile, labeled D and E in [54]:

those are shown in Fig. 3, and their sum is given by
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3 *
. g € (x—x1) x,—-b X, —b
ég‘M?E:—g/dledzxzé[(g—gl)x(g—&)]{ A ( 2 1) 1 2 2 2

(i =by) z-x1 x-by € (-b) x,-b, é—lz]
|£1—Qz|2 |§—£1|2 |£2—Qz|2 |£2—Qz|2 |£1—Qz|2 |§—£2\2

|£2 —£1|2 |£1 —Qz|2 |£2 —Q2|2

x fUL ~ URIUE = UV, (Vo)

. 3 *k
9 beprbd(TTCe _ T7C o (€ z-x) 1
w15 [ v - v, e, (SE

€ (z=by) z—x x—-b, €-(z=-b) 1 )

lz=bof |z=x* [x—bf  |z—bo)* |x—by)?

Qﬁ'(é—éz) n 1
2 |§—Qz|2 |§—22|A.

i3
1g X , .
e FURUE = Ul (V) (Vi 117) (14)

Both Eqs. (13) and (14) are written in transverse coordinate space. Therefore, the formalism of Sec. I A applies. Since
M, in Eq. (10) contains a factor of i, and we require a phase shift of z between M; and M;, we need the “real” part of
M4BC + MPE to obtain the odd harmonics via the formula Eq. (7). We conclude that the odd harmonics should be given by
the interference between M, from Eq. (10) with the “real” part of M45¢ + MY from Eqs. (13) and (14). Note that
correlators of Wilson lines in the MV model are all real, if one keeps the leading C-even parts: hence by the real part of
M4BC + MPE we mean only the real part of the associated light-cone wave functions, such that the Re sign does not apply to
the Wilson lines. With this caveat, the real parts are

Qj'(ﬁz—&) X; — b X, — b,
|2

3
. Ms(z, by, by) = € - R MABC:—g—/d2 Px,8](z — x,)(z - :
€ Ms(z, by, b,) €, 6[73 ] s X1a~x; [(é x)(z Ez)] |£2—£1|2 |£1—Ql|2 |£2_22

€-(x;=by) z=x;, Xo=by € -(x2-by) x;=-b; z-Xx

i =bil* lz=x |x = byl X =bol* |xy = by |z —x
x fe(UR = U [US: = Uil (Vi 1)1 (Vi 1), (15)
and
? € (xr—x) x,—b X, —b
€ -Ds(z,b Ee*-ReMDE:—g/dedzxé —x)z-x) =Sl AL =2 2 2
&) —3(§ —2) =1 [—3 } 8774 1 2 [(g —1)(§ —2)] |£2 - X ‘2 |£] _Q2|2 |£2 _Q2|2
g =b) z—x) xm-b  g-(-b) xi-b z-x
X1 = b |z—x]* |xy = bof? X = bo* |xy = bl |z —xf
x fabe[uyd — Ugj][Ug - Ug](vél)(vézterd). (16)
H H The factor of (V) in Eq. (16) denotes the Wilson line of
. the spectator quark line which simply cancels the same (but
+ * 4+ e conjugate) Wilson line in the diagrams of Fig. 1 contrib-
. \ ol \ uting to M; (but not shown explicitly in the expression for
§99999°§_ 4838/000000" 2, §9999m00 00Q4000000" = | M) when Djs is used in place of M3 in the interference
<§999 * bar bor formula (7): due to such a trivial role, the dependence on b,
- - is not explicitly included in the arguments of Dj.
FIG. 3. A sample of diagrams contributing to the amplitude M3 A-ccordlng t‘{ Eq. (7), the odd azimuthal harmonics can
involving interactions with one nucleon in the projectile, given by be given by the interference between M, from Eq. (10) with
Eq. (14). M5 and D5 from Egs. (15) and (16), respectively.
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C. Odd-harmonic part of the two-gluon production
cross section at the order o

Equation (7) is written down for the single-gluon
production, where it is impossible to have a cross section
contribution which is odd under k — —k in the case of
unpolarized initial and final states: indeed, if we take the
interference of a single M, with a single M5 contribution
from above, as shown in Fig. 8 below, the color averaging
would give zero.

However, we are interested in odd harmonics in two-
gluon production. Hence we need to iterate Eq. (7) twice,
|

do—odd o 1
d’kydy,d*kydy,  [2(27)3)?

once for one produced gluon, one for another. The
corresponding diagrams we need to calculate are given
in Fig. 4: they involve quarks from three nucleons in the
projectile. Each diagram in Fig. 4 denotes a class of
diagrams including all the diagrams obtained from it by
reflecting either one (or both) of the connected gluon
interactions with respect to the final-state cut (the vertical
solid line in Fig. 4). Given the above ingredients, the
diagram calculation is straightforward. The part of their
contribution to the two-gluon production cross section that
gives odd harmonics is

/ By by dbyT (B — by)T, (B — by)T) (B - bs)

X d?z, d*wd*zod*wye % (& _m)‘”—%'@z_ﬁz)(ﬁ)pr (17)
with
A = M5(zy, b1, by) - Mi(wy, b3)M (2,5, by) - M5(wy, by, b3) + M (2, b3) - M3(wy, by, by)M (25, by ) - Miy(ws, by, b3)
+ M;(zy, by, by) - M (wy, b3)M5(2y, by, bs) - My (wa, by) + M (2, b3) - M3(wy, by, by)M3(25, by, b3) - Mi(wy, by)
+ M5(2,. by, by) - Mi(wy, b1)M (25, b3) - M5(wa, by, b3) + M (2, by) - M5(wy. by, by)M (25, b3) - M5(w, by, b3)
+ M3(zy, by, by) - My (wi. b1)M5(25, by, b3) - My (W, b3) + M (2. by) - M5(wy, by, by)M3(2,. by, by) - My (ws, b3)
+ M;(zy, by, b3) - M (w1, by)M (2, by) - M5(wy, by, b3) + M (24, by) - M3(wy, by, b3)M, (25, by ) - M5(ws, by, bs3)
+ M;5(z2y. by, b3) - Mi(wy, b1)M5(25, by, bs) - Mi(wy, by) + My (2, by) - M5(wy. by, b3)M5(2,. by, b3) - M (ws, by)
+ D3(2y. by) - Mi(wy, ba)M (25, by) - Di(wy. b3) + M (2, by) - D3(wy. by )M (25, by) - D3(ws, b3)
+ D5(2y. by) - Mi(wy, b2)D5(25, b3) - Mi(wy. by) + M (2, by) - D3(wy. by)D3(2,, b3) - M7 (ws, by)
+ D5(2y. by) - Mi(wy, ba)M5(2,, by, b3) - M (wy. b3) + My (2, by) - D3(wy. by)M5(2,. by, b3) - M7 (ws, b3)
+ D3(2y. by) - Mi(wy, ba)M (25, b3) - M5(wa, by, b3) + M (2, by) - D3(wy. by)M, (25, b3) - M5(w, by, b3)
+ D3(25. by) - My (o, by)M5(zy, by, b3) - M (wy, by) + M (25, by) - D3(wy. by)M5(2y. by, b3) - M (wy, b3)
+ D3(25, by) - My (W, by )M (2, b3) - M3(wy, by, b3) + M (2, by) - D3 (W, by )M (24, b3) - M5(wy, by, b3) (18)

The dot product in Eq. (18) arises after a sum over the final-
state gluon polarizations A. Each diagram of A-F in Fig. 4
contributes four terms to Eq. (18), with the terms in the latter
ordered in the same way as diagrams A—F: the first four terms
come from diagram A, the next four terms are from B, etc.

Equation (17) is the main analytic result of this work: it
gives the leading contribution to the inclusive two-gluon
production cross section in the saturation framework which
generates odd azimuthal harmonics in the correlation
function. It involves interactions with three nucleons in
the projectile nucleus and all-order interactions with the
nucleons in the target nucleus. The Wilson line correlators
also include the linear and nonlinear small-x evolution
between the target nucleus and the produced gluon [79-88].

However, we are not done yet: to convincingly demon-
strate that Eq. (17) does generate odd harmonics in the

|
correlation function, one needs to show that it is not
zero. While there appear to be no symmetries requiring
Eq. (17) to be zero, an actual evaluation of this expression
is required to establish this with full certainty. Below we
will evaluate Eq. (17) using a quasiclassical MV-based
approximation for the correlators of Wilson lines, expand-
ing those correlators to the lowest nontrivial order,
which involves interaction with three nucleons in the
target nucleus.

