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We construct self-dual sectors for scalar field theories on a (2N þ 2)-dimensional Minkowski space-time
with the target space being the 2N þ 1-dimensional sphere S2Nþ1. The construction of such self-dual
sectors is made possible by the introduction of an extra functional in the action that renders the static energy
and the self-duality equations conformally invariant on the (2N þ 1)-dimensional spatial submanifold. The
conformal and target-space symmetries are used to build an ansatz that leads to an infinite number of exact
self-dual solutions with arbitrary values of the topological charge. The five-dimensional case is discussed in
detail, where it is shown that two types of theories admit self-dual sectors. Our work generalizes the known
results in the three-dimensional case that lead to an infinite set of self-dual Skyrmion solutions.
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I. INTRODUCTION

The beauty of self-duality is that it is characterized by
first-order differential equations, such that their solutions
also solve the second-order Euler-Lagrange equations of
the full theory. The self-dual solutions—which in general
can be constructed analytically—saturate a lower bound of
the energy or Euclidean action for each sector characterized
by the value of the topological charge. Examples include
the instantons in Yang-Mills theories in four-dimensional
Euclidean space [1], the Bogomol’nyi-Prasad-Sommerfield
(BPS) monopoles in three dimensions [2,3], the Belavin-
Polyakov self-dual solutions of the Oð3Þ or CP1 nonlinear
sigma model in (2þ 1) dimensions [4], the one-soliton
solutions of integrable field theories in (1þ 1) dimensions
like the sine-Gordon model [5], field theories for d scalar
fields in (dþ 1) dimensions [6] (which for the case of
d ¼ 3 include modifications of the Skyrme model [7–10]),
and so on.
The interesting fact about the structures of self-duality

that allow the construction of solutions by performing one
less integration is not the use of dynamical conservation
laws, but rather the existence in the theory of a topological
charge that admits an integral representation. As explained
in Sec. 2 of Ref. [6], one looks for a splitting of the density
of topological chargeQ as the product of two quantities, let
us say

Q ¼
Z

AαÃα; ð1:1Þ

where α may stand for a set of indices. Being a topological
quantity means that it is invariant under any smooth
variations of the fields, and so the relation δQ ¼ 0 provides
an identity for the fields that is bilinear in the quantities Aα

and Ãα. One then introduces the self-duality equations as

Aα ¼ �Ãα: ð1:2Þ

It turns out that the bilinear identity coming from the
topological charge together with the self-duality equations
imply the Euler-Lagrange equation associated with the
functional [6]

E ¼ 1

2

Z
ðA2

α þ Ã2
αÞ; ð1:3Þ

which can be the static energy or the Euclidean action
of the theory. If the functional E is positive definite, this
automatically provides a bound given by the topological
charge, i.e.,

E ¼ 1

2

Z
ðAα � ÃαÞ2 þ jQj ≥ jQj: ð1:4Þ

Note that for a given splitting of the density of topological
charge there is the freedom of transforming the quantities
Aα and Ãα as

Aα → Aβfβα and Ãα → f−1αβ Ãβ; ð1:5Þ
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where fβα is an arbitrary invertible matrix. The possibility
of introducing such a matrix is what allows the construction
of nontrivial self-dual sectors for Skyrme-type models
[8,9]. In fact, in order to preserve the Lorentz symmetry
this quantity is a matrix in the internal indices only,
contained in the set of indices α. In the cases considered
in this paper α contains only spatial indices, and so fwill be
a scalar function.
Under the shift (1.5) the self-duality equations (1.2)

become Aβhβα ¼ �Ãα, with h being the symmetric invert-
ible matrix h≡ ffT . The topological charge (1.1) remains
unchanged, but the energy functional (1.3) becomes
E ¼ 1

2

R ðAαhαβAβ þ Ãαh−1αβ ÃβÞ. If one considers the
entries of the matrix h as new extra fields, independent
of those originally contained in Aα and Ãα, one observes a
very interesting fact. If one varies E with respect to the
fields h one gets that δE ¼ 0, for any variation δh, if
AδhA ¼ Ãh−1δhh−1Ã. But that is guaranteed by the
new self-duality equations. Therefore, the solutions of
the self-duality equations are not only solutions of the
Euler-Lagrange equations associated to the fields contained
in Aα and Ãα, but also of the Euler-Lagrange equations
associated to the fields h.
In the case of Euclidean Yang-Mills theory, for instance,

one has that Aα corresponds to the field tensor Fμν,
and Ãα corresponds to its Hodge dual F̃μν ¼ 1

2
εμνρσFρσ.

Then the topological charge is the Pontryagin number
Q ¼ R

d4xTrðFμνF̃μνÞ, E is the Euclidean action, i.e.,
E ¼ 1

4

R
d4xTrðF2

μνÞ ¼ 1
8

R
d4xTrðF2

μν þ F̃2
μνÞ, and Fμν ¼

�F̃μν: the well-known self-duality equations.
In this paper we apply the ideas of Ref. [6] (summarized

above) to construct self-dual sectors for field theories
in a (2N þ 2)-dimensional Minkowski space-time, with
the target space being the (2N þ 1)-dimensional sphere
S2Nþ1. Therefore, our results will generalize in a rather
simple way the results of Refs. [7,8] for self-dual
Skyrmions on S3. Self-duality equations in space-time
dimensions higher than four have been considered exten-
sively in the literature. Self-dual equations for the Yang-
Mills theory in any dimension were constructed a long time
ago (see, for instance, Refs. [11,12]) and are still a topic of
interest [13,14]. In addition, self-dual and non-self-dual
monopole solutions in higher dimensions have been con-
structed in Higgs-Yang-Mills systems (see, for instance,
Refs. [15,16]). In the case of scalar field theories like
Skyrmions and CPN models, bounds relating energy and
topological charge have been considered, even though self-
duality equations were not constructed (see, for instance,
Refs. [17,18]). However, it is worth mentioning that self-
duality equations connecting gauge and scalar field theories
have been obtained [19]. The solitons that we consider are
static, and since there are no gauge symmetries, the finite-
energy condition imposes that the fields should go to fixed
constant values at spatial infinity. Therefore, as long as

topology is concerned, one can compactify the space
IR2Nþ1 into the sphere S2Nþ1, and so the soliton solutions
carry a topological charge given by the winding number of
the map S2Nþ1

space → S2Nþ1
target , which can be evaluated through

the integral

Q2Nþ1 ¼
2

ð4πÞNþ1

Z
d2Nþ1xεp1p2���p2Nþ1Ap1

Hp2p3
Hp4p5

� � �Hp2Np2Nþ1
; ð1:6Þ

where we have parametrized the target space with N þ 1
complex fields Za, a ¼ 1; 2;…N þ 1, satisfying the con-
straint Z�

aZa ¼ 1, and have defined the quantities

Aμ ¼ iZ† · ∂μZ; Z† · Z ¼ 1; μ; ν ¼ 0; 1; 2…2N þ 1;

ð1:7Þ

and

Hμν ¼ ∂μAν − ∂νAμ ¼ ið∂μZ† · ∂νZ − ∂νZ† · ∂μZÞ: ð1:8Þ

We shall use the metric with signature (−) for the space
coordinates and (þ) for the time coordinate, i.e.,
ds2 ¼ dx20 − dx2i . In addition, we take ε012…2Nþ1 ¼
ε12…2Nþ1 ¼ 1. Note that even though the target space is
S2Nþ1, the target-space symmetry group of such theories is
not SOð2N þ 2Þ. The quantities Aμ and Hμν given above
are invariant only under the subgroup UðN þ 1Þ, where the
fields transform as Z → UZ, U ∈ UðN þ 1Þ.
In Refs. [7,8] we considered the case N ¼ 1, which led

to an infinite number of exact self-dual Skyrmions on the
three-dimensional space IR3, with the fields taking values
on the sphere S3, or equivalently on the group SUð2Þ. In
this paper we shall consider the case N ¼ 2, which
corresponds to theories in a Minkowski space-time
IR5þ1, with target space S5. As we show in Sec. III, there
are basically two ways of splitting the density of topologi-
cal charges, leading to two different theories. The static
sectors of these theories are conformally invariant in IR5,
and (following the method of Ref. [20]) they lead to an
ansatz based on a generalization of the toroidal coordinates
for IR5. The ansatz involves three integers associated with
the angles of the toroidal coordinates, and the topological
charge is the product of these three integers. For both
theories we construct an infinite number of exact self-dual
soliton solutions. However, for one of the theories these
integers are arbitrary, and for the other they have to have
equal moduli.
We then consider the generic case of theories in

