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We investigate asymptotic safety of a toy model of a singlet-scalar extension of the Higgs sector
including two real scalar fields under the impact of quantum-gravity fluctuations. Employing functional
renormalization group techniques, we search for fixed points of the system which provide a tentative
ultraviolet completion of the system. We find that in a particular regime of the gravitational parameter space
the canonically marginal and relevant couplings in the scalar sector—including the mass parameters—
become irrelevant at the ultraviolet fixed point. The infrared potential for the two scalars that can be reached
from that fixed point is fully predicted and features no free parameters. In the remainder of the gravitational
parameter space, the values of the quartic couplings in our model are predicted. In light of these results, we
discuss whether the singlet-scalar could be a dark-matter candidate. Furthermore, we highlight how
“classical scale invariance” in the sense of a flat potential of the scalar sector at the Planck scale could arise
as a consequence of asymptotic safety.
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I. INTRODUCTION

Compelling astrophysical and cosmological evidence
points to the existence of dark matter. In its simplest form,
dark matter might be just an additional scalar field. To
stabilize the additional field and prevent it from decaying, a
Z2 reflection symmetry can be used. Then, a dimension 4
operator exists that is compatible with the symmetries and
couples the dark scalar to the standard model (SM) Higgs.
The corresponding coupling is called Higgs portal cou-
pling, [1–13]. The Higgs portal coupling is an additional
marginal coupling and therefore expected to play an
important role in a general effective field theory setup. It
is particularly attractive, because in addition to providing a
portal into the dark sector that enables direct and indirect
experimental searches [14,15], it could also contribute to
stabilizing the Higgs potential [16–24].
Direct and indirect searches for a dark scalar have so far

succeeded in constraining the allowed parameter space very
significantly [14,15,25–28]. One might thus wonder

whether the dark sector is more complicated than just
one extra scalar field, or whether there might be a
fundamental reason why the dark scalar is “hiding” from
us. In this paper, we highlight that the asymptotic safety
paradigm could provide a fundamental reason why the dark
scalar has remained undetected. Asymptotic safety is a
generalization of asymptotic freedom, and provides a
second alternative for a consistent microscopic regime of
a quantum field theory: The running of couplings under the
impact of quantum fluctuations can either lead into singu-
larities—signaling a breakdown of the model—or into a
scale invariant renormalization group (RG) fixed point
regime. For asymptotic freedom that fixed point is
Gaussian, and therefore easily accessible by perturbative
techniques. In the case of asymptotic safety, the fixed point
is an interacting one. Compelling hints for the existence of
an asymptotically safe fixed point in gravity exist [29–40];
see also [41–46] for reviews. Within simple approxima-
tions, the fixed point persists under the impact of SMmatter
fields [47–56] and asymptotically safe quantum fluctua-
tions of matter impact the running of the SM couplings
beyond the Planck scale [57–62]. First hints suggest that a
quantum-gravity induced ultraviolet (UV) completion for
the SM might even allow to predict the Higgs mass [63,64]
and the top mass [65], as well as the value of the Abelian
gauge coupling [66–69]. In our work, we find that under the
impact of asymptotically safe quantum fluctuations of
gravity, an UV completion of a toy model of the Higgs
portal sector featuring two real scalar fields is induced in a
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simple approximation of the RG flow. In particular, the
asymptotic safety paradigm appears to have a higher
predictive power for the quartic couplings than a standard
effective field theory setup, and in our approximation all
quartic couplings—including the Higgs self-coupling, the
dark scalar self-coupling and the Higgs portal coupling—
are calculable quantities. Specifically, we find indications
that quantum fluctuations of gravity force the Higgs portal
coupling to vanish at and beyond the Planck scale. The
underlying reason behind a flat potential for our toy model
of an extended Higgs sector is shift symmetry, which
appears to be protected under the impact of asymptotically
safe quantum gravity [62]. Unlike the Higgs self-coupling,
which is regenerated by SM fluctuations even if it is set to
zero at the Planck scale, the Higgs portal coupling remains
zero at all scales once it is set to zero at the Planck scale.
Thus our scenario could provide an explanation for the lack
of detections of scalar dark matter. We highlight that, e.g.,
the misalignment mechanism allows to produce all of the
observed dark matter abundance.
No sign of supersymmetry and other new physics at the

LHC until now could suggest that the usual notion of
naturalness might play a less central role in the identifi-
cation of the scale of new physics than previously sus-
pected. In this respect, an intriguing observation1 was made
by Bardeen [74]: Since the Higgs mass is the only
dimensionful parameter in the SM, its tiny value at the
Planck scale implies that the SM is close to being scale
invariant. That is, so-called classical scale invariance could
be a naturalness condition for the SM. It prohibits the
existence of a mass scale in a classical action.2 In a similar
spirit, many models based on the classical scale invariance
were proposed, recently. However in these models the
underlying reasoning for scale invariance at the Planck
scale is still lacking. In this paper, we show that the
asymptotic safety paradigm could automatically generate
a (nearly) scale invariant potential at the Planck scale.

II. METHOD AND MODEL

A. Functional renormalization group

The functional renormalization group (FRG) is a method
to evaluate the path integral by integrating the flow of the
effective action under the momentum-shell-wise inclusion
of quantum fluctuations. The central object in the FRG is
the effective action Γk with an infrared cutoff k, which
contains the quantum corrections accumulated by

integrating out the fluctuations with momenta p2 > k2.
The effective action is specified by a point in the theory
space which is spanned by the couplings of an infinite
number of effective operators respecting the symmetries of
the model. Finite values for all couplings are generically
generated by integrating quantum fluctuations, even if the
effective action at some initial scale contains only a finite
number of couplings.
The change of Γk is described by a functional differential

equation [75]

∂tΓk ¼
1

2
STr½ðΓð2Þ

k þ RkÞ−1∂tRk�; ð1Þ

which is known as the Wetterich equation, see also [76],
and [77–84] for reviews. Here, t ≔ lnðk=ΛÞ with a refer-

ence scale Λ and Γð2Þ
k þ Rk is the full regularized inverse

propagator with a cutoff profile function RkðpÞ. In this
paper, we employ the Litim-type cutoff function [85]:

rkðpÞ ¼ ðk2 − p2Þθðk2 − p2Þ; ð2Þ

which is multiplied by the wave-function renormalization
and an appropriate tensor structure for each field such that

in the full regularized propagator ðΓð2Þ
k þ RkÞ−1 the

momenta are replaced by k2. In this way, the path integral
given as a functional integral is written as a functional
differential equation with a boundary condition. The
boundary condition is provided by specifying the effective
action at a cutoff scale k. Exploring whether a model is
asymptotically safe can be understood as the search for a
consistent boundary condition for which the limit k → ∞
can be taken and for which the flow to the infrared (IR)
depends on a finite number of free parameters. The
Wetterich equation reproduces one-loop perturbation
theory straightforwardly; the extraction of higher-loop
orders in discussed, e.g., in [86,87]. Within its one-loop
structure, it encodes effects beyond perturbation theory, as
it depends on the full, field- and momentum dependent
propagator. Accordingly, it is particularly well-suited to
study interacting fixed points which require nontrivial
resummation techniques to be accessible with perturbation
theory.
Although the Wetterich equation is exact, in practice its

solution requires making approximations. We restrict the
theory space to a subspace with a finite number of effective
operators as an approximation. Guidance to set up reliable
truncations is provided by the canonical dimension of
couplings, which determines whether a coupling is relevant
in perturbation theory, and appears to remain a useful
guiding principle at an asymptotically safe fixed point in
gravity [33], as well as in gravity-matter systems, see, e.g.,
[54,60,61,88].
For a given effective action, one can obtain the beta

functions using Eq. (1),

1The other interesting observation is that the Veltman con-
dition [70] is satisfied at the Planck scale [71], which might have
some relevance with the naturalness problem [72,73].

