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We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories
in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit.
Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using
matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points
with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact
asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of
the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV
and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further
aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model
building are discussed.
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I. INTRODUCTION

Asymptotic freedom is a key feature of non-Abelian
gauge theories [1,2]. It predicts that interactions weaken
with growing energy due to quantum effects, thereby
reaching a free ultraviolet (UV) fixed point under the
renormalization group. Asymptotic safety, on the other
hand, stipulates that running couplings may very well
asymptote into an interacting UV fixed point at highest
energies [3,4]. The most striking difference between
asymptotically free and asymptotically safe theories relates
to residual interactions in the UV. Canonical power count-
ing is modified, whence establishing asymptotic safety in a
reliable manner becomes a challenging task [5].
Rigorous results for asymptotic safety at weak coupling

have been known since long for models including either
scalars, fermions, gauge fields or gravitons, and away
from their respective critical dimensionality [4,6–16]. In
these toy models asymptotic safety arises through the
cancellation of tree level and leading order quantum
terms. Progress has also been made to substantiate the
asymptotic safety conjecture beyond weak coupling [5].
This is of particular relevance for quantum gravity
where good evidence has arisen in a variety of different
settings [17–31].

An important new development in the understanding of
asymptotic safety has been initiated in [32] where it was
shown that certain four-dimensional quantum field theories
involving SUðNÞ gluons, quarks, and scalars can develop
weakly coupled UV fixed points. Results have been
extended beyond classically marginal interactions [33].
Structural insights into the renormalization of general
gauge theories have led to necessary and sufficient con-
ditions for asymptotic safety, alongside strict no go
theorems [34,35]. Asymptotic safety invariably arises as
a quantum critical phenomenon through cancellations at
loop level for which all three types of elementary degrees
of freedom—scalars, fermions, and gauge fields—are
required. Findings have also been extended to cover
supersymmetry [36] and UV conformal windows [37].
Throughout, it is found that suitable Yukawa interactions
are pivotal [34,35].
In this paper, we are interested in fixed points of

semisimple gauge theories. Our primary motivation is
the semisimple nature of the standard model, and the
prospect for asymptotically safe extensions thereof [38].
We are particularly interested in semisimple theories where
interacting fixed points and asymptotic safety can be
established rigorously [34]. More generally, we also wish
to understand how low- and high-energy fixed points are
generated dynamically, what their features are, and whether
novel phenomena arise owing to the semisimple nature of
the underlying gauge symmetry. Understanding the stabil-
ity of a Higgs-like ground state at interacting fixed points
is also of interest in view of the “near-criticality” of the
standard model vacuum [39,40].
We investigate these questions for quantum field theories

with SUðNCÞ × SUðNcÞ local gauge symmetry coupled to
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massless fermionic and singlet scalar matter. Our models
also have a global UðNFÞL ×UðNFÞR ×UðNfÞL × UðNfÞR
flavor symmetry, and are characterized by up to nine
independent couplings. Matter field multiplicities serve as
free parameters. We obtain rigorous results from the leading
orders in perturbation theory by adopting a Veneziano limit.
We then provide a comprehensive classification of quantum
field theories according to their UVand IR limits, their fixed
points, and eigenvalue spectra. Amongst these, we find
semisimple gauge theories with exact asymptotic safety in
the UV. We also find a large variety of theories with
crossover- and low-energy fixed points. Further novelties
include theories with inequivalent yet fully attractive IR
conformal fixed points, theories with weakly interacting
fixed points in both the UVand the IR, and massless theories
with a nontrivial gauge sector which is UV free and IR free.
We illustrate our results by providing general phase diagrams
for simple and semisimple gauge theories with and without
Yukawa interactions.
The paper is organized as follows. General aspects of

weakly interacting fixed points in 4d gauge theories are
laid out in Sec. II, together with first results and expressions
for universal exponents. In Sec. III we introduce concrete
families of semisimple gauge theories coupled to elemen-
tary singlet “mesons” and suitably charged massless
fermions. Perturbative RG equations for all gauge,
Yukawa and scalar couplings and masses in a Veneziano
limit are provided to the leading non-trivial orders in
perturbation theory. Section IV presents our results for
all interacting perturbative fixed points and their universal
scaling exponents. Particular attention is paid to new effects
which arise due to the semisimple nature of the models.
Section V provides the corresponding fixed points in the
scalar sector. It also establishes stability of the quantum
vacuum whenever a physical fixed point arises in the gauge
sector. Using field multiplicities as free parameters, Sec. VI
provides a complete classification of distinct models with
asymptotic freedom or asymptotic safety in the UV, or
without UV completions, together with their scaling in the
deep IR. In Sec. VII, the generic phase diagrams for simple
and semisimple gauge theories with and without Yukawas
are discussed. The phase diagrams, UV—IR transitions,
and aspects of IR conformality are analysed in more
depth for sample theories with asymptotic freedom and
asymptotic safety. Further reaching topics such as exact
perturbativity, extensions beyond the Veneziano limit, and
conformal windows are discussed in Sec. VIII. Section IX
closes with a brief summary.

II. FIXED POINTS OF GAUGE THEORIES

In this section, we discuss general aspects of interacting
fixed points in semisimple gauge theories which are weakly
coupled to matter, with or without Yukawa interactions,
following [34,35]. We also introduce some notation and
conventions.

A. Fixed points in perturbation theory

We are interested in the renormalization of general
gauge theories coupled to matter fields, with or without
Yukawa couplings. The running of the gauge couplings
αi ¼ g2i =ð4πÞ2 with the renormalization group scale μ is
determined by the beta functions of the theory. Expanding
them perturbatively up to two loop we have

μ∂μαi≡βi¼α2i ð−BiþCijαj−2Y4;iÞþOðα4Þ; ð1Þ

where a sum over gauge group factors j is implied. The
one- and two-loop gauge contributions Bi and Cij and the
two-loop Yukawa contributions Y4;i are known for general
gauge theories, see [34,41–44] for explicit expressions.
While Bi and Cii may take either sign, depending on the
matter content, the Yukawa contribution Y4;i and the off-
diagonal gauge contributionsCij (i ≠ j) are strictly positive
in any quantum field theory. Scalar couplings do not play
any role at this order in perturbation theory. The effect of
Yukawa couplings is incorporated by projecting the gauge
beta functions (1) onto the Yukawa nullclines ðβY ¼ 0Þ,
leading to explicit expressions for Y4;i in terms of the
gauge couplings gj. Moreover, for many theories the
Yukawa contribution along nullclines can be written as
Y4;i ¼ Dijαj with Dij ≥ 0 [34]. We can then go one
step further and express the net effect of Yukawa couplings
as a shift of the two loop gauge contribution, Cij → C0

ij ¼
Cij − 2Dij ≤ Cij. Notice that the shift will always be by
some negative amount provided at least one of the Yukawa
couplings is nonvanishing. It leads to the reduced gauge
beta functions

βi ¼ α2i ð−Bi þ C0
ijαjÞ þOðα4Þ: ð2Þ

Fixed points solutions of (2) are either free or interacting
and α� ¼ 0 for some or all gauge factors is always a self-
consistent solution. Consequently, interacting fixed points
are solutions to

Bi ¼ C0
ijα

�
j ; subject to α�i > 0; ð3Þ

where only those rows and columns are retained where
gauge couplings are interacting.
Next we discuss the role of Yukawa couplings for the

fixed point structure. In the absence of Yukawa couplings,
the two-loop coefficients remain unshifted Cij

0 ¼ Cij. An
immediate consequence of this is that any interacting fixed
point must necessarily be IR. The reason is as follows: for
an interacting fixed point to be UV, asymptotic freedom
cannot be maintained for all gauge factors, meaning that
some Bi < 0. However, as has been established in [34],
Bi ≤ 0 necessarily entailsCij ≥ 0 in any 4d quantum gauge
theory. If the left-hand side of (3) is negative, if only for a
single row, positivity of Cij requires that some α�j must take
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negative values for a fixed point solution to arise. This,
however, is unphysical [45] and we are left with Bi > 0 for
each i, implying that asymptotic freedom remains intact in
all gauge sectors. Besides the Gaussian, the theory may
haveweakly interacting infrared Banks-Zaks fixed points in
each gauge sector, as well as products thereof, which arise
as solutions to (3) with the unshifted coefficients.
In the presence of Yukawa couplings, the coefficients

Cij
0 can in general take either sign. This has far reaching

implications. First, the theory can additionally display
gauge-Yukawa fixed points where both the gauge and
the Yukawa couplings take interacting values. Most impor-
tantly, solutions to (3) are then no longer limited to theories
with asymptotic freedom. Instead, interacting fixed points
can be infrared, ultraviolet, or of the crossover type. In
general we may expect gauge-Yukawa fixed points for each
independent Yukawa nullcline. In summary, perturbative
fixed points are either (i) free and given by the Gaussian, or
(ii) free in the Yukawa but interacting in the gauge sector
(Banks-Zaks fixed points), or (iii) simultaneously interact-
ing in the gauge and the Yukawa sector (gauge-Yukawa
fixed points), or (iv) combinations and products of (i), (ii),
and (iii). Banks-Zaks fixed points are always IR, while the
Gaussian and gauge-Yukawa fixed points can be either UV
or IR. Depending on the details of the theory and its
Yukawa structure, either the Gaussian or one of the
interacting gauge-Yukawa fixed points will arise as the
“ultimate” UV fixed point of the theory and may serve to
define the theory fundamentally [35].
The effect of scalar quartic self-couplings on the fixed

point is strictly subleading in terms of the values of the
fixed points, as they do not affect the running of gauge
couplings at this order of perturbation theory. However,
as to have a true fixed point we must acquire one in all
couplings, they provide additional constraints on the
physicality of candidate gauge-Yukawa fixed points, as
we additionally require that the quartic couplings take fixed
points which are both real-valued, and lead to a bounded
potential which leads to a stable vacuum state.

B. Gauge couplings

Let us now consider a semisimple gauge-Yukawa theory
with non-Abelian gauge fields under the semisimple
gauge group G1 ⊗ G2 coupled to fermions and scalars.
We have two non-Abelian gauge couplings α1 and α2,
which are related to the fundamental gauge couplings
via αi ¼ g2i =ð4πÞ2. The running of gauge couplings within
perturbation theory is given by

β1 ¼ −B1α
2
1 þ C1α

3
1 þG1α

2
1α2;

β2 ¼ −B2α
2
2 þ C2α

3
2 þG2α

2
2α1: ð4Þ

Here, Bi are the well known one-loop coefficients. In
theories without Yukawa interactions, or where Yukawa

interactions take Gaussian values, the numbers Ci andGi are
the two-loop coefficients which arise owing to the gauge
loops and owing to the mixing between gauge groups,
meaning Ci ≡ Cii (no sum), and G1 ≡ C12, G2≡C12,
see (1). In this case, we also have that Ci, Gi ≥ 0 as soon
as Bi < 0.1 For theories where Yukawa couplings take
interacting fixed points the numbers Ci and Gi receive
corrections due to the Yukawas, Ci ≡ C0

ii (no sum), and
G1 ≡ C0

12, G2 ≡ C0
12, see (2). Most notably, strict positivity

of Ci and Gi is then no longer guaranteed [34].
In either case, the fixed points of the combined system

are determined by the vanishing of (4). For a general
semisimple gauge theory with two gauge factors, one finds
four different types of fixed points. The Gaussian fixed
point

ðα�1; α�2Þ ¼ ð0; 0Þ ð5Þ

always exists (see Table I for our conventions). It is the
UV fixed point of the theory as long as the one-loop
coefficients obey Bi > 0. The theory may also develop
partially interacting fixed points,

ðα�1; α�2Þ ¼
�
0;
B2

C2

�
; ð6Þ

ðα�1; α�2Þ ¼
�
B1

C1

; 0

�
: ð7Þ

Here, one of the gauge coupling is taking Gaussian values
whereas the other one is interacting. The interacting fixed
point is of the Banks-Zaks type [46,47], provided Yukawa
interactions are absent. This then also implies that the
gauge coupling is asymptotically free. Alternatively, the
interacting fixed point can be of the gauge-Yukawa type,
provided that Yukawa couplings take an interacting fixed
point themselves. In this case, and depending on the details
of the Yukawa sector, the fixed point can be either IR or
UV. Finally, we also observe fully interacting fixed points

ðα�1; α�2Þ ¼
�
C2B1 − B2G1

C1C2 −G1G2

;
C1B2 − B1G2

C1C2 − G1G2

�
: ð8Þ

TABLE I. Conventions to denote the basic fixed points (Gaus-
sian, Banks-Zaks, or gauge-Yukawa) of simple gauge theories
weakly coupled to matter.

Fixed point αgauge αYukawa

Gauss G ¼ 0 ¼ 0
Banks-Zaks BZ ≠ 0 ¼ 0
Gauge-Yukawa GY ≠ 0 ≠ 0

1General formal expressions of loop coefficients in the con-
ventions used here are given in [34].
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As such, fully interacting fixed points (8) can be either
UV or IR, depending on the specific field content of the
theory. In all cases we will additionally require that the
couplings obey

α1 ≥ 0; α2 ≥ 0: ð9Þ
to ensure they reside in the physical regime of the
theory [45].

C. Yukawa couplings

In order to proceed, we must specify the Yukawa sector.
We assume three types of nontrivially charged fermions
with charges under G1 and G2. Some or all of the fermions
which are only charged under G1 (G2) also couple to scalar
fields via Yukawa couplings αY (αy), respectively. The
scalars may or may not be charged under the gauge
symmetries. They will have quartic self couplings which
play no primary role for the fixed point analysis at weak
coupling [34]. Within perturbation theory, the beta func-
tions for the gauge and Yukawa couplings are of the form

β1 ¼ −B1α
2
1 þ C1α

3
1 −D1α

2
1αY þ G1α

2
1α2;

βY ¼ E1α
2
Y − F1αYα1;

β2 ¼ −B2α
2
2 þ C2α

3
2 −D2α

2
2αy þG2α

2
2α1;

βy ¼ E2α
2
y − F2αyα2: ð10Þ

The renormalizationgroup (RG) flow is givenup to two-loop
in the gauge couplings, and up to one-loop in the Yukawa
couplings. We refer to this as the next-to-leading-order
(NLO) approximation, see Table II for the terminology.
We are interested in the fixed points of the theory,

defined implicitly via the vanishing of the beta functions for
all couplings. The Yukawa couplings can display either a
Gaussian or an interacting fixed point

α�Y ¼ 0; α�Y ¼ F1

E1

α�1;

α�y ¼ 0; α�y ¼
F2

E2

α�2: ð11Þ

Depending on whether none, one, or both of the Yukawa
couplings take an interacting fixed point, the system (10)

reduces to (4) whereby the two-loop coefficients Ci of the
gauge beta functions are shifted according to

α�Y ≠ 0∶ C1 → C0
1 ¼ C1 −D1

F1

E1

≤ C1;

α�y ≠ 0∶ C2 → C0
2 ¼ C2 −D2

F2

E2

≤ C2: ð12Þ

Notice also that in this model the values for the mixing
terms Gi do not depend on whether the corresponding
Yukawa couplings vanish, or not, due to the fact that no
fermions charged under both groups are involved in
Yukawa interactions. Owing to the fixed point structure
of the Yukawa sector (11), the formal fixed points (5), (6),
(7), and (8) have the multiplicity 1,2,2, and 4, respectively.
In total, we end up with nine qualitatively different fixed
points FP1–FP9, summarized in Table III: FP1 denotes the
unique Gaussian fixed point. FP2 and FP3 correspond to a
Banks-Zaks fixed point in one of the gauge couplings, and
a Gaussian in the other. They can therefore be interpreted
effectively as a “product” of a Banks-Zaks with a Gaussian
fixed point. Similarly, at FP4 and FP5, one of the Yukawa
couplings remains interacting, and they can therefore
effectively be viewed as the product of a gauge-Yukawa
(GY) type fixed point in one gauge coupling with a
Gaussian fixed point in the other. The remaining fixed
points FP6–FP9 are interacting in both gauge couplings.
These fixed points are the only ones which are sensitive to
the two-loop mixing coefficients G1 and G2. At FP6, both
Yukawa couplings vanish meaning that it is effectively a
product of two Banks-Zaks type fixed points. At FP7 and
FP8, only one of the Yukawa couplings vanish, implying

TABLE II. Relation between approximation level and the loop
order up to which couplings are retained in perturbation theory,
following the terminology of [32,48].

Coupling Order in perturbation theory

βgauge 1 2 2 nþ 1
βYukawa 0 1 1 n
βscalar 0 0 1 n

Approximation LO NLO NLO0 nNLO0

TABLE III. The various types of fixed points in gauge-Yukawa
theories with semisimple gauge group G1 ⊗ G2 and (10), (12).
We also indicate how the nine qualitatively different fixed points
can be interpreted as products of the Gaussian (G), Banks-Zaks
(BZ) and gauge-Yukawa (GY) fixed points as seen from the
individual gauge group factors (see main text).

Fixed
point

Gauge couplings Yukawa couplings Fixed point
typeα�1 α�2 α�Y α�y

FP1 0 0 0 0 G ·G

FP2
B1

C1
0 0 0 BZ ·G

FP3 0 B2

C2
0 0 G ·BZ

FP4
B1

C0
1

0 F1

E1
α1 0 GY ·G

FP5 0 B2

C0
2

0 F2

E2
α2 G ·GY

FP6
C2B1−B2G1

C1C2−G1G2

C1B2−B1G2

C1C2−G1G2
0 0 BZ ·BZ

FP7
C2B1−B2G1

C0
1
C2−G1G2

C0
1
B2−B1G2

C0
1
C2−G1G2

F1

E1
α1 0 GY ·BZ

FP8
C0
2
B1−B2G1

C1C0
2
−G1G2

C1B2−B1G2

C1C0
2
−G1G2

0 F2

E2
α2 BZ ·GY

FP9
C0
2
B1−B2G1

C0
1
C0
2
−G1G2

C0
1
B2−B1G2

C0
1
C0
2
−G1G2

F1

E1
α1

F2

E2
α2 GY ·GY
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that these are products of a gauge-Yukawa with a Banks-
Zaks fixed point. Finally, at FP9, both Yukawa couplings
are nonvanishing meaning that this is effectively the
product of two gauge-Yukawa fixed points.
In theories where none of the fermions carries gauge

charges under both gauge groups, we have that
G1 ¼ 0 ¼ G2. In this limit, and at the present level of
approximation, the gauge sectors do not communicate with
each other and the “direct product” interpretation of the
fixed points as detailed above becomes exact. For the
purpose of this work we will find it useful to refer to
the effective “product” structure of interacting fixed points
even in settings with G1, G2 ≠ 0. Whether any of the fixed
points is factually realized in a given theory crucially
depends on the explicit values of the various loop coef-
ficients. We defer an explicit investigation for certain
“minimal models” to Sec. III.

