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We compute the next-to-next-to-leading order (NNLO) QCD corrections to the decay tð↑Þ → Xb þWþ

of a polarized top quark. The spin-momentum correlation in this quasi two-body decay is described by the
polar angle distribution dΓ=d cos θP ¼ Γ

2
ð1þ PtαP cos θPÞ, where Pt is the polarization of the top quark

and αP denotes the asymmetry parameter of the decay. For the latter we find αNNLOP ¼ 0.3792� 0.0037.
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I. INTRODUCTION

The number of single top quark events reported by the
LHC Collaborations ATLAS and CMS in Run 1 and 2 is
ever increasing. More and more single top quark events are
being seen at the LHC [1–4]. The present situation
concerning both ATLAS and CMS results on single top
production is nicely summarized in a review article by N.
Faltermann [5]. After Run 3 the LHC will operate in the
high luminosity mode with a projected total luminosity of
3 ab−1, which corresponds to approximately 109 single top
quark events. In the dominating t-channel process, which is
a weak production process, single top quarks are produced
with a large longitudinal polarization Pt ≃ 0.9 in the
direction of the spectator jet in the top quark rest frame,
and a slightly smaller polarization of Pt ≃ 0.8 for antitop
quarks [6–9].1 Since the top quark decays so rapidly, it
retains its polarization from birth when it decays. The
dominant decay mode is the quasi two-body mode tð↑Þ →
Xb þWþ mediated by the quark level transition t → b
proportional to the CKM matrix element Vtb ≈ 1.
In this paper we study top quark polarization effects in the

quasi two-body decay tð↑Þ → Xb þWþ at next-to-next-to-
leading order (NNLO) in QCD. The NNLO results are
obtained in the form of a power series expansion in terms of

the ratio x ¼ mW=mt, wheremW andmt are themasses of the
W boson and the top quark, and we include terms up to x10.
This analysis can be considered to be complementary to the
decay part of the recent numerical NNLO evaluation of
polarized top production and decay [11,12].
Since the decay is weak, the top quark is self-analyzing.

The angular decay distribution reads

1

Γ
dΓ

d cos θP
¼ 1

2
ð1þ PtαP cos θPÞ; ð1Þ

where θP is the angle between the polarization direction of
the top quark and the momentum direction of the Wþ (see
Fig. 1). The analyzing power for the polarization of the
decay is given by the asymmetry parameter αP where, at
leading order (LO), one has αLOP ¼ ð1 − 2x2Þ=ð1þ 2x2Þ ¼
0.398. Here and throughout this paper we set the bottom
quark mass to zero.
The measurements suggested here require the reconstruc-

tion of the momentum direction of theW boson, which is not
simple experimentally. However, the experimentalists have

Xb
t W+

θP

Ptx

z

FIG. 1. Definition of the polar angle θP in the decay
tð↑Þ → Xb þWþ.
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1Close to maximal values of the polarization of top quarks can
be achieved with moderate tuning of the longitudinal beam
polarization at the ILC (see, e.g., Ref. [10]).
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devised sophisticated tools to reconstruct the W-boson
momentumdirection for their analysis of the helicity fractions
in unpolarized top quark decayswhich can also beused in this
analysis.
This paper is organized as follows. In Sec. II we outline

the calculational methods used to obtain our result. In
Sec. III we provide a numerical analysis of the decay rate
and the asymmetry parameter. A summary and outlook are
given in Sec. IV. Analytical results for the decay rate can be
found in the Appendix.