2In the literature, classical scale invariance is sometimes also
called classical conformal invariance although the conformal
symmetry is a larger group than the scale symmetry and the latter
might not be sufficient to imply the former in QFTs in four
dimensions.
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∂tg̃i ¼ β̃iðfg̃gÞ; ð3Þ

where g̃i ¼ gik−di are dimensionless couplings and fg̃g ¼
fg̃1;…; g̃ng denotes a set of them; and di are the canonical
dimensions of the dimensionful couplings gi. The beta
functions can be written as

β̃iðfg̃gÞ ¼ −dig̃i þ fiðfg̃gÞ; ð4Þ

where the first term is the canonical scaling term and the
second term arises from loop effects. At a fixed point g̃�i all
beta functions vanish, i.e., β̃iðfg̃�gÞ ¼ 0. In the vicinity of a
fixed point, we can classify the directions of the RG flow
into UV or IR repulsive or attractive. To this end, let us
expand the beta functions around the fixed point:

∂tg̃i ¼ β̃iðfg̃�gÞ þ
∂β̃i
∂g̃j

����
g̃¼g̃�

ðg̃j − g̃�jÞ þ � � �

≃Mijðg̃j − g̃�jÞ: ð5Þ

The first term on the right-hand side vanishes by definition
of the fixed point. The solution to the beta functions is
given by

g̃i ¼ g̃�i þ
X
j

CjV
j
i

�
k
Λ0

�
−θj

; ð6Þ

where Vj is an eigenvector of the stability matrix Mij and
Cj are arbitrary constants of integration. The values −θj are
eigenvalues of Mij and are called critical exponents. For
positive critical exponents, the RG flow toward the IR, i.e.,
to lower k, goes away from the fixed point g�i . The
corresponding operators are relevant and the IR value of
the corresponding superposition of couplings parameter-
izes the deviation from scale-invariance. Accordingly, a
free parameter, corresponding to the choice of Cj, fixed by
comparison to experiment, is associated to each relevant
coupling. In contrast, the RG flow with negative critical
exponents is pulled toward the fixed-point value toward the
IR and the corresponding couplings are irrelevant. Beyond
the linear approximation in Eq. (5), the value of irrelevant
couplings changes as a function of scale, but there is no free
parameter associated to it. The absence of a free parameter
for each irrelevant operator can also be understood by
thinking about the flow toward the UV: The flow can only
end up at the fixed point in the UV if it stays exactly within
the critical hypersurface, which is spanned by the UV
attractive directions. According to Eq. (6), these are the
relevant couplings. Therefore, there cannot be a free
parameter associated to an irrelevant coupling. In other
words, if Cj ≠ 0 is chosen for an irrelevant direction, this
leads to a flow that will deviate from the critical hyper-
surface toward the UV, and will not result in a UV complete
trajectory.

In the asymptotic safety scenario, the UV complete
theory is given by the UV critical surface spanned by the
relevant operators. If it features a finite number of positive
critical exponents then the model is predictive and low
energy physics is determined by the values of the relevant
couplings at some scale. At an interacting fixed point, one
can argue that only a finite number of relevant couplings
should exist. Using Eq. (4) the critical exponents read

θi ≃ di −
∂fi
∂g̃i

����
g̃¼g̃�

; ð7Þ

where the off-diagonal parts of Mij are neglected for
simplicity. The first term corresponds to the canonical
dimension of the coupling. The second one arises from loop
effects and provides a finite shift of the scaling dimension at
an interacting fixed point away from the canonical dimen-
sion. Note that perturbation theory corresponds to the
dynamics around the Gaussian fixed point g̃� ¼ 0 at which
the critical exponents are given by the canonical dimension
of coupling constants, θi ≃ di. It is essential for the
asymptotic safety scenario that nonperturbative dynamics
around a nontrivial fixed point g̃� ≠ 0 generates nontrivial
anomalous dimensions. For asymptotically safe quantum
gravity and matter, results within most truncations suggest
that quantum corrections are not large, such that only the
Newton coupling, the cosmological constant, and a super-
position of couplings at second order in the curvature are
relevant, but all other gravity couplings remain irrelevant
[31,33,36,38,89]. This provides us with the rationale to
choose truncations according to the canonical dimension,
as we expect that couplings which are irrelevant according
to their canonical dimension will not be shifted into
relevance.

B. Effective action

We investigate the following truncated effective action in
four dimensional Euclidean spacetime:

Γk ¼ ΓEH
k þ Γmatter

k ; ð8Þ

where the gravity sector is given by the Einstein-Hilbert
truncation, namely,

ΓEH
k ½g� ¼ 1

16πG

Z
d4x

ffiffiffi
g

p ½−Rþ 2Λ� þ Sgf þ Sgh; ð9Þ

where G and Λ are the Newton constant and the cosmo-
logical constant, respectively; R is the Ricci scalar; Sgf and
Sgh are the actions for the gauge fixing and ghosts whose
forms are given below. The matter sector contains two real
scalar fields,
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Γmatter
k ½ϕ; χ� ¼

Z
d4x

ffiffiffi
g

p �
Vðϕ; χÞ þ Zk;ϕ

2
gμν∂μϕ∂νϕ

þ Zk;χ

2
gμν∂μχ∂νχ

�
; ð10Þ

where ϕ is a field associated with the massive mode of the
Higgs boson, while χ is a single scalar boson. In the SM,
the Higgs field is a complex SU(2) doublet, but here we
neglect the Goldstone bosons and use a Z2 symmetric real
scalar as a toy model for the Higgs. For the second scalar,
we also impose a Z2 symmetry, which prohibits interaction
terms of uneven powers in the fields that could lead to a
potential that is not bounded from below. Moreover, we
neglect additional degrees of freedom of the SM; most
importantly the fermions which can provide a direct
contribution to the flow of the Higgs potential and impact
the fixed-point values for G, Λ. In our analysis, we will
focus on a fixed point that preserves the Z2 symmetry as
well as shift symmetry in both scalar fields, and accord-
ingly features a vanishing potential.
The scalar potential is expanded into polynomials of the

fields such that it respects the Z2 symmetries, that is,

Vðϕ;χÞ¼m2
ϕ

2
ϕ2þλϕ

8
ϕ4þλϕχ

8
χ2ϕ2þm2

χ

2
χ2þλχ

8
χ4: ð11Þ

The higher-order terms are set to zero since their canonical
dimensions are negative, and thus we expect that they are
irrelevant even though gravitational fluctuations are taken
into account. Note that the action for the matter sector (10)
is symmetric under the exchange of ϕ with χ.
In our truncation, the effective action is parametrized by

seven couplings, namely, the Newton constant G, the
cosmological constant Λ, the scalar field masses mϕ;χ ,
the quartic couplings λϕ;χ , and the Higgs portal coupling
λϕχ and the anomalous dimensions ηϕ;χ which are related to
the wave-function renormalizations Zϕ;χ via ηϕ;χ ¼
−∂t lnZϕ;χ . To obtain the beta functions for the system
(8), we employ the background field method. To this end,
we perform a linear split of the metric into a background
metric and a fluctuation:

gμν ¼ ḡμν þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGZh

p
hμν; ð12Þ

where Zh is the graviton wave-function renormalization
and the associated anomalous dimension is given by ηh ¼
−∂t lnZh. Note that hμν is not restricted to be small in
amplitude, i.e., Eq. (12) is not a perturbative expansion.
The gauge fixing and the ghost action are given by

Sgf ¼
1

2α

Z
d4x

ffiffiffī
g

p
ḡμνΣμΣν; ð13Þ

Sgh ¼ −
Z

d4x
ffiffiffī
g

p
C̄μ

�
ḡμρ∇̄2 þ 1 − β

2
∇̄μ∇̄ρ þ R̄μρ

�
Cρ;

ð14Þ

with

Σμ ≔ ∇̄νhνμ −
β þ 1

4
∇̄μh; ð15Þ

where ∇̄μ is the covariant derivative with respect to the
background metric; h ≔ ḡμνhμν is the trace mode of hμν;
C and C̄ are the ghost and antighost fields, respectively; and
α and β are gauge parameters.