We will use the following Fourier representations of the
amplitude contributions to evaluate Eq. (17):

-k
kZ

e Mi(zb) =29 [ sk — U) (V")

(19)
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by by by

5 D=1 |

9@%5% Zg@@ymﬁ ) y 66@66‘@
> 5>
o o

by

59%&
!

by e + ~doh, . 21 656666(

Diagram A Diagram B Diagram C

25\

b3 by

by by by

Do o) o]

+ + 2 o4 O by
%%Um%m v, %ﬁmﬂm%g 7 %ﬁmym% 51
m%gg% by 5@% by %% by
Diagram D Diagram E Diagram F

FIG. 4. The contributing diagrams for the odd-harmonic part of the two-gluon production cross section. Diagram F is different from
diagram E by z,,w; < z,, w,.

and

&2k Ll Bg, dq, | . ~ ~
.M , b , b — 2 3 dZ d2 / 1 2 iq “(x) _Ql)Jf’ﬂ '<£2_22)+l!(£2_fl)+lk'(§_£2>
€; - Ms(z, by, by) ig / X1d=xy (272 (22)2 (27)? (2ﬂ>2e ' :

—1 Xk * Q2X(]_<_£) q l
QT <_q1 e Eote T g TehT o Sientkx])

X fAUL — UB[USE = Ug] (Vi 1), (Vi 1), (20)

III. EVALUATING THE ODD-HARMONIC PART OF THE TWO-GLUON PRODUCTION CROSS
SECTION: ANALYTIC APPROACH

A. Diagram A
Our goal here is to evaluate the expression (17). We begin with the first four terms in Eq. (18), whose contribution to
Eq. (17) is proportional to
/dzzldzw eI Mz, by, by) - M (wy, b3) + M, (2, bs) - M5 (wy, by, by))]
/d212d2W2€ %) M (25, by) - M5(wa, by, b3) + M3(25, by, b3) - M (ws, by)] (21)
and corresponds to diagram A in Fig. 4 along with all the gluon reflections with respect to the final-state cut. Let us evaluate

the first line of Eq. (21) first. Disregarding the conjugation of the V’s, since they cancel in the net expression Eq. (21)
anyway, we write
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/aaZ1d2W1€_'k @) [Ms(z, by, by) - My (wi, b3) + My (2, bs) - M5(wy, by, by)]
/d221d2W e G My (21, by, by) - M (wy. bs) = (21 < wy)]
/d211d2W1€ k@) Mo (20, by, by) - My (wy, by) — (ky <> —ky). (22)
This way Eq. (21) can be written as

/d211d2W1e_ik"(zl_W‘)M3(§1,bl,bz) 'MT(prs)/dzzzdzwze_ikz'(sz2>M1 (25.b1) - M55(wy, b, bs)
- (K1 - —]Sl) - (kz - —/_Cz) + (/_<1 - =k, ky — —I_Cz)- (23)

Plugging Eqgs. (19) and (20) into the first line of Eq. (23) and taking all the fundamental color traces while averaging over
colors of all three quarks in the projectile yields

(4g4>23 / dZZIJZWI d2Z2d2W2€_ikl '(él_ml >_ik2'(§2_m2)z
(ZNC) LA/

2 2 2 2
aflxld X, d k &'l d°q g, iq, (X, by )+iq, (X =by)+il-(x,—x; )+ik-(z,—X,)
27)* (27)* (27)* (27)°
€ xk q, % (k—=1) q,x1

X = Sign(k x [

ﬂﬂz( G D™ k? teig, (k—1)* TG T 2 ign(k x 1)
X / JZQ3 e_ig3'(ﬁl_23) & q3/ & q3 q,(z,=b )_/1/ q3

(2n)? 2 J @y a5

/ d*y,d*y, / &k LU dq; dq, o4, (v, =ba) =iy (y,=by) =il (3, =y, ) =ik -(w,=y,)
27)* (2n)* (27)* (27)°

€’1Xk , C] (k_l/) ) qlxl/
A 12 - A L1 ~ S kK !
X q/zq/22 ( ql qz K2 te q K =1 e g, 2 ) ign(k' x I')
x (fore (U2 — UB][USE — Ug)[UZd — Ug] o0 [UYe — URe)[US — Ug) s — Uge). (24)

|
Here we took a step back and reintroduced the polarization =~ Here “permutations” denote 63 other 3-quadrupole prod-
vectors (e.g. we replaced M| - M5 — > e; - M€, - Mj) to ucts. Hence the exact analytic evaluation of Eq. (24)
simplify the derivation. appears to be prohibitively complicated. Instead we will

The interaction with the target from Eq. (24) (the

expression in angle brackets) is depicted in Fig. 5 dia- abe 51
grammatically: there we have used the crossing symmetry f
[89,90] to reflect all the adjoint Wilson lines, represented 0 T
by gluons, from the complex conjugate amplitude into the o
actual amplitude. We evaluate this interaction with the L2
target in the large-N, limit, in which it reduces to a sum of
products of three fundamental quadrupoles [91,92],

wi

(feelUs - U [Use - Ugel[Ugd — Uge) e
x Uy = U0y = U Us! = Ug)

= N2O(x1, %259, 2) O (Wi, X132, Y,) Q

Y1

10
fabc P

32 3

Y2
1
X (W, X239, Y,) £ permutations + O(W) (25)

c

FIG. 5. The interaction with the target in Eq. (24).
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expand the interaction with the target (25) to the lowest
nontrivial order in gluon exchanges, or, equivalently, in the
saturation scale. To do this, we employ the large-N.
fundamental quadrupole amplitude evaluated in the quasi-
classical MV approximation in [91] [see Eq. (14) there]

D;—D
Q(£1’£2§l3’£4) — D12 _’_ﬁ[eDl/Z _ eD3/2] (26)
1~ &3
with
Q2 1
D, = — In{ ———
1 |x1 x2| n |£1—£2|A
1
—x*In| —— ) |, 27
+|£3 £4| n |£3—£4|A ( a)

2 1
_ 50 _ 2
D2 - 4 |:|£1 £3| ln<|£l _£3|A>
| :
+|£2—£4|21ﬂ<m> : (27b)
D= ['E'_M h‘(m—&m)
| -
+|£2—£3|21n<m> : (27¢)

Here Q is the gluon saturation scale of the target taken
in the quasiclassical limit [93].

Inserting Eq. (26) into Eq. (25) with all the permutations
included, and expanding in Q,, to the lowest nontrivial
order, which is order—QgO corresponding to the six-gluon
exchange, yields

(e Ut - U - UV — UL 05 - UG5 - U U - gl i i, (29
with
Inty = =(by — x1) - (b3 = y,)(by = x3) - (b1 —25)(by = y,) - (b3 —wy)
+2(by —x1) - (by —25)(by = x3) - (b3 —wy)(by —y,) - (b3~ ,)
= (by—x1) - (bs —wi)(by —x5) - (b 1—12)@2—21)'@3—&)
+8(by —2y) - (by = x1) (b3 —wy) - (b3 = ,)(br — x5) - (Bo — y,)
= (by—x1) - (by =y )by = x3) - (b3 = y,) (b1 — 25) - (b3 — wy)
— (b1 —x1) - (by = x5) (b, —Xl) (b3 —X2>(b1 2,) - (b3 —wy)
= (b1 —x1) - (b3 = y,)(ba = xp) - (b3 —wi) (b1 = 25) - (b = y))
—(by = x1) - (bs —wy) (b, —x5) - (b3 —Xz)(bl —2,) - (by —Xl)
+2(by —x1) - (by = x2) (b3 — y,) - (bs —wi1) (b1 — 25) - (by — y,)
— (b1 —x1) - (by )(Qz—lz)‘(%—m)(@l—éz)'(%—b)
+2(by —x1) - (b3 —wy)(by = x3) - (by =y, )(by — 25) - (B3~ y,)
= (b1 —x1) - (by =) (b2 —y,) - (s —wi) (b1 — 2) - (b3 = y,)- (29)

Alternatively, these results can be obtained by expanding the
Wilson lines in Eq. (28) to the first nontrivial order in the
target field and averaging with respect to the target ensemble;
this leaves rather complicated color sums involving eight
antisymmetric structure constants; see Appendix B. This
method is used to compute diagrams B and C below.

In arriving at Eq. (29) we have neglected the logarithms of
Eq. (27) by putting them equal to 1. Henceforth we will refer to
this approximation as the GBW approximation, since it was
used in [63,64] for the Glauber-Mueller dipole amplitude [93]
to successfully describe the small-x HERA data on structure
functions. Despite this phenomenological success, this is
admittedly a dangerous approximation for observables
depending on transverse momenta: the expansion to the

lowest order of gluon exchanges must be valid at high
transverse momenta, where logarithms from Eq. (27) are
most important. For a number of transverse-momentum
dependent gluon distributions (gluon TMDs) at small x,
evaluated in the quasiclassical approximation, neglecting
such logarithms leads either to a zero result (e.g. for h(gl),
as discussed in [94]) or to an incorrect high-k; asymptotics,
which becomes Gaussian in k7 instead of giving the correct
~1/k% power law. We are encouraged, however, by the fact
that such a problem does not arise for the single inclusive
gluon production cross section [21,61], where neglecting
transverse coordinate logarithms still leads to the correct
power-law high-k; asymptotics [but does not capture the
factor of In(ky/A)].
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Substituting Eq. (28) into Eq. (24) we obtain

8
g 2 2 2 =ik (z,—w;)—iky(z,~w,
%) /d 21w d2 2y dPwye~ (@) ik (2 >;/

2 2 2
/ P,y / Ek & Bq) B ig (3o g, eymby il sy +k(z —x,)
27)* (27)* (27) (27)?

e xk . agyx(k-=0) g xD\_
<_21'22 Akz +§A'ﬂ1_2(kf1>2+€ﬁ'ﬁg_ll—2 Sign(k x [)

2
2
dq3 —ig(w,-by €1 45 / s ig (b €~ D3 q3

X/ (27)? q; (2n)? 45
</

d2k/ dZI/ d2q/ d2q/ —id (v —b V=i (v —b) =il (v —y V—ik' (o
Ly, dy, / (2 )2 e (27[)12 5 )22 14y (3, 2) =i (=3Il (3, =y, =ik (5,