D. Scalar couplings

In [34], it has been established that scalar self-inter-
actions play no role for the primary occurrence of weakly
interacting fixed points in the gauge- or gauge-Yukawa
sector. On the other hand, for consistency, scalar couplings
must nevertheless take free or interacting fixed points on
their own. The necessary and sufficent conditions for this to
arise have been given in [34]. First, scalar couplings must
take physical (real) fixed points. Second, the theory must
display a stable ground state at the fixed point in the scalar
sector. Below, we will analyse concrete models and show
that both of these conditions are nonempty.

E. Universal scaling exponents

We briefly comment on the universal behavior and
scaling exponents at the interacting fixed points of
Table III. Scaling exponents arise as the eigenvalues ϑi
of the stability matrix

Mij ¼ ∂βi=∂αjj� ð13Þ

at fixed points. Negative or positive eigenvalues correspond
to relevant or irrelevant couplings respectively. They imply
that couplings approach the fixed point following a power-
law behavior in RG momentum scale,

αiðμÞ − α�i ¼
X
n

cnVn
i

�
μ

Λ

�
ϑn þ subleading: ð14Þ

Classically, we have that ϑ≡ 0. Quantum-mechanically,
and at a Gaussian fixed point, eigenvalues continue to
vanish and the behavior of couplings is determined by
higher order effects. Then couplings are either exactly
marginal ϑ≡ 0 or marginally relevant ϑ → 0− or margin-
ally irrelevant ϑ → 0þ. In a slight abuse of language wewill

from now on denote relevant and marginally relevant ones
as ϑ ≤ 0, and vice versa for irrelevant ones.
Given that the scalar couplings do not feed back to the

gauge-Yukawa sector at the leading non-trivial order in
perturbation theory, we may neglect them for a discussion
of the eigenvalue spectrum

fϑi; i ¼ 1; � � � 4g; ð15Þ

related to the two gauge and Yukawa couplings. The fixed
point FP1 is Gaussian in all couplings, and the scaling of
couplings are either marginally relevant or marginally
irrelevant. Only if Bi > 0 trajectories can emanate from
the Gaussian, meaning that it is a UV fixed point iff the
theory is asymptotically free in both couplings. Furthermore,
asymptotic freedom in the gauge couplings entails asymp-
totic freedom in the Yukawa couplings leading to four
marginally relevant couplings with eigenvalues

ϑ1; ϑ2; ϑ3; ϑ4 ≤ 0 ð16Þ

The fixed points FP2 and FP3 are products of a Banks-Zaks
in one gauge sector with a Gaussian fixed point in the other.
Scaling exponents are then of the form

ϑ1; ϑ2;ϑ3 ≤ 0 < ϑ4 ð17Þ

provided the gauge sector with Gaussian fixed point is
asymptotically free. For IR free gauge coupling, we instead
have the pattern

ϑ1 < 0 ≤ ϑ2;ϑ3; ϑ4: ð18Þ

At the fixed points FP4 and FP5, the theory is the product of a
Gaussian and a gauge-Yukawa fixed point. Consequently,
four possibilities arise: Provided that the theory is asymp-
totically safe at the gauge-Yukawa fixed point and asymp-
totically or infrared free at the Gaussian, scaling exponents
are of the form (17) or (18), respectively. Conversely, if the
gauge Yukawa fixed point is IR, the eigenvalue spectrum
reads

ϑ1; ϑ2 ≤ 0 ≤ ϑ3; ϑ4 ð19Þ

if the Gaussian is asymptotically free. Finally, if the Gaussian
is IR free and the gauge-Yukawa fixed point IR, all couplings
are UV irrelevant and

0 ≤ ϑ1; ϑ2; ϑ3; ϑ4: ð20Þ

More work is required to determine the scaling exponents at
the fully interacting fixed points FP6–FP9. To that end, we
write the characteristic polynomial of the stability matrix as
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X4
n¼0

Tnϑ
n ¼ 0: ð21Þ

The coefficients Tn are functions of the loop coefficients.
Introducing B ¼ jB1j and B2 ¼ PB1, with P some free
parameter, we can make a scaling analysis in the limit
B ≪ 1. Normalizing the coefficient T4 to unity, T4 ¼ 1, it
then follows from the structure of the beta functions that
T0 ¼ OðB6Þ; T1 ¼ OðB4Þ; T2 ¼ OðB2Þ and T3 ¼ OðBÞ to
leading order in B. In the limit where B ≪ 1 we can deduce
exact closed expressions for the leading order behaviour of
the eigenvalues from solutions to two quadratic equations,

0 ¼ ϑ2 þ T3ϑþ T2

0 ¼ T2ϑ
2 þ T1ϑþ T0: ð22Þ

The general expressions are quite lengthy and shall not be
given here explicitly. We note that the four eigenvalues of the
four couplings at the four fully interacting fixed points
FP6–FP9 are the four solutions to (22). Irrespective of their
signs, and barring exceptional numerical cancellations, we
conclude that two scaling exponents are quadratic and two
are linear in B,

ϑ1;2 ¼ −
1

2

�
T3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
3 − 4T2

q �
¼ OðB2Þ

ϑ3;4 ¼ −
1

2T2

�
T1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 − 4T0T2

q �
¼ OðBÞ: ð23Þ

This is reminiscent of fixed points in gauge-Yukawa theories
with a simple gauge group. The main reason for the
appearance of two eigenvalues of order OðB2Þ relates to
the gauge sector, where the interacting fixed point arises
through the cancellation at two-loop level. Conversely, two
eigenvalues of order OðBÞ relate to the Yukawa couplings,
as they arise from a cancellation at one-loop level. This
completes the discussion of fixed points in general weakly
coupled semisimple gauge theories.

III. MINIMAL MODELS

In this section we introduce in concrete terms a family of
semisimple gauge theories whose interacting fixed points
will be analyzed exactly within perturbation theory in the
Veneziano limit.

A. Semisimple gauge theory

We consider families of massless four-dimensional
quantum field theories with a semisimple gauge group

SUðNCÞ × SUðNcÞ ð24Þ

for general non-Abelian factors with NC ≥ 2 and Nc ≥ 2.
Specifically, our models contains SUðNCÞ gauge fields Aμ

with field strength Fμν, and SUðNcÞ gauge fields aμ with
field strength fμν. The gauge fields are coupled to NF

flavors of fermions Qi, Nf flavors of fermions qi, and Nψ

flavors of fermions ψ i. The fermions ðQ; q;ψÞ transform in
the fundamental representation of the first, the second, and
both gauge group(s) (24), respectively, as summarized in
Table IV. The Dirac fermions ψ are responsible for the
semisimple character of the theory and serve as messengers
to communicate between gauge sectors. All fermions are
Dirac to guarantee anomaly cancellation. The fermions
ðQ; qÞ additionally couple via Yukawa interactions to an
NF × NF matrix scalar fieldH and anNf × Nf matrix scalar
field h, respectively. The scalars H and h are invariant
under UðNFÞL ×UðNFÞR and UðNfÞL ×UðNfÞR global
flavor rotations, respectively, and singlets under the gauge
symmetry. They can be viewed as elementary mesons in
that they carry the same global quantum numbers as the
singlet scalar bound states ∼hQQ̄i and ∼hqq̄i. The fer-
mions ψ are not furnished with Yukawa interactions.
The fundamental action is taken to be the sum of the

individual Yang-Mills actions, the fermion kinetic terms,
the Yukawa interactions, and the scalar kinetic and self-
interaction Lagrangeans L¼LYMþLFþLYþLSþLpot,
with

LYM¼−
1

2
TrFμνFμν−

1

2
Trfμνfμν

LF ¼TrðQ̄i=DQÞþTrðq̄i=DqÞþTrðψ̄i=DψÞ
LY ¼YTrðQ̄LHQRþ Q̄RH†QLÞþyTrðq̄LhqRþ q̄Rh†qLÞ
LS¼Trð∂μH†∂μHÞþTrð∂μh†∂μhÞ

Lpot¼−UTrðH†HÞ2−VðTrH†HÞ2
−uTrðh†hÞ2−vðTrh†hÞ2−wTrH†HTrh†h: ð25Þ

The trace Tr denotes the trace over both color and
flavor indices, and the decomposition Q ¼ QL þQR with
QL=R ¼ 1

2
ð1� γ5ÞQ is understood for all fermionsQ and q.

Mass terms are neglected at the present stage as their effect
is subleading to the main features developed below. In four
dimensions, the theory is renormalizable in perturbation
theory.

TABLE IV. Representation under the semisimple gauge sym-
metry (24) together with flavor multiplicities of all fields. Gauge
(fermion) fields are either in the adjoint (fundamental) or trivial
representation.

Fermions Scalars Gauge fields

Representation Q q ψ H h Aμ aμ

Under SUðNCÞ NC 1 NC 1 1 N2
C − 1 1

Under SUðNcÞ 1 Nc Nc 1 1 1 N2
c − 1

Multiplicity NF Nf Nψ N2
F N2

f 1 1
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The theory has nine classically marginal coupling con-
stants given by the two gauge couplings, the two Yukawa
couplings, and five quartic scalar couplings. We write
them as

α1 ¼
g21NC

ð4πÞ2 ; α2 ¼
g22Nc

ð4πÞ2 ; αY ¼
Y2NC

ð4πÞ2 ; αy ¼
y2Nc

ð4πÞ2 ;

αU ¼ uNF

ð4πÞ2 ; αV ¼ vN2
F

ð4πÞ2 ; αu ¼
uNf

ð4πÞ2 ; αv ¼
vN2

f

ð4πÞ2 ;

ð26Þ

where we have normalized the couplings with the appro-
priate loop factor and powers of NC, Nc, NF and Nf in view
of the Veneziano limit to be adopted below. Notice the
additional power of NF and Nf in the definitions of the
scalar double-trace couplings. We normalize the quartic
“portal” coupling as

αw ¼ wNFNf

ð4πÞ2 : ð27Þ

It is responsible for a mixing amongst the scalar sectors
starting at tree level. Below, we use the shorthand notation
βi ≡ ∂tαi with i ¼ ð1; 2; Y; y; U; u; V; v; wÞ to indicate the
β-functions for the couplings (26). To obtain explicit
expressions for these, we exploit the formal results sum-
marized in [41–43]. The semisimple character of the theory
is switched off if the Nψ messenger fermions (which carry
charges under both gauge groups) are replaced by N1 and
N2 Yukawa-less fermions in the fundamental of SUðNCÞ
and SUðNcÞ, respectively, with

N1 ¼ NcNψ ; N2 ¼ NCNψ : ð28Þ

If in addition αw ¼ 0, the theories (25) reduce to a
“direct product” of simple gauge Yukawa theories with
(28). Also, in the limit where one of the gauge groups is
switched off, α1 ≡ 0 (or α2 ≡ 0), one gauge sector and the
scalars decouples straightaway, and we are left with a
simple gauge theory. Finally, if N1 ¼ 0 ¼ N2, we recover
the models of [32] in each gauge sector (displaying
asymptotic safety for certain field multiplicities). Below,
we will find it useful to contrast results with those from the
“direct product” limit.

B. Free parameters and Veneziano limit

We now discuss the set of fundamentally free parameters
of our models. On the level of the Lagrangian, the free
parameters of the theory are the matter field multiplicities

NC; Nc; NF; Nf ; Nψ : ð29Þ

Notice that the Nψ fermions ψ are centrally responsible for
interactions between the gauge sectors. In the limit

Nψ ¼ 0 ð30Þ

the interaction between gauge sectors reduces to effects
mediated by the portal coupling αw ≠ 0, which are strongly
loop-suppressed. In this limit, results for fixed points and
running couplings fall back to those for the individual
gauge sectors [32]. Results for fixed points for general
Nψ are deferred to Appendix A. Here, we will set Nψ to a
finite value,

Nψ ¼ 1: ð31Þ

This leaves us with four free parameters. In order to achieve
exact perturbativity, we perform a Veneziano limit [49] by
sending the number of colors and the number of flavors
ðNC; Nc; NF; NfÞ to infinity but keeping their ratios fixed.
This reduces the set of free parameters of the model down
to three, which we chose to be

R ¼ Nc

NC
; S ¼ NF

NC
; T ¼ Nf

Nc
: ð32Þ

The ratio

F ¼ Nf

NF
ð33Þ

is then no longer a free parameter, but fixed as F ¼ RT=S
from (32). By their very definiton, the parameters (32)
are positive semidefinite and can take values 0≤F;R;
S;T≤∞. However, we will see below that their values are
further constrained if we impose perturbativity for all
couplings.

C. Perturbativity to leading order

The RG evolution of couplings is analyzed within the
perturbative loop expansion. To leading order (LO), the
running of the gauge couplings reads βi ¼ −Biα

2
i (no sum),

with Bi the one-loop gauge coefficients for the gauge
coupling αi. In the Veneziano limit, the one-loop coeffi-
cients take the form

Bi ¼ −
4

3
ϵi: ð34Þ

In terms of (32) and in the Veneziano limit, the parameters
ϵi are given by

ϵ1 ¼ Sþ R −
11

2
; ϵ2 ¼ T þ 1

R
−
11

2
: ð35Þ

We can therefore trade the free parameters ðS; TÞ defined
in (32) for ðϵ1; ϵ2Þ and consider the set

ðϵ1; ϵ2; RÞ ð36Þ
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as free parameters which characterize the matter content of
the theory. Under the exchange of gauge groups we have

ðϵ1; ϵ2; RÞ → ðϵ2; ϵ1; R−1Þ: ð37Þ

For fixed R, we observe that R − 11
2
≤ ϵ1 < ∞ and

1=R − 11
2
≤ ϵ2 < ∞. Perturbativity in either of the gauge

couplings requires that both one-loop coefficients Bi are
parametrically small compared to unity. Therefore we
impose

0 < jϵij ≪ 1: ð38Þ

This requirement of exact perturbativity in both gauge
sectors entails the important constraint

2

11
< R <

11

2
: ð39Þ

Outside of this range, no physical values for S and T can be
found such that (38) holds true. Inside this range, physical
values are constrained within 0 ≤ S; T ≤ 11

2
− 2

11
. The

parameters (36) have a simple interpretation. The small
paramaters ϵi control the perturbativity within each of
the gauge sectors, whereas the parameter R controls the
“interactions” between the two gauge sectors. It is the
presence of R which makes these theories intrinsically
semisimple, rather than being the direct product of two
simple gauge theories. Perturbativity is no longer required
in the limit where one of the gauge sectors is switched off,
and the constraint (39) is relaxed into

0 ≤ R <
11

2
if α�2 ≡ 0;

2

11
< R < ∞ if α�1 ≡ 0: ð40Þ

The parametrization (36) is most convenient for expressing
the relevant RG beta functions for all couplings.
Finally, for some of the subsequent considerations

we replace the two small parameters ðϵ1; ϵ2Þ by ðϵ; PÞ, a
single small parameter ϵ proportional to ϵ1 together with a
parameter P related to the ratio between ϵ1 and ϵ2.
Specifically, we introduce

ϵ1 ¼ Rϵ; ϵ2 ¼ P
ϵ

R
: ð41Þ

which is equivalent to P ¼ R2ϵ2=ϵ1 together with ϵ ¼ ϵ1=R
and ϵ ¼ PRϵ2.

2 Since R can only take finite positive values,

the additional rescaling with R does not affect the relative
sign between ϵ1 and ϵ. In this manner we have traded the
free parameters ðϵ1; ϵ2; RÞ for

ðR;P; ϵÞ: ð42Þ

Notice that the parameter P can be expressed as

P ¼ 1þ ðNf − 11
2
NcÞ=NC

1þ ðNF − 11
2
NCÞ=Nc

ð43Þ

in terms of the field multiplicities (29). It thus may take any
real value of either sign with −∞ < P < ∞, whereas R
must take values within the range (39). Moreover,

ϵ ¼ 1þ NF − 11
2
NC

Nc
: ð44Þ

In this parametrization, the ratio of fermion flavor multi-
plicities (33) becomes

F ¼ 11R − 2

11 − 2R
þ 2R
11 − 2R

�
P
R
−
11R − 2

11 − 2R

�
ϵþOðϵ2Þ: ð45Þ

We also observe that the substitution

ðR;P; ϵÞ → ðR−1; P−1; PϵÞ ð46Þ

relates to the exchange of gauge groups. The parametriza-
tion (42) is most convenient for analysing the various
interacting fixed points and their scaling exponents (see
below). This completes the definition of our models.

D. Anomalous dimensions

We provide results for the anomalous dimensions asso-
ciated to the fermions and scalars. Furthermore, if mass
terms are present, their renormalization is induced through
the RG flow of the gauge, Yukawa, and scalar couplings.
Following [32], we define the scalar anomalous dimensions
as ΔS ¼ 1þ γS, where γS ≡ 1

2
d lnZS=d ln μ and S ¼ H, h.

Within perturbation theory, the one and two loop contri-
butions read

γH ¼ αY −
3

2

�
11

2
− ϵ1 − R

�
α2Y þ 5

2
αYα1 þ 2α2U þOðα3Þ;

γh ¼ αy −
3

2

�
11

2
þ ϵ2 −

1

R

�
α2y þ

5

2
αyα2 þ 2α2u þOðα3Þ:

ð47Þ

For the fermion anomalous dimensions γF ≡ d lnZF=d ln μ
with F ¼ Q, q, ψ , we find

2The choice (41) can be motivated by dimensional analysis
of (35) which shows that ϵ1 and ϵ2 formally scale as ∼R and
∼1=R for large or small R, respectively, whereby their ratio ϵ1=ϵ1
scales as ∼R2. The large-R behavior is factored-out by our
parametrization.
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γQ ¼
�
11

2
þ ϵ1 − R

�
αY þ ξ1α1 þOðα2Þ;

γq ¼
�
11

2
þ ϵ2 −

1

R

�
αY þ ξ2α2 þOðα2Þ;

γψ ¼ ξ1α1 þ ξ2α2 þOðα2Þ; ð48Þ

where ξ1 and ξ2 denote the gauge fixing parameters for the
first and second gauge group respectively.
The anomalous dimension for the scalar mass terms can

be derived from the composite operator ∼M2TrH†H and
∼m2Trh†h. Introducing the mass anomalous dimension
γM ¼ d lnM2=d ln μ, and similarly for m, one finds

γM ¼ 8αU þ 4αV þ 2αY þOðα2Þ
γm ¼ 8αu þ 4αv þ 2αy þOðα2Þ; ð49Þ

to one-loop order. We also compute the running of the mass
terms for the scalars

βM2 ¼ γMM2 þ 2Fm2αw þOðα2; αm2
FÞ;

βm2 ¼ γmm2 þ 2F−1M2αw þOðα2; αm2
FÞ; ð50Þ

where the parameter F≡ Nf=NF solely depends on R to
leading order in ϵ, see (45). Notice that the coupling αw
induces a mixing amongst the different scalar masses
already at one-loop level.
Analogously, the anomalous dimension for the

fermion mass operator is defined as ΔF ¼ 3þ γMF
with

γMF
≡ d lnMF=d ln μ, and MF stands for one of the

fermion masses with F ¼ Q, q or ψ. Within perturbation
theory, the one loop contributions read

γMQ
¼ αY

�
13

2
þ ϵ1 − R

�
− 3α1 −þOðα2Þ;

γMq
¼ αy

�
13

2
þ ϵ2 −

1

R

�
− 3α2 þOðα2Þ

γMψ
¼ −3ðα1 þ α2Þ þOðα2Þ: ð51Þ

For the fermion masses we have the running

βmQ
¼ γMQ

mQ; βmq
¼ γMq

mq; βmψ
¼ γMψ

mψ :

ð52Þ

We note that γMψ
is manifestly negative. For γMQ

and γMq

we observe that the gauge and Yukawa contributions arise
with manifestly opposite signs in the parameter regime
(38), (39). Hence either of these may take either sign,
depending on whether the gauge or Yukawa contributions
dominate.