C. Structure of beta functions

To search for a scale-invariant fixed-point regime, we
make a transition to dimensionless couplings, defining

G̃ ¼ Gk2; Λ̃ ¼ Λk−2; ð16Þ

whose beta functions are

∂tG̃ ¼ 2G̃þ fG; ∂tΛ̃ ¼ −2Λ̃þ fΛ: ð17Þ

In the matter sector, we define dimensionless renormalized
fields,

ϕ̃ ¼ Z1=2
ϕ ϕ

k
; χ̃ ¼ Z1=2

χ χ

k
: ð18Þ

For the effective potential, we have k4Ṽðχ̃; ϕ̃Þ ¼ Vðχ;ϕÞ,
which implies

Vðχ;ϕÞ ¼ m2
ϕ

2
ϕ2 þ λϕ

8
ϕ4 þ λϕχ

8
χ2ϕ2 þm2

χ

2
χ2 þ λχ

8
χ4

¼ k4
�
m̃2

ϕ

2
ϕ̃2 þ m̃2

χ

2
χ̃2

þ λ̃ϕ
8
ϕ̃4 þ λ̃ϕχ

8
χ̃2ϕ̃2 þ λ̃χ

8
χ̃4
�

¼ k4Ṽðχ̃; ϕ̃Þ; ð19Þ

where the dimensionless renormalized couplings are
defined by

m̃2
ϕ ¼ m2

ϕ

Zϕk2
; m̃2

χ ¼
m2

χ

Zχk2
; λ̃ϕχ ¼

λϕχ
ZϕZχ

;

λ̃ϕ ¼ λϕ
Z2
ϕ

; λ̃χ ¼
λχ
Z2
χ
: ð20Þ

Then, the beta functions for dimensionless coupling con-
stants are
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β̃m2
ϕ
¼ ð−2þ ηϕÞm̃2

ϕ þ fm2
ϕ
; ð21Þ

β̃m2
χ
¼ ð−2þ ηχÞm̃2

χ þ fm2
χ
; ð22Þ

β̃λϕχ ¼ ðηϕ þ ηχÞλ̃ϕχ þ fλϕχ ð23Þ

β̃λϕ ¼ 2ηϕλ̃ϕ þ fλϕ ; ð24Þ

β̃λχ ¼ 2ηχλ̃χ þ fλχ : ð25Þ

fg are the one-loop corrections computed with the
Wetterich equation (1). The RG equations are given by
∂tg̃i ¼ β̃gi . The explicit forms for the dimensionless beta
functions for the matter coupling constants are shown in
Appendix A. For the scalar subsector, these agree with the
perturbative one-loop result, once the threshold-corrections
from the FRG are set to zero. These are responsible for an
automatic decoupling of massive modes, once the RG scale
falls below the mass of those modes.

III. RESULTS

The beta functions in our truncation feature a fixed
point at finite gravitational couplings with an exactly
vanishing scalar potential, in accordance with the sym-
metry considerations in [62]. These guarantee that the
hypersurface with unbroken shift symmetry in the scalars
is a fixed hypersurface under the RG flow. For the scalar
subsector, this result follows from the well-known fact that
global symmetries of the action which are preserved by
the regularization remain symmetries at the quantum level.
Within asymptotically safe gravity, the same appears to
hold when quantum fluctuations of gravity are included.
Interestingly, a similar result appears to hold in the
effective field theory regime for quantum gravity, where
gravity-corrections to the quartic coupling vanish unless a
finite scalar mass is present, see [90,91]. Momentum-
dependent gravity-induced scalar couplings that respect
shift-symmetry and are necessarily finite at a joint fixed
point of the system [54,58] are not included in our
truncation, which therefore features a Gaussian matter
fixed point in analogy to the system with one scalar, [88].
In addition to the shift-symmetric fixed point, a fixed point
with explicitly broken shift-symmetry could of course
exist, but in our truncation no such fixed point with a
potential that is stable in our simple polynomial approxi-
mation is discovered. As an example for the numerical
results, we choose the gauge parameters as α → 0 and
β ¼ 1. In this case, the anomalous dimensions of the
scalar fields vanish ηϕ ¼ ηχ ¼ 0 for the Gaussian-matter
fixed point in symmetric phase.
First, we look for the fixed point at which all beta

functions in the system vanish; β̃gðfg�gÞ ¼ 0. We find the
Gaussian-matter fixed point, namely, only the Newton

coupling and the cosmological constant have a nonvanish-
ing fixed point value,

G̃� ¼ 1.182; Λ̃� ¼ 0.161; ð26Þ

while the matter couplings vanish, where we set ηh ¼ 0. At
this fixed point, the critical exponents take the following
numerical values:

θ1;2 ¼ 2.5083� 1.6384i; θ3;4 ¼ −0.45478;

θ5;6;7 ¼ −2.4548: ð27Þ

Here, θ1;2 are the critical exponents associated to the two
relevant directions located in the Einstein-Hilbert subspace.
The effective scaling of G and Λ sensibly deviates from the
canonical scaling induced by a Gaussian fixed point.
Therefore, the non-Gaussian fixed point (26) has non-
perturbative origins; θ3;4 correspond to the scalar masses;
θ5;6;7 correspond to the quartic couplings and the Higgs
portal coupling. At this fixed point, all terms in the scalar
potential are irrelevant, i.e., the nonperturbative quantum-
gravity effects are strong enough to render the mass
parameters irrelevant, even though their canonical dimen-
sion is 2. Accordingly, the low-energy form of the potential
is fully determined in terms of the IR-values of the
gravitational couplings. In particular, within our truncation
the potential stays exactly flat at all scales.
Let us now broaden our view beyond the current

truncation and treat G̃�; Λ̃� as free parameters. This
accounts for extensions of the truncation in the gravity
sector. Moreover, we currently employ the single-metric
approximation to evaluate G̃�; Λ̃�, whereas actually, only
fluctuation-field couplings should appear on the right-
hand-side of the Wetterich equation. Varying G̃�; Λ̃� away
from their fixed-point values in our approximation allows
us to explore whether the system might behave in a
qualitatively different way in extended truncations.
Further, Λ should be viewed as a simple approximation
of nontrivial threshold behavior in the full gravity propa-
gator, i.e., varying Λ mimics the effect of higher-order
terms in the propagator, see, e.g., [51,62]. Last but not least,
the addition of further matter degrees of freedom, e.g.,
those of the SM, also results in a change of the fixed-point
values in the gravity sector.
We observe that the sign of the critical exponent for the