(2N þ 2)-dimensional Minkowski space-time with target
space S2Nþ1. In such cases the number of possibilities of
splitting the density of topological charge is very large,
leading to theories which are conformally invariant in
IR2Nþ1. Again, this symmetry leads to a toroidal ansatz
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depending on N þ 1 integers. We consider the case where
the splitting leads to a theory that admits an infinite number
of self-dual soliton solutions for arbitrary values of these
N þ 1 integers. It is worth mentioning that static Skyrmions
in seven space dimensions have been obtained from self-
dual Yang-Mills in eight Euclidean dimensions [18] fol-
lowing the Atiyah-Manton construction [21]. Even though
the Skyrmion is obtained from a self-dual solution (instan-
ton), it is not a self-dual Skyrmion in seven dimensions.
The paper is organized as follows. In Sec. II we review

the results of Ref. [8] on the construction of self-dual
Skyrmions on the three-dimensional space R3 with the
target space S3. In Sec. III we consider the case of theories
in (5þ 1) dimensions with the target space being the five-
dimensional sphere S5, and show in detail how to use the
splitting of the topological charge to construct two types of
theories admitting self-dual sectors. We then use the
conformal and target-space symmetries of the self-duality
equations to construct infinite sets of exact self-dual
solutions for these two types of theories. We then general-
ize our results in Sec. IV to the case of theories in (2N þ 2)-
dimensional Minkowski space-time with the target space
being the (2N þ 1)-dimensional sphere S2Nþ1. Again, we
construct an infinite set of exact self-dual solutions for one
type of theory coming from a particular choice of the
splitting of the topological charge. In Sec. V we present our
conclusions. In Appendix A we give the proof of the
conformal symmetry of the self-duality equations, and in
Appendix B we solve some integrals relevant for the
calculation of the topological charges of the solutions.

II. SOLUTIONS ON S3

We begin with a brief review of the work [8] on self-dual
Skyrmions on the three-dimensional space R3 with the
target space S3. In this case field configurations are
characterized by the topological charge Q ∈ π3ðS3Þ ¼ Z
given by the integral formula

Q3 ¼
1

8π2

Z
d3xεijkAiHjk; ð2:1Þ

where Ai and Hij are defined in Eqs. (1.7) and (1.8) for
N ¼ 1. We take the splitting of the topological charge
density of the form [see Eq. (1.1)]

Ai ≡Mf1Ai; Ãi ≡ 1

ef1
εijkHjk; i; j; k ¼ 1; 2; 3;

ð2:2Þ

where M and e are coupling constants, and f1 is an
arbitrary function. The self-dual equations for such a
splitting are

λf21A
i ¼ εijkHjk; with λ ¼ �Me: ð2:3Þ

The solutions of the self-duality equations (2.3) solve the
Euler-Lagrange equations associated to the following static
energy functional:

E ¼ 1

2

Z
d3x

�
M2f21A

2
i þ

1

e2f21
ðεijkHjkÞ2

�
: ð2:4Þ

The BPS bound for such a static energy is given by

E ¼ 1

2

Z
d3x

�
Mf1Ai � 1

ef1
εijkHjk

�
2

∓ M
e

Z
d3xεijkAiHjk ≥

8Mπ2

e
jQ3j: ð2:5Þ

Using the methods of Ref. [20], in Ref. [8] an ansatz was
constructed by exploring the conformal symmetry of the
self-duality equations (2.3) in the three-dimensional space
IR3 (see Appendix A). The ansatz is given by

Z ¼ ð
ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
einφ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðzÞ

p
eimξÞ; ð2:6Þ

where m and n are integers, and ðz; ξ;φÞ are the toroidal
coordinates on IR3,

x1 ¼
a
p

ffiffiffi
z

p
cosφ; x2 ¼

a
p

ffiffiffi
z

p
sinφ; x3 ¼

a
p

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
sin ξ;

ð2:7Þ

where

p ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
cos ξ; z ∈ ½0; 1�; ξ;φ ∈ ½0; 2π�:

ð2:8Þ

The infinite set of solutions found in Ref. [8] are given by

F ¼ m2z
m2zþ n2ð1 − zÞ ; f1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
jλja

jmnj
½m2zþ n2ð1 − zÞ�

s
;

ð2:9Þ

where the sign of λ is chosen to keep f1 real, i.e.,
signðλÞ ¼ −signðmnÞ. The topological charge and static
energy for such solutions are given by

Q3 ¼ −mn; E ¼ 8Mπ2

e
jmnj: ð2:10Þ

It turns out [8] that the solutions for the cases where m2 ¼
n2 present a spherically symmetry energy density, and for
the other cases the energy density has only an axial
symmetry around the x3 axis. In Fig. 1 we show the
isosurfaces of the topological charge density (or, equiv-
alently, the energy density) for the Q3 ¼ −4 cases, i.e.,
ðm ¼ 2; n ¼ 2Þ, ðm ¼ 4; n ¼ 1Þ, and ðm ¼ 1; n ¼ 4Þ. It is
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worth noting that for the cases wherem2 ≠ n2, the densities
have a toroidal inner structure, which at large distances
leads to an oblate (n > m) or prolate (n < m) shape.
Indeed, in the ðm; nÞ ¼ ð4; 1Þ case, the outside looks
prolate but the inside has a dumbbell-like form. In the
ðm; nÞ ¼ ð1; 4Þ case, the outside looks oblate but there is a
torus-shaped core. On the other hand, every isosurface is a
sphere in the ðm; nÞ ¼ ð2; 2Þ case. Note that the energy
density has the same profile as the topological charge
density.

III. SOLUTIONS ON S5

In this case the topological charge is the winding number
of the map S5space → S5target and is given by

Q5 ¼
1

32π3

Z
d5xεijklmAiHjkHlm: ð3:1Þ

There are two basic ways of splitting the density of this
topological charge [as in Eq. (1.1)] to construct theories
with exact self-dual sectors, as we now explain.