E. Running couplings beyond the leading order

We now go beyond the leading order in perturbation
theory and provide the complete, minimal set of RG
equations which display exact and weakly interacting fixed
points. To that end, we must retain terms up to two loop
order in the gauge coupling, or else an interacting fixed
point cannot arise. At the same time, in order to explore the
feasibility of asymptotically safe UV fixed points we must
retain the Yukawa couplings [34], minimally at the leading
nontrivial order which is one loop. Following [32] we refer
to this level of approximation in the gauge-Yukawa sector
as next-to-leading order (NLO). In the presence of scalar
fields, we also must retain the quartic scalar couplings at
their leading nontrivial order. We refer to this approxi-
mation of the gauge-Yukawa-scalar sector as NLO0 [48],
see Table II. This is the minimal order in perturbation
theory at which a fully interacting fixed point can be
determined in all couplings with canonically vanishing
mass dimension.
In general, the RG flow for the gauge and Yukawa

couplings at NLO0 is strictly independent of the scalar
couplings owing to the fact that scalar loops only arise
starting from the two loop order in the Yukawa sector, and
at three (four) loop order in the gauge sector, if the scalars
are charged (uncharged). Furthermore, the scalar sector
at NLO0 depends on the Yukawa couplings, but not on the
gauge couplings owing to the fact that the scalars are
uncharged. Consequently, we observe a partial decoupling
of the gauge-Yukawa sector ðα1; α2; αY; αyÞ and the scalar
sector ðαU; αV; αu; αv; αwÞ. This structure will be exploited
systematically below to identify all interacting fixed points.
We begin with the gauge-Yukawa sector where we find

the coupled beta functions (10) which are characterized by
ten loop coefficients Ci, Di, Ei, Fi and Gi (i ¼ 1, 2),
together with the coefficients Bi given in (34) or, equiv-
alently, the perturbative control parameters (35). The one-
loop coefficients arise in the Yukawa sector and take the
values

E1 ¼ 13þ 2ðϵ1 − RÞ; F1 ¼ 6;

E2 ¼ 13þ 2

�
ϵ2 −

1

R

�
; F2 ¼ 6: ð53Þ

At the two-loop level we have six coefficients related to the
gauge, Yukawa, and mixing contribution, which are found
to be

C1 ¼ 25þ 26

3
ϵ1; D1 ¼ 2

�
ϵ1−Rþ 11

2

�
2

; G1 ¼ 2R

C2 ¼ 25þ 26

3
ϵ2; D2 ¼ 2

�
ϵ2−

1

R
þ 11

2

�
2

; G2 ¼
2

R

ð54Þ
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A few comments are in order. First, the loop coefficients
Di, Ei, Fi, Gi > 0 as they must for any quantum field
theory. Additionally we confirm that Ci > 0 [34], provided
the parameters ϵi are in the perturbative regime (38).
Second, provided that R ¼ 0 in the expressions for ϵ1,
E1 and G1, and 1=R ¼ 0 in those for ϵ2, E2, and G2, the
system (10) falls back onto a direct product of simple
gauge-Yukawa theories, each of the type discussed in [32].
Notice that this limit cannot be achieved parametrically
in R. The reason for this is the presence of Nψ fermions
which are charged under both gauge groups. They con-
tribute with reciprocal multiplicity R ↔ 1=R to the
Yukawa-induced loop terms Di and Ei as well as to the
mixing terms Gi. Exact decoupling of the gauge sectors
then becomes visible only in the parametric limit where
Nψ → 0 whereby all terms involving R or 1=R drop out.
Finally, we note that the exchange of gauge groups
G1 ↔ G2 corresponds to R ↔ 1=R and S ↔ T, implying
ϵ1 ↔ ϵ2 and P ↔ 1=P, respectively. Evidently, at the
symmetric point R ¼ 1 and ϵ1 ¼ ϵ2 (or P ¼ 1) we have
exact exchange symmetry between gauge group factors.
Inserting (53), (54) and (34) into the general expression

(10), we obtain the perturbative RG flow for the gauge-
Yukawa system at NLO accuracy

β1 ¼
4

3
ϵ1α

2
1 þ

�
25þ 26

3
ϵ1

�
α31 − 2

�
ϵ1 − Rþ 11

2

�
2

α21αY

þ 2Rα21α2;

β2 ¼
4

3
ϵ2α

2
2 þ

�
25þ 26

3
ϵ2

�
α32 − 2

�
ϵ2 −

1

R
þ 11

2

�
2

α22αy

þ 2

R
α22α1;

βY ¼ ½13þ 2ðϵ1 − RÞ�α2Y − 6αYα1;

βy ¼
�
13þ 2

�
ϵ2 −

1

R

��
α2y − 6αyα2: ð55Þ

We observe that the running of Yukawa couplings at one
loop is determined by the fermion mass anomalous
dimension (51),

βY ¼ 2γMQ
αY; βy ¼ 2γMq

αy: ð56Þ

The result for the mass anomalous dimensions (51) can also
be derived diagrammatically from the flow of the Yukawa
vertices (55), thus offering an independent confirmation for
the link (56).
Next, we turn to the scalar sector and the running of

quartic couplings to leading order in perturbation theory,
which is one loop. At NLO0 accuracy, we have (55)
together with the beta functions for the quartic scalar
couplings which are found to be

βU ¼ −½11þ 2ðϵ1 − RÞ�α2Y þ 4αUðαY þ 2αUÞ;
βV ¼ 12α2U þ 4αVðαV þ 4αU þ αYÞ þ α2w;

βu ¼ −
�
11þ 2

�
ϵ2 −

1

R

��
α2y þ 4αuðαy þ 2αuÞ;

βv ¼ 12α2u þ 4αvðαv þ 4αu þ αyÞ þ α2w;

βw ¼ αw½8ðαU þ αuÞ þ 4ðαV þ αvÞ þ 2ðαY þ αyÞ�: ð57Þ

Their structure is worth a few remarks: First, in the
Veneziano limit, βw contains no term quadratic in the
coupling αw as the coefficient is of the order OðN−1

F N−1
f Þ

and suppressed by inverse powers in flavour multiplicities.
Second, we notice that βw comes out proportional to αw.
Consequently, αw is a technically natural coupling accord-
ing to the rationale of [50], unlike all the other quartic
interactions, implying that

α�w ¼ 0 ð58Þ

constitutes an exact fixed point of the theory. Comparison
with (49) shows that the proportionality factor is the sum of
the scalar mass anomalous dimensions, βw ¼ αwðγM þ γmÞ.
The quartic coupling αw would be promoted to a free
parameter characterizing a line of fixed points with exactly
marginal scaling provided that its beta function vanishes
identically at one loop. This would require the vanishing
of the sum of scalar anomalous mass dimensions at the
fixed point,

γ�M þ γ�m ¼ 0: ð59Þ

Below, however, we will establish that such scenarios are
incompatible with vacuum stability (see Sec. V). Moreover,
at interacting fixed points we invariably find that

γ�M þ γ�m > 0 ð60Þ

as a consequence of vacuum stability. This implies that αw
constitutes an infrared free coupling at any interacting fixed
point with a stable ground state. For the purpose of the
present study, we therefore limit ourselves to fixed points
with (58). We then observe that the running of the
remaining scalar couplings is solely fuelled by the
Yukawa couplings. Furthermore, the scalar subsectors
associated to the different gauge groups are disentangled
in our approximation.3 Interestingly, the beta functions
for ðαU; αVÞ and ðαu; αvÞ are related by the substitution
R ↔ 1=R and ϵ1 ↔ ϵ2. Moreover, the double trace scalar
couplings do not couple back into any of the other
couplings and their fixed points are entirely dictated by
the corresponding single trace scalar and the Yukawa

3The degeneracy is lifted as soon as the quartic coupling
αw ≠ 0, see (25), (26).
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coupling [32]. This structure allows for a straightforward
systematic analysis of all weakly coupled fixed points of
the theory to which we turn next.

IV. INTERACTING FIXED POINTS

In this section, we present our results for exact fixed
points in the Veneziano limit, corresponding to interacting
conformal field theories, and the universal scaling expo-
nents in their vicinity.

A. Parameter space

In Table V we state our results for the gauge and Yukawa
couplings to leading order in (38) at all fixed points,
following the nomenclature of Table III. Expressions are
given as functions of the parameters ðP;R; ϵÞ,

P ¼ 1þ ðNf − 11
2
NcÞ=NC

1þ ðNF − 11
2
NCÞ=Nc

R ¼ Nc

NC

sgnϵ ¼ sgn

�
Nc þ NF −

11

2
NC

�
; ð61Þ

which only depend on the matter and gauge field multi-
plicities (29), and Nψ ¼ 1. Results for general Nψ are
given in Appendix A. We also observe (39), unless stated
otherwise. Constraints on the parameters ðR;P; ϵÞ and
other information is summarized Figs. 1–5 and in
Tables VI–VIII for the various fixed points. Below, certain

characteristic values 2
11
< R1 < R2 < R3 < R4 <

11
2
for the

parameter R are of particular interest, namely

R1 ¼
343 − 3

ffiffiffiffiffiffiffiffiffiffi
9361

p

100
≈ 0.53;

R2 ¼
43 − 9

ffiffiffi
5

p

38
≈ 0.60;

R3 ¼
43þ 9

ffiffiffi
5

p

38
≈ 1.66;

R4 ¼
343þ 3

ffiffiffiffiffiffiffiffiffiffi
9361

p

100
≈ 1.90: ð62Þ

Their origin is explained in Appendix B. After these
preliminaries we are in a position to analyze the fixed point
spectra.

B. Partially and fully interacting fixed points

Gauge theories with (55), (57) can have two types of
interacting fixed points: partially interacting ones where one
gauge coupling takes the Gaussian fixed point (FP2,FP3,
FP4,FP5), and fully interacting oneswhere both gauge sectors
remain interacting (FP6,FP7,FP8,FP9), see Table III. At
partially interacting fixed points, one gauge sector decouples
and the semisimple theory with (55), (57) effectively reduces
to a simple gauge theory. Simple gauge theories have three
possible types of perturbative fixed points: the Gaussian (G),
the Banks-Zaks (BZ), and gauge-Yukawa (GY) fixed points
for each independent linear combination of the Yukawa
couplings [34]. In our setting, at FP2 and FP4 we have that
α�2 ≡ 0, and the theory reduces to a simple gauge theory with

TABLE V. Gauge and Yukawa couplings at interacting fixed points following Table III to the leading order in ϵ and in terms of
ðR;P; ϵÞ. Valid domains for ðϵ; P; RÞ in (61) are detailed in Tables VII, VIII.

Fixed point Gauge couplings Yukawa couplings Type

FP1 α�1 ¼ 0, α�2 ¼ 0, α�Y ¼ 0, α�y ¼ 0, G ·G
FP2 α�1 ¼ − 4

75
Rϵ, α�2 ¼ 0, α�Y ¼ 0, α�y ¼ 0, BZ ·G

FP3 α�1 ¼ 0, α�2 ¼ − 4
75

Pϵ
R , α�Y ¼ 0, α�y ¼ 0, G ·BZ

FP4 α�1 ¼ 2
3

ð13−2RÞRϵ
ð2R−1Þð3R−19Þ, α

�
2 ¼ 0, α�Y ¼ 4Rϵ

ð2R−1Þð3R−19Þ, α
�
y ¼ 0, GY ·G

FP5 α�1 ¼ 0, α�2 ¼ 2
3

ð13−2=RÞ
ð2=R−1Þð3=R−19Þ

Pϵ
R , α�Y ¼ 0, α�y ¼ 4Pϵ=R

ð2=R−1Þð3=R−19Þ, G ·GY

FP6 α�1 ¼ −4ð25−2P=RÞ
1863

Rϵ, α�2 ¼ −4ð25−2R=PÞ
1863

Pϵ
R α�Y ¼ 0, α�y ¼ 0, BZ ·BZ

FP7 α�1 ¼ 2
9

ð13−2RÞð25−2P=RÞ
50R2−343Rþ167

Rϵ α�Y ¼ 4
3

25−2P=R
50R2−343Rþ167

Rϵ GY ·BZ

α�2 ¼ 4
9

ð13−2RÞR=Pþð2R−1Þð19−3RÞ
50R2−343Rþ167

Pϵ
R α�y ¼ 0

FP8 α�1 ¼ 4
9

ð13−2=RÞP=Rþð2=R−1Þð19−3=RÞ
50=R2−343=Rþ167

Rϵ α�Y ¼ 0 BZ ·GY

α�2 ¼ 2
9

ð13−2=RÞð25−2R=PÞ
50=R2−343=Rþ167

Pϵ
R α�y ¼ 4

3
25−2R=P

50=R2−343=Rþ167
Pϵ
R

FP9 α�1 ¼ 2
9

ð13−2RÞ½ð13−2=RÞP=Rþð2R−1Þð3=R−19Þ�
ð19R2−43Rþ19Þð2=R2−13=Rþ2Þ Rϵ α�Y ¼ 6α�

1

13−2R GY ·GY

α�2 ¼ 2
9

ð13−2=RÞ½ð13−2RÞR=Pþð2R−1Þð3R−19Þ�
ð19=R2−43=Rþ19Þð2R2−13Rþ2Þ

Pϵ
R α�y ¼ 6α�

2

13−2=R
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β1 ¼
4

3
ϵ1α

2
1 þ

�
25þ 26

3
ϵ1

�
α31 − 2

�
ϵ1 − Rþ 11

2

�
2

α21αY

βY ¼ ½13þ 2ðϵ1 − RÞ�α2Y − 6αYα1

βU ¼ −½11þ 2ðϵ1 − RÞ�α2Y þ 4αUðαY þ 2αUÞ;
βV ¼ 12α2U þ 4αVðαV þ 4αU þ αYÞ; ð63Þ
at NLO0 accuracy, where the parameter R with

0 ≤ R ¼ N1

NC
<

11

2
ð64Þ

measures the number of Yukawa-less Dirac fermions N1 in
the fundamental representation in units ofNC. Notice thatN1

is related toNψ via (28) in the theories (25).On the other hand,
N1 can be viewed as an independent parameter (counting the
Yukawa-less fermions in the fundamental representation of
the gauge group) if one were to switch off the semisimple
character of the theory. For R ¼ 0 the theory (63) reduces to
the one investigated in [32]. The lower bound on R (39) is
relaxed in (64), because the requirement of perturbativity for
an interacting fixedpoint in theother gauge sector has become
redundant. We observe the R-independent Banks-Zaks (BZ)
fixed point α�1 ¼ 4

75
ϵ1 which is, invariably, IR. To leading

order in ϵ1 we also find a gauge-Yukawa (GY) fixed point

α�g¼
26−4R
57−9R

ϵ1
1−2R

α�Y ¼
4

19−3R
ϵ1

1−2R

α�U¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23−4R

p
−1

19−3R
ϵ1

1−2R

α�V ¼
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23−4R

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20−4Rþ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23−4R

pp
19−3R

ϵ1
1−2R

: ð65Þ

For ϵ1 > 0, the GY fixed point is UVand physical as long as
0≤R< 1

2
. It can be interpreted as a “deformation” of the UV

fixed point analyzed in [32] owing to the presence of charged
Yukawa-less fermions. OnceR> 1

2
, however, the fixed point is

physical iff ϵ1<0where it becomesan IR fixedpoint.This new
regime is entirely due to the Yukawa-less fermions and does
not arise in the model of [32]. This pattern can also be read off
from the scaling exponents, which, at the gauge Yukawa fixed
point and to the leading nontrivial order in ϵ1, are given by

ϑg ¼ −
104

171

1 − 2
13
R

1 − 3
19
R

ϵ21
1 − 2R

ϑy ¼
4

19

1

1 − 3
19
R

ϵ1
1 − 2R

ϑu ¼
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

p

19 − 3R
ϵ1

1 − 2R

ϑv ¼
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

p
− 4R

p
19 − 3R

ϵ1
1 − 2R

: ð66Þ

For ϵ1 > 0 and R < 1
2
asymptotic safety is guaranteed with

ϑg < 0 < ϑy; ϑu;ϑv, showing that theUV fixed point has one
relevant direction. The scaling exponents reduce to those in
[32] forR ¼ 0. Conversely, for ϵ1 < 0 andR > 1

2
the theory is

asymptotically free and the interacting fixed point is fully IR
attractive with 0 < ϑg; ϑy; ϑu; ϑv. Results straightforwardly
translate to the partially interacting fixed points FP3 and FP5
where α�1 ≡ 0. The explicit β-functions in the other gauge
sector are found from (63)–(66) via the replacements ϵ1 ↔ ϵ2
and R ↔ 1=R, leading to

β2 ¼
4

3
ϵ2α

2
2 þ

�
25þ 26

3
ϵ2

�
α32 − 2

�
ϵ2 −

1

R
þ 11

2

�
2

α22αy

βy ¼
�
13þ 2

�
ϵ2 −

1

R

��
α2y − 6αyα2

βu ¼ −
�
11þ 2

�
ϵ2 −

1

R

��
α2y þ 4αuðαy þ 2αuÞ;

βv ¼ 12α2u þ 4αvðαv þ 4αu þ αyÞ: ð67Þ

Evidently, the coordinates of the fully interacting gauge-
Yukawa fixed point and the corresponding universal scaling
exponents of (67) are given by (65), (66) after obvious
replacements. Moreover, in (67) the parameter R with

0 ≤
1

R
¼ N2

Nc
<

11

2
ð68Þ

measures the number of Yukawa-less Dirac fermions N2 in
the fundamental representation in units of Nc, see (28). The
only direct communication between the different gauge
sectors in (25) is through the off-diagonal two-loop gauge
contributions Gi. Were it not for the fermions ψ which are
charged under both gauge groups, the theory (25) with (55),
(57) would be the “direct product” of the simple model (63),
(64) with its counterpart (67), (68). In this limit we will find
nine “direct product” fixed points with scaling exponents
from each pairing of the possibilities (G, BZ, GY) in each
sector.
Below, we contrast findings for the full semisimple

setting (55), (57) with those from the “direct product”
limit in order to pin-point effects which uniquely arise from
the semisimple character of the theories (25).
At any of the partially interacting fixed points, the

semisimple character of the theory becomes visible in
the noninteracting sector. In fact, contributions from the ψ
fermions modify the effective one-loop coefficient Bi → B0

i
according to

α�1 ¼ 0∶ B1 → B0
1 ¼ B1 þ G1α

�
2

α�2 ¼ 0∶ B2 → B0
2 ¼ B2 þ G2α

�
1: ð69Þ

No such effects can materialize in a “direct product” limit.
Moreover, these contributions always arise with a positive
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coefficient (B0 > B) and are absent if Nψ ¼ 0 (where
Gi ¼ 0). For Nψ ≠ 0, asymptotic freedom can thereby
be changed into infrared freedom, but not the other way
around. This result is due to the fact that the Yukawa
couplings are tied to individual gauge groups, and so by
this structure we cannot have any Yukawa contributions
to B0. In principle, the opposite effect can equally arise: it
would require Yukawa couplings which contribute to both
gauge coupling β-functions, and would therefore have to
involve at least one field which is charged under both
gauge groups [34]. Table VI shows the effective one loop
coefficients at partially interacting fixed points as a function
of field multiplicities.