1 Koo = , P x !
( q, - qz x +é' ¢ M—i— g _)Sign(l_c’ x I') x Inty. (30)
2

“ T Wy Ly

It is more convenient to evaluate the expression (30) by pieces, which is allowed by the factorized form of each term in

Eq. (29). Using
d’q e d’q ;.,9f(9)
o [ G =i [ e, G

for any well-behaved function f(g) we can evaluate

. &k &Pl dq, d’q : i i, (1y=by) +il-(1y—x, ik (2, —x
/dzzle—lkl'él /dledzxz/ (27[)2 (27[)2 (27[)12 (27[)22 (bl _£1>l<bz _xz)jeq (x1=D1)+ig, (X =by)+il-(x,—x ) +ik-(2,—x,)

1 ixk o g, x(k=1)
—(—ql 4,25 =2

q, %1
X 2 +§’1'217(k—l)2 +e =5 2 Sign(k x [)

9%
:_/ Pl s, [ (82U 2k =ik =) Ak = DL (k=)
(21)? K&\ -0 Fla =07 Pl -1 Pl — D)
[Peji = 2¢5 - 1)e™ (ky = D) [(ki — D% = 2€; - (ki = D) (ky = )]Je™ 1] .
S k l). 32
" Pl -1 ’ Pl - 17 ten(ls > G2)

The other term depending on the same gluon polarization 4 is

2. .n n
/aaw etkiw —(2 ) eiaywi=hy) = 23 = C]3 (b3 —w)" = jetkibs *k—lel =26 - kiky .
b4

(33)
9 ki

Using
Zej"eﬁ' =6l (34)
A
we can multiply Eq. (32) by Eq. (33) and sum over polarizations obtaining
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2 2 2 2 2 .
/dzzlaﬂwle‘”—‘l‘(él‘w/dledzxz/(d k_dl d'qr d'g, dq iy by £ 43

27)* (27)* (2n)* (27)* (27)? pe
X eigl'(fl_él>+i22‘(£2_22)+’1‘(£z_£1)*il_(‘(él_lz) (Ql — X )i(QZ - £2)j<b3 — W )n
b exk . gx(k=0) g xD\_
QT <_gl T e T g ter 6T p |Sienlkx))
a2l ) .
- _i/ et T D), (35)

where we have defined

3 e 5 201 2k, = 1)i(ky = 1)) 4l(ky = 11 (ky = 1)
H (k1) = |- —52 - -
R [ K <z2<l_<1 — 0?2 Pk - 1) Pl -0" T Pk =D
(26" =201 (ky = D)™ [(ky = D6 = 2(ky = )" (ky = I)]e™ 1™ o [Pki =2k, - 1T)e/™ (ky — 1)™
K3 (ky — 1) Kk, - 1) ! Kk - 1)
k, — D2k — 2k, - (ky — D) (k, — )]e™ ™
_ 2k;il [(_1 —) 1 R (_l —)( 1 ) ]6 Slgn(k] X l) (36)

ki (ky — 1)

Here €'/ is the Levi-Civitd symbol in two dimensions.
Using this result in Eq. (30) yields

98 d?l . a2l . . y Vo e Ly o

3_2Q?0/ (2 )2 ell'ézl_lkl'éﬁ (2 )2 e—zl -232-4—!1_(2.2311_11/}1 (khl)H*” n (I_CZvl/)[_5lj Sm s 4 25m gingts — sgmsin gt
T T

4 85in’5nj’5ji’ _ 5ii’5jj’6nn’ _ 5ij5i’j’5nn’ _ (Sij’éjnén’i’ _ 5in5jj’5i’n’ + 26ij5nj’5i’n’ _ 5ii’5jn§j’n’ + 25in5ji’5n’j’ _ 5ij5i’n5n’j’]‘

(37)

Next, in Eq. (17) we approximate (cf. [42])
/ d*b\d*b,d*b3T (B — b,)T (B — by)T (B — b3) ® / d*b[T\(B = b)Pd*by,d*by3, (38)

where b;; = b; — b;. The rationale here is that the nuclear profile function 7', (b) does not vary much across the size of a
single nucleon. At the same time, from the standpoint of our perturbative calculation, integrating over the impact parameter
over the distances comparable to the nucleon radius is approximately equivalent to integrating to infinity.

Integrating Eq. (37) over by, and b,3, and over [ with I, we arrive at

T

8
g_z Q?OHijn (kl , _]_(2)[_1*1 j'n (kz, kl + kz)[_éij'(sjn/éni’ + 251’;1’5]‘;15,'/]4/ _ 5in6jn’5i/j/ + 861’;1’6;1]"5]'1‘/ _ 61'1"6]']"6,,”' _ 5,']'5,"/5””/
_ 5ij’6jn5n’i’ _ 5in5jj’5i’n’ 4 25ij5nj’5i’n’ _ 5ii’5jn6j’n’ 4 251n6ji’5n’j’ _ 5ij5i’n5n’j’]' (39)
Summing over all the indices in Eq. (39) yields

8 k2 k2 ki -k 2
g_ ?0 (—l 6—'—6—2 + 3| _62) . (40)
2™ ]_Clkz(l_ﬁ + ]_CZ)

Finally, antisymmetrizing Eq. (40) under k;, — —k; and k, — —k, according to the prescription (23) we obtain the
expression for the contribution to the two-gluon production cross section (17) of the first four M-terms corresponding to
diagram A in Fig. 4,

0% [+ K+ ki -ko)* (K +K5— ki -ky)?
/a’zblzdszA =g OKS PR - A . (41)
kik; (ky + k) (ky — k)

For brevity we are omitting the factor of [ @*Bd?b[T (B — b)]*/[2(27)*]* which will be reinstated later.
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B. Diagram B

Now let us evaluate diagram B from Fig. 4, along with all of its reflections with respect to the final-state cut, in the same
GBW approximation. The first of the next four M-terms from Eq. (18) gives

d2W1 Jzzzdzwze_”_{l (él W )_’kz'(éz_ﬂz) Z
20

2 2] LRa. &2
x/d2x1d2x2/ 'k _d dqy A7y ig (-, +igy (b +il () +ik(z x)
(27)? (27)* (27)* (27)°

b € ¥k g, x (k—1) q, < I\ .
* . e * = S k l
X Py ( 4 95 K +€ -4, (k- 1) +e€ -9, & ign(k x [)

x/sz3 g_igg'(ﬂl_él)g'{'q3/ d2q3 % 4,:(2, b)_l q3
(2r)? a J (@) a5

Py oy, [ LK SV @G Py iy )i (y,-b) i1y, -y,
NER o et 2n)? e T o )

el xk 0 ayxE=U) g x]
X — AL 22 - - A = Sion(k x I
q ‘12 ( ql 612 k/2 te 9q, (k/ — l/)z +e "4, 112 ) 1g (_ _)

X (fe (U = Up[Ug = Ug[UEe = Uga1 e uge - URel U - Ug[ugd - ug)). (42)

Color structure of the interaction with the target is different from the case of diagram A,

! g > ! Iy A / / A ! g N3-
(erelUs = URIUs = URNUg” = URL17 Uy = UpIIUST = URTIIU = URT) = g5 Qlnty - (43)

with

Intg = (by —x;) - (b3 —25)(by = x2) - (b3 = y,)(ba = ,) - (b1 —wy)
—(by —x1) - (b3 —yz)(bz —x) (b3 —2)(b, _X1) “(by —wy)
+2(b1 —x1) - (b3 = 2) (2 =) - (b1 —wi) (L2 = y)) - (b3 = y,)
+2(b1 —x1) - (b3 = 2) (b2 = 2) - (ba =y ) (B3 = y,) - (&1 —wy)
+ by —x1) - (by =y, )(by — x2) - (b3 —Zz)(% Y,) - (br —wy)
—2(21—&)‘@3— ) )( 3= %) (b —wy)
= (b —El)'(bz—zl)(éz—éz)'(l% )(Qs 2) - (by —wy)
=2(by = x1) - (by — x2) Qz—Xl)‘(Qs yz)(b3 2) - (by —wy)
—2(by — x1) - (b3 _Xz) by —x5) - (by —wy) (b3 — 25) - (> —)_’1)
+2(by —x1) - (by —x2) (b3 = y,) - (by —wy) (b3 — 25) - (B2 — ) (44)

again in the GBW approximation.
Employing the technique from the previous subsection to evaluate Eq. (42) yields

9°0% (1-k, )b / B2l il il i , ot e i it
i(l=k) by, i Hl]}'l k NH* " k l 51}1 5]] 6m S sin' st 25 §inst' 25 §it §i'n
2 ) et ) @l HT G DET (. 1] i *
4 5ii’5jn’5nj’ _ 25ij’5ji’5nn’ _ 5ii’5jj’5nn’ _ 25ij5i’j’5nn’ _ 25ij’5jn5i’n’ 4 25ij5nj’5i’n’]’ (45)
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where H" and H*'/" are defined by Eq. (36). Integrating Eq. (45) over b, and by; has to be done with care: naive

integration over these variables up to infinity puts / = k; and ' = 0, which are ill-defined limits in H"" and H*'/"" . To deal
with this issue we integrate over by, and b,z in the range 0 < b;; < R with R the projectile radius obtalmng

g Q6() dZZ R /le’ ’ i S ’ L ey oy ey ey
s — Ji(|l =k |R J(URYH M (ky, DH* ™ (k,, I [5™ &7 s — 17 s s 25 singi'i
32 27 |1 - k| (2= &R) 2 1(I'R) (ky. 1) (ky, ') +