A. Type I theory on S5

The first case corresponds to the following splitting of
the topological charge density:

AI
i ≡MfIAi; ÃI

i ≡ 1

efI
εijklmHjkHlm;

i; j; k; l; m ¼ 1; 2;…5; ð3:2Þ

where Ai and Hij are defined in Eqs. (1.7) and (1.8) for
N ¼ 2, fI is an arbitrary functional of the complex fields
Za, a ¼ 1, 2, 3, and their derivatives, and M and e are
coupling constants. Note that the topological charge density
does not depend on the functional fI , and this represents a

freedom we have when we split it [6,8] [see Eq. (1.5)]. The
self-duality equation in such a case is

λf2IA
i ¼ εijklmHjkHlm; with λ ¼ �Me; ð3:3Þ

and solutions of it are solutions of the Euler-Lagrange
equations associated to the static energy functional

EI ¼
1

2

Z
d5x

�
M2f2IA

2
i þ

1

e2f2I
ðεijklmHjkHlmÞ2

�
: ð3:4Þ

The corresponding action is therefore

SI ¼
1

2

Z
d6x

�
M2f2I A

2
μ −

1

2e2f2I
ðεμνρσαβHρσHαβÞ2

�
:

ð3:5Þ

The bound on the static energy is given by

EI ¼
1

2

Z
d5x

�
MfIAi � 1

efI
εijklmHjkHlm

�
2

∓ M
e

Z
d5xεijklmAiHjkHlm

≥
32Mπ3

e
jQ5j: ð3:6Þ

In order to construct solutions we need an ansatz that
explores the external (space) and internal (target) sym-
metries of the theory. We shall follow the methods
described in Ref. [20]. As shown in Appendix A, the
self-duality equations (3.3) are invariant under conformal
transformations in five dimensions, i.e., it is invariant under
the conformal group SOð6; 1Þ, which has rank 3. Therefore,
the maximum number of commuting Uð1Þ subgroups is
three, and they can be chosen to be generated by the
following conformal transformations [20]:

FIG. 1. The isosurfaces of the topological charge density (2.1) for the three-dimensional solutions (2.9), for a ¼ 1. The densities
correspond, from left to right, to ðm; nÞ ¼ ð2; 2Þ; ðm; nÞ ¼ ð4; 1Þ, and ðm; nÞ ¼ ð1; 4Þ. The layers from the core of the figure to its
outside are colored in the order yellow (1), blue (2), green (3), red (4), violet (5), and brown (6), where the nth layer denotes the
isosurface with the density Q3 ¼ 42−n=π2, i.e., the yellow surface corresponds to Q3 ¼ 4=π2, the green surface to Q3 ¼ ð4πÞ−2, etc.
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∂φ1
≡ x1∂2 − x2∂1;

∂φ2
≡ x3∂4 − x4∂3;

∂ξ ≡ x5
a
ðx1∂1 þ x2∂2 þ x3∂3 þ x4∂4Þ

þ 1

2a
ða2 þ x25 − x21 − x22 − x23 − x24Þ∂5: ð3:7Þ

The first two transformations are infinitesimal rotations
in the planes x1 − x2 and x3 − x4, and φ1 and φ2 are
the corresponding azimuthal angles. The third transforma-
tion is a linear combination of an infinitesimal special
conformal transformation Vðc5Þ ¼ x5xi∂i − 1

2
x2i ∂5 and an

infinitesimal translation VðP5Þ ¼ ∂5 along the x5 axis, and a
is a free length scale factor. In addition, ξ is the poloidal
angle in five dimensions.
The target-space symmetries are given by the unitary

group Uð3Þ, a subgroup of SOð6Þ which is the symmetry
group of S5. Indeed, the operators (1.7) and (1.8) are
invariant under the transformations

Za → UabZb; Z�
aZa ¼ 1; a; b ¼ 1; 2; 3; U† · U ¼ 1;

ð3:8Þ

which also has rank 3. We shall choose the three (maxi-
mum) commuting Uð1Þ subgroups to be

Ω1 ¼ diagðeiα1 ; 1; 1Þ; Ω2 ¼ diagð1; eiα2 ; 1Þ;
Ω3 ¼ diagð1; 1; eiα3Þ: ð3:9Þ

Following Ref. [20], we choose an ansatz that is invariant
under the joint action of the three external and three internal
commuting Uð1Þ’s given in Eqs. (3.7) and (3.9), respec-
tively. The ansatz is

Z ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ðz; θÞ

p
ein1φ1 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðz; θÞ

p
ein2φ2 ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − F1ðz; θÞ − F2ðz; θÞ
p

eimξÞ; ð3:10Þ

where n1, n2, and m are winding numbers associated with
the angles φ1;φ2 and ξ, respectively, and z and θ are the two
coordinates on IR5, orthogonal to the three angles φ1, φ2,
and ξ, and defined as

z ¼ 4a2ðx21 þ x22 þ x23 þ x24Þ
ða2 þ x21 þ x22 þ x23 þ x24 þ x25Þ2

;

θ ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23 þ x24
x21 þ x22

s
: ð3:11Þ

One can check that, indeed, ∂ζz ¼ ∂ζθ ¼ 0 for ζ ¼
ðφ1;φ2; ξÞ. The coordinates ðz; θ; ξ;φ1;φ2Þ constitute a
generalization to IR5 of the toroidal coordinates on IR3, and
in terms of them the Cartesian coordinates are written as

x1 ¼
a
p

ffiffiffi
z

p
cos θ cosφ1; x2 ¼

a
p

ffiffiffi
z

p
cos θ sinφ1;

x3 ¼
a
p

ffiffiffi
z

p
sin θ cosφ2; x4 ¼

a
p

ffiffiffi
z

p
sin θ sinφ2;

x5 ¼
a
p

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
sin ξ; ð3:12Þ

with

p ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
cos ξ; ð3:13Þ

where the domains of the variables are z ∈ ½0; 1�;
θ ∈ ½0; π=2�; ξ;φ1;φ2 ∈ ½0; 2π�. In terms of the new coor-
dinates, the metric is written as

ds2 ¼ a2

p2

�
1

4zð1 − zÞ dz
2 þ zdθ2 þ ð1 − zÞdξ2

þ zcos2θdφ2
1 þ zsin2θdφ2

2

�
: ð3:14Þ

From Eqs. (1.7) and (1.8) and the ansatz (3.10), one
observes that Az ¼ Aθ ¼ 0, and also that Hzθ ¼ Hφ1φ2

¼
Hφ1ξ ¼ Hφ2ξ ¼ 0. Therefore, the five equations in Eq. (3.3)
reduce to only three, since two of them are automatically
satisfied by the ansatz (3.10). In addition, the rhs of
Eq. (3.3) for the three remaining equations are all propor-
tional to the same function of z and θ, namely,
∂zF1∂θF2 − ∂zF1∂θF2. Therefore, substituting the ansatz
(3.10) into the BPS equation (3.3) leads to the following
three coupled first-order partial differential equations:

λf2I
a3

p3
n1F1 tan θ ¼ 16mn2ð∂zF1∂θF2 − ∂zF2∂θF1Þ;

λf2I
a3

p3
n2F2 cot θ ¼ 16mn1ð∂zF1∂θF2 − ∂zF2∂θF1Þ;

λf2I
a3

p3

z
1 − z

mð1 − F1 − F2Þ sin θ cos θ

¼ 16n1n2ð∂zF1∂θF2 − ∂zF2∂θF1Þ: ð3:15Þ

Since the right-hand sides of the equations in Eq. (3.15) are
all proportional, they imply that

n21F1 tanθ¼ n22F2 cotθ¼m2
z

1− z
ð1−F1−F2Þ sinθ cosθ:

ð3:16Þ

One can algebraically solve Eq. (3.16) for any nonzero
integers m; n1, and n2, and the solutions are given by
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F1 ¼
m2n22zcos

2θ

n21n
2
2ð1 − zÞ þm2zðn21sin2θ þ n22cos

2θÞ ;

F2 ¼
m2n21zsin

2θ

n21n
2
2ð1 − zÞ þm2zðn21sin2θ þ n22cos

2θÞ : ð3:17Þ

By substituting such solutions for F1 and F2 into
Eq. (3.15), we obtain

fI ¼
�

p3

jλja3
�1

2 4
ffiffiffi
2

p jmn1n2j3=2
½n21n22ð1 − zÞ þm2zðn21sin2θ þ n22cos

2θÞ� :

ð3:18Þ

Since fI is a real function, the sign of λ and of the integers
must satisfy

signλ ¼ signðmn1n2Þ: ð3:19Þ

The density of the topological charge (3.1) is given by

1

32π3
εijklmAiHjkHlm

¼ 1

2π3

�
p
a

�
5 mn1n2
z sin θ cos θ

½∂zF1∂θF2 − ∂zF2∂θF1�

¼ 1

π3

�
p
a

�
5 m5n51n

5
2

½n21n22ð1 − zÞ þm2zðn21sin2θ þ n22cos
2θÞ�3 ;