quartic couplings is stable under variations of Λ̃� as can be
seen in Fig. 1: For Λ̃� → −∞, gravity fluctuations are
suppressed, and θ5;6;7 approach zero from below. The limit
of “strong” gravity, which is reached when Λ̃� approaches
the pole in the propagator features an increasingly negative
θ5;6;7. On the other hand, the situation differs significantly
for θ3;4, which is positive and tends to θ3;4 → 2 for
Λ̃� → ∞, as it should. However, once Λ̃� starts to approach
the pole in the propagator, the critical exponent switches
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sign. By increasing G̃, which strengthens gravitational
fluctuations, the onset of irrelevance for the mass param-
eters is shifted to negative Λ̃, cf. Fig. 2.
In our approximation, there are two physically distinct

regions of the gravitational parameter space: For Λ̃� below
a critical value, the quartic couplings are irrelevant at the
free fixed point, while the masses are relevant. Therefore,

the masses remain free parameters, and their IR values can
be chosen arbitrarily. On the other hand, the second part of
parameter space features irrelevant masses and quartic
couplings. Thus, the potential in the scalar sector is
completely flat in this case. We observe that the regime
in which this holds shrinks as ηh is taken to larger values. In
this context, we remark that ηh ¼ −2 holds in the single-
metric approximation, while ηh ≥ 0 typically appears as a
result from fluctuation calculations. Within the background
approximation, fixed-point values for gravity under the
impact of minimally coupled matter degrees of freedom fall
into the regime Λ̃� < 0, where the mass parameters remain
relevant [92].
As further work is necessary to establish whether the

fixed point lies at positive or negative θ3;4, we consider two
scenarios (i): θ3;4 < 0 (scenario A) and (ii) θ3;4 > 0 (sce-
nario B) in the next section.

IV. POTENTIAL PHENOMENOLOGICAL
IMPLICATIONS

We now discuss potential phenomenological conse-
quences of our results in a setting where χ is interpreted
as a dark matter candidate, and our model is a toy model of
the Higgs portal to scalar dark matter. Since the Higgs
portal coupling becomes irrelevant, the dark matter within
the present toy model is decoupled from the Higgs sector at
all scales: In accordance with the discussion in [62], shift
symmetry protects the full potential for the two scalars; thus
the gravity-induced fixed point lies at vanishing potential.
As the quartic couplings are irrelevant, deviations from
shift symmetry in the flow toward the infrared cannot occur
in our toy model. In the full SM, additional sources of
symmetry-breaking in the Higgs-Yukawa sector, such as,
e.g., a finite fixed-point value for the top Yukawa [65] or
non-Abelian gauge coupling [66,68] could lead to a non-
zero quartic coupling for the Higgs in the UV, while the
vanishing fixed-point value for the Higgs portal coupling
remains unaffected by quantum fluctuations of the SM
fields. Moreover, even starting from a vanishing Higgs
quartic coupling at the Planck scale, top-quark and gauge
boson fluctuations build up a nontrivial Higgs potential in
the flow toward the IR. In fact, the observed Higgs mass is
connected to a near-vanishing Higgs quartic coupling at the
Planck scale [63,64]. On the other hand, the Higgs portal
coupling remains protected by shift symmetry of the dark
scalar χ, and thus vanishes at all scales. One might say that
the dark matter sector is even darker than typically assumed
for scalar dark matter models. A decoupled dark sector and
the predicted lack of direct and indirect detection appear to
be in line with experiments, where searches have until now
succeeded in placing strong bounds on the allowed param-
eter space, but have not resulted in a detection [14,15,
25–28]. In this setting, dark matter cannot be a thermal relic
as it completely decouples from the SM at all scales, and
non-thermal production processes in the early universe

FIG. 1. Critical exponents for the mass and the quartic
couplings at G̃� ¼ 1 as a function of Λ̃� for different choices
of anomalous dimensions. Here we set the gauge parameters
β ¼ 1, α ¼ 0. For the choice β ¼ 0, the dependence on Λ̃�

changes only very slightly.

FIG. 2. Above the thick green (cyan dashed) line, θ3;4 < 0
holds for ηh ¼ 0 (ηh ¼ 1) with α ¼ 0, β ¼ 1.
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need to be invoked. These rely on a nonvanishing dark
matter mass, as present in scenario A.

A. Effective theory with near-fixed-point scaling

Within asymptotic safety, scenario A is incompatible
with χ being a dark matter candidate, as all trajectories
emanating from the UV fixed point have a vanishing mass
for χ at all scales. For the remainder of this subsection, we
will thus broaden our view beyond the asymptotic-safety
paradigm. Instead we will consider a setting where our
analysis is assumed to hold for a range of scales
ΛUV ≥ k ≥ MPlanck, but new physics exists beyond ΛUV.
Then, the fixed point that we discover is strongly IR
attractive in the two mass-parameters, provided the values
of the gravitational couplings remain in the regime pertain-
ing to scenario A. Accordingly, the flow is likely to pass
close to the fixed point, starting from a whole range of
initial conditions at ΛUV, so that the mass parameters will
be close to zero, but not exactly vanishing in the vicinity
of MPlanck.

1. Decoupled dark sector

The full effective action, evaluated at tree level, contains
the strength of all possible interactions. In our case, the
Higgs portal coupling to dark matter will be zero in the full
effective action. This does not yet preclude the existence of
dark-matter-Higgs interactions, as, in accordancewith shift-
symmetry, gravity generates nonvanishing momentum-
dependent interactions [58], potentially allowing for the
production of dark matter [93–95]. The momentum-
dependent interactions are canonically irrelevant and are
expected to remain irrelevant at their shifted Gaussian fixed
point. In [93–95], based on a calculation using the Einstein
gravity action, it is shown that a sufficient amount of dark
matter can be produced even if there are no interactions
between the dark matter and SM particles except for gravity
which mediates a momentum-dependent interaction.
Whether their calculation is modified in our case is an
intriguing question that we leave open in this study.
An alternative possibility is that the dark matter abun-

dance is explained by the coherent oscillation of the χ field
through the misalignment mechanism, as in the axion dark
matter scenario (see Ref. [96] for a recent review). This
mechanism relies on the dark matter mass being nonzero.
The misalignment mechanism, as discussed in [97], starts
from a spatially homogeneous but time-dependent initial
field value χi ≫ 0 after inflation. Assuming a flat
Robertson Walker universe, χ obeys

χ̈ þ 3H _χ þm2
χχ ¼ 0; ð28Þ

where H denotes the Hubble scale. In our scenario the
irrelevance of interactions between the dark matter field and
the thermal bath of SM particles implies that the mass does
not receive any thermal corrections and can therefore be

regarded as temperature- and hence time-independent.
Initially, for H ≫ mχ, the solution to Eq. (28) is given
by an overdamped harmonic oscillator

χðtÞ ¼ χ1 þ χ2e−3Ht; ð29Þ

such that χ remains exponentially frozen to the initial field
value χ1. At 3HðtχÞ ¼ mχ the system undergoes a cross-
over and χðtÞ rolls down the quadratic potential well to
reach a stable equilibrium point at which the field begins a
rapid oscillation. The crossover occurs at a temperature

Tχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPmχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90

π2g�ðTχÞ

svuut

∼ 103 eV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχ

10−22 eV

r �
1

g�

�
1=4

; ð30Þ

where g� denotes the effective degrees of freedom of the

energy density, and we have used that H ¼
ffiffiffiffiffiffiffi
π2g�
90

q
T2

MP
in

the radiation dominated era. At the time when H ≲mχ , the
mass dominates the time-evolution of the field according to

