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In the present work we study the propagation of a probe minimally coupled scalar field in Einstein-
power-Maxwell charged black hole background in (1þ 2) dimensions. We find analytical expressions
for the reflection coefficient as well as for the absorption cross section in the low energy regime,
and we show graphically their behavior as functions of the frequency for several values of the free
parameters of the theory.
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I. INTRODUCTION

After Hawking’s seminal work where it was shown that
black holes emit radiation from the horizon [1,2], Hawking
radiation has attracted a lot of interest in the community,
and black holes have become an excellent laboratory to
study and understand quantum gravity. Therefore, black
holes are extremely important objects in gravitational
theories. Of particular interest is the so-called greybody
factor, or else the absorption cross section, which is a
frequency dependent factor that measures the modification
of the original black body radiation, and thus gives us
valuable information about the near-horizon structure of
black holes [3]. Consequently, in the literature there exist
many works in which the authors have studied the
propagation and the relativistic scattering of different kinds
of fields, and have analyzed the corresponding greybody
factors, either in asymptotically flat spacetimes or in
asymptotically nonflat spacetimes with a positive or neg-
ative cosmological constant. For a partial list see e.g. [4–20]
and references therein.
Gravitational theories in (1þ 2) dimensions are special

and they have attracted a lot of attention over the last years
for several reasons: first, due to the absence of propagating

degrees of freedom and their mathematical simplicity,
second, because (1þ 2)-dimensional black holes have
thermodynamic properties closely analogous to those of
realistic (1þ 3)-dimensional black holes: they radiate at a
Hawking temperature [21]. In addition, the Einstein-Hilbert
action is closely related to a Yang-Mills theory with only
the Chern-Simons term [22–24].
Nonlinear electrodynamics has attracted a lot of

attention for several different reasons. Originally the
Born-Infeld nonlinear electrodynamics was introduced in
the 1930s in order to obtain a finite self-energy of pointlike
charges [25]. During the last decades this type of action has
reappeared in the open sector of superstring theories
[26,27] as it describes the dynamics of D-branes [28,29].
What is more, straightforward generalization of Maxwell’s
theory leads to the so-called Einstein-power-Maxwell
(EpM) theory described by a Lagrangian density of the
form LðFÞ¼Fk, where F is the Maxwell invariant, and k is
an arbitrary rational number. Clearly the special value
k ¼ 1 corresponds to linear electrodynamics.
Currently, this class of nonlinear electrodynamics is

receiving attention in several contexts [30–34]. The reason
why studying such a class of theories is interesting lies in
the fact that Maxwell’s theory in higher dimensions is not
conformally invariant, while in a D-dimensional spacetime
the electromagnetic stress-energy tensor is traceless if the
power k is chosen to be k ¼ D=4. Therefore in four
dimensions the linear theory is conformally invariant,
and this corresponds of course to the standard Maxwell’s
theory. In a three-dimensional spacetime, however, if k ¼ 1
the theory is linear but the electromagnetic stress-energy
tensor is not traceless, whereas if k ¼ 3=4 the theory is
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conformally invariant but nonlinear. Black hole solutions in
(1þ 2)-dimensional and higher-dimensional EpM theories
have been obtained in [35,36] respectively, and the grey-
body factor for the (1þ 2)-dimensional case with a non-
vanishing cosmological constant was studied in [14] for
k ¼ 2=3.
In the present article we analyze the propagation of a

probe canonical massless scalar field into a three-
dimensional gravitational spacetime, and obtain analytical
expressions for the reflection coefficient and the corre-
sponding greybody factor. Our work is organized as
follows: After this introduction, we present the theory
and the corresponding black hole solution as well as the
scalar wave equation in the next section. In Sec. III we
obtain approximate analytical expressions for the reflection
coefficient as well as for the greybody factor valid at low
frequencies, and we also briefly discuss our numerical
results. Finally, we conclude our work in Sec. IV.