ð3:20Þ

where we have used the convention ε12345 ¼ 1, and so

εzθφ1φ2ξ ¼
�
p
a

�
5 2

z sin θ cos θ
: ð3:21Þ

The volume element is

d5x ¼
�
a
p

�
5 1

2
z sin θ cos θdzdθdφ1dφ2dξ: ð3:22Þ

We now use the fact that

Z
1

0

dz
Z π

2

0

dθ
z sin θ cos θ

½n21n22ð1 − zÞ þm2zðn21sin2θ þ n22cos
2θÞ�3

¼ 1

4

1

m4n41n
4
2

ð3:23Þ

to find that the topological charges of these solutions are

Q5 ¼ mn1n2: ð3:24Þ

For the configurations satisfying the self-duality equa-
tions (3.3), the static energy (3.4) becomes

EI ¼
Z

d5xE; with E ¼ M2f2I A
2
i : ð3:25Þ

The energy density is given by

E ¼ 32
M
e

�
p
a

�
5 jmn1n2j5
½n21n22ð1− zÞþm2zðn21sin2θþn22cos

2θÞ�3 :

ð3:26Þ

Therefore, using Eqs. (3.22) and (3.23), one gets

EI ¼ 32π3
M
e
jmn1n2j: ð3:27Þ

From Eqs. (3.20) and (3.26), one observes that the densities
of the topological charge and static energy are proportional.
In order to visualize the shape of such densities, let us write
the density of the topological charge [given in Eq. (3.20)] in
terms of Cartesian coordinates as

Q ¼ 32

a5π3
ð1þ r̃2Þðmn1n2Þ5

½n21n22ð1þ r̃2Þ2 þ 4n21 ˜ρ2
2ðm2 − n22Þ þ 4n22ρ̃1

2ðm2 − n21Þ�3
; ð3:28Þ

with

˜ρ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜x12 þ ˜x22

q
; ˜ρ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜x32 þ ˜x42

q
;

r̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜ρ1
2 þ ˜ρ2

2 þ ˜x52
q

; ð3:29Þ

where x̃i ¼ xi=a. Note that Q does not depend on the
angles φ1 and φ2, and so the energy and topological charge
densities are invariant under the group SOð2Þ × SOð2Þ of

rotations in the x1 − x2 and x3 − x4 planes for any nonzero
values of the integers m, n1, and n2. In addition, for the
cases where n21 ¼ n22, such densities only depend on r̃

2 and
x̃52, and so they are invariant under the group SOð4Þ of
rotations on the subspace IR4 perpendicular to the x5 axis.
For the cases where m2 ¼ n21 (or m2 ¼ n22), the densities
only depend on r̃2 and ρ̃2

2 (or r̃2 and ρ̃1
2), and so they are

invariant under the group SOð2Þ × SOð3Þ of rotations in
the x3 − x4 (or x1 − x2) plane, and on the subspace IR3

perpendicular to the x3 − x4 (or x1 − x2) plane. Finally, for
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the cases where m2 ¼ n21 ¼ n22, the densities only depend
on r̃2 and so they are invariant under the group SOð5Þ of
rotations on the whole space IR5, i.e., the densities are
spherically symmetric.
In Fig. 2 we show some examples of surfaces of constant

topological charge density in terms of the three coordinates
˜ρ1; ρ̃2, and ˜x5. Their structure is very similar to the three-
dimensional case (see Fig. 1). When m2 ¼ n21 ¼ n22, the
isosurfaces are four-dimensional spheres, and thus they are
SOð5Þ invariant. For n21 ¼ n22 the isosurfaces are indeed
SOð4Þ invariant, and we note that for m2 > n21 ¼ n22 the
outer isosurfaces have a five-dimensional prolate shape, but
the inside has a dumbbell-like structure. On the other hand,
form2 < n21 ¼ n22, the outer isosurfaces look oblate, but the
inner shells have a five-dimensional torus shape.

B. Type II theory on S5

The second field theory for the case N ¼ 2 corresponds
to the following splitting of the topological charge density:

AII
ij ≡MfIIεijklmAkHlm; ÃII

ij ≡ 1

efII
Hij;

i; j; k; l; m ¼ 1; 2;…5; ð3:30Þ

with fII having the same nature as fI introduced above.
The self-duality equations in this case are

λf2IIεijklmA
kHlm ¼ Hij; with λ ¼ �Me: ð3:31Þ

The solutions of Eq. (3.31) are also solutions of the
Euler-Lagrange equations associated to the static energy
functional

EII ¼
1

2

Z
d5x

�
M2f2IIðϵijklmAkHlmÞ2 þ 1

e2f2II
H2

ij

�
;

ð3:32Þ

and the corresponding action is

SII ¼ −
1

2

Z
d6x

�
M2

3
f2IIðϵμνρσαβAσHαβÞ2 þ 1

e2f2II
H2

μν

�
:

ð3:33Þ

The self-duality equations (3.31) is also invariant under
conformal transformations in five dimensions, as shown in
Appendix A. Therefore, we shall use the same ansatz
[given in Eq. (3.10)] used to construct the solutions for the
self-duality equations (3.3). When the ansatz (3.10) is
inserted into the ten equations in Eq. (3.31), one finds that
four of them are automatically satisfied. The remaining six
equations are given by

ΛðF1∂θF2 − F2∂θF1Þ ¼ −n21zð1 − zÞ tan θ∂zF1 þ Λ∂θF2;

ð3:34Þ

ΛðF1∂θF2 − F2∂θF1Þ ¼ −n22zð1 − zÞ cot θ∂zF2 − Λ∂θF1;

ð3:35Þ

FIG. 2. The isosurfaces of the topological charge density (3.20) for the five-dimensional solutions (3.17), with ρ̃a and x̃5 defined in
Eq. (3.29). The densities correspond, from left to right, to ðm; n1; n2Þ ¼ ð1; 1; 1Þ, ðm; n1; n2Þ ¼ ð4; 1; 1Þ, ðm; n1; n2Þ ¼ ð1; 2; 2Þ, and
ðm; n1; n2Þ ¼ ð1; 4; 1Þ. The layers from the core of the figure to its outside are colored in the order yellow (1), blue(2), green (3), red (4),
violet (5), and brown (6), where the nth layer denotes the isosurface with the density Q5 ¼ 53−n=ða5π3Þ, i.e., the yellow surface
corresponds to Q5 ¼ 25=ða5π3Þ, the green surface to Q5 ¼ 1=ða5π3Þ, etc.
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ΛðF1∂θF2 − F2∂θF1Þ ¼ m2z2 sin θ cos θ∂zðF1 þ F2Þ;
ð3:36Þ

ΛðF1∂zF2 − F2∂zF1Þ ¼
n21
4

tan θ
z

∂θF1 þ Λ∂zF2; ð3:37Þ

ΛðF1∂zF2 − F2∂zF1Þ ¼
n22
4

cot θ
z

∂θF2 − Λ∂zF1; ð3:38Þ

ΛðF1∂zF2 − F2∂zF1Þ ¼ −
m2

4

sin θ cos θ
1 − z

∂θðF1 þ F2Þ;
ð3:39Þ

where we have denoted

Λ≡ λf2II
p
a
n1n2m: ð3:40Þ

The structure of the equations (3.34)–(3.39) is more
complex than that of Eq. (3.15), and we have to analyze
them more carefully. Subtracting Eq. (3.35) from Eq. (3.34)
and then combining with Eq. (3.39) (multiplied by Λ), one
gets

