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We explore the transition to hydrodynamics in a weakly coupled model of quark-gluon plasma given by
kinetic theory in the relaxation-time approximation with conformal symmetry. We demonstrate that the
gradient expansion in this model has a vanishing radius of convergence due to the presence of a transient
(nonhydrodynamic) mode, in a way similar to results obtained earlier in strongly coupled gauge theories.
This suggests that the mechanism by which hydrodynamic behavior emerges is the same, which we further
corroborate by a novel comparison between solutions of different weakly and strongly coupled models.
However, in contrast with other known cases, we find that not all the singularities of the analytic
continuation of the Borel transform of the gradient expansion correspond to transient excitations of the
microscopic system; some of them reflect analytic properties of the kinetic equation when the proper time is
continued to complex values.
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I. INTRODUCTION AND SUMMARY

Heavy-ion collisions at the Relativistic Heavy Ion
Collider and LHC provide an outstanding opportunity to
test our understanding of QCD. Perhaps unsurprisingly, a
fully ab initio theoretical description has turned out to be
very challenging. This has led to the exploration of models
of increasing complexity and often nonoverlapping
domains of validity—see, e.g., Refs. [1,2] for a review
of such models in the context of the hydrodynamic
description in ultrarelativistic heavy-ion collisions.
In this paper, we focus on the poorly understood transient

far-from-equilibrium regime, which precedes viscous hydro-
dynamic evolution of quark-gluon plasma (QGP). There are
two approaches to the study of the transition to hydro-
dynamics (hydrodynamization) in non-Abelian gauge theo-
ries like QCD: a weakly coupled description based on
effective kinetic theory (EKT) [3] (see also Refs. [4–9])
and a strongly coupled plasma paradigm based on

holography [10] (see Refs. [11–14] for sample results).
They involve very different physical pictures andmathemati-
cal frameworks; the first relies on the Boltzmann equation,
while the second makes use of higher-dimensional Einstein
equations. Since under experimental conditions the QCD
coupling is neither parametrically small nor large, it is crucial
to understand which implications of these approaches can be
viewed as universal.
Our aim is to shed light on equilibration in weakly coupled

systems by examining large-order behavior of the hydro-
dynamic gradient expansion [15] in the framework of the
kinetic theory model given by the Boltzmann equation in the
relaxation-time approximation (RTA) [16]. We also assume
conformal symmetry, as its breaking at strong coupling does
not significantly alter equilibration processes [17,18],
whereas at weak coupling at vanishing quark masses, it is
a next-to-leading-order effect (see, e.g., Ref. [5]). The key
result of this paper is demonstrating the vanishing radius of
convergence of the gradient expansion in this kinetic theory
model (see also Ref. [19] which studied in this context the
RTA kinetic theory with constant relaxation time) and under-
standing some puzzling features revealed by these studies.
The reason for the divergence turns out to be the sameas in the
case of holographic plasma: the presence of fast-decaying
(nonhydrodynamic) modes [20–23] of which the relaxation
controls the emergence of hydrodynamic behavior (and, in
particular, its applicability to the physics of heavy-ion
collisions [24–26]). This is connected with the existence of
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attractors that govern the evolution far from equilibrium
[21,27–35]. In this context, see also Refs. [36,37] for studies
of possible manifestations of analogous fast-decaying modes
in trappedFermi gases close tounitarity aswell asRef. [38], in
which various features of transient modes are analyzed as a
function of the microscopic interaction strength in a holo-
graphic toy model.
Quite remarkably, our analysis of the Borel transform of

the gradient expansion in the RTA kinetic theory reveals not
only the expected purely decaying mode [22] but also
singularities that could naively be interpreted as transient
contributions to the energy-momentum tensor exhibiting
damped oscillatory behavior, similar to the findings of
Ref. [39]. This would, however, be surprising, since the
mechanism described there does not apply to the RTA
theory [40]. In fact, we demonstrate below that these
singularities are instead a manifestation of analytic proper-
ties of the evolution equations in complexified time. This
feature is related to what has been observed in other
contexts where large-order behavior of perturbative series
expansions is used to draw conclusions about nonpertur-
bative effects (see, e.g., Refs. [41–44]).
Our conclusions concerning hydrodynamization provide

strong motivation for comparing numerical solutions of the
RTA evolution equations with the EKT results at inter-
mediate coupling reported in Refs. [8,9] and with the AdS/
CFT-based simulations of Ref. [45]. We uncover semi-
quantitative agreement, and as a byproduct of this analysis,
we present a new and effective way of visualizing (see
Fig. 2) the correlation between the hydrodynamization time
and the value of the η=s ratio noted in Ref. [46].