II. THE BACKGROUND AND THE SCALAR
WAVE EQUATION

A. The theory and the black hole solutions

We consider the theory in (1þ 2) dimensions described
by the action

S½gμν� ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2κ
R − ðFμνFμνÞk

�
ð1Þ

where κ ≡ 8πG with G being Newton’s constant is the
gravitational constant, k is an arbitrary rational number, R is
the Ricci scalar, g is the determinant of the metric, and Fμν

is the electromagnetic field strength. Varying the action
with respect to the metric and the gauge field Aμ one
obtains the field equations [35,36]

Gμν ¼ 4κα

�
kFμρF

ρ
νFk−1 −

1

4
gμνFk

�
ð2Þ

0 ¼ ∂μð
ffiffiffiffiffiffi
−g

p
FμνFk−1Þ; ð3Þ

where F≡ FμνFμν is the Maxwell invariant, while Gμν is
the Einstein tensor. We seek spherically static solutions of
the form

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dϕ2 ð4Þ

where the metric function is found to be [35,36]

fðrÞ ¼ −M −
1

2
π
ð2k − 1Þ2
ðk − 1Þ Q2kr

2ðk−1Þ
2k−1 ð5Þ

where M, Q are the mass and the electric charge of the
black hole, respectively. In the following we study the
propagation of a probe canonical massless scalar field into a

given gravitational background with k ¼ 3=4. For this
value the metric function becomes

fðrÞ ¼ −M þ q
r

ð6Þ

where q is defined to be q ¼ πQ3=2=2, and the single event
horizon is given by rH ¼ q=M. Then the metric function
takes the form

fðrÞ ¼ −M
�
1 −

rH
r

�
: ð7Þ

We use natural units such that c ¼ 8G ¼ ℏ ¼ 1 and metric
signature ð−;þ;þÞ.

B. The scalar wave equation

Next we consider in the above gravitational background
a probe minimally coupled massless scalar field with
equation of motion

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΦ ¼ 0: ð8Þ

Using the standard ansatz

Φðt; r;ϕÞ ¼ eiωtRðrÞeimϕ ð9Þ

where ω is the frequency and m is the quantum number of
angular momentum, we obtain an ordinary differential
equation for the radial part

R00 þ
�
1

r
þ f0

f

�
R0 þ

�
ω2

f2
−

m2

r2f

�
R ¼ 0 ð10Þ

where the prime denotes differentiation with respect to
radial distance r. To see the effective potential barrier that
the scalar field feels we define new variables as follows,

R ¼ ψffiffiffi
r

p ; ð11Þ

x ¼
Z

dr
fðrÞ ; ð12Þ

where we are using the so-called tortoise coordinate x,
given approximately by

x ≃ −
rH
M

lnðr − rHÞ ð13Þ

close to the horizon, and we recast the equation for the
radial part into a Schrödinger-like equation of the form

d2ψ
dx2

þ ðω2 − VðxÞÞψ ¼ 0: ð14Þ
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Therefore we obtain for the effective potential barrier the
expression

VðrÞ ¼ fðrÞ
�
m2

r2
þ f0ðrÞ

2r
−
fðrÞ
4r2

�
: ð15Þ

Since the effective potential barrier vanishes at the horizon,
close to the horizon ω2 ≫ VðxÞ, and the solution for the
Schrödinger-like equation is given by

ψðxÞ ¼ A−e−iωx þ Aþeiωx; ð16Þ

requiring purely ingoing solution [3,13,14] we set A− ¼ 0
in the following. The effective potential as a function of the
tortoise coordinate is shown in Fig. 1 below. We have
considered three different parameter pairs as follows:
(M ¼ 1, Q ¼ 0.33), (M ¼ 1.1, Q ¼ 0.35) and (M ¼ 1.2,
Q ¼ 0.37). In all three cases the horizon takes the same
value rH ¼ 0.3. We can see that the effective potential has a
nice Gaussian-like shape, as expected for asymptotically
flat spacetimes. In addition, the location of the maximum as
well as the height of the potential depends on the values of
the mass and the charge of the black hole.

III. ABSORPTION CROSS SECTION
IN THE LOW ENERGY REGIME

In this section we solve the radial differential equation
analytically. Since exact solutions hardly exist, we find an
approximate solution valid in the low energy regime
following a standard procedure described in [37]. It consists
of solving the radial equation in the far-field and near-
horizon regions, and then matching the solutions in the
intermediate region.