�
Λ2F2−

m2

4
zn21sin

2θ

�
∂zF1¼

�
Λ2F1−

m2

4
zn22cos

2θ

�
∂zF2:

ð3:41Þ

Now, subtracting Eq. (3.38) from Eq. (3.37) and then
combining with Eq. (3.36) (multiplied by Λ), one gets

�
Λ2F2−

m2

4
zn21sin

2θ

�
∂θF1¼

�
Λ2F1−

m2

4
zn22cos

2θ

�
∂θF2:

ð3:42Þ

Equations (3.41) and (3.42) imply that

�
Λ2F1 −

m2

4
zn22cos

2θ

��
Λ2F2 −

m2

4
zn21sin

2θ

�
× ½∂zF1∂θF2 − ∂zF2∂θF1� ¼ 0: ð3:43Þ

If we impose ∂zF1∂θF2 − ∂zF2∂θF1 ¼ 0, then it follows
that the density of topological charge vanishes [see
Eq. (3.20)], and so the solution will be topologically trivial.
Therefore, we have to take

F1 ¼
m2z
4Λ2

n22cos
2θ; F2 ¼

m2z
4Λ2

n21sin
2θ: ð3:44Þ

But Eq. (3.44) implies that both F1 and F2 have the same z
dependence, and so it follows that F1∂zF2 − F2∂zF1 ¼ 0.
But from Eq. (3.39) that implies that ∂θðF1 þ F2Þ ¼ 0, and
consequently [using Eq. (3.44)] one has that

Λ2 ¼ m2z
4ηðzÞ2 ½n

2
1sin

2θ þ n22cos
2θ� ð3:45Þ

for some function ηðzÞ. Therefore,

F1 ¼ ηðzÞ2 n22cos
2θ

n21sin
2θ þ n22cos

2θ
;

F2 ¼ ηðzÞ2 n21sin
2θ

n21sin
2θ þ n22cos

2θ
: ð3:46Þ

Subtracting Eq. (3.35) from Eq. (3.34) and using the
relations above, one gets an equation that can only be
satisfied if n21 ¼ n22 ≡ n2. Now, we multiply Eq. (3.34) by
cos2 θ, add it to Eq. (3.35) multiplied by sin2 θ, and subtract
that from Eq. (3.36) to get

∂zη
2½m2z2 þ n2zð1 − zÞ� − 2η2Λ ¼ 0: ð3:47Þ

Subtracting Eq. (3.37) from Eq. (3.38), one gets

2zΛ∂zη
2 − n2η2 ¼ 0: ð3:48Þ

Multiplying Eq. (3.48) by 2Λ and subtracting Eq. (3.47)
(multiplied by n2), one gets

∂zη
2½4Λ2 − n2ðm2zþ n2ð1 − zÞÞ� ¼ 0: ð3:49Þ

If we take η to be constant, then F1 and F2 do not depend
on z, and so ∂zF1∂θF2 − ∂zF2∂θF1 ¼ 0, which means that
the density of topological charge vanishes [see Eq. (3.20)]
and we do not want that because the solutions would be
topologically trivial. We then have to take Λ2 ¼ n2ðm2zþ
n2ð1 − zÞÞ=4. But to make this compatible with Eq. (3.45),
we need to take η2 ¼ m2z=½m2zþ n2ð1 − zÞ�. But inserting
that into Eq. (3.48), with Λ ¼ �jnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2zþ n2ð1 − zÞ

p
=2,

one gets that we need jnj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2zþ n2ð1 − zÞ

p
. The only

possible solution is m2 ¼ n2 and to take Λ to be positive,
and thus from Eq. (3.40) one gets the restriction

signðλÞ ¼ signðnÞ; ð3:50Þ

where we have denoted

n21 ¼ n22 ¼ m2 ≡ n2: ð3:51Þ

Summarizing, the self-dual solutions are

F1 ¼ zcos2θ; F2 ¼ zsin2θ; fII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2jλnj
a
p

s
:

ð3:52Þ

Note that the solutions (3.52) for F1 and F2 are the same as
the solutions (3.17) for the cases where m2 ¼ n21 ¼ n22.
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Consequently, the solutions for the fields Za, and thus for
the vector Ai and tensor Hij, are the same for the type II
theory (3.33) as for the type I theory (3.4) for the cases
m2 ¼ n21 ¼ n22. The solutions for the functions fI and fII ,
however, are different even if m2 ¼ n21 ¼ n22. Since the
topological charge density does not depend on the func-
tions fI and fII, it is the same for those two classes of
solutions of these two types of theories. Therefore, the
topological charge for the solutions (3.52) is given by

Q5 ¼ signðmn1n2Þjnj3; ð3:53Þ

where the sign of the charge comes from the choice of
relative signs between n and the integers n1, n2, and m
in Eq. (3.51).
The energy densities of these solutions are also the same

due to their self-dual character. Indeed, from Eqs. (3.3) and
(3.4) one obtains that for self-dual solutions one has
EI ∼

R
d5xf2IA

2
i . Similarly, from Eqs. (3.31) and (3.33)

one gets that EII ∼
R
d5x 1

f2II
H2

ij for self-dual solutions. But

Eq. (3.3) implies f2IA
2
i ∼ εijklmAiHjkHlm, and Eq. (3.31)

implies 1
f2II

H2
ij ∼ εijklmAiHjkHlm. Consequently, for the

solutions (3.52), the topological charge density and energy
density are proportional and spherically symmetric, like the
solutions (3.17) for the cases where m2 ¼ n21 ¼ n22 [see

discussion below Eq. (3.29)]. In fact, we have that the
energy of the solutions (3.52) is given by

EII ¼
32π3M

e
jnj3: ð3:54Þ

IV. SOLUTIONS ON S2N + 1

For the case of self-dual models defined on R2Nþ1, with
generic values of N, there are many possibilities for the
splitting of the density of topological charge (1.6). We shall
consider only the case where the splitting is such that

AN
p1

≡MfNAp1
;

ÃN
p1

≡ 1

efN
εp1p2���p2Nþ1

Hp2p3Hp4p5 � � �Hp2Np2Nþ1 ; ð4:1Þ

and the self-duality equation is

λf2NAp1
¼ εp1p2���p2Nþ1

Hp2p3Hp4p5 � � �Hp2Np2Nþ1 ;

with λ ¼ �Me: ð4:2Þ

Therefore, according to the reasoning explained in the
Introduction, solutions of Eq. (4.2) are solutions of the
Euler-Lagrange equations following from the static energy
functional given by

EN ¼ 1

2

Z
d2Nþ1x

�
M2f2NA

2
i þ

1

e2f2N
ðεp1p2���p2Nþ1

Hp2p3Hp4p5 � � �Hp2Np2Nþ1Þ2
�
: ð4:3Þ

The corresponding action in the (2N þ 2)-dimensional Minkowski space-time is

SN ¼ 1

2

Z
d2Nþ2x

�
M2f2NA

2
μ −

1

2e2f2N
ðεμ0μ1μ2���μ2Nþ1

Hμ2μ3Hμ4μ5 � � �Hμ2Nμ2Nþ1Þ2
�
: ð4:4Þ

The bound on the static energy is given by

EN ¼ 1

2

Z
d2Nþ1x

�
MfNAp1

� 1

efN
εp1p2���p2Nþ1

Hp2p3Hp4p5 � � �Hp2Np2Nþ1

�
2

∓ M
e

Z
d2Nþ1xεp1p2���p2Nþ1

Ap1Hp2p3Hp4p5 � � �Hp2Np2Nþ1

≥
ð4πÞNþ1M

2e
jQ2Nþ1j; ð4:5Þ

where Q2Nþ1 was given in Eq. (1.6). Clearly the bound is
saturated by solutions of the self-duality equations (4.2).
In order to construct solutions to the self-duality equa-

tions (4.2) we explore their symmetries. As discussed
below Eq. (1.8), the quantities Ai and Hij are invariant
under the transformations Z → UZ, with U ∈ UðN þ 1Þ,
and so Eq. (4.2) are invariant under such UðN þ 1Þ
symmetry. On the other hand, as shown in Appendix A,

the self-duality equations (4.2) are invariant under the
conformal group SOð2N þ 2; 1Þ. It turns out that both
UðN þ 1Þ and SOð2N þ 2; 1Þ have N þ 1 commuting
Uð1Þ subgroups. For the case ofUðN þ 1Þ these subgroups
can be taken to form the Cartan subgroup of diagonal
matrices, i.e., U ¼ diagðeiα1 ; eiα2 ;…eiαNþ1Þ. For the con-
formal group SOð2N þ 2; 1Þ we shall take these commut-
ing Uð1Þ subgroups to be generated by N commuting
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spatial rotations plus a linear combination of a special
conformal transformation and a translation along the xNþ1

axis, as follows (see Ref. [20] for details):