χðtÞ ≈ χ1

�
aχ
aðtÞ

�
3=2

cosðmχ · ðtðTÞ − tχðTχÞÞÞ; ð31Þ

where aðtÞ denotes the scale factor at time t and aχ is the
scale factor at the crossover time tχ . The energy density of χ
is then given by

ρχðTχÞ ∼
1

2
m2

χA2ðTχÞ; ð32Þ

where AðTÞ ¼ χ1ðaχ=aðTÞÞ3=2 is the amplitude of the
oscillation χðTÞ at temperature T, which simplifies at the
cross-over temperature Tχ to AðTχÞ ¼ χ1. To estimate for
which dark matter mass this process generates the full dark
matter abundance inferred from observations, consider the
energy density in a comoving volume, ρa3 and the entropy
in a comoving volume, sa3. Since the mass does not depend
on time, Eq. (31) and ρχðTÞ ∼ 1=2m2

ϕA
2ðTÞ imply that the

energy density in a comoving volume is conserved.
Conservation of comoving entropy follows from the
assumption that the universe expands adiabatically. The
two quantities being conserved, it follows that their ratio is
also conserved such that the following relation holds:

ρχðTχÞ
sðTχÞ

¼ ρχðT0Þ
sðT0Þ

; ð33Þ

where T0 is the present temperature of the universe and the
scale factors cancelled out. Roughly speaking, the relation
(33) says that the ratio of the number of the dark matter
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particles to that of photons is conserved. Using (32)
and sðTχÞ ¼ 2πg�sðTχÞT3

χ=45, we can rewrite the relation
(33) as

1
2
m2

χχ
2
1

T3
χ

≃
ρχðT0Þ
sðT0Þ

; ð34Þ

where we assumed that the coefficient of the entropy
density is of order one. Furthermore, we replace the
temperature Tχ by Eq. (30), and on the right-hand side
we insert the observed quantities [98],

ρχðT0Þ
sðT0Þ

≃
1.2497 × 10−6 GeV=cm3

2891.2 cm−3

≃ 4.32 × 10−10 GeV: ð35Þ

Then, the massmχ is determined in terms of the initial field
value χi

mχ ∼ 10−20 eV
�
1017 GeV

χ1

�
4

; ð36Þ

where g�ðTχÞ ∼ 1 is taken. Therefore, if the initial ampli-
tude is close to the Planck scale, mχ becomes extremely
small. This class of dark matter is called fuzzy dark matter,
see [99] for observational constraints. The observation of
the Lyman-α forest puts a lower bound on the mass: mχ ≳
10–20 × 10−22 eV [99,100], which implies that the initial
amplitude χ1 should be smaller than 1017 GeV. As dis-
cussed in [97], χ behaves like a cold dark matter candidate,
as its equation of state is that of nonrelativistic matter.
Denoting the average over a full oscillation by hi,

w ¼ hpχi
hρχi

; ð37Þ

with

hρχi ¼
1

2
m2

χA2 þOð _AÞ; hpχi ¼
1

2
_A2ðtÞ: ð38Þ

Terms involving a derivative of AðtÞ are proportional to
HAðtÞ. Therefore, in the late universe, when H ≪ mχ ,
these terms are negligible compared to mχAðtÞ and the
equation of state modifies to

w ≈ 0; ð39Þ

which is the equation of state for nonrelativistic matter.

2. The resurgence mechanism

Depending on the initial conditions, the dark-matter
mass required to produce the observed dark-matter abun-
dance via the misalignment mechanism can be rather small
compared to the Planck scale. Here, we will highlight that

the negative critical exponent of the mass parameter in the
quantum-gravity regime can accommodate such a hier-
archy in a “natural” way. To that end, let us review some
well-known aspects of the quadratic divergences which are
associated to the mass parameters in a perturbative setting.
The loop-corrections to the scalar mass involve quadratic
divergences which depend on regularization schemes, and
are not present in dimensional regularization. In fact, the
presence or absence of quadratic divergences depends on a
choice of the coordinates of theory space since a choice of
the regularization scheme corresponds to specifying a set of
coordinates in theory space. Physics must of course be
independent of regularization schemes (choices of coor-
dinates in theory space), and simply encoded in different
ways in different schemes. The viewpoint taken in
[101–105] is that the position of the phase boundary
between the symmetry broken and symmetric phases in
the theory space is encoded in a scheme-dependent value of
the dimensionless mass parameter μ̄2. The deviation from
the phase boundary, could be a physical quantity since it
does not depend on a choice of coordinates on theory space
(on the regularization scheme). In our parameterization of
the scalar potential, the deviation from the phase boundary
corresponds to the mass of the scalar, i.e., μ̄2 ¼ 0. It should
be noted here that the physics on the phase boundary
corresponds to the massless theory. This fact was pointed
out by Wetterich in [102] and can lead to a scale invariant
theory. We will discuss the possibility of the scale invari-
ance within the present extension in Sec. IV B 1. The RG
flow of the deviation from the phase transition m̃2 ¼ m2=k2

is given by

m̃2ðkÞ ¼ m̃2
0

�
k
M

�
−θm

; ð40Þ

where m̃2
0 ¼ m̃2ðk ¼ MÞ. This RG equation is obtained

from (6) with m2� ¼ 0; Vj
i ¼ δji ; Cj ¼ m̃2

0; and Λ0 ¼ M.
Since the scalar mass in the SM is relevant and its critical
exponent is approximately θm ≈ 2, the scalar mass at the
Planck scale M ¼ MP has to be much smaller than one,
namely, m̃0 ¼ mðMPÞ=MP ≪ 1. This is the gauge hier-
archy problem [106,107]. Phrased in physical terms, the
question is why the SM lies so close to the phase boundary
at microscopic scales. The resurgence mechanism was
suggested in Ref. [101] as a solution for this problem
within asymptotically safe gravity. It relies on the negative
critical exponent of the scalar mass (θm < 0), generated by
quantum fluctuations of gravity.
The resurgence mechanism links the physical mass of the

dark matter scalar to a “natural” UV cutoff scale. Loosely
speaking, the scaling dimension of m̃2

χ is θ4 ≃ 2 below the
Planck scale, and is θ4 ≃ −0.45 above the Planck scale at
least in the vicinity of the fixed-point values for G̃; Λ̃. Let us
model the critical exponent as
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θ4 ≃ 2θðτ − 1Þ − 0.45θð1 − τÞ; ð41Þ

where τ ¼ 1
8πGk2 is the running reduced Planck scale and

θðxÞ is the step function. The regimes τ ≫ 1 and τ ≪ 1
correspond to scales below and above the Planck scale,
respectively. Then, the mass squared of χ at the scale
Λ > MP is given by

m̃2
χðΛÞ ¼ m̃2

χðkχÞ
�
kχ
MP

�
2
�
MP

Λ

�
−0.45

; ð42Þ

where kχ is the scale at which mχ becomes the physical
mass in (36) and m̃2

χðkχÞ ¼ m2
χ=k2χ is the dimensionless

mass-squared at the scale kχ . Requiring that m̃2
χðΛÞ ≃ 1 and

m̃2
χðkχÞ ≃ 1, we obtain the “natural” cutoff scale,

Λnatural ∼
�
MP

mχ

�
40=9

MP: ð43Þ

Let us estimate the “natural” cutoff scale (i.e., the UV scale
at which m̃χðΛÞ ¼ 1), starting from which the small mass
of (36) is obtained in the IR. The cutoff scale is

Λnatural

MP
∼ 10249

�
χ1
MP

�
160=9

ð44Þ

for Eq. (36). The scale (44) could be regarded as a scale of
new physics if we demand that new physics should satisfy a
“naturalness” criterion in the sense of providing dimen-
sionless couplings of order one at the cutoff scale. Note also
that since the dark sector is decoupled from the Higgs
sector, there is no relation between the dark matter mass
and the electroweak scale. The natural scale for the
Higgs mass above the Planck scale is estimated by the
resurgence mechanism with θ3 ≃ −0.45 and is given as
Λnatural EW ∼ 1094 GeV. To obtain the observed dark-matter
abundance through the misalignment mechanism, while
imposing the above “naturalness” criterion on both the dark
matter and the Higgs sector determines the initial field
value to be χ1 ≃ 10−10MP. As both critical exponents are
equal in our toy model, a significant difference between the
Higgs mass and the dark matter mass cannot be “naturally”
accommodated.