C. Gauss with Banks-Zaks

Next, we discuss all fixed points one-by-one, and deter-
mine the valid parameter regimes ðR;P; ϵÞ for each of them.
We recall thatNψ ¼ 1 in our models. Whenever appropriate,
we also compare results with the “direct product” limit,
whereby the diagonal contributions from the Yukawa-less
ψ-fermions are retained but their off-diagonal contributions
to the other gauge sectors suppressed (see Sec. IV B). This
comparison allows us to quantify the effect related to the
semisimple nature of the models (25).
For convenience and better visibility, we scale the axes in

Figs. 1–5 as

X →
X

1þ jXj where X ¼ P or R; ð70Þ

and within their respective domains of validity R ∈ ð 2
11
; 11
2
Þ

and P ∈ ð−∞;∞Þ. The rescaling permits easy display of
the entire range of parameters.
Figure 1 shows the results for FP2 (BZ · G, upper) and

FP3 (G · BZ, lower panel), and parameter ranges are given
in Table VII. We observe that the Banks-Zaks fixed point
always requires an asymptotically free gauge sector. Hence,
FP2 exists for any R as long as ϵ < 0. Provided that Pϵ < 0,
the other gauge sector either remain asymptotically free
(region 1) or becomes infrared free (region 2). On the other
hand, if Pϵ > 0, the other gauge sector is invariably
infrared free. This is a consequence of (69) which states
that the interacting gauge sector can turn asymptotic
freedom of the non-interacting gauge sector into infrared
freedom (region 2), but not the other way around. The
existence of the parameter region 2 is thus entirely due to
the semisimple character of the theory which cannot arise
from a “direct product.”
The Banks-Zaks fixed point is invariably attractive in the

gauge coupling, and repulsive in the Yukawa coupling. The
eigenvalue spectrum in the gauge-Yukawa sector is there-
fore of the form (17) or (18), depending on whether the free
gauge sector is asymptotically free or infrared free, see
Table VII.

Under the exchange of gauge groups we have
ðR;P; ϵÞ ↔ ðR−1; P−1; PϵÞ, see (46). On the level of
Fig. 1 this corresponds to a simple rotation by 180 degree
around the symmetric points ðR;PÞ ¼ ð1; 1Þ (for P > 0)
and ðR;PÞ ¼ ð1;−1Þ (for P < 0), owing to the rescaling of
parameters. Consequently, the results for FP3 can be
deduced from those at FP2 by a simple rotation, see
Fig. 1. More generally, this exchange symmetry relates
the partially interacting fixed points FP2 ↔ FP3 (Fig. 1),
FP4 ↔ FP5 (Fig. 2), and the fully interacting fixed points
FP7 ↔ FP8 (Fig. 4). The exchange symmetry is manifest at

FP2

0, P 0, B2' 0

0, P 0, B2' 0

0, P 0, B2' 0

2
11

1
2

1 2 11
2

1

0

1
11
25

1

2

3

1

2

3

FP3

0, P 0, B1' 0

0, P 0, B1' 0

0, P 0, B1' 0

2
11

1
2

1 2 11
2

1

0

1

25
11

1

2

3

1

2

3

P

P

R

R

FIG. 1. The phase space of parameters (61) for the partially
interacting fixed points FP2 (upper panel) and FP3 (lower panel)
where one of the two gauge sectors remains interacting and all
Yukawa couplings vanish. The inset indicates the different
parameter regions and conditions for existence, including whether
the non-interacting gauge sector is asymptotically free ðB0 > 0Þ or
infrared free ðB0 < 0Þ, see Tables VI, VII.
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the fully interacting fixed points FP6 (Fig. 3) and
FP9 (Fig. 5).

D. Gauss with Gauge-Yukawa

In Fig. 2 we show the domains of existence for FP4
(GY · G, upper) and FP5 (G · GY, lower panel). We observe
that the fixed point exists for any parameter choice though
its features vary with matter multiplicities. Specifically,
for FP4, six qualitatively different parameter regions are
found. If the interacting gauge coupling is asymptotically
free ðϵ < 0Þ and provided that Pϵ < 0, the other gauge

sector either remains asymptotically free (region 2) or
becomes infrared free (region 1), whereas for Pϵ > 0
the other gauge sector invariably remains infrared free
(region 3). Conversely, if the interacting gauge coupling is
infrared free ðϵ > 0Þ and provided that Pϵ < 0, the other
gauge sector either remains asymptotically free (region 5)
or becomes infrared free (region 4), whereas for Pϵ > 0
the other gauge sector invariably remains infrared free
(region 6). Moreover, as explained in Table VI, the interact-
ing gauge sector can turn asymptotic freedom of the non-
interacting gauge sector into infrared freedom (region 1
and 4). The eigenvalue spectrum in the gauge-Yukawa sector
has therefore no relevant eigendirection (20) in region 1
and 3, one relevant eigendirection (18) in region 4 and 6, two
relevant eigendirections (19) in region 2, and three relevant
eigendirections (17) in region 5, see Table VII.
We make the following observations. First, we note that

FP4 in region 1 and 3 corresponds to a fully attractive IR
fixed point with all RG trajectories terminating in it. The
fixed point then acts as an infrared “sink” for massless
trajectories and all canonically marginal couplings of the
theory. Once scalar masses are switched on, RG flows may
run away from the hypercritical surface of exactly massless
theories, leading to massive phases with or without
spontaneous breaking of symmetry. The quantum phase
transition at FP4 in region 1 and 3 is of the second order.
Notice that in the “direct product” limit only models with
Pϵ > 0 > ϵ and R > 1

2
(analogous to region 3) would lead

to a fully infrared attractive “sink.” Hence, the availability
of region 1 is an entirely new effect, solely due to the ψ
fermions and the semisimple nature of our models. We
conclude that the semisimple structure opens up new types
of fixed points which cannot be achieved through a product
structure. In region 2, we find that FP4 has two relevant
eigendirections as it would in direct product settings.
Second, in regions 4 and 6, FP4 shows a single relevant

eigendirection. In the direct product limit, only models with
P; ϵ > 0 and R < 1

2
(analogous to region 6) would lead to a

single relevant direction. Again, the availability of region 4
is a novel feature, and solely due to the ψ fermions and thus
a consequence of the semisimple nature of the model.
In the parameter region 5 the fixed point shows the

largest number of UV relevant directions as it would
without the ψ fermions. Moreover, in this parameter regime
the Gaussian fixed point has only two relevant directions
(ϵ > 0; Pϵ < 0). Therefore FP4 in region 5 qualifies as an
asymptotically safe UV fixed point. On the other hand, in
region 2,4 and 6, it takes the role of a cross-over fixed point.
Results for FP5 (Fig. 2, lower panel) follow from those for
FP4 via (46), and the distinct regions stated for FP5 relate to
the same physics as those for FP4.

E. Banks-Zaks with Banks-Zaks

Next, we turn to fully interacting fixed points where
both gauge couplings are nonvanishing, see Table VIII. In

FP4
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R

P
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FIG. 2. The phase space of parameters for the partially interact-
ing fixed points FP4 and FP5, where the gauge and Yukawa
coupling in one gauge sector take interacting fixed points while
those of the other sector remain trivial. The insets indicate the
different parameter regions and conditions for existence, and
whether the non-interacting gauge sector is asymptotically free
ðB0 > 0Þ or infrared free ðB0 < 0Þ, see Tables VI, VII.
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general, the eigenvalue spectrum is determined through
(22) with solutions (23), with ϵ taking the role of the
parameter B. In the direct product limit, fully interacting
fixed points reduce to direct products from each pairing of
the possibilities (BZ, GY) in each of the simple gauge
sectors. For Nψ ≠ 0, the fermions ψ introduce a direct
mixing between the gauge groups and we may then expect
to find something close to a product structure, potentially
modified by new effects parametrized via R in fixed points
not involving Gaussian factors.
The first such fixed point is FP6 (BZ · BZ), where

each gauge sector achieves a Banks-Zaks fixed point.
Yukawa couplings play no role, see Fig. 3. The fixed point
invariably requires ϵ < 0 and Pϵ < 0 and entails an
eigenvalue spectrum with two relevant directions of order
Oðϵ2Þ, and two irrelevant directions of order OðϵÞ asso-
ciated to the Yukawas,

ϑ1; ϑ2 < 0 < ϑ3; ϑ4: ð71Þ

The quartics are marginally irrelevant. The Gaussian is
necessarily the UV fixed point in these settings which
makes FP6 a cross-over fixed point. The accessible param-
eter region, shown in Fig. 3, is invariant under the exchange
of gauge groups (46). The direct product limit has quali-
tatively the same spectrum (71). The main effect due to the
semisimple character of the theory relates to the exclusion

of certain parameter regions (white regions). We conclude
that the semisimple nature of the theory leads to parameter
restrictions without otherwise changing the overall appear-
ance of the fixed point.

F. Banks-Zaks with Gauge-Yukawa

At the interacting fixed points FP7 (BZ · GY, upper
panel), and FP8 (GY · BZ, lower panel), we have that both
gauge and one of the Yukawa couplings are nontrivial. Our
results for the condition of existence and the eigenvalue
spectra are displayed in Fig. 4. By definition, this type of

FP6

0, P 0, 1,2 0 3,4

2
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1 2 11
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25
11
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25

R

P

FIG. 3. The phase space of parameters for the interacting fixed
point FP6 (red) where both gauge sectors take interacting and
physical fixed points while all Yukawa couplings vanish. The
eigenvalue spectrum at the fixed point always displays exactly two
relevant eigenvalues of OðϵÞ and two irrelevant eigenvalues of
order Oðϵ2Þ, see Table VIII. Note that this fixed point invariably
requires asymptotic freedom for both gauge sectors (see main text).
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FIG. 4. The phase space of parameters for the fixed points FP7
and FP8 where two gauge and one of the Yukawa couplings take
interacting and physical fixed points, while the other Yukawa
coupling remains trivial. The inset indicates the signs for ϵ and
Pϵ, together with the sign for the eigenvalue ϑ2, Table VIII (see
main text).
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fixed point requires that either ϵ < 0 or Pϵ < 0, or both,
meaning that at least one of the gauge sectors is asymp-
totically free. In Fig. 4, this relates to three different
parameter regions (see inset for the color coding). In region
1 and 2, the theory is asymptotically free in both gauge
sectors, whereas in region 3 the theory is asymptotically
free in only one gauge sector. We observe that large regions
of parameter space are excluded. Valid parameter regions
are further distinguished by their eigenvalue spectrum
which either takes the form (19) or (18), meaning that
minimally one and maximally two eigenoperators con-
structed out of the gauge kinetic terms and the Yukawa
interactions are UV relevant, ϑ1 < 0 < ϑ3; ϑ4. The sign of
ϑ2 depends on the matter field multiplicities. In region 1
and 3, and for either of FP7 and FP8, we find that

ϑ1; ϑ2 < 0 < ϑ3; ϑ4: ð72Þ

In region 2, conversely, we have

ϑ1 < 0 < ϑ2; ϑ3; ϑ4: ð73Þ

Hence, at FP7 and in the regime where both gauge sectors
are asymptotically free ðP > 0 > ϵÞ, two types of valid
fixed points are found. For sufficiently low R < R1 (62),
and large P, the fixed point has two relevant directions
(region 1). Increasing R > R1 at fixed P may lead to a
second type of IR fixed point with a single relevant
direction (region 2). On the other hand, in the regime
ϵ > 0 > P only one type of fixed point exists with two
relevant directions (region 3). It is worth comparing these
results with the direct product limit. For P > 0 > ϵ the
latter leads to the eigenvalue spectrum (73), as found in
region 2. Also, for ϵ > 0 > P the direct product fixed point
has the eigenvalue spectrum (72), which is qualitatively in
accord with findings in region 3. We conclude that the
semisimple nature of the interactions plays a minor
quantitative role in region 2 and 3. On the other hand,
in region 1 where P > 0 > ϵ, the semisimple nature of the
theory leads to an important qualitative modification: an
eigenvalue spectrum with two relevant directions at FP7
cannot be achieved through a direct product setting; rather,
it necessarily requires matter fields charged under both
gauge groups. We conclude that the semisimple nature of
interactions play a key qualitative role in region 1.
Analogous results hold true for FP8 after the substitutions
(46) and the replacement R1 → R4 ¼ 1=R1, see (62).

G. Gauge-Yukawa with gauge-Yukawa

At the fully interacting fixed point FP9 (GY · GY), we
have that both gauge and both Yukawa couplings are
nontrivial. We find that the eigenvalue spectrum in the
gauge-Yukawa sector reads either (18) or (20), meaning
that at least three of the four eigenoperators constructed out
of the gauge and fermion fields are strictly irrelevant,

0 < ϑ2; ϑ3;ϑ4. The sign of the eigenvalue ϑ1 depends on
the matter field multiplicities of the model.
Our results for the condition of existence and the

eigenvalue spectrum are stated in Fig. 5. We observe four
qualitatively different parameter regions (see inset for the
color coding). For P > 0 > ϵ, the theory is asymptotically
free in both gauge sectors and we find two types of valid
parameter regions, depending on whether R takes values
below R2 or above R3 (region 1), or in between (region 2);
see (62). Moreover, in region 2, we find that the fixed point
is strictly IR attractive in all couplings, owing to

0 < ϑ1;ϑ2; ϑ3; ϑ4: ð74Þ

Hence, the fixed point FP9 in region 2 corresponds to a
fully attractive IR fixed point acting as an infrared sink for
massless trajectories and all canonically marginal couplings
of the theory. Ultimately it describes a second order
quantum phase transition between a symmetric and a
symmetry broken phase, characterized by the vacuum
expectation value of the scalar field. Qualitatively, the
same type of result is achieved in the direct product limit.
Hence, the main effect due to semisimple interactions is to
have generated a boundary in parameter space. In region 1
we find

ϑ1 < 0 < ϑ2; ϑ3; ϑ4: ð75Þ

This type of eigenvalue spectrum cannot be achieved
without semisimple interactions mediated by the ψ fields
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FIG. 5. The phase space of parameters for the fully interacting
fixed point FP9 where all gauge and all Yukawa couplings are
nontrivial. The coloured regions relate to the portions of parameter
space where the fully interacting fixed point is physical. The
inset provides additional information including the sign for the
eigenvalue ϑ4 (see main text).
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and is therefore a novel feature, entirely due to the semi-
simple nature of the theory. In this regime, FP9 corresponds
to a crossover fixed point (the Gaussian is the UV fixed
point) with a single unstable direction where trajectories
escape either towards a weakly coupled IR fixed point, or
towards a regime of strong coupling with (chiral) symmetry
breaking, confinement, or infrared conformality.
For ϵ > 0 > P or Pϵ > 0 > ϵ, the theory is asymptoti-

cally free in one and infrared free in the other gauge sector.

Valid fixed points then correspond to region 3 or region 4,
respectively. In either of these cases, the eigenvalue
spectrum shows a single relevant direction, (75). This
agrees qualitatively with the eigenvalue spectrum in the
direct product limit. We conclude, once more, that the main
impact of the ψ fields relates to the boundaries in parameter
space which restrict the fixed point’s domain of availability.
Finally, for ϵ; P > 0, the theory is infrared free in

both gauge sectors. We observe that no such interacting
fixed point arises, irrespective of matter multiplicities.
Interestingly though, such fixed points do exist in the
direct product limit with spectrum

ϑ1; ϑ2 < 0 < ϑ3; ϑ4: ð76Þ

The reason for their nonexistence in our models is the
presence of the ψ fermions. The requirement of perturba-
tivity in both gauge couplings then leads to limitations on
the parameter R which cannot be satisfied at FP9 with
eigenvalue spectrum (76). This result provides us with
an example where the semisimple nature of the theory
“disables” a fixed point. This completes the overview of

TABLE VI. Shown are the effective one-loop coefficients B0 for
the noninteracting gauge coupling at FP2, FP3, FP4, and FP5, and
their dependence on model parameters. B0 > 0 corresponds to
asymptotic freedom. Notice that B0 changes sign across the
boundaries P ¼ 2R=25; 25R=2; XðRÞ, and X̃ðRÞ, respectively,
with X and X̃ given in (B1).

Fixed point B0 Coefficient

FP2 B0
2 ¼ − 4

3
ð1 − 2

25
R=PÞ PϵR

FP3 B0
1 ¼ − 4

3
ð1 − 2

25
P=RÞRϵ

FP4 B0
2 ¼ − 4

3
ð1 − XðRÞ=PÞ PϵR

FP5 B0
1 ¼ − 4

3
ð1 − P=X̃ðRÞÞRϵ

TABLE VII. Parameter regions where the partially interacting fixed points FP1–FP5 exist, along with regions of
relevancy for eigenvalues and effective one-loop terms, where applicable. The boundary functions XðRÞ and X̃ðRÞ
are given in (B1). The coefficient B0 for the gauge coupling at the Gaussian fixed point is given in Table VI.