∂φi
≡ x2i−1∂x2i − x2i∂x2i−1 ; i ¼ 1; 2;…N;

∂ξ ≡ x2Nþ1

a

X
i≠2Nþ1

xi∂xi

þ 1

2a

�
a2 þ x22Nþ1 −

X
i≠2Nþ1

x2i

�
∂x2Nþ1

; ð4:6Þ

where a is an arbitrary parameter with dimension of length.
We shall construct an ansatz that is invariant under the
diagonal action of the internal and external N þ 1 commut-
ing Uð1Þ subgroups, i.e., eiαi ⊗ ∂φi

, i ¼ 1; 2;…N, and
eiα2Nþ1 ⊗ ∂ξ. The appropriate coordinates for such an
ansatz are a generalization of the toroidal coordinates to
R2Nþ1, made of the angles φi, i ¼ 1; 2;…N, and ξ, together
with coordinates z, 0 ≤ z ≤ 1, and yα, α ¼ 1; 2;…N − 1,
with 0 ≤ yα ≤ 1, where the Cartesian coordinates are
written as follows:

x1 ¼
a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y1

p
cosφ1; x2 ¼

a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y1

p
sinφ1;

x3 ¼
a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ð1 − y2Þ

p
cosφ2; x4 ¼

a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ð1 − y2Þ

p
sinφ2;

x5 ¼
a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2ð1 − y3Þ

p
cosφ3; x6 ¼

a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2ð1 − y3Þ

p
sinφ3;

..

.

x2α−1 ¼
a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − yα

p Yα−1
β¼1

ffiffiffiffiffi
yβ

p
cosφα; x2α ¼

a
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − yα

p Yα−1
β¼1

ffiffiffiffiffi
yβ

p
sinφα;

..

.

x2N−1 ¼
a
p

ffiffiffi
z

p YN−1

α¼1

ffiffiffiffiffi
yα

p
cosφN; x2N ¼ a

p

ffiffiffi
z

p YN−1

α¼1

ffiffiffiffiffi
yα

p
sinφN;

x2Nþ1 ¼
a
p

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
sin ξ; ð4:7Þ

with z ∈ ½0; 1�, yα ∈ ½0; 1�, and ξ;φi ∈ ½0; 2π�, with α ¼ 1; 2;…N − 1, i ¼ 1; 2;…N, and where we have introduced

p ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
cos ξ: ð4:8Þ

The metric in R2Nþ1 is given by

ds2 ¼ h2zdz2 þ
XN−1

α¼1

h2yαdy
2
α þ

XN
i¼1

h2φi
dφ2

i þ h2ξdξ
2; ð4:9Þ

where the scaling factors are

hz ¼
a
p

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp ; hyα ¼

a
p

ffiffiffi
z

p Q
α−1
β¼1

ffiffiffiffiffiyβp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yαð1 − yαÞ

p ; hξ ¼
a
p

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
;

hφα
¼ a

p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − yα

p Yα−1
β¼1

ffiffiffiffiffi
yβ

p
; hφN

¼ a
p

ffiffiffi
z

p YN−1

α¼1

ffiffiffiffiffi
yα

p
; ð4:10Þ

with α ¼ 1; 2;…N − 1.
The ansatz that is invariant under the diagonal action of Uð1Þ’s internal and external commuting subgroups (described

above) is given by

Z ¼

0
B@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F1ðz; yαÞ
p

ein1φ1 ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðz; yαÞ

p
ein2φ2 ;…;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FNðz; yαÞ

p
einNφN ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

XN
k¼1

Fk

vuut eimξ

1
CA; ð4:11Þ
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where ni andm are integers. Inserting the ansatz (4.11) into the quantities Ai andHij, introduced in Eqs. (1.7) and (1.8), one
obtains that

Az ¼ Ayα ¼ 0; Aξ ¼ −m
�
1 −

XN
k¼1

Fk

�
; Aφi

¼ −niFi; ð4:12Þ

and

Hφiz ¼ ni∂zFi; Hφiyα ¼ ni∂yαFi; Hφiφj
¼ Hφiξ ¼ Hzyα ¼ Hyαyβ ¼ 0;

Hξz ¼ −m
XN
k¼1

∂zFk; Hξyα ¼ −m
XN
k¼1

∂yαFk: ð4:13Þ

Therefore, from Eq. (4.12) one observes that the lhs of the
self-duality equations (4.2) will be nonzero only when the
index p1 corresponds to one of the variables in the set of
N þ 1 variables ðφi; ξÞ. On the other hand, the rhs of
Eq. (4.2) contains the product of N components of the
tensor Hij, and so if p1 does not belong to the set ðφi; ξÞ,
the set of indices p2p3…p2Nþ1 will contain all the indices
of that set, and so at least one of the components of the
tensorHij in that product will have its two indices in the set
ðφi; ξÞ, and so it vanishes. Therefore, both sides of Eq. (4.2)
vanish when the index p1 does not belong to the set ðφi; ξÞ.
It turns out that when the index p1 belongs to the set
ðφi; ξÞ, the rhs of Eq. (4.2) will be proportional to
εp1r1r2…rNzy1…yN−1

Hr1zHr2y1…HrNyN−1 , with the indices ri
taking values in the set ðφi; ξÞ, but different from p1. But
that is proportional to the determinant of the N × N matrix
∂iFj, with the index i belonging to the set of N variables
ðz; yαÞ. Consequently, the self-duality equations (4.2) re-
duce to a set of N þ 1 equations where their left-hand sides
are linear in the functions Fi, and do not involve their
derivatives. On the other hand, their right-hand sides are
all proportional to the determinant of the matrix ∂iFj.
Choosing the sign of the ε symbol such that

εξφ1…φNzy1…yN−1 ¼ 1

hξhφ1
…hφN

hzhy1…hyN−1

; ð4:14Þ

one then gets that the self-duality equations (4.2) imply the
following relations:

n21F1

h2φ1

¼ n22F2

h2φ2

¼ … ¼ n2NFN

h2φN

¼ m2

h2ξ

�
1 −

XN
k¼1

Fk

�

¼ −
ð−1ÞNðN−1Þ=22NN!

hξhφ1
…hφN

hzhy1…hyN−1

�
m
YN
k¼1

nk

�
det ð∂FÞ
λf2N

;

ð4:15Þ

where

det ð∂FÞ≡ εi1i2…iN∂zFi1∂y1Fi2∂y2Fi3…∂yN−1
FiN ; ð4:16Þ

with ε123…N ¼ 1. We are interested in those cases where all
of the integers m and ni, i ¼ 1; 2;…N are nonzero since
otherwise (as we show below) the topological charge
vanishes. Then, in such cases one can easily solve these
algebraic equations to get the Fi’s as