B. Asymptotic safety

1. Classical scale invariance

In asymptotic safety, there is no “scale of new physics,”
and thus the cutoff scale in Eq. (42) is taken to infinity. In
scenario A, this provides a completely flat potential at the
Planck scale, as one can see from Eq. (40): In order for the
scalar mass with the negative critical exponent to be UV
safe, we have to set m̃2

0 ¼ 0, which implies m̃2ðkÞ ¼ 0 for
all values of k. Hence, quantum gravity fluctuations

generate a completely flat scalar potential at the Planck
scale.3 This setting with so-called classical scale invariance
in the scalar sector has been widely explored in the
literature [108,109]. “Classical” here pertains to the micro-
scopic action at the Planck scale, which one might take as
the starting point to define a matter model without quantum
gravity. In the present scenario, scale invariance—i.e., the
absence of dimensionful couplings—in the scalar sector at
the Planck scale is an automatic consequence of the
dynamics of asymptotically safe gravity.
Models with “classical scale invariance” have been

explored as they might provide a starting point for a
dynamical generation of the electroweak scale.
“Scalegenesis” for the electroweak (and the dark matter)
scale, i.e., the dynamical generation of these scales, could
occur, e.g., by dimensional transmutation in the Coleman-
Weinberg mechanism [110,111] or through strong dynam-
ics similar to quantum chromodynamics [112–114]. Within
the SM, the Coleman-Weinberg mechanism is not sufficient
to generate the electroweak scale, and additional bosonic
fluctuations are required, such as, e.g., a dark matter scalar.
The scenario that a single scalar field could be a dark matter
candidate within a classically scale invariant extension of
the SM is discussed in [21,115–118]. In this case, however,
the quartic and Higgs portal couplings have to be relevant
which appears to be in tension with an asymptotically safe
UV completion within our toy model and truncation
thereof. In our setting, the full potential is flat at the
Planck scale, a scenario known as “flatland” [108,109]. The
flatland scenario has been discussed in [108,109], where a
Uð1ÞB−L gauge field (called Z0 boson) and a Majorana-type
Yukawa interaction between a right-handed neutrino and a
singlet complex scalar field are introduced. However, the
singlet complex scalar field cannot be a dark matter
candidate since it has a nonvanishing expectation value
hχi ≠ 0 and then becomes unstable due to its decay into the
lighter SM particles. It is an intriguing question that we
leave open here whether this model can be rendered
asymptotically safe by coupling it to quantum gravity.

2. Asymptotic safety in scenario B

We now consider the case where the critical exponents of
the scalar masses become positive. In this setting, an
asymptotically safe model of dark matter with the relic
abundance generated from the misalignment mechanism
might be viable, as the mass scale of the dark matter scalar
is not determined from the fixed-point-dynamics. Just as in
the case of any (marginally) relevant coupling, all

3While we do not explicitly include higher-order terms in the
potential here, symmetry considerations imply that their fixed-
point values vanish as well. As the direct quantum-gravity
contribution to all terms in the scalar potential is the same, the
canonically irrelevant higher-order terms are irrelevant at the UV
fixed point. Accordingly, the full scalar potential is exactly flat at
the Planck scale.
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low-energy values within the basin of attraction of the fixed
point are compatible with the requirement that the theory
becomes asymptotically safe in the UV. On the other hand,
the quartic couplings remain irrelevant, and thus only one
distinct low-energy value for each of those quantities, given
as a function of the relevant couplings, i.e., G;Λ; mϕ; mχ ,
is compatible with an ultraviolet complete model.
Conventionally, a relevant coupling is associated with a

fine-tuning problem, whereas a marginally relevant one is
not. Note that for both cases there is no way to determine
the IR value, and both are sensitive to physics at micro-
scopic scales, in the sense that a change of the value of the
coupling at a UV scale by some amount leads to a
difference in the IR value. The only distinction lies in
the power-law sensitivity of the mass to the cutoff scale in
comparison to the logarithmic dependence of a marginally
relevant coupling. Within the conventional view on this
question, the reduction of the critical exponent by quantum-
gravity effects, cf. Fig. 1 could be viewed as a significant
improvement of the situation. It should be stressed that in
any case the fine-tuning “problem” does not make the
theory inconsistent.
Here, we highlight that scenario B is one which appears

to make an asymptotically safe UV completion of the Higgs
portal to dark matter observationally viable, as finite IR
values for the masses are compatible with an asymptotically
safe fixed point. Within our toy model and truncation
therefore, predictions arising from this fixed point include a
vanishing quartic dark-matter coupling, i.e., dark matter is
not self-interacting through momentum-independent inter-
action channels. Further, the Higgs mass becomes a
prediction, once the electroweak scale is fixed, as the value
of the Higgs quartic coupling is predicted, see the dis-
cussion in [63,65] for an explicit construction. Finally, the
portal coupling is predicted to vanish. Therefore, direct
searches for the scalar dark matter particle would be
unsuccessful in this setting. The production of the dark
matter particle could proceed via the misalignment mecha-
nism, which would be available in this setting as the mass
of the dark matter scalar can be freely chosen in the IR.
Phenomenologically, scenario B is therefore the pre-

ferred scenario within asymptotic safety, as a vanishing
Higgs portal appears to be observationally viable, while the
dark matter mass must be finite, and thus cannot become an
irrelevant direction at a free, gravity-induced fixed point.
Let us consider the scalar fields analyzed here in a

context beyond the Higgs portal to dark matter. In fact,
scalar fields also occur in the context of inflation. Our
results might tentatively be interpreted as suggesting that if
an inflaton is coupled to asymptotic safety, its potential will
generically be flat in the UV. Toward the IR, the mass might
be relevant, as in scenario B, or the potential might remain
flat, as in scenario A. This would appear to make
asymptotic safety in regime A incompatible with inflation
driven by an additional scalar field. Scenario B would

appear to be still compatible with the data on the infla-
tionary parameters determined by the Planck satellite [119].
On the other hand, one might conclude that asymptotic
safety appears to disfavor inflation driven by an additional
scalar field—the case of Higgs inflation [120] might be an
exception. We stress that this interpretation of our results
requires additional extensions of the truncation—here we
only discover first hints for such a scenario. Intriguingly,
the microscopic gravity dynamics themselves might drive
inflation through higher-order curvature terms [121], sim-
ilar to the case of Starobinsky inflation [122].