Parameter range

Fixed point sign ϵ R P Eigenvalue spectrum Info

FP1 � ð 2
11
; 11
2
Þ ð−∞;þ∞Þ (16), (19), or (20) Gaussian

FP2 Fig. 1 (upper panel)

− ð 2
11
; 11
2
Þ ð 2

25
R;þ∞Þ ϑ1;2;3 ≤ 0 < ϑ4 region 1

− ð 2
11
; 11
2
Þ ð0; 2

25
RÞ ϑ1 < 0 ≤ ϑ2;3;4 region 2

− ð 2
11
; 11
2
Þ ð−∞; 0Þ ϑ1 < 0 ≤ ϑ2;3;4 region 3

FP3 Fig. 1 (lower panel)
− ð 2

11
; 11
2
Þ ð0; 25

2
RÞ ϑ1;2;3 ≤ 0 < ϑ4 region 1

− ð 2
11
; 11
2
Þ ð25

2
R;þ∞Þ ϑ1 < 0 ≤ ϑ2;3;4 region 2

þ ð 2
11
; 11
2
Þ ð−∞; 0Þ ϑ1 < 0 ≤ ϑ2;3;4 region 3

FP4 Fig. 2 (upper panel)
− ð1

2
; 11
2
Þ ð−∞; XðRÞÞ 0 ≤ ϑ1;2;3;4 region 1 & 3

− ð1
2
; 11
2
Þ ðXðRÞ;þ∞Þ ϑ1;2 ≤ 0 < ϑ3;4 region 2

þ ð 2
11
; 1
2
Þ ðXðRÞ;þ∞Þ ϑ1 < 0 ≤ ϑ2;3;4 region 4 & 6

þ ð 2
11
; 1
2
Þ ð−∞; XðRÞÞ ϑ1;2;3 ≤ 0 < ϑ4 region 5

FP5 Fig. 2 (lower panel)
− ð 2

11
; 2Þ ðX̃ðRÞ;þ∞Þ 0 ≤ ϑ1;2;3;4 region 1

− ð 2
11
; 2Þ ð0; X̃ðRÞÞ ϑ1;2 ≤ 0 < ϑ3;4 region 2

þ ð 2
11
; 2Þ ð−∞; 0Þ 0 ≤ ϑ1;2;3;4 region 3

− ð2; 11
2
Þ ð−∞; X̃ðRÞÞ ϑ1 < 0 ≤ ϑ2;3;4 region 4

− ð2; 11
2
Þ ðX̃ðRÞ; 0Þ ϑ1;2;3 ≤ 0 < ϑ4 region 5

þ ð2; 11
2
Þ ð0;þ∞Þ ϑ1 < 0 ≤ ϑ2;3;4 region 6
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interacting fixed points in the gauge-Yukawa sector and
their key properties.

V. SCALAR FIXED POINTS AND
VACUUM STABILITY

In this section, we analyse the scalar sector and establish
conditions for stability of the quantum vacuum. We also
provide results for all scalar couplings at all interacting
fixed points, Table IX.

A. Yukawa and scalar nullclines

Following [34], we begin by exploiting the results (53) to
express the Yukawa nullclines in terms of the gauge
couplings and the parameter R. To leading order in the
small expansion parameters (38), and using (53) together
with (10), the nontrivial Yukawa nullclines βY ¼ 0 and
βy ¼ 0 take the explicit form

αY
α1

¼ 6

13 − 2R
;

αy
α2

¼ 6

13 − 2=R
: ð77Þ

For fixed gauge couplings, we observe that the Yukawa
couplings are enhanced over their values in the absence of
the fermions ψ . The relevance of nullcline solutions (77) is
as follows. By their very definition, the Yukawa couplings
no longer run with the RG scale when taking the values
(77). If at the same time the gauge couplings take fixed
points on their own, the nullcline relations then provide us
with the correct fixed point values for the Yukawa cou-
plings. Evidently, (77) together with (39) guarantees that
the Yukawa fixed points are physical as long as the gauge

fixed points are. Note also that the slope of the nullcline
remains positive and finite for all R within the domain (39).
Hence strict perturbativity in the Yukawa couplings follows
from strict perturbativity in the gauge couplings, in accord
with the general discussion in [34] based on dimensional
analysis.
Next we turn to the scalar nullclines. Since the beta

functions for the two scalar sectors decouple at this order,
we may analyse their nullclines individually.4 All results for
the subsystem ðαU; αVÞ can straightforwardly be translated
to the subsystem ðαu; αvÞ by substituting R ↔ 1=R, also
using (38). Furthermore, since the scalars are uncharged,
their one loop beta functions are independent of the gauge
coupling. Dimensional analysis then shows that all non-
trivial scalar nullclines are proportional to the correspond-
ing Yukawa coupling [34]. The scalar nullclines represent
exact fixed points of the theory provided the Yukawa
couplings take interacting fixed points. Perturbativity of
scalar couplings at an interacting fixed point then follows
from the perturbativity of Yukawa couplings which, in turn,
follows from perturbativity in the gauge couplings.
Specifically, the nullclines for the single trace scalar

couplings are found from (57) by resolving βU ¼ 0 for αU.
We find two solutions

αU�
αY

¼ 1

4

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

p �
: ð78Þ

TABLE VIII. Parameter regions where the fully interacting fixed points FP6–FP9 exist, along with the eigenvalue
spectrum for the various parameter regions.

Parameter range

Fixed point Sign ϵ R P Eigenvalue spectrum Info

FP6 − ð 2
11
; 11
2
Þ ð 2

25
R; 25

2
RÞ ϑ1;2 < 0 < ϑ3;4 Fig. 3

FP7 Fig. 4 (upper panel)
− ð 2

11
; 1
2
Þ ð25

2
R;þ∞Þ ϑ1;2 < 0 < ϑ3;4 region 1

− ð1
2
; R1Þ ð25

2
R; XðRÞÞ ϑ1;2 < 0 < ϑ3;4 region 1

− ðR1; 112 Þ ðXðRÞ; 25
2
RÞ ϑ1 < 0 < ϑ2;3;4 region 2

þ ð 2
11
; 1
2
Þ ð−∞; XðRÞÞ ϑ1;2 < 0 < ϑ3;4 region 3

FP8 Fig. 4 (lower panel)
− ðR4;

11
2
Þ ðX̃ðRÞ; 2

25
RÞ ϑ1;2 < 0 < ϑ3;4 region 1 & 3

− ð 2
11
; R4Þ ð 2

25
R; X̃ðRÞÞ ϑ1 < 0 < ϑ2;3;4 region 2

FP9 Fig. 5
− ð 2

11
; 1
2
Þ ðX̃ðRÞ;þ∞Þ ϑ1 < 0 < ϑ2;3;4 region 1

− ð1
2
; R2Þ ðX̃ðRÞ; XðRÞÞ ϑ1 < 0 < ϑ2;3;4 region 1

− ðR3; 112 Þ ðX̃ðRÞ; XðRÞÞ ϑ1 < 0 < ϑ2;3;4 region 1 & 4
− ðR2; R3Þ ðXðRÞ; X̃ðRÞÞ 0 < ϑ1;2;3;4 region 2

þ ð 2
11
; 1
2
Þ ð−∞; XðRÞÞ ϑ1 < 0 < ϑ2;3;4 region 3

4This simplification solely arises provided the mixing coupling
αw takes its exact Gaussian fixed point (58). For nontrivial αw the
nullclines take more general forms.
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Note that the double trace coupling does not couple back
into the running of the single trace coupling. Within the
parameter range (39) we observe that αUþ > 0 > αU−.
Next, we consider the nullclines for the double-trace quartic
coupling αV . Inserting αUþ into βV ¼ 0, we find a pair of
nullclines given by

αV�
αY

¼ 1

4

�
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

pq �
:

ð79Þ

Both nullclines take real values for all R within the
range (39), and we end up with αUþ ≥ 0 together with
0 > αVþ > αV−. Analogously, inserting αU− into βV ¼ 0,
we find a second pair of nullclines given by

αV2�
αY

¼ 1

4

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4R − 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

pq �
:

ð80Þ

In this case, however, the result (80) comes out complex
within the parameter range (39), meaning that even if α�Y
takes a real positive fixed point the corresponding scalar
fixed point is invariably unphysical.
The replacement R → 1=R in (78) and (79), (80) allows

us to obtain explicit expressions for the nullclines for
αu�=αy and αv�=αy. The real solutions are given by

αu�
αy

¼ 1

4

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4=R

p �
ð81Þ

with αuþ ≥ 0 > αu−. The solution αuþ leads to real
nullclines for the double-trace coupling αv given by

αv�
αy

¼ 1

4

�
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23− 4=R

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20− 4=Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23− 4=R

pq �
;

ð82Þ

and we end up with αuþ ≥ 0 together with 0 > αvþ > αv−.
On the other hand, the solution αu− does not lead to real
solutions for αv�. This completes the overview of Yukawa
and scalar nullcline solutions.

B. Stability of the vacuum

We are now in a position to reach firm conclusions
concerning the stability of the ground state at interacting
fixed points. The reason for this is that this information is
encoded in the scalar nullclines. The explicit form of the
fixed point in the gauge-Yukawa sector is not needed.
To that end, we recall the stability analysis for potentials of
the form

W ∝ αUTrðH†HÞ2 þ αV=NFðTrH†HÞ2; ð83Þ

In the limit where αw ¼ 0 the scalar field potential in our
models (25) are given by (83) together with its counterpart
ðH; αU; αVÞ ↔ ðh; αu; αvÞ. For potentials of the form (83),
the general conditions for vacuum stability read [48,51]

aÞ α�U > 0 and α�U þ α�V > 0

bÞ α�U < 0 and α�U þ α�V=NF > 0 ð84Þ

and similarly for ðαU; αVÞ ↔ ðαu; αvÞ. In the Veneziano
limit, case (b) effectively becomes void and cannot be
satisfied for any α�U, irrespective of the sign of α

�
V . Inserting

the fixed points into (84) we find

TABLE IX. Quartic scalar couplings at all weakly interacting fixed points to leading order in ϵ following Table III
using the auxiliary functions (92). Same conventions as in Table V. Within the admissible parameter ranges
(Tables VII, VIII) we observe vacuum stability.

Fixed point Quartic scalar couplings

FP1−3 α�U ¼ 0, α�V ¼ 0, α�u ¼ 0, α�v ¼ 0,

FP4 α�U ¼ 4F1ðRÞRϵ
ð2R−1Þð3R−19Þ, α

�
V ¼ 4F2ðRÞRϵ

ð2R−1Þð3R−19Þ, α
�
u ¼ 0, α�v ¼ 0,

FP5 α�U ¼ 0, α�V ¼ 0, α�u ¼ 4F1ð1=RÞPϵ=R
ð2=R−1Þð3=R−19Þ, α

�
v ¼ 4F2ð1=RÞPϵ=R

ð2=R−1Þð3=R−19Þ,

FP6 α�U ¼ 0, α�V ¼ 0, α�u ¼ 0, α�v ¼ 0,

FP7 α�U ¼ 4
3

ð25−2P=RÞF1ðRÞ
50R2−343Rþ167

Rϵ, α�V ¼ 4
3

ð25−2P=RÞF2ðRÞ
50R2−343Rþ167

Rϵ, α�u ¼ 0, α�v ¼ 0,

FP8 α�U ¼ 0, α�V ¼ 0, α�u ¼ 4
3

ð25−2R=PÞF1ð1=RÞ
50=R2−343=Rþ167

Pϵ
R , α

�
v ¼ 4

3

ð25−2R=PÞF2ð1=RÞ
50=R2−343=Rþ167

Pϵ
R ,

FP9 α�U ¼ 4
3

½ð13−2=RÞP=Rþð2=R−1Þð3=R−19Þ�F1ðRÞ
ð19R2−43Rþ19Þð2=R2−13=Rþ2Þ Rϵ, α�u ¼ 4

3

½ð13−2RÞR=Pþð2R−1Þð3R−19Þ�F1ð1=RÞ
ð19=R2−43=Rþ19Þð2R2−13Rþ2Þ

Pϵ
R ,

α�V ¼ 4
3

½ð13−2=RÞP=Rþð2=R−1Þð3=R−19Þ�F2ðRÞ
ð19R2−43Rþ19Þð2=R2−13=Rþ2Þ Rϵ, α�v ¼ 4

3

½ð13−2RÞR=Pþð2R−1Þð3R−19Þ�F2ð1=RÞ
ð19=R2−43=Rþ19Þð2R2−13Rþ2Þ

Pϵ
R .
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α�Uþ þ α�Vþ ¼ α�Y
4

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

pq

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

p
− 1

�
≥ 0;

α�Uþ þ α�V− ¼ α�Y
4

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

pq

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

p
− 1

�
≤ −α�Y; ð85Þ

Stability of the quantum vacuum is evidently achieved at
the fixed point ðα�Uþ; α

�
VþÞ following case (a) and irre-

spective of the value for the Yukawa fixed point as long as
α�Y > 0. The potential (83) becomes exactly flat at the fixed
point iff R ¼ 11

2
. In this case, higher order or radiative

corrections must be taken into consideration to guarantee
stability in the presence of flat directions. Stability is not
achieved at the fixed point ðα�Uþ; α

�
V−Þ, for any R. Turning

to the second scalar sector, we find

α�uþ þ α�vþ ¼ α�y
4

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4=Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4=R

pq

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4=R

p
− 1

�
≥ 0;

α�uþ þ α�v− ¼ α�y
4

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4=Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4=R

pq

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4=R

p
− 1

�
≤ −α�y; ð86Þ

where the bounds refer to R varying within the range (39).
This part of the potential becomes exactly flat at the fixed
point iff R ¼ 2

11
. The result establishes vacuum stability at

the fixed point ðα�uþ; α�vþÞ. We also confirm that the fixed
point ðα�uþ; α�v−Þ does not lead to a stable ground state.
We conclude that vacuum stability is guaranteed at the
interacting fixed points ðα�Uþ; α

�
VþÞ and ðα�uþ; α�vþÞ,

together with αw ¼ 0, irrespective of the fixed points in
the gauge Yukawa sector, as long as the later is physical.
Out of the a priori 23 different fixed point candidates in the
scalar sector at one loop (half of which lead to real fixed
points) the additional requirement of vacuum stability has
identified a unique viable solution. In this light, vacuum
stability dictates that the anomalous dimensions (49) are
strictly positive at interacting fixed points, (60), with

γ�M ¼ α�Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4R

pq
> 0;

γ�m ¼ α�y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4=Rþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4=R

pq
> 0; ð87Þ

and provided that (39) is observed.

C. Portal coupling

Now we clarify whether the stability of the vacuum is
affected by the presence of the “portal” coupling αw ≠ 0
which induces a mixing between the scalar sectors. In this
case the scalar potential is given by W ¼ −Lpot in (25),

W ¼ UTrðH†HÞ2 þ VðTrH†HÞ2 þ uTrðh†hÞ2
þ vðTrh†hÞ2 þ wTrðH†HÞTrðh†hÞ; ð88Þ

where H and h are NF × NF and Nf × Nf matrices,
respectively. Following the reasoning of [48,51], we observe
that the potential has a global UðNFÞL ⊗ UðNFÞR ⊗
UðNfÞL ⊗ UðNfÞR symmetry which allows us to bring
each of the fields into a real diagonal configuration, H¼
diagðΦ1;Φ2;…Þ and h¼diagðϕ1;ϕ2;…Þ. As the potential
is homogeneous in either field,WðcH; chÞ ¼ c4WðH; hÞ, it
suffices to guarantee positivity on a fixed surface

P
iΦ2

i ¼
1 ¼ P

jϕ
2
j which is implemented using Lagrange multi-

pliers Λ and λ. From

∂W
∂Φi

¼ 2Φið2UΦ2
i þ 2V þ w − 2ΛÞ;

∂W
∂ϕi

¼ 2ϕið2uϕ2
i þ 2vþ w − 2λÞ; ð89Þ

it follows that extremal field configurations are those
where all non-zero fields take equal values. If we have M
nonzero Φ fields and m nonzero ϕ fields, the extremal field
values are Φ2

i ¼ 0 or Φ2
i ¼ 1

M alongside with ϕ2
i ¼ 0 or

ϕ2
i ¼ 1

m. Three nontrivial cases arise. If m ¼ 0 the extremal
potential is We ¼ U=M þ V. Likewise if M ¼ 0 we have
We ¼ u=mþ v. Lastly, if both m;M ≠ 0, we have
We ¼ U=M þ V þ u=mþ vþ w. The values of M, m for
which these extremal potentials are minima depend on the
signs of the couplingsU, u, leaving us with the four possible
cases U; u > 0, u > 0 > U, U > 0 > u, and 0 > U; u. We
thusobtain four distinct sets of conditions for vacuumstability
which we summarize as follows:

ðaÞ αu; αU ≥ 0; αU þ αV ≥ 0; αu þ αv ≥ 0;

FðαU þ αVÞ þ
αu þ αv

F
þ αw ≥ 0;

ðbÞ αu > 0 > αU; αU þ αV
NF

≥ 0; αu þ αv ≥ 0;

αU þ αV
NF

þ αu þ αv
FNf

þ αw
Nf

≥ 0;

ðcÞ αU > 0 > αu; αU þ αV ≥ 0; αu þ
αv
Nf

≥ 0;

αu þ
αv
Nf

þ F
αU þ αV

NF
þ αw
NF

≥ 0;

ðdÞ 0 ≥ αu; αU; αU þ αV
NF

≥ 0; αu þ
αv
Nf

≥ 0;

αu þ
αv
Nf

þ F

�
αU þ αV

NF

�
þ αw
NF

≥ 0: ð90Þ
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Notice that we have rescaled the couplings as in (26) and (27)
to make contact with the notation used in this paper. The
parameter F≡ Nf=NF > 0 can be expressed in terms of the
parameter R to leading order in ϵ ≪ 1, see (45).
We make the following observations. In all four cases,

the additional condition owing to the mixing coupling (27)
takes the form of a lower bound for αw. Furthermore, αw is
allowed to be negative without destroying the stability of
the potential, provided it does not become too negative. We
also note that none of the three cases (b), (c), or (d) in (90)
can have consistent solutions in the Veneziano limit where
NF; Nf → ∞. This uniquely leaves the case (a) as the only
possibility for vacuum stability in the parameter regions
considered here. These solutions neatly fall back onto the
solutions discussed previously in the limit αw → 0. As long
as the auxiliary condition

αw ≥ −½FðαU þ αVÞ þ F−1ðαu þ αvÞ� ð91Þ

is satisfied, we can safely conclude that a nonvanishing
αw ≠ 0 does not spoil vacuum stability, not even for
negative portal coupling αw.