II. KINETIC THEORY

We address the issues discussed above in the context of
Bjorken flow [47], which is conveniently formulated in
(proper-time) rapidity coordinates τ–y. They are related to
Minkowski lab-frame coordinates t–z by t ¼ τ cosh y and
z ¼ τ sinh y, where z is the collision axis. Assuming
translation symmetry in the transverse plane xT , the on-
shell distribution function f depends only on the proper
time τ, the modulus of the transverse momentum p≡ jpT j
and the boost-invariant variable u ¼ τ2py.
In the RTA, the collision kernel appearing in the

Boltzmann equation is linearized around the equilibrium
distribution, which for simplicity we take to be Boltzmann,

f0ðτ; u; pÞ ¼
1

ð2πÞ3 exp
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ p2τ2

p
τTðτÞ

�
: ð1Þ

The RTA Boltzmann equation takes the form

∂fðτ; u; pÞ
∂τ ¼ 1

τrel
ff0ðτ; u; pÞ − fðτ; u; pÞg: ð2Þ

To ensure conformal symmetry, we assume that the
relaxation time is of the form

τrel ¼
γ

TðτÞ ; ð3Þ

where γ is dimensionless and is the only parameter of this
model. The dependence of temperature on the proper time
is determined dynamically by imposing the Landau match-
ing condition [48,49]

EðτÞ ¼ 3

π2
T4ðτÞ; ð4Þ

where

EðτÞ ¼ 2

Z
d4pδðp2Þθðp0Þ u

2 þ p2τ2

τ2
fðτ; u; pÞ ð5Þ

is the energy density (per particle species).

III. HYDRODYNAMIC GRADIENT EXPANSION

In a conformal theory, the eigenvalues of the expectation
value of the energy-momentum tensor in a boost-invariant
state are functions of the proper time τ alone. They are
given by the energy density E and the longitudinal and
transverse pressures PL and PT :

PL ¼ −E − τ _E; PT ¼ E þ 1

2
τ _E: ð6Þ

Away from equilibrium, PL and PT differ from the
equilibrium pressure at the same energy density P ≡ E=3.
It is convenient to study the approach to equilibrium by
examining the behavior of the pressure anisotropy

A≡ PT − PL

P
ð7Þ

as a function of the dimensionless variable w≡ Tτ. The
gradient expansion of A takes the form

AðwÞ ¼
X∞
n¼1

anw−n: ð8Þ

This follows directly from Eq. (6) and (7) if we use the fact
that in conformal theories near equilibrium E ∼ T4 and for
boost-invariant flow T ∼ τ−1=3 þOðτ−1Þ [47] (up to expo-
nentially suppressed corrections).
To determine the coefficients an, we look for a solution

of the Boltzmann equation (2) in the form

fðτ; u; pÞ ¼ f0ðτ; u; pÞ
�
1þ

X∞
n¼1

w−nhn

�
u
w
;
p
T

��
: ð9Þ

Inserting Eq. (9) into the Boltzmann equation (2), one can
algebraically determine the functions hn in terms of the
unknown coefficients an. A key step in doing this is to
eliminate proper-time derivatives of temperature in favor of
A and then using Eq. (8).
The Landau matching condition Eq. (4) implies that at

each order n > 0
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Z
d4pδðp2Þθðp0Þ v