V. CONCLUSIONS AND OUTLOOK

In the present work, we study a model involving a so-
called Higgs portal interaction between two real scalar
fields, mimicking the Higgs field coupled to a real singlet-
scalar dark matter field, under the impact of gravitational
fluctuations. We employ FRG methods and truncate the
space of couplings to the canonically marginal and relevant
ones. Our explicit results confirm that the canonical
dimension does in fact provide a good principle to find
consistent truncations, as quantum-gravity effects can even
shift the canonically relevant couplings into irrelevance. In
this truncation, we find a Gaussian-matter fixed point in
agreement with general arguments on the fixed-point
structure based on global symmetries [62]. At the fixed
point, all couplings, except for the Newton coupling and the
cosmological constant, have a vanishing fixed-point value.
The Higgs mass, the scalar dark matter mass and all quartic
couplings are irrelevant, yielding an exactly flat scalar
potential at the Planck scale. To extend our truncation in the
gravity sector, we consider G̃� and Λ̃� as free parameters.
Notably, the Higgs portal coupling stays irrelevant for all
Λ̃�. If these results persist beyond our truncation and under
the inclusion of additional (beyond) SM degrees of free-
dom, they hint that a simple scalar dark matter candidate
does not couple to the SM through a finite momentum-
independent Higgs portal coupling. Further, this suggests
that nonthermal production mechanisms, such as the
misalignment mechanism or pure gravitational interactions,
could be required to produce the observed dark matter
abundance. We further identify two different scenarios,
where the mass is relevant or irrelevant, depending on the
fixed-point value of Λ̃�. A scenario with an irrelevant mass
is incompatible with χ being a dark-matter candidate in an
asymptotically safe setting. The second scenario that we
identify is characterized by two relevant mass parameters.
If it persists under extensions of the truncation, this could
render asymptotic safety compatible with an observatio-
nally viable dark matter scalar that has a finite IR mass and
can be produced nonthermally, e.g., via the misalignment
mechanism. We also broaden our view beyond the asymp-
totic-safety scenario and analyze the system with a finite
UV cutoff scale which could be interpreted as the scale of
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new physics. The resurgence mechanism [101], then gen-
erates a small scalar mass (in units of the Planck scale)
“naturally” if one starts from a particular UV cutoff scale.
This is a consequence of quantum gravity fluctuations
rendering the scalar mass parameter irrelevant—thus, in
contrast to canonical scaling, the dimensionless mass shrinks
if the momentum scale is lowered in the trans-Planckian
regime. Below the Planck scale, where quantum fluctuations
of gravity decouple, the dimensionless mass starts to grow
toward the IR. Thus a dimensionless mass of order one at the
UV cutoff can become compatible with a tiny IR-mass in
units of the Planck scale, as the mass is driven toward zero at
the Planck scale by quantum fluctuations of gravity.
We further discuss “classical” scale invariance, in the

sense of a flat scalar potential at the Planck scale. Models
realizing this condition have been explored as starting points
for a dynamical generation of the electroweak scale. Within
asymptotic safety, this condition is automatically satisfied in
a region of the space of microscopic gravitational couplings,
as the scalar mass features an IR attractive fixed point at zero
under the impact of quantum fluctuations of gravity.
Let us emphasize that our results have been obtained

within a simple truncation of the scalar and the gravitational
sector. More specifically, we have neglected higher-order
momentum-dependent scalar self-interactions [58] and
scalar-curvature interactions [54] as these do not directly
impact the flow of the scalar potential. On the other hand,
they have finite fixed-point values and thereby affect the
critical exponents through their effect on the anomalous
dimension. Within the regime of scenario A, the direct
gravity contribution to θ3;4 is expected to dominate [62],
and thus this particular extension of the truncation does
presumably not alter our conclusions pertaining to this
regime. Further, we have neglected higher-order terms in
the propagator of metric fluctuations. Depending on their

fixed-point values, these can lead to different properties of
the scalar sector at the fixed point, cf. [51,62] for corre-
sponding studies including a Yukawa sector. Finally, add-
ing further (beyond) SM degrees of freedom can alter the
fixed-point structure: For instance, a finite fixed-point value
for the Yukawa couplings [65] and the gauge couplings
[68,69], could generate a nonzero fixed-point potential for
the Higgs.
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APPENDIX A: EXPLICIT FORMS OF
BETA FUNCTIONS

We list the explicit forms of the beta functions of the
matter coupling constants in the Landau gauge α ¼ 0 with
the gauge parameter β left unspecified. The beta functions
of the Newton constant and the cosmological constant have
been calculated in many papers; see e.g., [89]. To show the
explicit forms, we define the threshold function:

Iðnp; nh; nϕ; nχÞ ¼ ð1 − 2Λ̃Þ−npð9 − 6β − 12Λ̃þ β2ð1þ 4Λ̃ÞÞ−nhð1þ m̃2
ϕÞ−nϕð1þ m̃2

χÞ−nχ : ðA1Þ

The beta function of the scalar mass m̃2
ϕ is

β̃m2
ϕ
¼ ð−2þ ηϕÞm̃2

ϕ þ
3G̃m̃2

ϕ

2π

�
β4ð24Λ̃2 þ 16Λ̃þ 1Þ þ 16β3ðΛ̃2 − 6Λ̃ − 1Þ þ 2β2ð64Λ̃3 − 152Λ̃2 þ 64Λ̃þ 43Þ

− 48βðΛ̃2 − 6Λ̃þ 4Þ þ 312Λ̃2 − 432Λ̃þ 153

��
1 −

ηh
6

�
Ið2; 2; 0; 0Þ

þ 12G̃m̃4
ϕ

π

�
ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 2; 1; 0Þ þ

�
1 −

ηϕ
6

�
Ið0; 1; 2; 0Þ

�

−
3λ̃ϕ
32π2

�
1 −

ηχ
6

�
Ið0; 0; 2; 0Þ − λ̃ϕχ

64π2

�
1 −

ηϕ
6

�
Ið0; 0; 0; 2Þ: ðA2Þ

The beta function of the quartic coupling constant λ̃2ϕ is
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β̃λ̃ϕ ¼ 2ηϕλ̃ϕ þ
3G̃λ̃ϕ
2π

½β4ð24Λ̃2 þ 16Λ̃þ 1Þ þ 16β3ðΛ̃2 − 6Λ̃ − 1Þ þ 2β2ð64Λ̃3 − 152Λ̃2 þ 64Λ̃þ 43Þ

− 48βðΛ̃2 − 6Λ̃þ 4Þ þ 312Λ̃2 − 432Λ̃þ 153�
�
1 −

ηh
6

�
Ið2; 2; 0; 0Þ

þ 48G̃2m̃4
ϕ½3β6ð32Λ̃3 þ 32Λ̃2 þ 4Λ̃þ 1Þ þ 2β5ð32Λ̃3 − 288Λ̃2 − 96Λ̃ − 19Þ

þ 5β4ð−224Λ̃3 þ 96Λ̃2 þ 180Λ̃þ 49Þ þ 12β3ð32Λ̃3 þ 192Λ̃2 − 96Λ̃ − 79Þ
þ 3β2ð736Λ̃3 − 864Λ̃2 − 708Λ̃þ 703Þ þ 18βð32Λ̃3 − 288Λ̃2 þ 384Λ̃ − 139Þ