D. Unique scalar fixed points

In Table IX, we summarize our results for the quartic
scalar couplings at all weakly interacting fixed points to
leading order in ϵ following Table III, using (61). We also
introduce the auxiliary functions

F1ðxÞ ¼
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4x

p
− 1

�
;

F2ðxÞ ¼
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 − 4xþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4x

pq
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 − 4x

p �
ð92Þ

which originate from the scalar nullclines. The main result
is that vacuum stability together with a physical fixed point
in the gauge-Yukawa sector singles out a unique fixed point
in the scalar sector. The scalar fixed points do not offer
further parameter constraints other than those already stated
in Tables VII and VIII. Within the admissible parameter
ranges we invariably find that the scalar couplings are either
strictly irrelevant (at interacting fixed points) or marginally
irrelevant (at the Gaussian fixed point).

VI. ULTRAVIOLET COMPLETIONS

In this section, we discuss interacting fixed points and
the weak coupling phase structure of minimal models (25)
in dependence on matter field multiplicities. Differences
from the viewpoint of their high- and low-energy behavior
are highlighted.

A. Classification

In Figs. 6–9 we summarize results for the qualitatively
different types of quantum field theories with Lagrangian

(25) in view of their fixed point structure at weak coupling,
together with their behaviour in the deep UV and IR.
Theories differ primarily through their matter multiplicities
(32), which translate to the parameters ðP;RÞ and the sign
of ϵ, (61). As such, the “phase space” shown in Fig. 6 arises
as the overlay of Figs. 1–5. Distinctive parameter regions
are separated from each other by the seven characteristic
curves P ¼ 0; X; X̃; Y or Ỹ and R ¼ 1

2
or 2. The functions

XðRÞ; X̃ðRÞ; YðRÞ, and ỸðRÞ are given explicitly in (B1).
Overall, this leads to the 22 distinct regions shown in Fig. 6
and denoted by capital letters. Together with the sign of ϵ
this leaves us with 44 different cases. Some of these are
redundant and related under the exchange of gauge groups,
see (46). In fact, for P > 0 and for either sign of ϵ, we find
nine fundamentally independent cases corresponding to the
parameter regions

A;B;C;D;E; F;G;H; I ð93Þ

given in Fig. 6. Theories with parameters in the regime

Ab;Bb;Cb;Db;Eb; Fb;Gb;Hb; ð94Þ

are “dual” to those in (93) under the exchange of gauge
groups (X ↔ Xb) and for the same sign of ϵ, except for the
theories within (I, ϵ), which are “self-dual” and mapped
onto themselves under (46). For P < 0 we find five
parameter regions for either sign of ϵ,

2
11

1
2

1 2 11
2

278
1421

0

25
11

1421
278

11
25

R

P

FIG. 6. The “phase space” of quantum field theories with
fundamental action (25) expressed as a function of field multi-
plicities and written in terms of ðP; RÞ, see (61). The 22 different
parameter regions are indicated by roman letters. Theories with
parameters in region X are dual to those in region Xb under the
exchange of gauge groups following the map (46). Further details
on fixed points and their eigenvalue spectra per parameter region
are summarized in Figs. 7, 8, and 9.
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J;K;L;Kb; Jb: ð95Þ

For these, the manifest “duality” under exchange of
gauge groups involves a change of sign for ϵ with (X,
ϵ < 0) being dual to (Xb, −ϵ > 0) except for the parameter
region L which is self-dual. In total, we end up with
2 × 9þ 5 ¼ 23 fundamentally distinct scenarios underneath
the 2 × ð9þ 8þ 5Þ ¼ 44 cases tabulated in Figs. 7, 8, and 9
and discussed more extensively below.
A comment on the nomenclature: in each row of Figs. 7,

8, and 9, we indicate the parameter region ðP;RÞ as in
Fig. 6 together with the sign of ϵ (if required), followed by
the set of fixed points. For each of these, the (marginally)
relevant and irrelevant eigenvalues in the gauge-Yukawa
sector are indicated by a − and þ sign. For the Gaussian
fixed point FP1, the signs relate pairwise to the SUðNCÞ and
SUðNcÞ gauge sector, respectively; for all other fixed points
eigenvalues are sorted by magnitude. Red shaded slots
indicate eigenvalue spectra which uniquely arise due to the
semisimple character of the theory. The column “UV”
states the UV fixed point, differentiating between complete
asymptotic freedom (AF), asymptotic safety (AS), asymp-
totic freedom in one sector without asymptotic safety in
the other (pAF), asymptotic safety in one sector without
asymptotic freedom in the other (pAS), or none of the
above. The column “IR” states the fully attractive IR fixed
point (provided it exists), distinguishing the cases where
none (0), one (Y) or (y), or both (Yy) Yukawa couplings are

nontrivial at the fixed point; a hyphen indicates that the IR
regime is strongly coupled.

B. Asymptotic freedom

We discuss main features of the different quantum field
theories (25) starting with those where each gauge sector
is asymptotically free from the outset ðP > 0 > ϵÞ, corre-
sponding to the cases 1–17 in Fig. 7. The Gaussian fixed
point FP1 is always the UV fixed point. Any other weakly
interacting fixed point displays a lower number of relevant
directions. All weakly interacting fixed points can be
reached from the Gaussian. Another point in common is
that all theories are completely asymptotically free meaning
that—besides the gauge and the Yukawa couplings—all
quartics reach the Gaussian UV fixed point.
Differences arise as to the set of interacting fixed points,

summarized in Fig. 7. Overall, theories display between
three and eight distinct weakly interacting fixed points. The
partial Banks-Zaks fixed points (FP2, FP3) are invariably
present in all 17 cases. This is a consequence of a general
theorem established in [34], which states that the two loop
gauge coefficient is strictly positive for any gauge theory in
the limit where the one-loop coefficient vanishes. This
guarantees the existence of a partial Banks-Zaks fixed point
in either gauge sector. At least one of the partial gauge-
Yukawa fixed points (FP4, FP5) also arises in all cases.
Moreover, the fully interacting Banks-Zaks (FP6) as well as
the fully interacting gauge-Yukawa fixed points (FP7, FP8,
FP9) are present in many, though not all, cases. All nine

FIG. 7. Shown are the fixed points and eigenvalue spectra of quantum field theories with Lagrangean (25) for the 17 parameter regions
with ϵ < 0 and P > 0 in Fig. 6. Scalar selfinteractions are irrelevant at fixed points. All cases display complete asymptotic freedom in
the UV. Red shaded slots indicate eigenvalue spectra which arise due to the semisimple character of the theory. In the deep IR, various
types of interacting conformal fixed points are achieved depending on whether both, one, or none of the Yukawa couplings Y and y
vanish (from left to right). Regimes with “strong coupling only” in the IR are indicated by a hyphen.
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distinct fixed points are available in the “most symmetric”
parameter region I (case 9).
It is noteworthy that many theories display a fully IR

attractive “sink”, invariably given by an IR gauge-Yukawa
fixed point in one (FP4, FP5) or both gauge sectors (FP9). In
Fig. 6, this happens for matter field multiplicities in the
regions A, B, C, E, F, G, I and their duals (cases 1, 2, 3, 5, 6,
7, 9, 11, 12, 13, 15, 16 and 17 of Fig. 7).
At FP9, the fully IR attractive fixed point is largely a

consequence of IR attractive fixed points in each gauge
sector individually. This is not altered qualitatively by the
semisimple nature of the model. As such, a fully IR
attractive fixed point FP9 also arises in the “direct product”
limit where the ψ fermions are removed.
At FP4 and FP5, in contrast, the IR sink is a direct

consequence of the semisimple nature of the theory in that
it would be strictly absent as soon as the messenger
fermions ψ are removed. Most importantly, the IR gauge
Yukawa fixed point in one gauge sector changes the sign of
the effective one loop coefficient in the other, mediated via
the ψ fermions. This secondary effect means that one gauge
sector becomes IR free dynamically, rather than remaining
UV free. Overall, the fixed point becomes IR attractive in
all canonically marginal couplings (including the quartic
couplings). In most cases the IR sink is unique except in
parameter regions B and F (case 2, 6, 12, and 16) where
we find two competing and inequivalent IR sinks
(FP4 versus FP5).
Provided that one or both Yukawa couplings take

Gaussian values, other fixed points may take over the
role of IR “sinks.” In these settings, one or both of the
elementary “meson” fields remain free for all scales and
decouple from the outset. Specifically, the IR sink is given
by FP6 provided that y ¼ 0 ¼ Y (cases 5–13); by FP2 or
FP7 provided that y ¼ 0 (cases 14 or 7–9, respectively);
and by FP3 or FP8 provided that Y ¼ 0 (cases 4 or 9–11).

We note that FP6, FP7 and FP8 are natural IR sinks, with or
without ψ fermions, provided that all Yukawa couplings of
those fermions which interact with the Banks-Zaks fixed
point(s) vanish. On the other hand, the result that FP2 and
FP3 may become IR sinks is a strict consequence of the ψ
fermions and would not arise otherwise. Once more, one
of the gauge sectors becomes IR free owing to the BZ fixed
point in the other, an effect which is mediated via the ψ
fermions. In the presence of nontrivial Yukawa couplings,
no fully IR stable fixed point arises for theories with field
multiplicities in the parameter regions D and H (case 4, 8,
10, and 14). Generically, trajectories will then run towards
strong coupling with e:g.. confinement or strongly-
coupled IR conformality. Analogous conclusions hold
true in settings with fully attractive IR fixed points
provided their basins of attraction do not include the
Gaussian.
Finally, another interesting feature which is entirely due

to the semisimple nature of the theory are models where
FP9 has a single relevant direction (cases 1, 2, 5, 6, 12, 13,
16, and 17). Whenever this arises, the theory also always
displays a fully IR attractive fixed point (FP4, FP5, or both).

C. Asymptotic safety

We now turn to quantum field theories with (25) where
asymptotic safety is realized. Asymptotic safety relates to
settings where some or all couplings take non-zero values
in the UV [34]. A prerequisite for this is the absence of
asymptotic freedom in at least one of the gauge sectors. We
find two such examples provided P < 0 (cases 22 and 23 in
Fig. 8), corresponding precisely to settings where one
gauge sector is QCD-like whereas the other is QED-like.
For these theories, we furthermore find that all other
interacting fixed points are also present, except those of
the Banks-Zaks type involving the QED-like gauge sector.

FIG. 8. Same as Fig. 7, covering the 10 parameter regions with P < 0 of Fig. 6. Notice that FP6 is absent throughout. Exact asymptotic
safety (AS) is realized in the cases 22 and 23. Red shaded slots indicate eigenvalue spectra which arise due to the semisimple character of
the theory. For the cases 18–21 and 24–27, partial asymptotic freedom (pAF) or partial asymptotic safety (pAS) is observed whereby one
gauge sector decouples entirely at all scales. The latter theories are only UV complete in one of the two gauge sectors and must be
viewed as effective rather than fundamental.
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More specifically, in case 22 the role of the asymptotically
safe UV fixed point is now taken by FP5. The UV critical
surface is three-dimensional, in distinction to asymptoti-
cally free settings where it is four-dimensional. This
reduction, ultimately a consequence of an interacting fixed
point in one of the Yukawa couplings, leads to enhanced
predictivity of the theory. The Gaussian necessarily
becomes a cross-over fixed point with both attractive
and repulsive directions, similar to the interacting FP8.
Also, FP2 and FP9 are realized with a one-dimensional
critical surface. The fully IR attractive FP4—the counter-
part of the UV fixed point FP5—takes the role of an IR
sink. In the low energy limit, the theory displays free
SUðNcÞ gluons in one gauge sector and weakly interacting
SUðNCÞ gluons in the other. Moreover, the spectrum
includes both free and weakly interacting mesons related
to the former and the latter sectors, as well as free and
weakly interacting fermions. Qualitatively, a similar result
arises in the direct product limit, showing that the semi-
simple nature of (25) is not crucial for this scenario.
A noteworthy feature of semisimple theories with

asymptotic safety is that they connect an interacting UV
fixed point with an interacting IR fixed point. Hence, our
models offer examples of quantum field theories with exact
UVand IR conformality, strictly controlled by perturbation
theory for all scales. In the massless limit, the phase
diagram has trajectories connecting the interacting UV
fixed point with the interacting IR fixed point. Some
trajectories may escape towards the regime of strong
coupling where the theory is expected to display confine-
ment, possibly infrared conformality. The same picture
arises in case 23 after exchange of gauge groups.
No asymptotically safe fixed point arises if both gauge

sectors are IR free ðP; ϵ > 0Þ. This result is in marked
contrast to findings in the direct product limit where models
with an interacting UV fixed points exist—simply because
it exists for the simple gauge factors (63) and (67), given
suitable matter field multiplicities. We conclude that it is
precisely the semisimple nature of the specific set of
theories (25) which disallows asymptotic safety for settings
with P; ϵ > 0, see (61).

D. Effective field theories

We now turn to quantum field theories with (25) which
are not UV complete semisimple gauge theories and, as
such, must be seen as effective field theories. We find
three different types of these. First, we find models with
partial asymptotic freedom (pAF), where one gauge sector
remains asymptotically free whereas the other stays infra-
red free. These models always realize a Banks-Zaks fixed
point (as they must), and some also realize an IR gauge-
Yukawa fixed point. When viewed as a fundamental theory,
the IR free sector decouples exactly, for all RG scales,
and the theory becomes a simple asymptotically free
gauge theory (which is UV complete). The IR-free sector

can be interacting when viewed as an effective theory,
very much like the Uð1ÞY sector of the Standard Model.
This setting requires P < 0 and is realized in cases 18–21
and 23–27.
Second, we find models with partial asymptotic safety

(pAS), where one gauge sector becomes asymptotically
safe whereas the other remains free at all scales. All such
models display a UV gauge-Yukawa fixed point. When
viewed as a fundamental theory, these semisimple gauge
theories in fact reduce to a simple asymptotically safe
gauge theory (which is UV complete). The IR-free sector
can be interacting when viewed as a non-UV complete
effective theory. This setting mostly requires P; ϵ > 0 and
is realized in cases 28, 31, 32, 35, 37, 40, 41, and 44.
Curiously, pAS is also realized in cases 21 and 24 where
P < 0 alongside pAF in the other gauge sector—such
models have two disconnected UV scenarios, where we can
choose to have either asymptotic freedom in one sector, or
asymptotic safety in the other, in each case with the
remaining sector decoupling at all scales. Once more, if
both gauge sectors are interacting these models must be
viewed as (non-UV complete) effective theories.
Finally, we find models with none of the above. In these

settings (cases 29, 30, 33, 34, 36, 38, 39, 42 and 43),
both gauge sectors are IR free and no other weakly coupled
fixed points are realized, leaving us with no perturbative

FIG. 9. Same as Figs. 7 and 8, covering the 17 parameter
regions where ϵ > 0 and P > 0 in Fig. 6. Asymptotic freedom is
absent in both gauge sectors implying that FP2, FP3, FP6, FP7,
and FP8 cannot arise. Partial asymptotic safety (in one gauge
sector) is observed in case 28,31,32,35,37,40,41, and 44,
whereby the other gauge sector remains free at all scales
(pAS). All models must be viewed as effective rather than
fundamental theories. All theories become trivial in the IR.
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UV completion. In the cases 28–44, the Gaussian acts
as in IR sink for RG trajectories. Along these, the long-
distance behavior is trivial, characterized by free massless
non-Abelian gauge fields, quarks, and elementary mesons.
In summary, the semisimple gauge Yukawa theories (25)

have a well-defined UV limit with either asymptotic free-
dom or asymptotic safety in 9þ 1 ¼ 10 cases out of the 23
fundamentally distinct parameter settings covered in Fig. 6.
The remaining 4þ 9 ¼ 13 parameter settings do not offer a
well-defined UV limit at weak coupling. This completes
the classification of the models with (25).

VII. PHASE DIAGRAMS OF GAUGE THEORIES

In this section, we discuss the phase diagrams of UV
complete theories of the type (25), particularly in view of
theories with asymptotic freedom or asymptotic safety.

A. Semisimple gauge theories without Yukawas

We begin with settings where Yukawa couplings are
switched off. In these cases, interacting fixed points can
only arise for asymptotically free gauge sectors, and fixed
points are of the Banks-Zaks type or products thereof

[34,35]. Qualitatively different cases realized amongst the
theories (25) are summarized in Fig. 10 for semisimple
gauge theories with two gauge groups G1 ×G2. Results
generalize to more gauge groups in an obvious manner.
Specifically, Fig. 10(a) shows theories with asymptotic

freedom but without any BZ fixed points. UV free
trajectories emanate out of the Gaussian fixed point and
invariably escape towards strong coupling where the theory
is expected to display confinement, or IR conformality.
Similarily, Fig. 10(b) shows theories with asymptotic
freedom and a BZ fixed point in one of the gauge sectors.
The other gauge coupling remains an IR relevant pertur-
bation even at the BZ. Therefore UV free trajectories will
again escape towards strong coupling in the IR.
Figure 10(c) shows asymptotic freedom with a BZ fixed

point in both gauge sectors individually. Here, and much
unlike Fig. 10(b), one of the BZ fixed points has turned into
an exact IR sink, and both BZ fixed points are connected by
a separatrix. As we have already noticed in Sec. VI B, the
presence of an interacting fixed point in one gauge sector
can turn the other gauge sector from UV free to IR free.
This new type of phenomenon has become possible owing
to the ψ fermions and is once again due to the semisimple

(a)

(c) (d)

(b)

FIG. 10. Phase diagrams of asymptotically free semisimple gauge theories (two gauge groups) coupled to matter without Yukawas,
covering (a) asymptotic freedom and the Gaussian (G) without interacting fixed points and trajectories running towards strong coupling
and confinement, (b) the same, with an additional Banks-Zaks (BZ) fixed point, (c) two BZ fixed points, one of which turned into an IR
sink for all trajectories, or (d) three BZ fixed points, the fully interacting one now becoming the IR sink. Axes show the running gauge
couplings, fixed points (black) are connected by separatrices (red), and red-shaded areas cover all UV free trajectories with arrows
pointing from the UV to the IR.
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nature of the theory. Therefore, all UV free trajectories
invariably are attracted into the IR sink. In the deep IR, the
theory approaches a conformal fixed point with massless
and unconfined free and weakly coupled gluons and
quarks. Regimes of strong coupling cannot be reached.
Figure 10(d) shows asymptotic freedom with a (partial)

BZ fixed point in either gauge sector individually, as well as
a fully interacting BZ fixed point. Most notably, all UV free
trajectories are attracted by the later, which acts as an
IR sink. No trajectories can escape towards strong cou-
pling. The long distance physics is characterized by an
interacting conformal field theory with massless weakly
coupled gauge fields and fermions. Here, and unlike in
Fig. 10(c), all fields remain weakly coupled in the IR.
In the scenarios of Figs. 10(a) and 10(b) UV free

trajectoires run towards strong coupling and confinement
in the IR, in one or both gauge sectors. In contrast, the
scenarios in Figs. 10(c) and 10(d) show that all UV free
trajectories are attracted by an IR-stable conformal fixed
point. These theories remain unconfined and perturbative at
all scales. All four scenarios in Fig. 10 are realized for our
template of semisimple gauge theories with Lagrangean

(25). Explicit examples are given for models without
Yukawa couplings ðY ¼ 0 ¼ yÞ and for field multiplicities
in the parameter regions (a) ϵ1, ϵ2 < −75=26, (b) ϵ1 <
−75=26 and −75=26 < ϵ2 < 0, or ðϵ1 ↔ ϵ2Þ, (c) the cases
1–4 and 14–17 of Fig. 7, and (d) the cases 5–13 of Fig. 7.