A. Solution in the far-zone regime

When r ≫ rH the metric function fðrÞ → −M, and thus
the radial equation takes the form

R00 þ 1

r
R0 þ

�
ω2

M2
þ m2

Mr2

�
R ¼ 0 ð17Þ

which can be recast into the Bessel equation of order n ¼ iν
[38], with ν ¼ jmj= ffiffiffiffiffi

M
p

, and therefore the general solution
is given by

RFFðrÞ ¼ BþJiν

�
ωr
M

�
þ B−Yiν

�
ωr
M

�
ð18Þ

where Bþ; B− are two arbitrary coefficients. In the limit
ωr=M → ∞ the Bessel functions behave asymptotically as
plane waves [38], and thus the solution in the far-field
region takes the form

RFFðrÞ ≃
Bþ − iB−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πωr=M

p eiðωr=M−π
4
Þeπν=2

þ Bþ þ iB−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πωr=M

p e−iðωr=M−π
4
Þe−πν=2 ð19Þ

which leads to the following expression for the reflection
coefficient,

R ¼
���� Bþ − iB−

Bþ þ iB−
eπν

����
2

; ð20Þ

or defining the ratio B̃≡ Bþ=B−, to be determined later on
upon matching the solutions in the intermediate regime,

R ¼
���� B̃ − i

B̃þ i
eπν

����
2

; ð21Þ

and finally we obtain the absorption cross section using the
three-dimensional optical theorem relation [3,13,39]

σmðωÞ ¼
1

ω
ð1 −RÞ ¼ 1

ω

�
1 −

���� B̃ − i

B̃þ i
eπν

����
2
�
: ð22Þ

B. Solution in the near-horizon regime

We define a new dimensionless parameter as fol-
lows [14],

z ¼ 1 −
rH
r
; ð23Þ

that takes values in the range 0 < z < 1. In the near-horizon
regime z → 0 the radial differential equation with respect to
z becomes

zð1 − zÞRzz þ ð2 − zÞRz þ
�
A
z
þ B
−1þ z

�
R ¼ 0 ð24Þ

where the constants A, B are given by

A ¼ ω2r2H
M2

; ð25Þ

B ¼ −
�
ω2r2H
M2

þm2

M

�
: ð26Þ

FIG. 1. The effective potential as a function of the tortoise
coordinate VðxÞ assuming m ¼ 0 for three different cases:
(i) M ¼ 1.0 and Q ¼ 0.33 (solid black line), (ii) M ¼ 1.1 and
Q ¼ 0.35 (short dashed red line) and (iii)M ¼ 1.2 and Q ¼ 0.37
(long dashed blue line).
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To get rid of the poles we set

RðzÞ ¼ zαð1 − zÞβFðzÞ ð27Þ

where now the few function FðzÞ satisfies the following
differential equation,

zð1 − zÞFzz þ ½1þ 2α − ð2þ 2αþ 2βÞz�Fz

þ
�
Ā
z
þ B̄
−1þ z

− C

�
F ¼ 0; ð28Þ

and the new constants are given by

Ā ¼ Aþ α2; ð29Þ

B̄ ¼ B − β2; ð30Þ

C ¼ ðαþ βÞ2 þ αþ β: ð31Þ

Demanding that Ā ¼ 0 ¼ B̄ we obtain the Gauss’ hyper-
geometric equation

zð1 − zÞFzz þ ½c − ð1þ aþ bÞz�Fz − abF ¼ 0 ð32Þ

and we determine the parameters α, β as follows:

α ¼ �i
ωrH
M

; ð33Þ

β ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2r2H
M2

þm2

M

r
: ð34Þ

Finally the three parameters of Gauss’ equation are given by

c ¼ 1þ 2α; ð35Þ

a ¼ αþ β þ 1; ð36Þ

b ¼ αþ β: ð37Þ

Note that the parameters a, b, c satisfy the condition
c − a − b ¼ −2β. Therefore the general solution for the
radial part in the near-horizon region is given by

RNHðzÞ ¼ zαð1− zÞβ½C1Fða;b;c;zÞ
þC2z1−cFða− cþ 1;b− cþ 1;2− c;zÞ� ð38Þ

where C1, C2 are two arbitrary coefficients, and the
hypergeometric function can be expanded in a Taylor
series [38] as follows:

Fða; b; c; zÞ ¼ 1þ ab
c
zþ � � � ð39Þ

To recover the purely ingoing solution in the near-horizon
regime we choose for α the minus sign and we set C2 ¼ 0,

while for β without loss of generality we choose the plus
sign. Therefore the solution becomes

RNHðzÞ ¼ Dzαð1 − zÞβFða; b; c; zÞ ð40Þ

where we have replaced C1 by D.