2

τ2
f0ðτ; u; pÞhn

�
u
w
;
p
T

�
¼ 0: ð10Þ

This condition amounts to a linear, algebraic equation that
determines the expansion coefficient an−1.
Proceeding this way, we have calculated the expansion

coefficients analytically up to order 426 (we include the
result of this calculation in the Supplemental Material [50]).
As a cross-check, we have also calculated the first ten terms
using two independent, albeit slower, methods from
Refs. [48,49,51], noting perfect agreement.
The leading expansion coefficients read

a1 ¼ 8=5γ; a2 ¼ 32=105γ2; a3 ¼ −416=525γ3:

ð11Þ
They can be used to match the transport coefficients of
Baier-Romatschke-Son-Starinets-Stephanov hydrodynam-
ics [20] to the RTA model. In particular, one finds

η=s ¼ γ=5: ð12Þ
At large orders, the expansion coefficients in Eq. (8)

exhibit factorial growth. This demonstrates the vanishing
radius of convergence of the hydrodynamic series, which
parallels similar findings obtained numerically in N ¼ 4
super symmetric Yang-Mills theory using holography
[15,52] as well as in hydrodynamics [21,53,54]. This is
to be expected on general grounds, since the RTA theory
contains, apart from hydrodynamic excitations, also a short-
lived mode [22] of which the physics is not captured by the
truncated gradient expansion, as shown in Refs. [15,21].

IV. BOREL TRANSFORM
AND SHORT-LIVED MODES

In this section, we explore the Borel transform technique
as a way to map out the excitations of expanding QGP.
The Borel transform removes the leading-order factorial

growth of the coefficients,

ABðξÞ ¼
X∞
n¼1

an
n!

ξn: ð13Þ

The inverse transform is given by the Borel summation
formula

AresummedðwÞ ¼
1

w

Z
∞

0

dξe−ξ=wABðξÞ ð14Þ

and is not uniquely defined since the analytic continuation of
ABðξÞ necessarily contains singularities that are responsible
for the vanishing radius of convergence of the original series.
We analytically continue the series fromEq. (13) truncated at
426 terms by means of Padé approximants. Figure 1 shows
the poles of the Padé approximant, which condense in a way
known to signify a branch-point singularity [55].
In Ref. [21] (see also Refs. [15,52–54,56]), the ambi-

guity in the Borel summation associated with singularities

of the analytic continuation of the Borel transform has been
argued to disappear once the gradient expansion is sup-
plemented with exponentially decaying terms,

δA ∼ e−ξ0w; ð15Þ
where ξ0 denotes the beginning of a cut in the complex
Borel plane. In the case under consideration, the cut closest
to the origin starts, up to five decimal places, at

ξ0 ¼ 1.5000=γ: ð16Þ
The constants ξ0 appearing in Eq. (15) can in general be

complex (they then come in conjugate pairs), and in the
examples analyzed so far in the literature, they appear in
positive integer multiples. Each such term comes with an
infinite gradient expansion of its own, and the term with the
lowest ξ0 in a given family comes with an independent
complex integration constant. In all known cases [15,21,
52–54] (see Ref. [1] for a review), those least-dampedmodes
within a given family coincide with singularities of retarded
equilibrium two-point functions of the energy-momentum
tensor at vanishing momentum.
In the context of the RTA kinetic theory, the studies

of Ref. [22] reveal the presence of a zero-momentum
fast-evolving mode in the isotropization of the energy-
momentum tensor to its equilibrium form:

δhTμνi ∼ e−ω0Tt; ω0 ¼ 1=γ: ð17Þ

FIG. 1. Poles of the Padé approximant to the Borel transform of
the gradient expansion. We have checked that the structure of
singularities remains stable as the number of terms kept in the
series is varied. We have also checked that the residues of the
pictured poles lie well above what was set as the numerical
accuracy, i.e., that they are not numerical artifacts. The depicted
singularities are discretizations of branch cuts with branch points
at values of ξ given in Eqs. (16) and (20) as well as at ξ0 þ ξ� and
2ξ� (see also Ref. [34] for a related statement based on a smaller
data set from the previous version of the present manuscript).
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The nontrivial background flow is known to modify the
above equation to the form [15,57,58]

δhTμνi ∼ e−ω0

R
TðxÞuμdxμ ; ð18Þ

which for the case of Bjorken flow, neglecting subleading
terms at large values of w, reduces to