B. Simple gauge theories with Yukawas

We continue the discussion of phase diagrams with
simple gauge theories with gauge group G and a single
Yukawa coupling. Four distinct cases can arise [34,35],
summarized in Fig. 11. For asymptotically free settings, the
theory either shows (a) only the Gaussian UV fixed point,
(b) the Gaussian together with the Banks-Zaks, or (c) the
Gaussian together with the Banks-Zaks and an IR gauge-
Yukawa fixed point. Simple gauge theories can also
become asymptotically safe, in which case (d) a UV
gauge-Yukawa fixed point arises. Trajectories are directed
towards the IR. The red-shaded areas indicate the set of UV
complete trajectories emanating out of the UV fixed point.
We genuinely observe a two-dimensional area of trajectories
for asymptotically free settings, which is reduced to a one-
dimensional set in the asymptotically safe scenario. The IR

(a)

(c) (d)

(b)

FIG. 11. Phase diagrams of UV complete and weakly interacting simple gauge theories coupled to matter with a single Yukawa
coupling, covering (a) asymptotic freedom with the Gaussian UV fixed point and no other weakly interacting fixed point, (b) asymptotic
freedom with a Banks-Zaks (BZ) fixed point, (c) asymptotic freedom with a Banks-Zaks and an IR gauge-Yukawa (GY) fixed point, and
(d) asymptotic safety with an UV gauge-Yukawa fixed point. Axes display the running gauge and Yukawa couplings, fixed points
(black) are connected by separatrices (red), and red-shaded areas cover all UV free trajectories with arrows pointing from the UV to the
IR [34,35]. Examples are given by (63), (67) (see main text).
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regime is characterized by either strong interactions and
confinement such as in Figs. 11(a,b,d), or by an interacting
conformal field theory with weakly coupled gluons and
fermions alongside free or interacting scalar mesons—
corresponding to the BZ fixed points in Figs. 11(b) and
11(c), or the IR GY fixed point in Fig. 11(c), respectively—
or by Gaussian scaling, Fig. 11(d).
All four scenarios in Fig. 11 are realized for simple

gauge theories with (63) corresponding to the parameter
regions (a) ϵ1 < −75=26, (b) −75=26 < ϵ1 < 0 and R > 1

2
,

(c) −75=26 < ϵ1 < 0 and R < 1
2
, or (d) ϵ1 > 0 and R < 1

2
,

respectively, with R additionally bounded by (64).

An economic way to display phase diagrams for semi-
simple theories with or without Yukawas is achieved by
introducing a schematic diagrammatic language, see Fig. 12.
Each of the four basic phase diagrams in Fig. 11 are
represented by a “primitive” diagram, Fig. 12, where full
dots indicate (free or interacting) fixed points, red arrows
indicate the outgoing trajectories, and RG flows schemati-
cally run “top-down” from the UV to the IR. Also, at each
fixed point the number of outgoing arrows indicates the
dimensionality of the fixed point’s “UV critical surface.”
Fixed points are connected by separatrices. We use straight
lines to indicate separatrices involving the BZ fixed point,
curved lines to indicate separatrices connecting GY fixed
points with the Gaussian, and open-ended lines to denote RG
trajectories running towards strong coupling without reach-
ing any weakly coupled fixed points.
Specifically, in case (a), a two-dimensional array of RG

flows are running out of the Gaussian UV fixed point
towards strong coupling, with no weakly interacting fixed
points. In case (b), we additionally observe a Banks-Zaks
fixed point. It is connected with the Gaussian by a separatrix
shown in red. Arrows invariably point towards the IR.
Yukawa couplings act as an unstable direction at both fixed
points. In case (c), we additionally observe a gauge-Yukawa
fixed point besides the Gaussian and the BZ. All three fixed
points are connected by separatrices. Note that two lines
emanate from the Gaussian, reflecting that the UV critical
surface is two dimensional. The GY fixed point arises as an
IR sink, which attracts all UV-free trajectories emanating out
of the Gaussian. In case (d), the model is asymptotically safe
and the GY fixed point has become the interacting UV fixed
point. A Banks-Zaks fixed point can no longer arise [34].
The theory has a one-dimensional UV critical surface
connecting the GY fixed point with the IR Gaussian fixed
point via a separatrix. A second UV safe trajectory which
leaves the GY fixed point towards strong coupling is not
depicted. Finally, we note that the Yukawa-induced IR
unstable directions in (a) and (b) or gauge Yukawa fixed
points in (c) and (d) are absent as soon as Yukawa
interactions are switched off from the outset.

C. Semisimple gauge theories with asymptotic freedom

We consider phase diagrams for semisimple theories (25)
with complete asymptotic freedom, exemplified by all
models in Fig. 7. When Yukawa couplings are absent,
the mesonlike scalar degrees of freedom remain free at all
scales and decouple from the theory. In the regime with
asymptotic freedom solely Banks-Zaks fixed points can
arise in the IR. Figures 10(d) and 13(b) shows settings
where all Banks-Zaks fixed points are present, correspond-
ing to the cases 5–13 of Fig. 7. RG flows point from the UV
to the IR (top to bottom) and connect the Gaussian UV
fixed point (FP1) with either of the partially (FP2 and FP3)
and the fully interacting (FP6) Banks-Zaks fixed points.
The latter is fully attractive and acts as an IR sink.

(a) (b) (c) (d)

FIG. 12. “Primitives” for phase diagrams of simple gauge-
Yukawa theories with asymptotic freedom (AF) or asymptotic
safety (AS), corresponding to the different setting shown in
Fig. 11. Arrows point from the UV to the IR and connect the
different fixed points. Open arrows point towards strong coupling
in the IR. The number of outgoing red arrows gives the
dimensionality of the UV critical surface. The separate UV safe
trajectory towards strong coupling in case (d) is not indicated.
Yukawa-induced IR unstable directions in (a,b) or gauge Yukawa
fixed points in (c,d) are absent as soon as Yukawa interactions are
switched off from the outset.

(a) (b) (c)

FIG. 13. Schematic phase diagram for asymptotically free
semisimple gauge theories (25) with Banks-Zaks type fixed
points without Yukawas and exact IR conformality. Field
multiplicities correspond to the cases (a) 1–4, (b) 5–13, and
(c) 14–17 of Fig. 7, respectively, with scalars decoupled. RG
flows point from the UV to the IR (top to bottom). At each fixed
point, the dimensionality of the UV critical surface is given by the
number of outgoing red arrows. All UV free trajectories terminate
at FP2, FP6, and FP3, respectively, which act as fully attractive IR
sinks. The topology of the phase diagram (b) is the “square” of
Fig. 12(b), representing Fig. 10(d). The phase diagrams (a) and
(c), representing Fig. 10(c), cannot be constructed from the
primitives in Fig. 12.
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The topology of the phase diagram is the “square” of
Figs. 11, 12(b). In the deep IR the theory is unconfined yet
weakly interacting, and the elementary gauge fields A, a
and fermions Q, q and ψ appear as massless particles at
the IR conformal fixed point. The phase diagrams in
Figs. 13(a) and 13(c) cannot be constructed out of the
simple primitives, Fig. 12. The reason for this is that the
eigenvalue spectrum at one of the fixed points deviates
from the direct product spectrum due to interactions.
Next we include Yukawa interactions. We have already

concluded from Fig. 7 that the eigenvalue spectrum in the
cases 8, 9, and 10 agrees qualitatively, for all fixed points,
with the eigenvalue spectrum in the corresponding direct
product limit. In these settings, we may then use the
primitives in Fig. 12 to find the semisimple phase diagrams.
We consider the case where the parameters (61) take values
within the range I of Fig. 6 and for ϵ < 0, corresponding to
case 9 of Fig. 7. This family of theories includes the
“symmetric” setup ðR;PÞ ¼ ð1; 1Þ where symmetry under
the exchange of gauge groups is manifest. The UV fixed
point is given by the Gaussian (FP1), and the UV critical
surface at the Gaussian is four-dimensional, owing to the
marginal UV relevancy of the two gauge and the two
Yukawa couplings. All scalar couplings are irrelevant in the
UV and can be expressed in terms of the gauge and the
Yukawa couplings along UV-free trajectories. Moreover,
each gauge sector displays the Banks-Zaks and a gauge-

Yukawa fixed point individually, and all nine fixed points
are realized in the full theory.
Since the sign pattern of the eigenvalue spectra at all

fixed points is equivalent to the direct product limit, the
topology of the semisimple phase diagram is the square of
Fig. 12(c)—shown in Fig. 14. Fixed points are connected
by separatrices (red lines), and arrows always point towards
the IR. From top to bottom, the fixed points FP1 (FP2;3)
[FP4;5;6] (FP7;8) and FP9 have a 4 (3) [2] (1) and
0-dimensional UV critical surface, respectively, corre-
sponding to the number of outgoing red arrows. FP9 acts
as an IR attractor for all trajectories within its basin of
attraction. Consequently, the elementary quarks and gluons
are not confined and the theory corresponds to a conformal
field theory of weakly interacting massless gluons, fer-
mions, and mesons in the deep IR. For certain fine-tuned
settings, the IR limit would, instead, correspond to one of
the other interacting fixed points FP2–FP8, relating to
different conformal field theories. Also, while all other
fixed points can be reached from the Gaussian FP1 (whose
UV critical surface has the largest dimensionality), it is not
true in general that a fixed point with a smaller UV critical
dimension can be reached from a fixed point with a larger
one. Fixed points are also not connected “horizontally.”

FIG. 14. Asymptotic freedom and schematic phase diagram for
semisimple gauge-Yukawa theories with field multiplicities as in
case 9 of Fig. 7. RG flows point from the UV to the IR (top to
bottom). Besides the Gaussian UV fixed point (FP1), the theory
displays all eight weakly interacting fixed points, see Table III.
At each fixed point, the dimensionality of the UV critical surface
is given by the number of outgoing red arrows. FP9 is fully
attractive and acts as an IR sink. The topology of the phase
diagram is the square of Figs. 11, 12(c); see main text.

FIG. 15. Asymptotic freedom and schematic phase diagrams
for semisimple gauge-Yukawa theories with field multiplicities as
in case 8 of Fig. 7. Flows point from the UV to the IR (top to
bottom). The theories display five weakly interacting fixed points
besides the Gaussian UV fixed point (FP1). The unavailability of
FP5, FP8, and FP9 implies that some trajectories escape towards
strong coupling (short arrows), and none of the fixed points acts
as a complete IR attractor. The topology of the phase diagram is
the “direct product” of Figs. 11, 12(c) with Figs. 11, 12(b); see
main text. The IR unstable direction is removed provided that the
Yukawa coupling y≡ 0, in which case the singlet mesons h
decouple.
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As a further example we consider a less symmetrical
setting given by models with (61) in the parameter range H
(or Hb) of Fig. 6, and for ϵ < 0. In these theories, only one
of the two gauge sectors can achieve a gauge-Yukawa fixed
point. Consequently, six different types of fixed points are
realized. The sign pattern of the eigenvalue spectrum (cases
8 or 10, Fig. 7) ensures that the topology of the semisimple
phase diagram obtains as the direct product of Fig. 12(b)
with Fig. 12(c), shown in Fig. 15. From top to bottom, the
fixed points FP1 (FP2;3) [FP4;6], and FP7 have a 4 (3) [2]
and 1-dimensional UV critical surface, respectively. Fixed
points are connected by separatrices. The absence of FP5,
FP8, and FP9 implies that some trajectories escape towards
strong coupling, indicated by short arrows, from each of the
fixed points. The unstable direction relates to the Yukawa
coupling y in (25). Provided it is switched off, FP7 would
become the fully attractive IR sink. In this case, the
elementary mesons h are spectators and remain free at
all scales. Also, the elementary quarks and gluons remain
unconfined. In the deep IR, the theory corresponds to a
conformal field theory of weakly interacting massless
gluons A, fermions Q, ψ and mesons H, together with
free and massless gluons a, fermions q and mesons h, see
Table IV. For certain fine-tuned settings, the IR limit would,
instead, correspond to one of the other interacting fixed
points FP2–FP8, relating to different conformal field
theories.
The phase diagrams of asymptotically free theories in the

cases 1–7 and 11–17 of Fig. 7 cannot be constructed out of
the simple primitives, Fig. 12. The reason for this is that
their eigenvalue spectrum at some of the interacting fixed
points deviates from the direct product spectrum. Once
again this effect is due to the semisimple nature of the
theory. A more detailed study of these cases is left for
future work.

D. Semisimple gauge theories with asymptotic safety

We finally turn to the phase diagram of semisimple
gauge theories with exact asymptotic safety. From Figs. 8
and 9 we conclude that asymptotic safety arises through a
partially interacting UV fixed point where one gauge sector
is interacting whereas the other gauge sector is free. This is
achieved for matter field multiplicities (61) taking values
within the range J or Jb of Fig. 6, corresponding to cases 22
or 23 of Fig. 8. Once more, the eigenvalue spectra at all
fixed points are equivalent to the ones in the direct product
limit, implying that the phase diagram arises as the direct
product of the corresponding simple factors Figs. 11, 12(c)
and Figs. 11, 12(d).
Figure 16 shows the schematic phase diagram for

case 22, where the asymptotically safe UV fixed point
FP5 is of the G · GY type (see Tables III and V). Unlike the
cases with asymptotic freedom, here, the UV hypercritical
surface is three rather than four dimensional. The reason for
this is that one of the Yukawa couplings is taking an

interacting UV fixed point. At each fixed point, the number
of outgoing directions indicate the dimensionality of the
fixed point’s critical hypersurface. From top to bottom, the
fixed points FP5 (FP1;8) [FP2;9] and FP4 have a 3 (2) [1] and
0-dimensional UV critical surface. UV finite trajectories
connect FP5 via intermediate cross-over fixed points
with the fully IR attractive fixed point FP4, which is of
the GY · G type. At weak coupling, all UV-IR connecting
trajectories proceed either via the Gaussian FP1 (G · G) and
FP2 (BZ · G), or via FP8 (BZ · GY) and FP2 or FP9
(GY · GY). The Gaussian fixed point is IR free in one
of the gauge couplings meaning that is necessarily arises as
a cross-over fixed point. There are no trajectories connect-
ing the fixed points FP1 with FP9 because the sole relevant
direction at the latter is an irrelevant direction at the former.
FP4 acts as an IR “sink” for RG trajectories. While all other
fixed points can be reached from the interacting UV fixed
point FP5 (whose UV critical surface has the largest
dimensionality), it is not true in general that a fixed
point with a smaller UV critical dimension can be reached
from a fixed point with a larger one (e.g. FP9 cannot be
reached from FP1). Fixed points are also not connected
“horizontally”.
An intriguing novelty of our models with asymptotic

safety is that both the deep UV and the deep IR limits are
characterized by weakly interacting conformal field theo-
ries. For example, in the deep UV the theories of case 22

FIG. 16. Asymptotic safety and schematic phase diagram of
semisimple gauge-Yukawa theories with field multiplicities as in
case 22 of Fig. 8. Besides the partially interacting UV fixed
point (FP5), the theory displays five weakly interacting fixed
points. The Gaussian (FP1) takes the role of a crossover
fixed point and FP4 takes the role of an IR sink. The topology
of the phase diagram is the direct product of Figs. 11, 12(c) with
Figs. 11, 12(d); see main text.
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correspond to conformal field theories of weakly interact-
ing massless gluons a, fermions q, ψ and mesons h,
together with free and massless gluons A, fermions Q
and mesons H. Along the UV—IR transition, the fields
ðA;Q;HÞ and ða; q; hÞ effectively “interchange” their roles,
ultimately approaching conformal field theories of weakly
interacting massless gluons A, fermions Q, ψ , and mesons
H, together with free and massless gluons a, fermions q
and mesons h in the IR. Hence, one may say that IR
conformality in the SUðNcÞ gauge sector arises from UV
conformality in the SUðNCÞ gauge sector through a “see-
saw” mechanism transmitted via the ψ fermions, i.e., the
only fields which are interacting at all scales including the
UVand the IR limits. For certain fine-tuned settings, the IR
limit would, instead, correspond to one of the other
interacting fixed points FP1, FP2, FP8, or FP9, relating
to different conformal field theories. Also, for certain UV
parameters, theories may escape towards strong coupling in
the IR.

E. Mass deformations and phase transitions

In the vicinity of fixed points phase transitions between
different phases arise once mass terms are switched on. At
weak coupling mass anomalous dimensions are perturba-
tively small (Sec. III D). The running of scalar or fermion
mass terms, once switched on, will then be dominated by
their canonical mass dimensions—modulo small quantum
corrections. Consequently, mass terms add additional
relevant directions at all fixed points (e.g., Figs. 14–16).
Each of the eight interacting UV fixed points relates to a
quantum phase transition between phases with and without
spontaneous breaking of symmetry where the vacuum
expectation value of the scalar fields serves as an order
parameter. In particular, fixed points which act as IR sinks
for the canonically marginal interactions (such as FP9 in
Fig. 14 and FP4 in Fig. 16) develop new unstable directions
driven by the mass. Scalar fields may or may not develop
vacuum expectation values leading to symmetric and
symmetry broken phases, respectively. Also, fermions
may acquire masses spontaneously. Thereby a variety of
different phases may arise, connected by first and higher
order quantum phase transitions. Close to interacting fixed
points, phase transitions are continuous and, in some cases,
of the Wilson-Fisher type with a single relevant parameter.
We leave a more detailed investigation of phase transitions
for a future study.

VIII. DISCUSSION

In this section, we address further aspects of interacting
fixed points covering universality and operator ordering,
triviality bounds, perturbativity in and beyond theVeneziano
limit, conformal symmetry, and conformal windows.