C. Matching of the solutions

In this final step we stretch the solutions RFFðrÞ in the
far-field region r ≫ rH and RNHðzÞ in the near-horizon
region z → 0 to match them in the intermediate region. On
the one hand, the RFFðrÞ expressed in terms of the Bessel
functions in the limit ωr ≪ 1 becomes [38]

RFFðrÞ ≃
Bþ

Γð1þ iνÞ
�
ωr
2M

�
iν
−
B−ΓðiνÞ

π

�
ωr
2M

�
−iν

: ð41Þ

On the other hand, first we use the transformation
formula [38]

Fða;b;c;zÞ¼ΓðcÞΓðc−a−bÞ
Γðc−aÞΓðc−bÞ
×Fða;b;aþb−cþ1;1− zÞ

þð1− zÞc−a−bΓðcÞΓðaþb−cÞ
ΓðaÞΓðbÞ

×Fðc−a;c−b;c−a−bþ1;1− zÞ ð42Þ

and therefore the near-horizon solution as z → 1 reads

RNHðz → 1Þ ¼ Dð1 − zÞβΓð1þ 2αÞΓð−2βÞ
Γðα − βÞΓð1þ α − βÞ

þDð1 − zÞ−βΓð1þ 2αÞΓð2βÞ
Γð1þ αþ βÞΓðαþ βÞ : ð43Þ

Since 1 − z ¼ rH=r and in the low energy regime β ≃ iν,
matching the two solutions we obtain the ratio Bþ

B−
¼ B̃,

B̃ ¼
�
2M
ωrH

�
2iν Γð2βÞΓðα − βÞΓð1þ α − βÞνΓðiνÞ2

iπΓð−2βÞΓð1þ αþ βÞΓðαþ βÞ : ð44Þ

This is the main result of the present article. This formula
allows us to compute the reflection coefficient using
Eq. (21) and the greybody factor using Eq. (22).

D. Brief discussion of the results

Next we plot the coefficient of reflection R and the
greybody factor σm versus frequency ω in Figs. 2 and 3,
respectively. FirstR versus ω for m ¼ 1 and three different
(M, Q) pairs is shown in Fig. 2. The black hole mass is
chosen such that M ≫ 1 where the semiclassical approxi-
mation is valid. The reflection coefficient starts from 1 and
decreases monotonically to 0 as it should. From general
principles we know that eventually it tends to 0. Here,
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however, we are not allowed to plot it up to higher values of
the frequency since the formula we have obtained can be
trusted only in the low energy regime where the termm2=M
dominates over ðωrH=MÞ2. Furthermore, we observe that
by increasing the massM and lowering the charge Q of the
black hole, the curves are shifted upwards.

The greybody factor σm as a function of ω form ¼ 1 and
for the same three different (M, Q) pairs is shown in Fig. 3.
We observe that the cross section starts from 0 (as it is
expected for any nonvanishing quantum number of angular
momentum) and increases with ω until it reaches a maxi-
mum, and then it decreases monotonically tending to 0 as it
is expected from general principles. However, given that our
expression can be trusted only in the low energy regime, we
are not allowed to plot it versus the energy up to higher
values, and like Fig. 2 we have restricted ourselves to the
range in whichm2=M>ðωrH=MÞ2. In addition, by increas-
ing the mass and lowering the charge, the curves are shifted
downwards.

IV. CONCLUSIONS

In this article we have studied the propagation of a
probe minimally coupled massless scalar field in a three-
dimensional Einstein-power-Maxwell charged black hole
spacetime. We have considered spherically symmetric
static backgrounds that are characterized by two free
parameters related to the mass and the charge of the black
hole. Applying standard techniques first we recast the radial
part of the scalar wave equation into a Schrödinger-like
equation, and we read off the effective potential barrier.
Then we solve the radial differential equation in the far-
zone regime, in the near-horizon regime, and we finally
stretch the solutions to match them in the intermediate
regime. Finally, the dependence of the reflection coefficient
as well as of the greybody factor on the parameters of the
theory is discussed.
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