4 25in’5ji’5j’n + 5[1”5}'11’5!;] 25;/ 5]1 5rm _ 511 5}/ 6nn _ 251]51} 5rm _ 25!} 5]"5! n 4 281§ 5zn] (46)

Note that the rest of the four terms in Eq. (18) that correspond to diagram B in Fig. 4 antisymmetrize Eq. (46) under
k, —» —k, and k, —» —k,, giving

98 Q?o d_zl R

nlt-lr) [ 5] LR R H (k. 1) - H? (k1)

32 27 |1 — kil
[H*l’j’n’(k l/) H*z’j’n’( kZ’ l/)] [5m 5/] 5nz _ 5ij’5jn’5ni’ + 25in’5jn5i’j’ 4 25in’5ji’5j’n
4 5!; 5]” 5;’1/ _ 251’]’ 5ji 5rm _ 5ii’6jj’5nn’ _ 25ij5i’j’5nn’ _ 251/ 5})151 n 4 251/5/;]’51%’} (47)

Employing
H"(=k, =) = =H""(k, 1), (48)
we can write an essential part of Eq. (47) as

dzl/ / U ! il ! le/ / N 2 U !
IR kg, 1) = H (g, 1] = [ S S RH " (o 1) + BT ey, 1), (49)

We will first integrate over the angles of /' and then take the R — oo limit. To integrate Eq. (49) over the angles we note that

g\ ka4 1
g.) K IR-P)

isjn

4
o F arctanh (

/ I (k. 1) = (50)
0

where ¢, is the azimuthal angle of the transverse momentum vector /, while ¢. = max{k,/} and g. = min{k,/}. In
arriving at Eq. (50) we have used the integrals listed in Appendix C and employed the identity

eiPenm = grmsin — simspn, (51)
Write Eq. (50) as
/02” dgH"(k, 1) = ki§" Ak, [) + K" B(k, I). (52)
Using this along with
H"(k k= 1) = —H'™ (k1) (53)

in Eq. (47) yields

800, [ d|l —k|R w dI'R . L
_9 QSO/ L= ki Ji(|1 = k{|R) / JL(UR)[K] 8™ A(ky, |1 — ki |) + ki 67" B(ky, |1 = ky|)]
A

8 27
X [ké&j/”/A(kz, l/) kJ 5111 B(kz l/ 5m 5/] 5m 5;/ 5]11 5111 + 25111 5jn51/ + 26m 5}1 5]" + 511 5}11 5nj’
— 26U 31 M — 5T S § — 2517 5 — 28§ 4 2518 5. (54)

'In order to simplify the notation, we define the magnitude of a two-dimensional vector x as x = |x].
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Performing the summation over all repeated indices we arrive at the contribution of diagram B

8

with

4 1

B(k, l) = _mi(kz _ 12)2 )

(56)

as follows from comparing Egs. (50) and (52). Equa-
tion (55) contributes only to the first azimuthal harmonic
coefficient in the two-gluon correlation function.

The leading IR divergent part of the |/ —k;| and /'
integrals can readily be extracted from the above results,
yielding

598Q?() ky -k,
/ EbidbnB == R S

_56°0% 1 kick
2 A K

(57)

with the constant

QSQ?()/ d’l

32 (2r)? (27)?

56808, [« d|l—k|R
ngo/ -k J1(|l—]_<1|R)/
A 2r A

o dlI'R

—SI(IR)B(ky. |l = ki [)B(ka, I)ky - ky (55)
c:/wm/i”zaﬂ, (58)
1

where v = I'R or v = |l — k;|R depending on the integral
and R = 1/A.

In arriving at Eq. (57) we have assumed that the IR
divergence in the |/ — k;| and [’ integrals is regulated by
A =1/R. Similar power-law divergences arise in the
leading-order calculations of two-gluon production in the
saturation framework [42,43]. In [43] it was argued that
they are regulated by the saturation effects in the projectile.
If this is the case in our calculation as well, then we should
go back to Eq. (45) and subtract from it the k; — —k; and
k, - —k, terms while adding the k; — —k;,kr, - —k,
term to fully account for diagram B and its mirror
reflections, obtaining

TG

. d21/ 11 .. .. R
o8t [ ey 1) HO =D H ) + T (=0

x [5in’5jj’5ni’ _ 5ij’5jn’5ni’ 4 25in’5jn5i’j’ + 25in’5ji’5j’n 4 5ii’5jn’5nj’ _ 25ij’5ji’5nn’ _ 5[[’5jj’5nn’

ot ol

_ 25ij5i’j’5nn’ _ 25ij’5jn5i’n’ 4 25ij5n] 5”’].

Next we regulate all the IR momentum singularities in H-
factors of Eq. (59) by

1 1
== . 60
PP+ (60
This is indeed not an exact way to account for the satu-
ration effects in the projectile and should be understood in a
qualitative way. After such regularization, integrating
Eq. (59) over b,; and b,; to infinity and one gets zero,

/d2b12d2b233 — O (61)

Hence the contribution of diagram B is either given by
Eq. (57) or is zero depending on whether the power-law IR
divergences are regulated by the IR cutoff A or by the
saturation scale Q, due to higher-order interactions with the
projectile. A more careful analysis of our main result (17)

(59)

along with the inclusion of even higher-order corrections in
the interaction with the projectile are needed to resolve
this ambiguity. While the former can be accomplished with
a sufficient amount of hard work applied to Eq. (17), the
latter would require diagram calculations beyond those
done in [54], which is a significantly larger effort. We
leave this investigation for further work, noting here that
diagram B, even if it is not zero and is given by Eq. (57),
would only contribute to the first azimuthal harmonic, and
is not going to cancel contribution (41) of diagram A, and,
as we will shortly see, the contributions of other diagrams
in Fig. 4.

C. Diagram C

Moving on to diagram C along with the mirror reflec-
tions of its gluon lines with respect to the final-state cut we
see that the first of the next four M-terms from Eq. (18)
gives
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(494)2 / d2Z1J2W1dZZZJZW2e_ikl.<§|_E'>_il—€2.(§2_w2)
3 g E
(ZNC) LAI

2 27 2 2
X/szldzxz/ d’k d’l d°q, d°q; iq, (X, =by)+iq, (X, =b3)+il-(xy x| )+ik-(z,—x,)
(
1

22 (22) (222 (222

ngk * £2X(I—C_D * lel .
Xq%q (_21 'ﬂzk—g—i-g'glw-&-g'gzl—z Sign(k x [)
X

2
2112
2 . 2 * o)
/ 943 g, n-0) 9" 5 / 443 g eon) 2 5
(271-) g?’ (27[) 2/3
ko/ dzl/ dzq/ dzq/ iq ia i 1l ()
X d2 d2 1 2 ,—ig '(L_éZ)_lz Q _23)_1£.(X2_X|)_,k.<&2_z )
/ Y1 yZ/ (271_)2 (277:)2 (2”)2 (27[)26 1 22 2
1 & xk o, dxEK=U) g xI\_
47 <-qu & e 'QQWJF& KT )Slgn(l_c’xz’)
4, 4 K k=1 Ji
x (fe(Up! ~ Up[Uge = Ul U = U1 [uyd = g use - ugel[ug - Ug)). (62)

Evaluating the interaction with the target in the GBW approximation and performing a number of integrals along the lines
used for other diagrams above, we rewrite this as

9 0% Ly +ik, b 2 ity by, i «i'j'n' /
32 We“” i (2”)26 STt HYM (ky, DHTT (ky, 1) (26, ,67 w8
+86;16; 10uw = 6iwbi j6jn = 6i jOi wOjn = 6 nbit jO;y = 6; y6y n6jw — 6 by j6y n — 6; j0r Wby n
— 8in0p jOj = 61O w0y + 28,108ty + 28; i1 O] (63)

Integrating over b3, and b;; we get

TN

#08 Pl
—SO52<I_C] - ]_Cz) /—Hun(l_Cl . l)H*lj n (l_{z,l) [251-’"51'17”/6' + 85 10 4/5,1’”/ - 5i,n’6i’.j’5j,n

32 (271.)2 j.J i,i'%.j
- 5i.j’5i/.n'6j,n - 5i,n5i’.j’5j.n’ - ai,j’éi’,néj,n’ - 5i.n’5i',j5j',n - 5i,j5i/,n’5j/.n - 5i,n5i’,j5j’.n’ - 5i.j5i’.n§j’,n’
+28;16; 107 v + 26; 107 10 ] (64)

Subtracting the k; — —k; and k, - —k, contributions from Eq. (64) and adding the k; — —k;, k, = —k, contribution as
well yields

TN}

ggQG dzl . .. ot
. / (62 (ky = ko) H'" (k. HH™ (Ky. 1) = 8 (ky + ko) HY" (Ky . DHT™ (k. 1)

16 /) (21)?
X [25i,n5i’,n’5j,j’ + 8(Sl',z"éj,j’(sn,n’ - 5i.n’5i’,j’5j,n - 5i,j’5i’,n'5j.n - 5i,n5i’,j’5j,n’ - 6i,j’5i’,n5j,n’ - 5i,n’5i',j5j’.n
— 8 101 w0 n = 8inOy 0jt w = i j0i yOjt w + 28,18, 40y + 28; ;6 18y ). (65)

The delta functions indicate that these are indeed gluon HBT and anti-HBT diagrams in the terminology of [42]: such
contributions were previously observed in [17,42] in the leading-order (even-harmonics) two-gluon production
calculations. Summing over all the indices we arrive at

Pl (B+P—k 12 & 05

808 [6%(ky — ky) — & (ky + k ~
g Q5l0°(ky — k) — &6°(ky + ky)] 2r) KSIS(k; —1)° ~ 4nkBAS

(62 (ky — ko) — 8% (ky + ko)) (66)

where the integral is dominated by the IR divergences, which we regulated by the IR cutoff A. (Once again, it is likely that A
should be replaced by the saturation scale of the projectile [43].) We thus have for the diagram C,
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8 6
/d2b12d2b23c = g Cso

47 KSA? [6%(ky — ko) — 8% (ky + ko). (67)

In the GBW approximation the diagram gives only HBT (and anti-HBT)-type correlations. It appears likely that in the full
MV model, without the GBW simplification, diagram C would also lead to non-HBT types of terms [that is, the
contribution of the full diagram C is probably not limited to the delta functions of Eq. (67)].