δA ∼ e−
3
2
ω0w: ð19Þ

This, together with Eq. (17), reproduces Eq. (16). Let us
also note here that the analysis in Ref. [59] reveals that the
cut along the real axis seen in Fig. 1 must be, in fact, an
infinite collection of independent cuts. They all start at the
same branch point, i.e., ξ ¼ ξ0, but are characterized by
different discontinuities and are interpreted as an infinite set
of modes carrying information about the initial distribution
function to late times w.
Importantly, Fig. 1 contains also a pair of singularities

characterized by

ξ� ≈ ð2.25016� 1.29898iÞ=γ: ð20Þ

If onewere to apply straightforwardly the lessons from earlier
studies of other models of expanding plasmas, these complex
values of ξ0 would be interpreted as oscillatory-type transient
contributions to the pressure anisotropy. As shown in the next
section, in which we argue that these are unphysical, this
natural-looking conclusion is premature. This is an important
point, since such singularities appear also in other kinetic
theory models, such as those with τrel ∼ T−Δ, for 0 < Δ < 3.
Notably, forΔ > 2, the unphysical modes are actually closest
to the origin, so naively they would correspond to the
dominant nonhydrodynamic corrections [59].

V. ANALYTIC PROPERTIES OF
RTA KINETIC THEORY

To explain the singularities of the Borel transform at ξ�,
see Eq. (20) and Fig. 1, we use the integral equation [49],
which follows from the Boltzmann equation [48] and
directly determines the local energy density EðτÞ:

gðτÞ ¼ E0ðτÞ þ
1

2

Z
τ

τ0

dτ0

τrelðτ0Þ
H

�
τ0

τ

�
gðτ0Þ: ð21Þ

In the expression above, E0ðτÞ carries information about
initial conditions but will not be relevant in the following
analysis. The object of interest is the energy density EðτÞ,
which appears in

gðτÞ ¼ EðτÞe
R

τ

τ0

dτ0
τrelðτ0Þ ð22Þ

as well as in τrelðτÞ through Eqs. (3) and (4). The function
HðqÞ originates from the second moment of the equilib-
rium distribution function, Eq. (1), and reads

HðqÞ ¼ q2 þ
arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
1
q2 − 1

q
ffiffiffiffiffiffiffiffiffiffiffiffi
1
q2 − 1

q : ð23Þ

What will be crucial in the following is the analytic
structure of H. Since the natural variable in our consid-
erations is w and at late times w ∼ τ2=3, we shall write the
argument of H as q ¼ ðw0=wÞ3=2 ≡ ζ3=2.
Among the singularities of Hðζ3=2Þ, the one of interest is

the branch point stemming from the square root in the
denominator. It appears as a singularity when the arctan
function in the numerator is taken in a nonprincipal branch.
As a result, one finds

Hðζ3=2Þ ∼ ð1 − ζ3Þ−1=2; ð24Þ
which has branch points at third roots of unity. We will be
interested in the ones located at

ζ� ¼ e�i2
3
π: ð25Þ

The key observation is that the presence of singularities in
the complex ζ plane leads to inequivalent choices of
integration contours in Eq. (21), the only physical choice
being homologous to the integration along the real axis. If
one uses the late-time solution for gðτðwÞÞ obtained from
Eq. (11) under the integral in Eq. (21) and considers two
inequivalent contours around ζ− (or, similarly, ζþ), denoted
C1 and C2, one finds

δgðwÞ ∼
�Z

C1

dζ −
Z
C2

dζ

�
e
3w
2γζHðζ3=2Þ × � � � ; ð26Þ

where the ellipsis denotes terms subleading at large w.
Similarly to the analysis around Eq. (14), the branch cuts
lead to contributions to δg of the form