A. Gap, universality, and operator ordering

At partially or fully interacting fixed points, the degen-
eracy of the nine classically marginal couplings (26), (27) is
partly or fully lifted. We have computed scaling exponents
to the leading nontrivial order in ϵ. Interacting fixed points
have nontrivial exponents of order ∼ϵ, except if a gauge
coupling is involved in which case one of the exponents is
parametrically smaller∼ϵ2. Hence, the eigenvalue spectrum
opens up ∼ϵ because eigenvalues of order ϵ are invariably
present at any of the interacting fixed points. It is
convenient to denote the difference between the smallest
negative eigenvalue and the smallest positive eigenvalue as
the “gap” in the eigenvalue spectrum, which serves as an
indicator for interaction strength [5,24]. Simple SUðNÞ
gauge theories in the Veneziano limit such as (63) display a
gap of order ∼ϵðϵ2Þ at the Banks-Zaks or the UV gauge
Yukawa (IR gauge Yukawa) fixed point, respectively [32].
In semisimple theories, and depending on the specifics
of the fixed point, we again find that the gap is either of
order ϵ or of order ϵ2. (The gap trivially vanishes if one of
the gauge sectors is asymptotically free and takes Gaussian
values.) The gap still depends on the remaining free
parameters ðP;RÞ.
Also, all results for fixed points and scaling exponents

are universal and independent of the RG scheme, although
we have used a specific scheme (MS bar) throughout. This
is obviously correct for dimensionless couplings at one
loop where divergences are logarithmic. We have checked
that it also holds at two loop level both for the gauge
sectors, and for the Yukawa contributions to the running of
the gauge coupling(s) [32]. The field strengths and the
Yukawa couplings are marginally relevant operators at
asymptotically free Gaussian UV fixed points (case 1–17
of Fig. 7). At asymptotically safe UV fixed points, one of
the field strengths becomes relevant and the corresponding
Yukawa coupling irrelevant (case 22, 23 of Fig. 8). There
is no UV fixed point where both gauge sectors remain
interacting. The scalar self-interactions are (marginally)
irrelevant at any fixed point.

B. Elementary gauge fields and scalars

Triviality bounds relate to perturbative UV Landau poles
of infrared free interactions. They limit the predictivity of
theories to a maximal UV extension [52]. For theories
with action (25), perturbative UV Landau poles can arise
for gauge couplings in the absence of asymptotic freedom
or asymptotic safety. Examples for this are given in cases
18–21 and 24–27 of Fig. 8 where one gauge sector is IR
free, as well as in cases 28–44 of Fig. 9 where both
gauge sectors are IR free. In these cases the theories can at
best be treated as effective rather than fundamental (see
Sec. VI D). Conversely, triviality in gauge sectors is
trivially avoided in settings with asymptotic freedom
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(such as in cases 1–17), and nontrivially in settings with
asymptotic safety (case 22 and 23). In the latter cases, the
loss of asymptotic freedom is compensated through an
interacting fixed point in the Yukawa and scalar couplings,
which enabled a fixed point for the gauge coupling [32].
We stress that scalar fields and Yukawa interactions play a
key role. Without them, triviality of any QED-like gauge
theories cannot be avoided [34,35].
Triviality also relates to the difficulty of defining

elementary self-interacting scalar quantum fields in four
dimensions [53–55]. It is interesting to notice that the
quartic scalar couplings always take a unique physical fixed
points as soon as the gauge and Yukawa coupling take
weakly coupled fixed points. Hence, in theories with (25)
scalar fields can be viewed as elementary and triviality is
evaded in all settings with asymptotic freedom and asymp-
totic safety. In either case gauge fields play an important
role, albeit for different reasons [32]. For gauge interactions
with asymptotic freedom, the running of gauge couplings
dictates the running for Yukawa and scalar couplings, and
conditions for complete asymptotic freedom have been
derived [56] which ensure that gauge theories coupled to
matter reach the free UV fixed point [57]. For theories with
asymptotic safety, scalars are required to help generate a
combined fixed point in the gauge, Yukawa, and quartic
scalar couplings. This leads invariably to a “reduction of
couplings” and enhanced predictivity over models with
asymptotic freedom through a reduced UV critical surface.

C. Veneziano limit and beyond

Our findings, throughout, rely on the existence of exact
small parameters ϵ1 ≪ 1 and ϵ2 ≪ 1 (35) [or ϵ ≪ 1 see
(41)] in the Veneziano limit, which relate to the gauge one
loop coefficients. Consequently, an iterative solution of
perturbative beta functions becomes exact and interacting
fixed points arise as exact power series in the small
parameters. More specifically, the leading non-trivial
approximation which is NLO0 (Table II) retains the gauge
beta functions up to two loop, and the Yukawa and scalar
beta functions up to one loop. The parametric smallness of
the gauge one-loop coefficients allows an exact cancella-
tion of one and two loop terms implying that interacting
fixed points for the gauge couplings must be of the order of
the one loop coefficient ∼ϵ. The Yukawa nullclines at one
loop imply that Yukawa couplings are necessarily propor-
tional to the gauge couplings, and the scalar nullcline
impose that scalar couplings are proportional to the
Yukawas (see Sec. VA); hence either of these come out
∼ϵ. Higher order loop approximations nNLO0 starting with
n ¼ 2 then correspond to retaining nþ 1 loops in the
gauge, and n loops in the Yukawa and scalar beta functions
respectively, see Table II. Hence, solving the beta functions
for interacting fixed points order-by-order in perturbation
theory ðn → nþ 1Þ we have that

α�i ¼ α�i jnNLO0 þOðϵnþ1Þ ð96Þ

for all couplings (26), (27) and all fixed points, with
corrections from the ðnþ 1ÞNLO0 level being at least
one power in ϵ smaller than those from the preceding
level. We conclude that the expressions for the interacting
fixed points α�i jnNLO0 are accurate polynomials in ϵ up to
including terms of order ϵn, for all n.
Beyond the Veneziano limit, the parametrically small

control parameter ϵ is no longer available. Instead, ϵ will
take finite, possibly large, values dictated by the (finite)
field multiplicities. Still, for sufficiently large matter field
multiplicities, ϵ remains sufficiently small and perturba-
tivity remains in reach [38]. It is then conceivable that the
fixed points found in the Veneziano limit persist even for
finite N.5 At finite N, however, we stress that the nNLO0
approximations and (96) are no longer exact order-by-
order. It then becomes important to check numerical
convergence of higher loop approximations, including
nonperturbative resummations. In this context it would
be particularly useful to know the radius of convergence of
beta functions (in ϵ) in the Veneziano limit. A finite radius
of convergence has been established rigorously in certain
large-NF limits of gauge theories without Yukawa inter-
actions [58,59] which makes it conceivable that the radius
of convergence might be finite here as well.6 If so, this
would offer additional indications for the existence of
interacting fixed points beyond the Veneziano limit.

D. Conformal symmetry and conformal windows

By their very definition, the gauge-Yukawa theories
investigated here are scale-invariant at (interacting) fixed
points. Conditions under which scale invariance entails exact
conformal invariance have been discussed by Polchinski [60]
(see also [61]). Applied to the theories (25) at weak coupling,
it implies that exact conformal invariance is realized at all
interacting fixed points discovered here. It would then be
interesting to find the full conformally invariant effective
action beyond the classically marginal invariants retained in
(25). First steps into these directions have been reported in
[33]. Moreover, for a quantum theory to be compatible with
unitarity, scaling dimension of (primary) scalar fields must
be larger than unity. This is confirmed for all fixed points by
using the results of Sec. III D for the anomalous dimensions
of fields and composite scalar operators, together with the
results for fixed points at NLO0 accuracy (Tables VII and
VIII). We conclude that the residual interactions are
compatible with unitarity.
Away from the Veneziano limit, findings for the various

interacting conformal fixed points persist once ϵ is finite.

5An example for a conformal window with asymptotic safety is
given in [37] for the model introduced in [32].

6Results for resummed beta functions of large-N gauge
theories with Yukawa couplings are presently not available.
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One may then think of keeping the parameters in the gauge
sectors ðNC; Nc) fixed and finite while varying the matter
field content ðNF; Nf ; NψÞ. Then, the domain of existence
for each of the interacting fixed points (Tables VII, VIII)
turns into a “conformal window” as a function of the matter
field multiplicities. The fixed point ceases to exist outside
the conformal window. The conformal window for asymp-
totic safety with a simple SUðNÞ gauge factor has been
determined in [37]. Boundaries of conformal windows
can be estimated within perturbation theory though more
accurate results invariably require nonperturbative tools.7

IX. SUMMARY

We have used perturbation theory and large-N tech-
niques for a rigorous and comprehensive investigation of
weakly interacting fixed points of gauge theories coupled
to fermionic and scalar matter. For concrete families of
simple and semisimple gauge theories with action (25) and
following the classification of fixed points put forward in
[34,35], we have discovered a large variety of exact high-
and low-energy fixed points (Tables III, VII, VIII). These
include partially interacting ones (Table VII) where one
gauge sector remains free, and fully interacting ones
(Table VIII) where both gauge sectors are interacting.
We have determined the domains of existence for all of
them (Figs. 1–5). Interestingly, we also find that the
requirement of vacuum stability always singles out a
unique viable fixed point in the scalar sector.
As a function of field multiplicities, the phase space of

distinct quantum field theories (Fig. 6) includes models
with asymptotic safety and asymptotic freedom, and
effective theories without UV completion (Figs. 7, 8,
and 9). In the IR, theories display either strong coupling
and confinement, or weakly coupled fixed points where the
elementary gauge fields and fermions are unconfined and
appear as massless particles. Many features are a conse-
quence of the semisimple nature and would not arise in
simple (or direct products of simple) gauge theories.
Highlights include massless semisimple gauge-matter the-
ories where one gauge sector can be both UV free and IR
free owing to a fixed point in the other, Fig. 10(c), and
theories with inequivalent scaling limits in the IR.
Semisimple effects are particularly pronounced for asymp-
totically free theories where they enhance the diversity of
different IR scaling regimes (Fig. 7).
Another central outcome of our study is the first explicit

“proof of existence” for asymptotic safety in semisimple
quantum field theories with elementary gauge fields,
scalars and fermions. It establishes the important result
that asymptotic safety is not limited to simple gauge
factors [32], fully in line with general theorems and
structural results [34]. Our findings, together with their

supersymmetric counterparts in [36], make it conceivable
that semisimple theories display interacting UV fixed
points even beyond the Veneziano limit, thus further paving
the way for asymptotic safety beyond the Standard Model
[38]. The stability of the vacuum (Sec. V) in all models
studied here suggests that the near-criticality of the standard
model Higgs [39,40] can very well expand into full
criticality at an interacting UV fixed point [38].
In addition, we have investigated phase diagrams for

simple and semisimple gauge theories with and without
Yukawa interactions, continuing an analysis initiated in
[34,35]. We find that transitions from the UV to the IR can
proceed from free or interacting fixed points to confinement
and strong coupling. We also find transitions from free
to interacting (Figs. 10–15) or from interacting to other
interacting conformal fixed points (Fig. 16). In the latter
cases, theories display a variety of exact “IR sinks,”
meaning free or interacting IR conformal fixed points
which are fully attractive in all classically marginal inter-
actions. Once more, many new features have come to light
beyond those observed in simple gauge theories [34,35].
Our study used minimal models with a low number of

Yukawa and gauge couplings. Already at this basic level, an
intriguing diversity of fixed points and scaling regimes has
emerged, with many novel characteristics both at high
and low energies. We believe that these findings warrant
more extensive studies in view of rigorous results [34,36],
extensions towards strong coupling [33], and its exciting
potential for physics beyond the standard model [38].
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APPENDIX A: GENERAL EXPRESSIONS
FOR FIXED POINTS

Most results in the main text relate to the choice Nψ ¼ 1.
For completeness, we summarize fixed point results for
general Nψ species of fermions in the fundamental of both
gauge groups SUðNCÞ and SUðNcÞ. We observe that Nψ is
restricted within the range

0 ≤ Nψ ≤
11

2
: ðA1Þ

Outside of this range, exact perturbativity is lost.
Substituting Nψ into the RG coefficients and solving for
fixed points, we find the following expressions at the
partially interacting Banks-Zaks fixed points FP2 and FP3,

7See [62] for lattice studies of conformal windows in QCD
with fermionic matter (Banks-Zaks fixed points).
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FP2∶ α1 ¼ −
4

75
Rϵ ðA2Þ

FP3∶ α2 ¼ −
4

75

Pϵ
R

ðA3Þ

At the partially interacting fixed points FP4 and FP5 we
have

FP4∶

8<
:

α1 ¼ 2
3

13−2NψR
ð2NψR−1Þð3NψR−19ÞRϵ

αY ¼ 4
ð2NψR−1Þð3NψR−19ÞRϵ

ðA4Þ

FP5∶

8<
:

α2 ¼ 2
3

13−2Nψ=R
ð2Nψ=R−1Þð3Nψ=R−19Þ

Pϵ
R

αy ¼ 4
ð2Nψ=R−1Þð3Nψ=R−19Þ

Pϵ
R

ðA5Þ

For the Banks-Zaks times Banks-Zaks-type fixed point FP6
we find

FP6∶

8<
:

α1 ¼ − 4
3

�
25−2NψP=R
625−4N2

ψ

�
Rϵ

α2 ¼ − 4
3

�
25−2NψR=P
625−4N2

ψ

�
Pϵ
R

ðA6Þ

For the interacting fixed points FP7 and FP8 we find

FP7∶

8>>>>><
>>>>>:

α1 ¼ 2
3

� ð13−2NψRÞð25−2NψP=RÞ
150N2

ψR2−ð4N2
ψþ1025ÞNψRþ26N2

ψþ475

�
Rϵ

α2 ¼ − 4
3

�ð13−2NψRÞNψR=Pþð2NψR−1Þð3NψR−19Þ
150N2

ψR2−ð4N2
ψþ1025ÞNψRþ26N2

ψþ475

�
Pϵ
R

αY ¼ 4ð25−2NψP=RÞ
150N2

ψR2−ð4N2
ψþ1025ÞNψRþ26N2

ψþ475
Rϵ

ðA7Þ

FP8∶

8>>>>><
>>>>>:

α1 ¼ − 4
3

�ð13−2Nψ=RÞNψP=Rþð2Nψ=R−1Þð3Nψ=R−19Þ
150N2

ψ=R2−ð4N2
ψþ1025ÞNψ=Rþ26N2

ψþ475

�
Rϵ

α2 ¼ 2
3

� ð13−2Nψ=RÞð25−2NψR=PÞ
150N2

ψ=R2−ð4N2
ψþ1025ÞNψ=Rþ26N2

ψþ475

�
Pϵ
R

αy ¼ 4ð25−2NψR=PÞ
150N2

ψ=R2−ð4N2
ψþ1025ÞNψ=Rþ26N2

ψþ475
Pϵ
R

ðA8Þ

Finally, at the fully interacting fixed point FP9 we have

FP9∶

8>>>>>>>><
>>>>>>>>:

α1 ¼ 2
3

ð13−2NψRÞ½ð13−2NψRÞNψP=Rþð2Nψ=R−1Þð3Nψ=R−19Þ�Rϵ
114N2

ψ ðR2þ1=R2Þþð32N4
ψþ1512N2

ψþ361Þ−ð220N2
ψþ779ÞðRþ1=RÞ

α2 ¼ 2
3

ð13−2Nψ=RÞ½ð13−2Nψ=RÞNψR=Pþð2NψR−1Þð3NψR−19Þ�Pϵ=R
114N2

ψ ðR2þ1=R2Þþð32N4
ψþ1512N2

ψþ361Þ−ð220N2
ψþ779ÞðRþ1=RÞ

αY ¼ 4½ð13−2NψRÞNψP=Rþð2Nψ=R−1Þð3Nψ=R−19Þ�Rϵ
114N2

ψ ðR2þ1=R2Þþð32N4
ψþ1512N2

ψþ361Þ−ð220N2
ψþ779ÞðRþ1=RÞ

αy ¼ 4½ð13−2Nψ=RÞNψR=Pþð2NψR−1Þð3NψR−19Þ�Pϵ=R
114N2

ψ ðR2þ1=R2Þþð32N4
ψþ1512N2

ψþ361Þ−ð220N2
ψþ779ÞðRþ1=RÞ :

ðA9Þ

All expressions reduce to those given in the main body in the
limit Nψ ¼ 1. We note that the parameter range in which
fixed points exist changes both qualitatively and quantita-
tively when varyingNψ within the range (A1). Moreover, we
also observe that the characteristic boundaries in paramater
space depend on Nψ , indicating that domains of existence
and eigenvalue spectra depend onNψ . It is straightforward, if
tedious, to investigate regions of validity and scaling
exponents for the general case, and to find the analogues
of Figs. 1–5 and of Tables VI–VIII for general Nψ .

APPENDIX B: BOUNDARIES

We find that the existence and relevancy of fixed points
in the parameter space ðP; RÞ, see (61), is controlled by
characteristic curves P ¼ XðRÞ; YðRÞ; X̃ðRÞ or ỸðRÞ with
the functions

XðRÞ ¼ ð2R − 13ÞR
ð2R − 1Þð3R − 19Þ ; YðRÞ ¼ 25

2
R;

X̃ðRÞ ¼ ð2=R − 1Þð3=R − 19Þ
ð2=R − 13Þ=R ; ỸðRÞ ¼ 2

25
R: ðB1Þ

These appear as boundaries of the “phase space” of
parameters ðR;PÞ characterizing valid fixed points. Note
that the functions ðX; X̃Þ and ðY; ỸÞ in (B1) are “dual” to
each other,

XðRÞ · X̃ðR−1Þ ¼ 1 ¼ YðRÞ · ỸðR−1Þ: ðB2Þ

A further set of boundaries is given by the straight lines
R ¼ Rlow or Rhigh, with

Rlow ¼ 1

2
Rhigh ¼ 2: ðB3Þ
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The boundaries P ¼ XðRÞ; YðRÞ; X̃ðRÞ, or ỸðRÞ with (B1)
together with (B3) delimit the qualitatively different quan-
tum field theories in the “phase space” shown in Fig. 6.
Certain characteristic values for the parameter R arise in

its domain of vailidity 2
11
< R < 11

2
at points where the

boundaries (B1) cross. We find four of these R1;…;4 with

2

11
<Rlow<R1<R2<1<R3<R4<Rhigh<

11

2
; ðB4Þ

with R1 and R2 arising from

XðR1Þ ¼ YðR1Þ;
XðR2Þ ¼ X̃ðR2Þ ðB5Þ

together with R3 ¼ 1=R2 and R4 ¼ 1=R1. Quantitatively
we have (62) for R1;…;4 as stated in the main text. The
expressions (B1), (B3) for the boundaries are modified
once Nψ ≠ 1.
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