D. Diagram D

Let us evaluate diagram D next. The first of the next four M-terms from Eq. (18) gives

4g° 2 2 —iky (2, ~w, ) =ik, (2, —W
l)1 — (2NC)3/d Zldzwld Z2d2W2€ ky-(z—wy)—iky (3, _2);

2 2
% /dledzxz Ik &l dq, &g, 014, @1=b0)+ig, (6 =by )il (1o —x, )ik (2, —x,)
(27)* (27)* (27)* (27)?

1 ixk . g, x (k=) q,x1
(ql qz k2 +§ﬂ'ﬂlw+_z GH= Sign(k x I)

X _
¢4
X/ d? q3 e—zq (w,=b, )J qS/ dgq% iq}-(gz—éz)gj’ 2/3
(27)? a J (@) a5

&K &Pl d*q, &gy s b —il (v —y ik -(wey

<[ Enn [ o e e b )
I Oxk X W=D) g

R e e ALl

x (fere iUt = UplUgd = Up|[Ue? — ug 17 [Uhe = Upelluse = U<l iU — Upd]). (68)

Evaluating the interaction with the target and performing a number of integrals we rewrite this as

805, . . da’l d*l .
D, —ngQSSOelkl'ézlﬂkz‘ézz/(z 7 20 ——— H"(ky, ) H*7" (k,, I')[...Kronecker deltas....], (69)

with the exact structure of the Kronecker delta functions not being important for what follows. Therefore, we do not show it
explicitly. Integrating over the impact parameters b,; and b3, we arrive at

86
/ d*byd*by, D, :5’1—%}52(151)52(@2) / Al VH T (ky, [)H*'7" (k,, I')[...Kronecker deltas. ..]. (70)
Subtracting from Eq. (70) the k; - —k; and k, - —k, terms and adding the k; - —k;, k, — —k, term gives zero:
/cﬂb2,d2b32D = /d2b21d2b32[D1 + D, + D3+ Dy =0. (71)

(Here Dy, ..., D, denote the four contributions one could get from diagram D in Fig. 4 by reflecting the gluons with respect
to the final-state cut.)
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E. Diagram E and F
We conclude by evaluating diagrams E and F in Fig. 4. The next four M-terms in Eq. (18) give

89" 2 2 2 =ik, (z,—w, ) =ik, (z,— E
iky- (2w, )—iky(2,—w,
El ( Ngc)3/d Zld WMI{Zsz wye (z, )=iky(z,=w,) 2

X/szld2x2/ dzkz d212 JZ‘“Z d2q22 4, X1=by)Fig, (=, )il (=, )ik (2, ~x,)
(2m)* (2m)* (27)* (27)

1 ( g xk, . g, % (k=1)
—5|-4,¢ € 4=y
a7 e (k-1

2 :
x/ d°q; ity (w=by) €4 23/ d’q} JURES by €143 qz
2 2
(27) a J (@) a5

2 2 2 2
/ “nd yz/ : k>/ (dl)/ éq)/ (C;q)z o4, (0 =) =igy (v, =ba) =il -(y, =y =ik (w—y,)
y/4 V4
e x kK , q,x (K-=1) , g xI'\
X = q/ q ( ql qz k,z +§/1 . Qll W+ /1 q/2 —1[/2 )Slgn(/_c' X ll)
4 4 K =1L L

x (fre[Ugt - U [Ug? — UR[ULY — Uge e (U - U U - Ugellug ~ Ugl. (72)

49,
X +€ﬂ q2

x1
2 )S1gn(k x [)

Evaluating the interaction with the target and performing a number of integrals we rewrite this as

:—gSQ?O eikl'éfﬂ/ dzl (Pl/
64 (27)% (27)?

E,| e~y fiin (ke 1) H*'J'™ (ky, I')[.. . Kronecker deltas. ..]. (73)

Integrating over the impact parameters bs; and b3, we arrive at

86
/ by by Ey =2 6%0 8% (ky) / dIHI" (ky, ) H*7" (k. k,)|... Kronecker deltas. ..]. (74)

While the H*/"' (ky, ky) in Eq. (74) requires proper regularization, as it was done above in evaluating diagram B, it is clear
that antisymmetrization of (74) under k; — —k; gives zero,

/J2b31d2b32[E1 + E2 + E3 + E4] - O (75)

Diagram F is obtained from diagram E by interchanging k; <> k,. Therefore, the sum of the four F-graphs is also zero,

/d2b31d2b32[F1+F2+F3+F4]:0. (76)

F. Sum of all diagrams
Adding all the above results for diagrams A, B, ..., F together we get

doogq 1 / - .
= d*Bd°b|T(B—-b b
dzkldyldzkzdyz [2(2”)3]2 [ 1(_ _)] g QSO( )

10c? 1 ky -k, 1 ki

R Pl — k)~ Bk + k)] ™)

1 { [(k’f +B+kk)? (B+K—k k)
/_C?I_Cg (I_ﬁ + kz)ﬁ (/_Cl - ISZ)6

The most important conclusion of our approximate analytical calculation that led to Eq. (77) is that we get a nonzero
contribution, which would yield odd azimuthal harmonics in the two-gluon (and, hence, dihadron) correlation function.
Hence, our main exact result (17) is not zero either. We conclude that we have identified a source of odd harmonics in the
two-gluon correlation function in the saturation framework.
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Interestingly, the HBT term in Eq. (77) has the largest IR
divergence and, therefore, dominates Eq. (77) and the
corresponding correlation function. As was already sug-
gested in [17], fragmentation may “wash out” the delta
functions in the HBT term to some degree, such that the
hadronic correlation function would not contain the literal
delta-function correlations from Eq. (77). While the delta-
function shape may not survive fragmentation, the HBT-type
gluon correlation should still manifest itself in the hadronic
correlation function, and may also dominate in it just as the
HBT correlations dominate the two-gluon correlator.

Comparing Eq. (77) to the leading-order two-gluon
production cross section in the classical formalism, e.g.,
to Egs. (49), (58), and (59) in [42], we observe the
following: Eq. (77) has an extra power of Q% as compared
to the leading-order cross section, corresponding to an extra
rescattering in the target. Similarly, Eq. (77) includes an
extra factor of a2 as compared to the leading-order cross
section: this factor arises through the extra interaction with
the projectile. In addition, the IR divergence in Eq. (77) is
~1/A*, which is a higher degree of divergence than ~1/A>
observed in the leading-order result [43]. This is an
indication that the higher-order rescatterings in the target
and in the projectile may screen the IR divergence in the
leading-order expression for two-gluon production cross
section, effectively replacing 1/A? by 1/Q?. Further work
is needed to firmly establish this conclusion.

IV. EVALUATING THE ODD-HARMONIC PART
OF THE TWO-GLUON PRODUCTION CROSS
SECTION: NUMERICAL APPROACH

In order to model the distribution of the color charges in
the projectile numerically, instead of the point-charge
approach used in Sec. III, it is more convenient to use
an alternative one based on the introduction of a continuous
(light-cone) color density p,(x). To compute an observable,
one has to average the corresponding operator with the
weight functional W(p,,], similar to the way we account for
the target ensemble. Nevertheless, the treatment of the
projectile here is still different from the treatment of the
target; the projectile charge density is considered to be
dilute facilitating the expansion of the projectile Wilson
lines. In [56], it was demonstrated that, in the classical
approximation, the approach based on the continuous color
density is completely equivalent to the one used in
preceding sections.