δg ∼ e−
3ζ�
2γ w; ð27Þ

where we truncated subleading terms at large values of w.
Finally, note that δg and δE are related through Eq. (22)

with, at late times/large values of w, e
R

τ

τ0

dτ0
τrelðτ0Þ ∼ e

3
2γw, which

ultimately gives

δE� ∼ e−
3
2γðζ�−1Þw: ð28Þ

Comparing the exponent in the equation above with
Eq. (20), one observes a remarkable agreement up to four
decimal places. As a further way of corroborating this
result, one can use the techniques utilized earlier in this
context in Refs. [15,21] to match the square root character
of the branch cut in Eq. (24) with the leading power-law
correction in w to contributions from the ξ� singularities in
the Borel plane, with very good agreement.
All this taken together gives us confidence that the

correct interpretation of the singularities given in Eq. (20)
is that they correspond not to physical excitations but
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rather to analytic properties of kinetic theory for com-
plexified values of the w variable. The physical integra-
tion contour in Eq. (21) along real values of τ0 does not
pick up these contributions (and, no wonder, they are not
seen in solutions of the initial value problem discussed in
Ref. [59]). The gradient expansion itself does not
preclude unphysical choices of contour, and this is
reflected in its large-order behavior. Similar phenomena
can be seen in the integral equation considered in
Ref. [60] or in the ghost-instanton story of Ref. [43].
Their origin goes back to the fundamental point of
resurgence: all nonperturbative information is encoded
in the large-order behavior of the perturbative sector.

VI. HYDRODYNAMIZATION COMPARED

In previous sections, we have demonstrated that hydro-
dynamization in the RTA takes place through the decay of
transient nonhydrodynamical modes in complete analogy
to the situation at strong coupling. On the other hand, the
RTA shares structural similarities with EKT—while the
collision kernels of the QCD effective kinetic theory have
much richer structure than the RTA, many qualitative
features at the level of kinetic theory coincide. In this
section, we further strengthen the connection between RTA
and EKT by noting that the similarity between these two
theories goes beyond abstract structural similarity and that
they agree semiquantitatively when the values of η=s are
matched between the two theories.
To demonstrate the extent of quantitative agreement

between different models, inspired by Ref. [46], we
introduce a new, rescaled variable w̃≡ w

4πη=s. This is useful
for such comparisons, since the late-time behavior of the
pressure anisotropy A is given by

AHðw̃Þ ¼
2

πw̃
þO

�
1

w̃2

�
:

The leading behavior is completely universal and does not
depend on the value of η=s. Deviations from the asymptotic
form characterize contributions arising beyond first-order
hydrodynamics, and, indeed, we say that the system has
reached the hydrodynamic regime when for a given state
the relative difference between A and AH remains smaller
than some threshold value. Figure 2 shows a comparison of
the time evolution of the system evolved in the EKT from
Ref. [9], RTA using the methodology of Refs. [48,49], and
numerical AdS/CFT calculation of Refs. [13,45,61]. For
the EKTand RTA simulations, we took the initial condition
used in Ref. [9], whereas for the AdS/CFT simulation, we
took typical initial conditions from Ref. [45]. We evolved
the systems using EKT with λ ¼ 10 corresponding to
η=s ≈ 0.642, holography with η=s ¼ 1=4π, and RTA with
γ fixed to reproduce the value of η=s of either model. Note
that every kinetic theory curve in Fig. 2 corresponds to a
different initial distribution function. In all these models,

the evolution is similar but distinct. Remarkably, in each
case—despite vastly differing microphysics—the evolution
converges to first-order viscous hydrodynamics roughly at
the same value of w̃ variable, i.e.w̃ ≈ 1. It is striking that in
all these cases the pressure anisotropy at the time of
hydrodynamization is as high as A ≈ 0.6–0.8.
The structural and quantitative similarities of EKT and

RTA suggest that the gradient expansion in EKT also
exhibits a zero radius of convergence and that the weak
coupling hydrodynamization is driven by the same quali-
tative process. This is connected with the notion of
attractors that have been explored in both RTA and
holography [28,29]. To what extent these insights translate
to EKT is an important problem.
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FIG. 2. The dashed magenta curve represents first-order hydro-
dynamics, the blue line is the holographic result, and the red
dashed-dotted line is fromEKT. The green dotted curve stands for a
solution ofRTA starting from initial distribution similar to EKTand
with the same shear viscosity, η=s ¼ 0.624. Despite differences in
microscopic dynamics, one sees significant qualitative and some
quantitative similarities between different theories.
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