II. CALCULATION

Our calculation follows the approach used in
Refs. [13–15] for the calculation of the total unpolarized
decay rate and in Ref. [16] for the so-called helicity
fractions of the W boson. Using the optical theorem,
we compute the top-quark decay width from the imaginary
part of self-energy diagrams,

Γ ¼ 1

mt
ImðΣtÞ; ð2Þ

where Σt is computed from one-particle irreducible self-
energy diagrams of the top quark. We sum over the spin
degrees of freedom of the W boson; i.e., we do not specify
its helicity components as has been done in Ref. [16]. Thus,
we use the unitary gauge form for the spin sum,

X
m¼�;L

εμðmÞενðmÞ ¼ Pμν ¼ −gμν þ qμqν

m2
W

; ð3Þ

which enters our calculation in the numerator of the
W-boson propagator. Here q is the momentum of the
Wþ. At LO we have q ¼ pt − pb, where pt and pb
are the momenta of the top and bottom quark, respectively.
It is clear that the polar angle distribution is sensitive to

the longitudinal polarization vector of the top quark, sl;μt .
We have

Σt ¼ trðð=pt þmtÞ=slt γ5ΣÞ; ð4Þ
where iΣ is the sum of the top-quark self-energy diagrams.
In the rest frame of the top quark, the polarization vector
reads sl;μt ¼ ð0; 0; 0; 1Þ; i.e., the three-dimensional polari-
zation vector points in the direction of the momentum of the
W boson (z direction in Fig. 1). For our calculation we
require a covariant representation of the longitudinal
polarization four-vector slt , which is given by

sl;μt ¼ 1

jq⃗j
�
qμ −

pt · q
m2

t
pμ
t

�
; ð5Þ

where jq⃗j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 − q2

p
. The polarization four-vector sl;μt

can be seen to satisfy pt · slt ¼ 0 and slt · slt ¼ −1, where
we use the fact thatpt · q ¼ mtq0 in the rest systemof the top
quark. Just as in the case of the helicity fractions,we find that

due to the polarization vector we have to deal with the
modulus of the W momentum three-vector in the denom-
inator of the expressions for the self-energy diagrams.
There are 38 three-loop diagrams altogether. Since we

use the unitary gauge for the W boson, there is no need to
include Goldstone bosons in the Feynman diagrams. For
the gluons we use the covariant Rξ gauge with the spin sum
PμνðRξÞ ¼ −gμν þ ξkμkν=k2, where ξ is an arbitrary gauge
parameter. We have checked that the gauge-parameter
dependence cancels in the final result. Since we only
require traces involving an even number of γ5 matrices,
we can work with a naively anticommuting γ5 [17,18].
After setting the bottom-quark mass to zero, the Feynman

integrals corresponding to the top-quark self-energy dia-
grams depend on two scales: the hard scale mt and the soft
scalemW . We then employ the method of regions (see, e.g.,
Ref. [19]) to construct an expansion around the limit where
the ratio x ¼ mW=mt of the two scales tends to zero. Here,
we have to consider two regions for each loop momentum
(the loop momenta are chosen to be the momenta of the
gluons and the W boson). In the so-called hard region, all
components of a loop momentum k scale like the hard scale
kμ ∼mt for μ ∈ f0; 1; 2; 3g and in the so-called soft region
all components scale like the soft scale kμ ∼mW . In each
regionwe then expand the integrand according to the scaling
of all loop momenta. If the momentum of a gluon is soft, the
corresponding loop integral becomes scaleless and is set to
zero in dimensional regularization.We are therefore leftwith
only two contributions for each integral: one where all loop
momenta are hard and one where the gluon momenta are
hard, but the momentum of the W boson is soft.
This expansion also makes it easier to deal with the

unwieldy normalization factor 1=jq⃗j appearing in the
covariant representation (5). In the hard region, we can
express it in terms of a power series in 1=N2, where N ¼
ðpt þ qÞ2 −m2

t ¼ 2ptqþ q2 is the denominator of a top-
quark propagator with momentum pt þ q. Again using
pt · q ¼ mtq0, we find

4m2
t jq⃗j2 ¼ ðN2 − 2q2N þ q4 − 4m2

t q2Þ; ð6Þ
which then leads to the expansion [16]

1

jq⃗j ¼
2mt

N

X∞
i¼0

�
2i

i

��
2q2N − q4 þ 4m2

t q2

4N2

�
i

: ð7Þ

In our calculation of the Feynman diagrams, we are only
interested in the imaginary part due to a cut through the
W-boson line. Thus, we can replace q2 by m2