Here we introduce the density-dependent operator
describing production of a gluon with momentum ki,
Elﬁ[pp, prl; see Appendix D for details. The single

and double inclusive gluon multiplicities are then given by

dN dN
E =(F s , 78
1d3kl < 1d3k, L[)p /)T]>pm ( )

d*N dN dN
———— = E,———1p,,pr|lE,——|p,, .
< 1d3k1 [Pp PT] 2d3k2 Vp pT]>p,,~pr

(79)

Thus, in the classical approximation, the double inclusive
production factorizes on the configuration-by-configura-
tion basis. This leads to the following interesting fact: the
two-particle cumulants of azimuthal anisotropy are always
positive if the magnitudes of the momenta of the produced
gluons coincide, i.e.,

2z ) AN
/ d¢1dquem(cﬁl—aﬁz)373
0 Flad kol g =i =
= (Va(K)V5(K)),, r 2 0, (80)
where
2 .. dN
V) = [Tdpert Sy 1)

Our goal is to compute the odd two-gluon harmonics.
For this we define

dN°%(k)

_ dN (k)
T oo =5

o]
(52)

[/Jpv/)T] -

dN (k)
&k

with the explicit expression presented in Appendix D. We
thus can extract

27 ) dNodd k
view = [Taper T8 o
0 d’k
and the angular-averaged
2 dNodd k
Vot = [T ap B )

Vo (k) contributes to the normalization of the cumulants of
the azimuthal anisotropy and as such has to be computed to
the leading order only. Note that in this case Vj(k) is
manifestly real.

The two-gluon cumulants for odd harmonics are then

odd odd *
U%{zﬂk1|,|/_c2|>=<vv"o(|('k’—])” [Vvﬂo(&ﬁ)‘)} > (85)

The averages with respect to the ensembles (- - -) pypr ATC
performed in the Gaussian MV model. The target MV
configurations are generated as described in [95,96] and are
complemented by the MV configurations for the projectile,

which are computed for a single slice in x~. We also assume
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an infinite target with the color charge density defined by a
single number describing the color charge fluctuations,
u?> = const. For the projectile we assume a finite size R »=
1/Q;, with a Gaussian profile, that is,

pp(x) = cpp’ exp (— |‘|2>- (86)

Strictly speaking, for our analytic approach to be valid one
has to have ¢, < 1; see e.g. [42]. In our numerical
simulations we fixed ¢, = 1/2. Our choice of the free
parameters is driven by the predisposition to simplify the
problem as, in the current paper, we have no ambitions to
describe the experimental data quantitatively.

The odd harmonic coefficients v3 and vs resulting from
our numerical simulations are shown in Fig 6. We warn the
reader that the calculations were performed without a high
multiplicity bias; the gluon fragmentation was not
accounted for; and the Glauber fluctuations were neglected.
Additionally, the parameters we used to model the projec-
tile wave function are not very realistic. Nevertheless
Fig. 6 can be viewed as a proof of the concept demonstrat-
ing the presence of the odd azimuthal harmonics in the
saturation/CGC formalism; the magnitude of v3{2} is of
the same order as observed experimentally in pA collisions
at LHC.

COdd ( |]_<l s |

)

008 1 1 1 1 1
0.07 - 1<l <3 moo{2} =
0.06 A u{2} L

0.05 1 ] ]

0.04 - A = B
0.03 1 l L
0.02 +
0.01 4
000 T T T T T

k]/QsO

FIG. 6. The odd harmonic coefficients for gluons plotted as
functions of the transverse momentum k,/Q,, with k, integrated
over the k, € [Q9,30Q,] interval.

Conducting phenomenologically relevant calculations
would require a significant numerical effort and will be
reported elsewhere [97].

By numerically computing the two-gluon correlation
function, we are able to reproduce the main features of
Eq. (77), including the (anti-)HBT peaks and the contri-
bution from diagram A. Consider the odd part of the
angular correlation function C°(|k, |, |k, |, A¢) defined by

1 27 d, 27 d, Nk, k
_ZEIEZ/ ¢1/ 25 (Ag — ¢1+¢2)< Nk k) _

d*N(ky.—ky) d’N(=ki.ky) = d*N(=k;.—k,)
d3k1d3k2 &Pk d3k2 d3k1d3k2 d3k1d3k2
dNOdd(k )
e N ) (87
1 PpPT

7 d d dN°%(k
R R Al

Performing numerical configuration-by-configuration analysis it is possible to extract C°%(|k, |, |k,|, A¢). The numerical

results are depicted in Fig. 7 for |k;| = |k;]

~ 50, with Q,, the target saturation scale; the black points connected by the

straight lines are the results of the numerical calculations, and the green curve represents the fit inspired by the analytical

result in Eq. (77), namely

(2 + cos(Ag))?

(1+ cos(AqS))z) B

odd __
Cflt = acexp <_ b2
c

with positive a. and a,. Here the first term corresponds to
the HBT peak, which, for our Gaussian projectile wave
function in Eq. (86), is a Gaussian itself. This replaces the
Dirac o-function peaks, originating in Eq. (77) from the
Fourier transform with respect to the impact parameter over
an infinite projectile (cf. [42]). The second term in Eq. (88)
corresponds to the contribution from diagram A in which
the denominator was regularized by the scale of order
1/R,,. As shown in Fig. 7, the fit reproduced the numerical

(1 + cos(Agp) + b2)

s+ (Ap — Ap — 1), (88)

I
calculations quite well, confirming our analytical findings
from (77). We believe that the disagreement between the
green solid line and some of the numerical data points in the
right panel of Fig. 7 either is due to the higher-order
corrections originating from the MV ensemble (which are
outside the precision of the classical approximation em-
ployed here) or is caused by the unavoidable discretization
errors. Note that the contribution of diagram B is not seen in
our numerical analysis, which appears to be consistent with
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2.0 x10~° 1 1 1

1.5 1 -
1.0 1 -
0.5
0.0
—0.5 4 L

~1.0 - L

Ol Ag)

—1.5 4 L
720 T T
0.0 0.5 1.0 1.5 2.0

Ap/m

x 10711

——
T T

Codd<A¢)
T 5

0.0 0.5 1.0 1.5 2.0
Ao /7

FIG. 7. Left panel: the odd correlation function C°%¢ defined by Eq. (87) as a function of the azimuthal angle A¢ = ¢, — ¢, for
lki| = |ky| = 50, Right panel: the same as in the left panel, but zoomed in. The green solid line shows the fit (88) inspired by the
analytical result (77). The prominent peaks at A¢/z = 0, 1, and 2 illustrate the HBT-type correlation from diagram C. The peaks

disappear for |k;| # |k,| (not shown).

the possibility that the contribution of diagram B is zero, as
outlined above near Eq. (61).

V. CONCLUSIONS AND OUTLOOK

In this paper we have demonstrated analytically that the
classical gluon fields of the saturation/CGC approach to
heavy ion collisions do generate odd azimuthal harmonics
in the two-gluon correlation function. Since the classical
fields are the leading-order contribution to the two-gluon
production cross section, we conclude that the odd azimu-
thal harmonics are an inherent property of particle pro-
duction in the saturation framework. This conclusion is
consistent with the results of numerical simulations for the
classical gluon fields of two colliding heavy ions carried
out in [51,52]. The difficulty in identifying the odd-
harmonics contribution analytically is related to the fact
the analytic expressions for the classical single- and
double-gluon production cross sections in heavy ion
collision do not exist: instead, as explained in the
Introduction, to obtain analytic results one has to assume
that one of the nuclei is dilute and expand in the interactions
with this dilute projectile order by order. As we have shown
in this work, odd azimuthal harmonics appear only in
the terms contributing at least three interactions with the
projectile to the two-gluon production cross section. The
part of this term giving the odd harmonics was found above
and is given by Eq. (17).

We evaluated this odd-harmonics contribution to the
two-gluon production cross section analytically in the
GBW model by expanding the interaction with the target
to the lowest nontrivial order (six gluon exchanges). The
result is given in Eq. (77) and is nonzero: hence the
classical gluon fields do generate odd harmonics. In Sec. IV
we evaluate the same odd-harmonics correlation function
numerically in the full MV model, taking into account the
full interaction with the target. The resulting odd harmonics

coefficients are plotted in Fig. 6 while the correlation
function is given by Fig. 7.

Both the analytic expression (77) and the correlation
function in Fig. 7 appear to be dominated by the §-function-
like peaks at A¢p = 0 and A¢p = z. These peaks result from
the so-called gluon HBT diagrams in the notation of [42].
We believe the dominance of these peaks is responsible for
the »5 and v5 in Fig. 6 being so close to each other in their
values. To see this imagine a toy two-particle distribution
given by

AN,y
dAg

~A8(A¢) + BS(Ag — ) (89)

with some coefficients A and B. Clearly the expectation
values of (cos(nA¢g)) averaged with the distribution (89)
are independent of n for even and odd n separately,
implying that all v,,,, are equal to each other, and all
the v,, are equal to each other (but different from v,,, ).
Something similar happens in Fig. 6 due to the dominance
of the o-function contribution to the correlator. Certainly, in
the actual collisions, fragmentation will turn gluons into
hadrons, in the process broadening these J-function peaks:
while a detailed investigation of the fragmentation effects
on v,,’s is left for further work, one could hope that part of
the toy model mechanism suggested here remains, con-
tributing to the similarity of all v,,,; and of all v,,
coefficients. (The importance of the A¢ =0 and A¢ =
x peaks for v, values was also stressed in [98].)