− 9ð416Λ̃3 − 864Λ̃2 þ 612Λ̃ − 147Þ�
�
1 −

ηh
6

�
Ið3; 3; 0; 0Þ

−
48G̃m̃2

ϕλ̃ϕ
π

�
ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 2; 1; 0Þ þ

�
1 −

ηϕ
6

�
Ið0; 1; 2; 0Þ

�

þ 768G̃2m̃6
ϕ

�
2ðβ4 − 6β3 þ β2ð6 − 48Λ̃Þ þ 18β − 27Þ

�
1 −

ηh
6

�
Ið0; 3; 1; 0Þ þ ð−3þ β2Þ

�
1 −

ηϕ
6

�
Ið0; 2; 2; 0Þ

�

þ 72G̃m̃4
ϕλ̃ϕ

π

�
ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 2; 2; 0Þ þ 2

�
1 −

ηϕ
6

�
Ið0; 1; 3; 0Þ

�

þ 9216G̃2m̃8
ϕ

�
ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 3; 2; 0Þ þ

�
1 −

ηϕ
6

�
Ið0; 2; 3; 0Þ

�

þ λ̃2ϕχ
64π2

�
1 −

ηϕ
6

�
Ið0; 0; 0; 3Þ þ 9λ̃2ϕ

16π2

�
1 −

ηχ
6

�
Ið0; 0; 3; 0Þ: ðA3Þ

The beta function of the portal coupling constant λ̃ϕχ is

β̃λ̃ϕχ ¼ ðηϕ þ ηχÞλ̃ϕχ þ
G̃λ̃ϕχ
4π

½β4ð24Λ̃2 þ 16Λ̃þ 1Þ þ 16β3ðΛ̃2 − 6Λ̃ − 1Þ þ 2β2ð64Λ̃3 − 152Λ̃2 þ 64Λ̃þ 43Þ

− 48βðΛ̃2 − 6Λ̃þ 4Þ þ 312Λ̃2 − 432Λ̃þ 153�
�
1 −

ηh
6

�
Ið2; 2; 0; 0Þ

þ 96G̃2m̃2
ϕm̃

2
χ

π
½3β6ð32Λ̃3 þ 32Λ̃2 þ 4Λ̃þ 1Þ þ 2β5ð32Λ̃3 − 288Λ̃2 − 96Λ̃ − 19Þ

þ 5β4ð−224Λ̃3 þ 96Λ̃2 þ 180Λ̃þ 49Þ þ 12β3ð32Λ̃3 þ 192Λ̃2 − 96Λ̃ − 79Þ
þ 3β2ð736Λ̃3 − 864Λ̃2 − 708Λ̃þ 703Þ þ 18βð32Λ̃3 − 288Λ̃2 þ 384Λ̃ − 139Þ

− 9ð416Λ̃3 − 864Λ̃2 þ 612Λ̃ − 147Þ�
�
1 −

ηh
6

�
Ið3; 3; 0; 0Þ

−
24G̃m̃2

ϕλ̃ϕχ
π

�
ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 2; 1; 0Þ þ

�
1 −

ηϕ
6

�
Ið0; 1; 2; 0Þ

�

−
24G̃m̃2

χ λ̃ϕχ
π

�
ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 2; 0; 1Þ þ

�
1 −

ηχ
6

�
Ið0; 1; 0; 2Þ

�

þ 768G̃2m̃4
ϕm̃

2
χ

�
2ðβ4 − 6β3 þ β2ð6 − 48Λ̃Þ þ 18β − 27Þ

�
1 −

ηh
6

�
Ið0; 3; 1; 0Þ

þ ð−3þ β2Þ
�
1 −

ηϕ
6

�
Ið0; 2; 2; 0Þ

�
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þ 768G̃2m̃4
χm̃2

ϕ

�
2ðβ4 − 6β3 þ β2ð6 − 48Λ̃Þ þ 18β − 27Þ

�
1 −

ηh
6

�
Ið0; 3; 0; 1Þ þ ð−3þ β2Þ

�
1 −

ηχ
6

�
Ið0; 2; 0; 2Þ

�

þ 12G̃m̃4
ϕλ̃ϕχ

π

�
ð−3þ β2Þ

�
1 −

ηh
6

�
Ið0; 2; 2; 0Þ þ 2

�
1 −

ηϕ
6

�
Ið0; 1; 3; 0Þ

�

þ 12G̃m̃4
χ λ̃ϕχ

π

�
ð−3þ β2Þ

�
1 −

ηh
6

�
Ið0; 2; 0; 2Þ þ 2

�
1 −

ηχ
6

�
Ið0; 1; 0; 3Þ

�

þ 4G̃m̃2
ϕm̃

2
χ λ̃ϕχ

π

�
ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 2; 1; 1Þ þ

�
1 −

ηϕ
6

�
Ið0; 1; 2; 1Þ þ

�
1 −

ηχ
6

�
Ið0; 1; 1; 2Þ

�

þ 9216G̃2m̃4
ϕm̃

4
χ

�
2ð−3þ βÞ2

�
1 −

ηh
6

�
Ið0; 3; 1; 1Þ þ

�
1 −

ηϕ
6

�
Ið0; 2; 2; 1Þ þ

�
1 −

ηχ
6

�
Ið0; 2; 1; 2Þ

�

þ λ̃2ϕχ þ m̃2
ϕλ̃

2
ϕχ þ 3λ̃ϕχλ̃ϕ þ 3m̃2

χ λ̃ϕχλ̃ϕ
16π2

�
1 −

ηχ
6

�
Ið0; 0; 3; 1Þ

þ λ̃2ϕχ þ m̃2
χ λ̃

2
ϕχ þ 3λ̃ϕχλ̃χ þ 3m̃2

ϕλ̃ϕχ λ̃χ
16π2

�
1 −

ηϕ
6

�
Ið0; 0; 1; 3Þ:

ðA4Þ
The anomalous dimension ηϕ is

ηϕ ¼ G̃
6π

�
3ð−3þ βÞ2ð−1þ βÞ2

�
1 −

ηh
8

�
Ið0; 2; 1; 0Þ − ð3þ βÞð−1þ βÞ

�
1 −

ηϕ
8

�
Ið0; 1; 2; 0Þ

�
: ðA5Þ

Since the right-hand side involves the anomalous dimension ηϕ, we have to solve for ηϕ. We see that the anomalous
dimension vanishes for the choice β ¼ 1. Note that there are no contributions from the matter coupling constants in
symmetric phase. The beta functions for m̃2

χ, λ̃χ and the anomalous dimension ηχ are obtained by the replacements
m̃ϕ ↔ m̃χ , λ̃ϕ ↔ λ̃χ and ηϕ ↔ ηχ . The anomalous dimension of the graviton ηh is calculated, e.g., in
[32,34,35,38,49,92,123]. For models with few matter fields, such as the present one, ηh is typically positive and smaller
than one. Note that although the anomalous dimension of the ghost field is neglected in the present work, it has been
calculated in [124,125].

APPENDIX B: GAUGE DEPENDENCE

We show the gauge dependences of the fixed point and critical exponents. Here, we use α ¼ 0, that is, the Landau gauge
is employed. Figure 3 shows the dependence of the values of fixed point and the anomalous dimensions of scalar fields on β
with ηh ¼ −2, 0 and 1. For β ≤ 0, these values are stable under varying β. The anomalous dimensions vanish at β ¼ 1. The
dependences of critical exponents on β is shown in Fig. 4. For ηh ¼ −2, 0, the critical exponents of scalar masses become
negative. In contrast, for ηh ¼ 1 their values depend on β. For any case, the critical exponents of scalar masses with β ¼ 2
turn into positive. This is because the beta functions have a pole at β ¼ 3. Since the critical exponents are stable except for β
near the pole, we can conclude that only the Newton constant and the cosmological constant are relevant, while the matter
coupling constants could be irrelevant for the smaller anomalous dimension of graviton field ηh.
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FIG. 3. Gauge dependence of the fixed point (left) and the anomalous dimensions (right) on the gauge parameter β with ηh ¼ −2, 0 1.
We choose α ¼ 0.
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