Fi ¼
h2φi

=n2i
h2ξ=m

2 þP
N
j¼1 h

2
φj
=n2j

≡ κi=n2i
Δ

;

Δ ¼ κξ
m2

þ
XN
j¼1

κj
n2j

; i ¼ 1; 2;…N; ð4:17Þ

with

κξ ¼
1 − z
z

; κN ¼
YN−1

α¼1

yα; κα ¼ ð1 − yαÞ
Yα−1
β¼1

yβ;

α ¼ 1; 2;…N − 1: ð4:18Þ

Therefore, we have that ∂zFi ¼ −Fi
∂zΔ
Δ and ∂yαFi ¼

∂yα κi
n2iΔ

− Fi
∂yαΔ
Δ , where ∂zΔ ¼ −1=z2m2. Consequently,

Eq. (4.16) becomes

detð∂FÞ ¼ detM
z2ΔNþ1m2

Q
N
j¼1 n

2
j
; ð4:19Þ

where the matrix M has the entries M1j ¼ κj and
Mij ¼ ∂yi−1κj for i ≥ 2, and so detM ¼ εi1i2…iNκi1×∂y1κi2∂y2κi3…∂yN−1

κiN . We now introduce the quantities

ιN ≡XN
j¼1

κj ¼ 1; ια ≡
Xα
j¼1

κj ¼ 1 −
Yα
β¼1

yβ;

α ¼ 1; 2;…N − 1: ð4:20Þ

Consider a matrix Λ with entries Λij ¼ 1 for i ≤ j, and
Λij ¼ 0 for i > j, and so detΛ ¼ 1. Therefore, the matrix
N ≡MΛ has entries N1j ¼ ιj and Nij ¼ ∂yi−1 ιj for i ≥ 2,
and so detM ¼ detN ¼ εi1i2…iN ιi1∂y1 ιi2∂y2 ιi3…∂yN−1

ιiN .
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Since ιN ¼ 1, the only possibility for i1 in this expression is
i1 ¼ N, and since only ιN−1 depends on yN−1, it follows that
the only possibility for iN is iN ¼ N − 1. It then follows
that the only possibility for iN−1 is iN−1 ¼ N − 2, and so on.
Therefore,

detM ¼ εN12…N−1∂y1 ι1∂y2 ι2…∂yN−1
ιN−1

¼ yN−2
1 yN−3

2 …y2N−3yN−2; ð4:21Þ

and so

det ð∂FÞ ¼
Q

N−2
β¼1 y

N−β−1
β

z2ΔNþ1m2
Q

N
j¼1 n

2
j
: ð4:22Þ

From Eqs. (4.15) and (4.22) one can determine fN as

f2N ¼ −
�
a
p

�
2 ð−1ÞNðN−1Þ=22NN!

hξhφ1
…hφN

hzhy1…hyN−1

Q
N−2
β¼1 y

N−β−1
β

zΔNλm
Q

N
j¼1 nj

:

ð4:23Þ

Since fN is real, one needs

sign

�
λm

YN
j¼1

nj

�
¼ −ð−1ÞNðN−1Þ=2: ð4:24Þ

Using Eq. (4.10) one gets that hξhφ1
…hφN

hzhy1…hyN−1
¼

ðapÞ2Nþ1 zN−1

2N
yN−2
1 yN−3

2 …yN−2, and so

fN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p
a

�
2N−1 22NN!

zNΔN jλmQ
N
j¼1 njj

s
: ð4:25Þ

Let us now evaluate the topological charge Q2Nþ1 given
in Eq. (1.6). Due to the self-duality equations (4.2), one can
write it as

Q2Nþ1 ¼
Z

d2Nþ1xQ2Nþ1; Q2Nþ1 ¼
2λ

ð4πÞNþ1
f2NA

2
p:

ð4:26Þ

Using the solutions given in Eqs. (4.12) and (4.17), one
gets that

A2
p ¼ A2

ξ

h2ξ
þ
XN
i¼1

A2
φi

h2φi

¼
�
p
a

�
2 1

zΔ
: ð4:27Þ

Therefore, the density of topological charge is given by

Q2Nþ1 ¼
signðλÞ22Nþ1N!

ð4πÞNþ1jmQ
N
j¼1 njj

�
p
a

�
2Nþ1 1

zNþ1ΔNþ1
:

ð4:28Þ

On the other hand, the volume element is

d2Nþ1x ¼
�
a
p

�
2Nþ1 zN−1

2N

× yN−2
1 yN−3

2 …yN−2dξdφ1…dφNdzdy1…dyN−1:

ð4:29Þ

Integrating in the angles ξ and φi, i ¼ 1; 2;…N, one
gets that

Q2Nþ1 ¼
signðλÞN!

jmQ
N
j¼1 njj

Z
dzdy1…dyN−1

yN−2
1 yN−3

2 …yN−2

z2ΔNþ1

ð4:30Þ

Using the results of Appendix B [see Eq. (B8)] one gets that

Q2Nþ1 ¼ signðλÞjm
YN
j¼1

njj ¼ −ð−1ÞNðN−1Þ=2m
YN
j¼1

nj;

ð4:31Þ

where we have used Eq. (4.24).

V. CONCLUSIONS

In this paper, we have introduced Skyrme-type models in
(2N þ 2)-dimensional Minkowski space-time with the
target space being the spheres S2Nþ1. The models do not
have a gauge symmetry, and consequently in order to
have finite-energy static solutions the fields must go to
a constant at spatial infinity. Therefore, as long as topo-
logical considerations are concerned, the space submani-
fold R2Nþ1 can be compactified into S2Nþ1

space , and the static
solutions define maps S2Nþ1

space → S2Nþ1
target . The topological

charge (winding number) associated to such maps has an
integral representation, and therefore can be used to
construct field theories with self-dual sectors as explained
in the Introduction. We have used the freedom described in
Eq. (1.5) to introduce an extra functional f that makes the
theories conformally invariant in the space submanifold
R2Nþ1. Using the methods of Ref. [20], we used the con-
formal group SOð2N þ 2; 1Þ and the target-space sym-
metry group UðN þ 1Þ to construct a static ansatz based on
a generalization of the toroidal coordinates to a space of
(2N þ 1) dimensions. The ansatz was then used to obtain
an infinite number of solutions of the self-duality equations
carrying nontrivial topological charges. Our construction
generalizes the results obtained in Ref. [8] for the three-
dimensional case (N ¼ 1). As shown in Refs. [7,8] the
three-dimensional models do not present finite-energy
solutions when the functional f is constant. This is a
consequence of a theorem due to Chandrasekhar in the
context of plasma and solar physics [22]. We believe the
same happens for the models in (2N þ 1) dimensions
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considered in this paper, and it would be interesting to
generalize that theorem in a more general context.
As explained in the text, the number of possible ways

to split the density of the topological charge grows
substantially as N increases. Each one of these possibil-
ities leads to a new model. For the five-dimensional case
(N ¼ 2) we have considered in detail the two possible
models and constructed the topological self-dual
Skyrmions for them. For the higher-dimensional cases
(N > 2), we considered only one possibility correspond-
ing to the case where the self-duality equations impose
the vector Ai [defined in Eq. (1.7)] multiplied by the
functional f2N , to be proportional to the Hodge dual of the
exterior product of N tensors Hij [defined in Eq. (1.8)].
This case is physically more interesting because the
corresponding theory has a kinetic term quadratic in
space-time derivatives of the fields. In addition, it does
present restrictions on the possible values of the topo-
logical charges of the solutions.
The introduction of the functionals fN in the splitting of

the topological charges has lead to the conformal sym-
metry of the models in the space submanifold, and made
possible the existence of finite-energy self-dual solutions
of nontrivial topological charges. As we mentioned above,
we believe that there cannot exist finite-energy solutions
for such theories when these functionals are constants.
Despite the important role played by such functionals,
their physical nature is not well understood yet, and
further studies are necessary to understand them. In
addition, it would be interesting to investigate the break-
ing of the conformal symmetry and its effects on the
soliton solutions.
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APPENDIX A: CONFORMAL SYMMETRY OF
THE BPS EQUATIONS