W in Eq. (7).
The series is then truncated at the desired order in x.
In the soft region, it is not possible to construct an

expansion of jq⃗j, since jq⃗j2 ¼ q20 −m2
W and q0 ∼mW in the

soft region. However, in this region the loop containing
the W boson factorizes from the remaining diagram due to
the expansion. Therefore, the only integrals that have to be
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modified are one-loop massive tadpole integrals, which are
relatively simple.
After the expansion, all remaining integrals depend only

on a single scale and are thus easier to compute. However,
the denominators of the expanded propagators are now
raised to higher powers. We use the program rows [20],
which implements the so-called Laporta algorithm [21,22],
to reduce all of these integrals to a small set of so-called
master integrals. Compared to the calculation of the
unpolarized decay rate and the helicity fractions, we do
not encounter any new master integrals.

III. NUMERICAL RESULTS

Our analytical results can be found in the Appendix to
this paper. For the numerical evaluation of the analytical
expression we use the values mt ¼ 173.1� 0.6 GeV,

mW ¼ 80.385� 0.015 GeV, and αð5Þs ðmZÞ ¼ 0.1182�
0.0012 [23]. The strong coupling constant is then evolved
to the required scale using five-loop running. Note that our
result is expressed in terms of the strong coupling constant

with six active flavors, whereas the initial value αð5Þs ðmZÞ is
defined with only five. Thus, we also have to use the
(four-loop) decoupling relation to translate the latter into
the former. All of this is achieved with the help of version 3
of the program RunDec [24,25]. Our central value is

αð6Þs ðmtÞ ¼ 0.1078.
We present our results in terms of the reduced helicity

rates Γ̂α defined by

Γα ¼
GFm3

t jVtbj2
8

ffiffiffi
2

p
π

Γ̂α: ð8Þ

The total unpolarized and polarized rates are denoted by
α ¼ U þ L and α ¼ ðU þ LÞP, where L refers to the
longitudinal and U to the unpolarized-transverse polariza-
tion of the W boson (the latter is the sum of the two
transverse polarizations). We then expand the reduced rates
up to the second order in the strong coupling constant αs as

Γ̂NNLO
α ¼ Γ̂ð0Þ

α þ Γ̂ð1Þ
α

�
αs
π

�
þ Γ̂ð2Þ

α

�
αs
π

�
2

; ð9Þ

where αs ≡ αð6Þs ðmtÞ is defined with six active flavors and
evaluated at the renormalization scale μ ¼ mt. Furthermore,
we define the coefficients in the x ¼ mW=mt expansion by

Γ̂NNLO
UþL ¼

X10
i¼0

Γ̂NNLO
i xi; Γ̂NNLO

ðUþLÞP ¼
X10
i¼0

Γ̂NNLO
P;i xi: ð10Þ

For Γ̂ð2Þ
UþL we use the result of Ref. [14]. Note that the

coefficients of Γ̂UþL contain logarithms of x. In principle,
the sums run up to infinity, but in practicewe only calculated

the terms up toOðx10Þ. This is sufficient to provide a reliable
approximation of the full result. Up to the order OðxnÞ we
then calculate the NLO and NNLO values of the asymmetry
parameter according to the ratio

αðNÞNLOP ðnÞ ¼
P

n
i¼0 Γ̂

ðNÞNLO
P;i xiP

n
i¼0 Γ̂

ðNÞNLO
i xi

; ð11Þ

where Γ̂NLO
α is defined as in Eq. (9), but with Γ̂ð2Þ

α set to zero.
In Table I we give numerical results for the coefficients

of the reduced rates and the asymmetry parameter.
Analytical results are given in the Appendix. For the
reduced rates, we find that the absolute values of the
coefficients in the power series in x decrease when
the power of x increases. The convergence of the x
expansion is also illustrated in Figs. 2 and 3. Figure 2
shows the OðαsÞ and Oðα2sÞ contributions to Γ̂NNLO