Let us stress further that the gluon correlation function in
Fig. 7 should not be compared directly to the data on the
dihadron correlation function. At the very least we expect
the fragmentation functions to modify the shape of the
correlator, most probably broadening the §-function peaks.
Note also that even in the numerical part of this work, we
expand the interaction with the projectile nucleus to the
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lowest order needed for odd harmonics: higher-order
interactions with the projectile may need to be included
for the comparison with the experimental data.
Unfortunately, at this point, this appears possible to do
only numerically. In addition, further theoretical work
should include the small-x evolution effects [81-88] into
the two-gluon production cross section. Only after all of the
above effects are included can one try comparing the
resulting correlation function to the experimental data.
Finally, we would like to point out that while our MV-
model power counting in the calculations presented in this
paper assumed a collision of two nuclei (with one of them
being more dilute than the other, A; < A,), the results of
our calculations can also be applied to describe the data on
dihadron correlations reported in high-multiplicity pp and
pA collisions (with all the caveats listed above) if the
saturation scales of both the target and the projectile are
perturbatively large, with the target saturation scale being
larger than the projectile one.
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APPENDIX A: ODD HARMONICS IN THE
CLASSICAL FIELD LANGUAGE

The same conclusion as in Sec. Il A about the phase
difference between the leading and higher-order amplitudes
being the mechanism for generating the odd harmonics can
be obtained from the classical gluon field approach. One
starts with the contribution of a single gluon field to the

interesting discussions of the mechanism for generating = Lehmann-Symanzik-Zimmermann formula: it can be
odd harmonics originally suggested in [47] and further  cast as
|
/meu%:_/wmmM%wﬂ:/fm%—mmmw%%w (A1)
where one assumes that A, = 0 at 7 = —oo, as is the case for the classical field, which diagrammatically can be constructed

out of retarded Green functions instead of Feynman propagators. The produced two-gluon multiplicity in At = 0 light-cone
gauge is

dN

o | B dBw s dBwo o= Gr=ion)=iky-(F=i02)
Phydy, dlydy, / aamEadmne

X ((0y — iE1)Ajr (21) (9o + IE )AM (wy)(8g — iEy) Ay (22) (0 + lEz)ALD(Wz»

(A2)

W zz w7—>+oo’

where we have employed the fact that the contributions of infinite times cancel in the exponent. Next consider flipping
ky — —k;: this corresponds to k; — —k;,y; = —y;. However, since the classical particle production is rapidity
independent, we conclude that the k; — kl substltutlon only affects the transverse momentum, kl — —k;, and, therefore,
is the right substitution if one searches for odd harmonics. Since k, - kl is equivalent to Z; <> w, (and ditto for k2) we
conclude that the part of the cross section that may give odd harmonics is

dN, odd

~_E.E Br o dBwdB 7 d3w e~ k1 Gr=io1)=iky-(Z2=792)
&k dy, dPlody, ‘2/ aa@m@aane

X ([(DoAy (21)) A (w1) = Ay (21) (oA (w)))]
X [(aOAI} (ZZ))ALD(WQ) - Az% (ZZ)(aOALD(WZ))D|z(]’.w‘l’,zg,w2—>+oo (A3)

[see a similar discussion in [51], Egs. (3.11)~(3.14)]. This equation can be rewritten by introducing real B, and 0
according to

k|) i0(r k)

M@B:/ﬁmm@mzm@ (A4)
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-

The reality of A, (x) implies that (¢, —k) = —6(1, k). Then Eq. (A3) becomes

dNodd
d2k1 dy; dzkzdyz

Just as in Sec. II A, we see that the odd harmonics are
generated by the phase of the gluon field A,(z, k) taken in
the mixed representation (Fourier-transformed into 3-mo-
mentum space, but also time dependent). The exact relation
between this phase and the phase difference between M,
and M35 in Sec. IT A is not clear at this point (see more on
the relation between the phase difference and the classical
gluon fields below).

For 0(t, —/E) = —0(t, l?) to be true, one has to have

O(t,k) ~ (k- b)*"*! where b represents various vectors
determining the positions of the valence quarks in the

nuclei and m > 0 is an integer. In addition, the phase 6(7, k)
has to be time dependent.

Specifically for the problem at hand, it is convenient to
use the light cone coordinates; we thus return to Eq. (A1)
and apply an ultraboost using

xt = elx' T, X~ = e Ay~

(A6)

with A> 1. In AT =0 gauge the gauge condition is
preserved by the boost. We are interested in the transverse
components of the field. For those we get (after dropping
the primes on the new coordinates x'*, x' ™)

—+400*

/d“xe“")‘DAﬂl = /dzdex_[(ﬁ_ — ikT)A e
(A7)

Now define
Ar(x™ kT k) = / d?x;dx~e® kAL (x). (AB)
Using this in Eq. (A7) one gets

—+00"

/d“xe”‘"‘DAi =—2ik* e AL (xt kT k)|

(A9)

With the help of Eq. (A9) and using the fact that the
gluon field is real,

ARt kT ) = AR(xt, -kt k), (A10)

we arrive at

~4E | E»[0,0(t, /;1)][809“» Ez)}B;f(fy |7<} Bz, |Iz] B (1, |/:2|)BU(L Vz2|)|z—>+oo-

(AS)

dN
d*kydy, d*kydy,
~ (2K7 )2 (2h3 )P (A (K k)AL (= —ky)
X Ay (xt kg )AL (x T =k ko)) | e (AT

Naively one can argue that since the two-particle distribu-
tion in the classical approximation is rapidity independent,
nothing should depend on k| and k3. We then seem to
conclude that the distribution is indeed k; - —k; symmet-
ric. Then the question arises: how could one get odd
harmonics in the classical approximation?

The resolution to this is that the classical field may have a
Sign(k™) dependence, schematically

ARt ket k) = A (e kL k)

+ Sign(kHAPE (x k. k), (Al2)
such that
A (I ) = AT (e k)
- Sign(k*)ALz)L(er, —k*,—k). (Al3)

Here Afllu(x*, k*, k) and A,(;)L(x*, k*, k) are assumed to

be functions of k™ without jump discontinuities. Using
these in Eq. (Al1l), we arrive at

dNodd
dzkldyldzkzdyz
~ (2k{)*(2k3 )*Sign(k{)Sign(k;)
x (A (et kAT (o kL k)
—A;(42)L(x+’ kT,b)A(j)ﬂ(Jﬁv —kf, —ky)]
x AV (ot I k) AR (xt, =k —k)
— AP (et I ko) AN (=K —h) ) e
(A14)

which is odd under k; — —k; if we assume that all the
ki, k3 dependence cancels everywhere in the expression
with the exception of the sign functions.

Additionally the representation in Eq. (A12) is useful to
illustrate the phase difference discussed in Sec. ITA.
Performing the Fourier transformation into transverse
coordinate space, we rewrite
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Af;(x‘*, kt,x)
= AV (et kL x) + Sign(k)AP (xt, kL x). (A15)

The reality of the gluon field requires

Art(xt kT x) = Ag(x T, —kT, x), (A16)

and thus we get
(A k) = A (e k) (AL)
(APt kL x) = —AP -k x). (A18)

For classical fields we can neglect the k™ dependence in
Af,] % and conclude that Af,z) s imaginary while Af,])l is
real; this results in the same phase difference as between
M, and M5 in Sec. IT A.

APPENDIX B: COLOR SUMS

In order to compute diagram A, the following color sums
were used:

6{1/)’5y(1/5/3/y/ C(l/ﬁ’“//”/y/ — %N?(N% - 1), (B9)
5(1/}5(1/]/'6}//}/ C(lﬂy(l//}/yl — 0, (BIO)
aay’éﬂa’ 5)//}/ Caﬁya’ﬁ/y’ =0, (Bl 1)
594 1 5 Cprht =, (B12)
' ol / /Bl 1
S §XP s’ cabrad By :—ZNﬁ(N%_l), (B13)
” , , /gl 1
5B s srv' cabra By — —ZNé(N%— 1), (B14)
, " , I al ) 1
52« §PP srv' cabrod By :—gN?(N%—l), (BlS)

where
Ca/}ya’/i’ g fahcfy’adfa’h’c’fya’d’fahdfa’h’ef/)’cef/)”c’d’ . (B 1 6)

These color sums and those appearing in diagrams B and C
were evaluated by using the definition

1
5% 6(/;/ 6/3/}’ C{lﬂy(l’/ 'y 7N4 N2 -1), B1 1
] C( c ) ( ) fabc — %ta [tb, tc] (B17)
ar' sa'B §Pr cabrd By —
e 0, (B2) and the Fierz identity
1
50 5 I CIIY = NHNE-1).  (B3) v (g L
8 lifla = 5 <5 T N—65‘15k1>- (B18)
' / !l 1
5(1]/6(/[)’ 5/};/ Ca[)’ya/}y — ZN?(N% _ 1)’ (B4)
o o APPENDIX C: ANGULAR INTEGRALS
6{1]/5[)’(1 5/37 C(lﬂyllﬁV :ZN?(N% — ]), (BS) H . . .
ere we list the angular integrals which were used to
y o compute diagram B:
57 §Pr §PY CaBraBy — gNﬁ(Ng -1), (B6) g 5
. q-
—— Sign(k x )dp = —In—¢;,k,,, (C1)
%' 519 PP Ccabrabr — (, (B7) / (k- DZ k? q.+
U / ! e 1 L 1 f— —L
GV CPIY = —INYNT 1), (BS) / i Sign(k x [)dg = e lz)gkeimkm, (C2)
. 1 s oy d-
flelgn(l_c X l)d(p = —F 2kl + (k + l )ln_ (kiejmkm + kjgimkm)’ (C3)
(k=1 q+
v 1 (2kl(k* + 1?) q_
J = geSente e = =3 (S + ) b+ kink) )
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L
/(k Iy 5 Sign(k x l)de
1 [ 2kI(k* + 1) q-
= (T (R + ) In =
(oo + e+ mm)

X (kikj€pmkn + kiky€imky, + kiky€jmk,)

Ll
+ 25 (Zkl + (2 +P)In —+> Cimkm€ ik pCurks,

(C5)
where ¢, =¢g.+q_, g. = min(k,[), and ¢g. = max(k, /)

APPENDIX D: CONTINUOUS CHARGE DENSITY

The goal of this appendix is to express the amplitudes in
terms of the continuous charge density and to prove the
equivalence between this calculation and the result of [47].
Finally we will also discuss which representation of the
amplitudes is the most convenient for numerical simulations.

|

p(bs3)

@WWGW

FIG. 8. The key diagram for the numerical calculations of the
odd correlation function. Together with its complex conjugate, it
defines the configuration-by-configuration contribution to the
operator in Eq. (D3).