In this appendix, we prove that the BPS equations are
invariant under the conformal group on R2Nþ1. Let us
consider infinitesimal coordinate transformations δxi ¼ ζi,
i ¼ 1; 2;…2N þ 1. We take the vector of complex
fields Za, a ¼ 1; 2;…N þ 1 [introduced in Eq. (1.7)] as
scalar fields under such space transformations. Therefore,
one has [20]

δZ ¼ 0; δAi ¼ −∂iζjAj; δHij ¼ −∂iζkHkj − ∂jζkHik:

ðA1Þ

The splitting of the topological charge (1.6) [see
Eq. (1.1)] leads to self-duality equations of the form
λf2w ¼ ṽ, where w and v are differential forms constructed
out of the vector and tensor fields Ai and Hij [introduced in
Eqs. (1.7) and (1.8)]. One has that w is a (2pþ 1)-form
as w ¼ A ∧ H ∧ H… ∧ H (with p H’s) and v is a
2ðN − pÞ-form as v ¼ H ∧ H… ∧ H [with (N − p)
H’s]. In addition, ṽ is the Hodge dual of v. In components,
the self-duality equations read

λf2wi1i2…i2pþ1
¼ 1

2ðN − pÞ! εi1i2…i2pþ1j1j2…j2ðN−pÞvj1j2…j2ðN−pÞ ;

ðA2Þ

with λ ¼ �Me [see Eq. (4.2)]. Using Eq. (A1), one then
gets that the self-duality equations (A2) transform as

λf2
�
2
δf
f
wi1i2…i2pþ1

− ∂i1ζkwki2…i2pþ1
− ∂i2ζkwi1k…i2pþ1

… − ∂i2pþ1
ζkwi1i2…k

�

¼ −
εi1i2…i2pþ1j1j2…j2ðN−pÞ

2ðN − pÞ! ½∂j1ζkvkj2…j2ðN−pÞ þ ∂j2ζkvj1k…j2ðN−pÞ þ ∂j2ðN−pÞζkvj1j2…k�

¼ −
εi1i2…i2pþ1j1j2…j2ðN−pÞ

½2ðN − pÞ − 1�! ∂j1ζkvkj2…j2ðN−pÞ

¼ −
εi1i2…i2pþ1j1j2…j2ðN−pÞεl1l2…l2pþ1kj2…j2ðN−pÞ

½2ðN − pÞ − 1�!ð2pþ 1Þ! λf2∂j1ζkwl1l2…l2pþ1
; ðA3Þ

where in the last equality we have used the Hodge dual of Eq. (A2). Therefore, in order for the self-duality equations to be
invariant one needs that�

2
δf
f

þ ∂kζk

�
wi1i2…i2pþ1

− ð∂i1ζk þ ∂kζi1Þwki2…i2pþ1
… − ð∂i2pþ1

ζk þ ∂kζi2pþ1
Þwi1i2…k ¼ 0:

Such a relation holds true if the space transformations are conformal, i.e., if the functions ζi satisfy
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∂iζj þ ∂jζi ¼ 2Dδij ðA4Þ

for some function D, and if the transformation of the
function f satisfies

δf ¼ 1

2
½4p − 2N þ 1�Df: ðA5Þ

As was shown in Ref. [20], the equations in Eq. (A4) are
actually the equations that define the conformal trans-
formations. Indeed, if D is a linear function of xi, ζi
corresponds to the special conformal transformations; if D
is a constant, then ζi leads to the dilatations; and if D ¼ 0,
then ζi defines the translations and rotations.
In addition, one can check that

δðd2Nþ1xÞ ¼ ð2N þ 1ÞDd2Nþ1x; ðA6Þ

δðf2w2Þ ¼ −ð2N þ 1ÞDf2w2; ðA7Þ

δðf−2ṽ2Þ ¼ −ð2N þ 1ÞDf−2ṽ2; ðA8Þ

δðwṽÞ ¼ −ð2N þ 1ÞDwṽ: ðA9Þ

Therefore, the topological charge Q ∼
R
d2Nþ1xwṽ and the

static energy given by E ∼
R
d2Nþ1x½M2f2w2 þ ṽ2

e2f2� (with
λ ¼ �Me) are invariant under the conformal transforma-
tions in R2Nþ1.
Note that the functions f1, fI , and fN , introduced in

Eqs. (2.2), (3.2), and (4.1) respectively, correspond to the
cases p ¼ 0 and N ¼ 1, N ¼ 2, and N ¼ N respectively.
The function fII , introduced in Eq. (3.30), corresponds to
the case p ¼ 1 and N ¼ 2. Therefore, from Eq. (A5), one
has that such functions transform under the conformal
group as

δf1
f1

¼ −
D
2
;

δfI
fI

¼ −
3

2
D;

δfII
fII

¼ D
2
;

δfN
fN

¼ −
ð2N − 1Þ

2
D: ðA10Þ

APPENDIX B: THE TOPOLOGICAL
CHARGE INTEGRAL

In this appendix we evaluate the integral appearing in
Eq. (4.30) for the topological charge. In fact, instead of
evaluating it directly we find a recursive relation for such
integrals. We start with the first one, corresponding to the
case N ¼ 1 and given by

I1ðm; n1Þ≡
Z

1

0

dz
z2

1

Δ2
ð1Þ

¼ m2n21; with

Δð1Þ ≡ 1 − z
zm2

þ 1

n21
: ðB1Þ

The second integral is

I2ðm; n1; n2Þ≡
Z

1

0

dz
z2

Z
1

0

dy1
1

Δ3
ð2Þ

; with

Δð2Þ ≡ 1 − z
zm2

þ 1 − y1
n21

þ y1
n22

: ðB2Þ

The quantity Δð2Þ in the denominator is linear in y1
and so the y1 integration can be easily performed
to give

I2ðm; n1; n2Þ ¼
1

2

n21n
2
2

ðn21 − n22Þ
½I1ðm; n1Þ − I1ðm; n2Þ�

¼ 1

2
m2n21n

2
2: ðB3Þ

We now consider the integral appearing in Eq. (4.30) for
N ≥ 3, which is given by

INðm; n1; n2…; nNÞ≡
Z

1

0

dz
z2

Z
1

0

dy1…
Z

1

0

dyN−1

×
yN−2
1 yN−3

2 …yN−2

ΔNþ1
ðNÞ

; ðB4Þ

where ΔðNÞ is the same as Δ defined in Eq. (4.17), which
we write here as

ΔðNÞ ≡ ΔðN−1Þ þ bðNÞyN−1; ðB5Þ

with

ΔðN−1Þ ≡ 1 − z
zm2

þ
XN−2

j¼1

κj
n2j

þ 1

n2N−1

YN−2

β¼1

yβ;

bðNÞ ≡
�
1

n2N
−

1

n2N−1

�YN−2

β¼1

yβ; ðB6Þ

where κj is defined in Eq. (4.18). Again, ΔðNÞ is linear
in yN−1 and the yN−1 integration leads to the recursion
relation

INðm; n1; n2…; nNÞ ¼
1

N
ðn2N−1 − n2NÞ
n2N−1n

2
N

× ½IN−1ðm; n1; n2…; nN−2; nN−1Þ
− IN−1ðm; n1; n2…; nN−2; nNÞ�:

ðB7Þ

Using such a recursion relation, one gets that

INðm; n1; n2…; nNÞ ¼
1

N!
m2n21n

2
2…n2N: ðB8Þ
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