ðUþLÞP as
functions of x. We observe in both cases that adding terms
beyond x6 leads only to small changes at the physical value
of x. Furthermore, the results truncated after x8 and x10 are
visually indistinguishable even up to x ¼ 0.6. A similar
behavior can be observed for αNNLOP in Fig. 3. (The figure
for αNLOP would look very similar due to the smallness of
theOðα2sÞ correction.) Finally, we note that the unexpanded
result for Γ̂ð1Þ

ðUþLÞP given in the Appendix would be indis-

tinguishable from the n ¼ 10 curve in the upper panel of
Fig. 2. Thus, we have good convergence behavior, and the
truncation of the series does not change the result for all
practical purposes. Indeed, we can see in Table I that the

difference between αðNÞNLOP ð10Þ and αðNÞNLOP ð8Þ at the
physical value for x is already at the level of 10−5.
In order to determine the precision of our final result

for the asymmetry parameter, we consider the following
sources of uncertainties:

TABLE I. Numerical values for coefficients in the x expansion
of the unpolarized and polarized reduced rates Γ̂NNLO

UþL and Γ̂NNLO
ðUþLÞP

[cf. Eq. (10)]. The results for the rates are given in the last line. In
the third and fourth column we list the values of the asymmetry
parameter at NLO and NNLO at a given order n in the x
expansion [cf. Eq. (11)].

n Γ̂NNLO
n Γ̂NNLO

P;n αNLOP ðnÞ αNNLOP ðnÞ
0 þ0.88690 þ0.88360 0.99671 0.99628
2 þ0.07452 −3.65421 0.11502 0.10582
4 −2.93225 þ4.93143 0.42533 0.42381
5 0 −0.31636 0.41792 0.41490
6 þ2.02534 −2.08447 0.38221 0.37763
7 0 þ0.23471 0.38338 0.37901
8 −0.15921 −0.00614 0.38351 0.37916
9 0 þ0.01129 0.38352 0.37918
10 −0.03276 −0.00048 0.38352 0.37919

Γ̂NNLO
α þ0.78655 þ0.29825
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(i) The uncertainty in the mass of the top quark. This is
the largest source of uncertainty in our result. We
note that in our calculation we have employed
the pole mass definition for the top quark, whereas

the numerical value corresponds to the so-called
Monte-Carlo mass parameter. This difference adds
an additional uncertainty to our result, which is,
however, currently not precisely known and not
included in our analysis. (Recent efforts to determine
this difference can be found in Refs. [26,27].)

(ii) Higher orders in QCD. We estimate the size of
unknown higher order corrections by taking half the
difference between αNNLOP ð10Þ and αNLOP ð10Þ.2

(iii) The strong coupling constant. In addition to the
uncertainty in the value of αð5Þs ðmZÞ, we also vary the
decoupling scale at which the five-flavor value is
translated to the six-flavor one. However, the effect
of the latter is completely negligible.

(iv) The uncertainty in the mass of the W boson.
(v) The truncation of the series in x. We estimate this

effect by taking the difference between αNNLOP ð10Þ
and αNNLOP ð8Þ. As can be seen from Table I, this
uncertainty is very small.

(vi) Nonzero bottom-quark mass. We estimate the error
due to setting mb to zero by taking the difference to
αNNLOP ð10Þ computed as before, butwithmb ¼ 5 GeV

in the Born-level contributions Γ̂ð0Þ
UþL and Γ̂ð0Þ

ðUþLÞP .
Our final result is

αNNLOP ¼ 0.3792� 0.0029ðmtÞ � 0.0022ðhigher ordersÞ
� 0.0002ðαsÞ � 0.0002ðmWÞ
� 0.00002ðtruncationÞ
� 0.0004ðmb ≠ 0Þ ð12Þ

¼ 0.3792� 0.0037: ð13Þ

In the last line, we have added the different uncertainties in
quadrature. It is important to note that the above result
includes only QCD corrections. However, at this level of
precision, electroweak corrections can also play a role.
Since the electroweak NLO corrections to Γ̂ðUþLÞP are
currently unknown, we make an estimate of their size by
looking at the known corrections to the helicity fractions,
where they increase the Born-level results by roughly 2%
[28]. The total decay rate is shifted by a similar amount
[29,30]. Taking both of these corrections into account
changes our result for αNNLOP only at the permille level,
which is well within our uncertainty estimate.