Translating the amplitudes M| and M5 to the language of
“sources” (continuous charge density) boils down to
replacing V,1* - p®(b). Thus in momentum space
we have

q d’q q k
S M (k)=2g | d&* k/de/ a(b) £ U”g—U“"gb:Z/ S-S UYk—q)p?
M) =29 [ ze - v =29 [ S (S5 ) vek-am(o
(D1)
and 2 2 2
. -l d~q, d"q, iq,-(x,=b,)+ig,-(x,—b,)+il-(x,— ik-(z—
oM (k) = =2id® | dPx,d?xd?>b d2b / iq,-(x,=by)+igq, (xy=by) +il (x=x, ) +ik-(z-x;)
gﬂ, —3(—) g / X1a=x; 1 2 (277'_)2 (2”)2 (277:)2 ! 2
1 gxk . ogx((k=0) g xl
ol G e e R L
x ferelUR! = U (U = Ulp®(ba)pf (ba)
dZZ d2q1 dqu
—-2ig [  Sign(k x ) UM (L - g,)p%(q, U (k ~ 1 - 4,)* (a,)
(27)* (27)* (27)° - A ==
o(_Exk(a 1\ (G k=LY . (4 1\Gx k-]
2 \gt 2) \& |k-12) 7 \g 2) Blk-1
4, k—1>q1><l>
+e - (22— =_~). D2
’ (61% k—172) 43P (B2)
The combination of interest (see Fig. 8)
1 d’l d*q d*q, d*q,
~M;(k) - M (k) + c.c. = =2ig*
2 M8 - MiB) Fec. = ~2ig / (22) (22) (22)? (22)?
x Sign(k x 1) f** U (L = q,)p"(q,)U“(k = L = q,)p*(q,)[U“(k — 9)p*(q)]"
y <_q_xk<ﬁ_£>.<@_ '_<—1>+qu<’—<-!> <i_é>.<ﬁ_£)
¢k \qt ) \qz |k—1IP plk-1> \¢ k) \qi P
wr e) (Gar)
L | S5-5) ([Z-——5])) +cc. D3
Al \¢ K¥) \& |k-1? (B3)

defines the odd contribution to the functional
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2 < d3(k)L0P’ T] ddgk )[pp’ T]) - 161 3M%(k) MT(]_C)‘FC.C. (D4)

The calculations performed in [47] resulted in

dNodd k
EkW(J[pP’pT] 2 ( d3(k)

[pp’ T] d]\;gk )[pp’pT]>

1 29 d?l Sign(k x 1) ... o
_ —Im{ﬂzkz KD pure (@, (k - D3 (k)

87 (2n)? Plk-1
X [(k2€ij€mn _l' (k—l)((—]’jemn _|_5ij5mn))€rp + Zk . (k_ l)eij(smnérp]}’ (DS)
where
. d*p, pi(k—p);
Qij(l_C) = g/ (zﬂ)lz p—/’b(P) Ugp(k —B)- (D6)

Using the definition Eq. (D6) we can rewrite

(o= o]

_le/ d’l d’q d’q, d*q, 24*Sign(k x I)
 8r (2r)? (27)* (27)* (27)?* 2?k*Plk - 1?

FreUe(l= q,)p"(a,)U (k= 1= 4,)p° (4,)[U“ (k = q)p*(q)]"

Xkqg, x1 -1 xkqg, -(l— (k—=1-
x{(k _kerr ke i< koD gxkg (-g)g k-1mg),
6] Q1 C]z q q1 q3
g, xlq, - (k=1-q,)q-(k—q) g, %x(k-=10gq, - (I-q,)q (k—q)
- B e (G | e l_c-z], (D7)
q1 q3 q q3 q1 q

where the last two terms originate from the last term in Eq. (D5) and the symmetry q; <> ¢, and [ - k —[:

élﬁé <d§ é,,q) é,f’) ffz’;(';x”|zf“‘“vad<l 4)0"(a,) U (k = L = 4,)0 (,)[U°*(k - q)p*(g)]

X{&Xlgz‘(k—l—qz)q'(k—w g, xk=0q,-(I-q,)q (k—q) }:0‘

== =k-(k—-1)—= k-1
q 43 q* 93 q g

1. Equivalence

In order to prove the equivalence between Eqs. (D3), (D4) and Eq. (D7) we have to prove the following identity:

_zxk@_i).(@_ fs—l>+% <’—<—l>(i_§).<g_i>
q2k2 q% 12 q% |I_€—1|2 q2|k_l|2 2 /_62 q% 12

+zlxl<z l_<> <zz k—l)
aP\g@ K) \& k-1

1 gxkq xlg, x(k=1) gxkq -(l-q,)q, (k=1-q,)
=2 22<(k —k I+ P) = e L (k=1)
K|k — 1’1 q 4 9> q q 9>
xlqg, -(k—1— - (k— x (k—1 - (1 — - (k—
+21 8 lq,-(k K 4,04 (—2 g)l_c'(k—l)+zz (; Dy, (—2 9,04 (—2 g)l_c-l). (DY)
q1 q3 q q3 q1 q
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First define

q [ q pP
A(q,z,q,p)=<—‘—‘>-<—2——> (D10)
S N\et ) \g p?
so that the left-hand side of Eq. (D9) is
g ank-+ L D kg B A kg k-1 DIl
_Z—kz (glv_agza__ )+ 2k_l2 (('I’_?gl? )+ 2]2 (g’_vgzv___)' ( )
q |k — ] 1
Using the following identities:
1
4, 'B:l_z(_gl x1Ixp+gq,-1l-p), (D12)
1
4, 1=—5(~a, x ppxI+a, pLp). (D13)
which can be derived starting from
(@axb)(cxd)=(a-c)(b-d)-(a-d)(b-¢). (D14)
and
l l-p= 22 : l [ Ip? : 1 Ip? D15
414y plp =4, 4" +54,xUdy - pLxp=a,x1p*) =54, % p(g, - LIxp + g, x1p*).  (DI5)
we get
A(g..Lq..p) _L-pg,-(1-4))9,- (P~ 4,) _gyxplxp g xlixp 1 <Q1 xlg, - plxp g, pg, 'HXB)
STEE a3l p? Bl p’ alp* 2\ qiglp? 4l p?
1 X lg, x 1 X X
5 (ql 2_%22 -+ & 2%122 B)' (D16)
2 919! 919:P

Substituting A into Eq. (D11) one recovers Eq. (D9) as
most of the terms cancel.

This concludes the proof of the identity between the
result of this paper and [47].

2. Representation for numerics

We finish this appendix with a short discussion on what
representation of the functionals is the most convenient for
numerical implementations. We also define the functionals
we used in the actual numerical calculation.

To the leading order, the functional describing gluon
production is given by

B ppeor) = 555000 Mi(K) - (D1)

or using the explicit form for the amplitude from Eq. (D1)

B pppr] = o
kd3k pva - (2”)39

et (F5) ()

x p* (g U (k- ¢ U(k - q)]*’p"(q).

(D18)

2

This equation contains two momentum integrals which are
not obviously factorizable and therefore numerically chal-
lenging. As was shown in [47], using the identity

9 k 9 k
7 ) \g* F

_ 8:i6m + €ij€m ik —q); q)(k— ¢'),,
2 7 7> ,

(D19)
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Eq. (D18) can be rewritten as follows:

AN 2 618+ €€
E Y 7 _ ij%lm ij€im
kd3k [pp pT] (271_)3 k2

Qf; (k) (€2, ()",
(D20)

where Q;‘j(l_c) was defined in Eq. (D6). In the transverse
coordinate space,

0;
Qf(x) = gza—zﬂ”(z)a,-U“”(z)-
1

(D21)

The advantage of the representation (D20) is that the
momentum integrals are factorized explicitly and can be
numerically computed by performing a fast Fourier

transform of Q¢ (x). This requires (N7 —1)x2x
Nlog N operations,” where N is the number of the lattice
sites. Direct numerical implementation of Eq. (D18) would
require N* operations and thus is prohibitively computa-
tionally expensive.

The same logic, but with greater effect, applies to
Egs. (D3), (D4), and (D5) because Eq. (D3) involves four
two-dimensional integrals. We thus opt to numerically
compute its alternative but fully equivalent form given
by Eq. (D5).

*Note that we need to compute the Fourier transform only for
the combinations §;;Q(x) and €;;Qf;(x), and not for all four
spatial components of Qf;(x).
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