IV. SUMMARY AND OUTLOOK

We have presented analytical and numerical results on
the NNLO coefficients of a power series expansion of the

FIG. 2. The OðαsÞ and Oðα2sÞ contributions to Γ̂NNLO
ðUþLÞP as

functions of x. The coefficients Γ̂ðkÞ
P;i are defined analogously to

the ones in Eq. (10), but for Γ̂ðkÞ
ðUþLÞP instead of Γ̂NNLO

ðUþLÞP . Our

central value for αð6Þs ðmtÞ is used throughout. The vertical
line indicates the physical value of x. Note that the lines for
n ¼ 8 lie below the ones for n ¼ 10.

FIG. 3. αNNLOP ðnÞ as a function of x. Our central value for

αð6Þs ðmtÞ is used throughout. The vertical line indicates the
physical value of x. Note that the lines for n ¼ 6 and n ¼ 8
lie below the one for n ¼ 10.

2Alternatively, one could also vary the renormalization scale
by a factor two around the central value μ ¼ mt. This would give
a value that is roughly one half of the one from our chosen
method.
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polarized decay rate where we have expanded in the mass
ratio x ¼ mW=mt. Including the previously calculated LO
and NLO results and the NNLO result for the unpolarized
decay rate, we obtain a Oðα2sÞ result for the asymmetry
parameter αP determining the angular decay distribution of
a polarized top quark decay. It would be interesting to
experimentally check on the size of the asymmetry param-
eter in polarized top quark decays.
It is interesting to observe that the power series expan-

sion of the parity-odd polarized rate Γ̂ðiÞ
P contains both even

and odd powers while the parity-even unpolarized rate
contains only even powers of x. This follows the pattern
observed in the NNLO calculation of the helicity fractions
[16]. We regret to say that we are lacking a deep under-
standing of this pattern. We mention that the electroweak
NLO corrections to the structure functions do not follow
this pattern.
In this paper we have summed over the three helicities of

the W boson. It would be interesting to repeat the
calculation for the three helicity components of the W
boson separately. The corresponding decay distribution is
given by

1

Γ̂
dΓ̂

d cos θPd cos θ
¼ 1

2

�
3

8
ð1þ cos θÞ2ðΓ̂þ þ Γ̂PþPt cos θPÞ

þ 3

8
ð1 − cos θÞ2ðΓ̂− þ Γ̂P

−Pt cos θPÞ

þ 3

4
sin2θðΓ̂L þ Γ̂P

LPt cos θPÞ
�
: ð14Þ

It should be clear that all three asymmetry parameters
αPj ¼ Γ̂P

j =Γ̂j (j ¼ þ;−; L) must satisfy the positivity con-
dition jαPj j ≤ 1.
The LO Born term values for the unpolarized and

polarized structure functions are given by [31,32]

Γ̂þ ¼ 0; Γ̂Pþ ¼ 0;

Γ̂− ¼ 2x2ð1 − x2Þ2; Γ̂P
− ¼ −2x2ð1 − x2Þ2;

Γ̂L ¼ ð1 − x2Þ2; Γ̂P
L ¼ ð1 − x2Þ2: ð15Þ

The LO asymmetry parameter αPj is undetermined for the
transverse-plus rate and maximal for the transverse-minus
and longitudinal rates. This has to be compared to the total
LO asymmetry parameter αLOP ¼ 0.398, which is far from
being maximal.
Including the NLO corrections, one obtains jαP;NLOj j < 1

for all three asymmetry parameters [32]. This is very
gratifying from the point of view that theOðαsÞ asymmetry
parameters satisfy the necessary positivity condition
jαPj j ≤ 1. We expect that the inclusion of NNLO results
in the calculation of the asymmetry parameter will retain
this feature.
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APPENDIX: ANALYTICAL RESULTS

In this Appendix we provide the analytical results for the
reduced rates defined in Eqs. (8) and (9).

1. LO Born term contributions

Γ̂ð0Þ
UþL ¼ ð1 − x2Þ2ð1þ 2x2Þ;

Γ̂ð0Þ
ðUþLÞP ¼ ð1 − x2Þ2ð1 − 2x2Þ: ðA1Þ

2. NLO αs-corrections

Using the techniques described in the paper, we calculate
the NLO corrections in αs in terms of a series expansion in
the mass ratio x ¼ mW=mt. One has

Γ̂ð1Þ
UþL ¼ CF

�
5

4
þ 3

2
x2 − 6x4 þ 46

9
x6 −

7

4
x8 −

49

300
x10 − 2ð1 − x2Þ2ð1þ 2x2Þζð2Þ þ

�
3 −

4

3
x2 þ 3

2
x4 þ 2

5
x6
�
x4 ln x

�
;

Γ̂ð1Þ
ðUþLÞP ¼ CF

�
−
15

4
−
17

8
x4 −

1324

225
x5 −

31

36
x6 þ 48 868

11 025
x7 −

23

288
x8 þ 884

6615
x9 −

3

100
x10 þ ð1þ 4x2Þζð2Þ

�
; ðA2Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ ¼ 4=3 for Nc ¼ 3 colors and ζ denotes the Riemann zeta function. These results can be

compared with the x expansion of the closed form results calculated in Refs. [31,32]. One has
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Γ̂ð1Þ
UþL ¼ CF

�
1

4
ð1 − x2Þð5þ 9x2 − 6x4Þ − 2x2ð1þ x2Þð1 − 2x2Þ ln x − 1

2
ð1 − x2Þ2ð5þ 4x2Þ lnð1 − x2Þ

− 2ð1 − x2Þ2ð1þ 2x2Þ
�
2Li2ðxÞ þ 2Li2ð−xÞ þ ln x lnð1 − x2Þ þ π2

6

��
;

Γ̂ð1Þ
ðUþLÞP ¼ CF

�
−
1

4
ð1 − xÞ2ð15þ 2x − 5x2 − 12x3 þ 2x4Þ þ ð1þ 4x2Þζð2Þ − 1

2
ð1 − x2Þ2ð1 − 4x2Þ lnð1 − xÞ

−
1

2
ð1 − x2Þð3 − x2Þð1þ 4x2Þ lnð1þ xÞ − 2ð1 − x2Þ2ð1 − 2x2ÞLi2ðxÞ þ 2ð2þ 5x4 − 2x6ÞLi2ð−xÞ

�
; ðA3Þ

where Li2 denotes the dilogarithm function. We have found agreement in this comparison.

3. NNLO α2
s -CORRECTIONS

We present our results in terms of the color-flavor decomposition

Γ̂ð2Þ
α ¼ CF½CFΓ̂

ð2FÞ
α þ CAΓ̂

ð2AÞ
α þ NLTFΓ̂

ð2LÞ
α þ NHTFΓ̂

ð2HÞ
α �; ðA4Þ

where CA ¼ Nc ¼ 3, TF ¼ 1=2, NL ¼ 5, and NH ¼ 1. The coefficients of Γ̂ð2Þ
UþL were calculated in Ref. [14] and are

presented here for completeness. We have

Γ̂ð2FÞ
UþL¼5−

73

8
x2−

7537

288
x4þ16499

864
x6−

1586479

259200
x8−

11808733

6480000
x10þ

�
115

24
−
367

72
x2þ31979

8640
x4þ13589

13500
x6
�
x4 lnx

−
�
119

8
−
123

4
x2−

523

16
x4þ407

36
x6−

2951

1152
x8−

37

400
x10−

�
57

2
−
81

8
x4−6x6

�
ln2

þ
�
15

4
−
20

3
x2þ3

4
x4þ1

5
x6
�
x4 lnx

�
ζð2Þ−

�
53

8
−
295

32
x4þ7

2
x6−

9

2
x8−

6

5
x10

�
ζð3Þ
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