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In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the
scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole
solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and
novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd
polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field,
satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically
flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the
corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a
nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems.
We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.
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I. INTRODUCTION

The construction of generalized gravitational theories,
with the inclusion of extra fields or higher-curvature terms
in the action, has attracted an enormous interest during the
last decades [1,2]. The main reason is that these theories
may provide the framework for the ultimate theory of
gravity in the context of which several problems of the
traditional General Relativity may be resolved. Therefore,
in the context of these modified gravitational theories,
different aspects of gravity, from black-hole solutions to
cosmological solutions, have been readdressed and, on
several occasions, shown to lead to novel, interesting
solutions.
Such a class of solutions was the one describing regular

black holes with a nontrivial scalar field in the exterior
region, a type of solutions forbidden by General Relativity.
In an attempt to construct a criterion of which the
fulfillment or violation could, respectively, forbid or allow
the emergence of such solutions, no-hair theorems were
formed. In its first form, the old no-hair theorem [3]
excluded static black holes with a scalar field; however,

this was soon outdated by the discovery of black holes with
Yang-Mills [4], Skyrme fields [5], or a conformal coupling
to gravity [6]. These led to the formulation of the novel
no-hair theorem [7] that was recently extended to cover the
case of standard scalar-tensor theories [8]; a new form that
covers the case of Galileon fields was also proposed [9].
However, in a limited number of theories, even the novel

no-hair theorem may be evaded. The first counterexample
appeared very soon after its formulation and demonstrated
the existence of regular black holes with a scalar hair in
the context of the Einstein-dilaton-Gauss-Bonnet theory
[10] (for some earlier studies that paved the way, see
Refs. [11–15]). Additional solutions in the context of the
same theory were derived in the presence of a Yang-Mills
field [16,17], in an arbitrary number of dimensions [18], or
in the case of rotation [19–22] (for a number of interesting
reviews on the topic, see Refs. [23–25]). The more recent
form of the novel no-hair theorem [9] was also shown to
be evaded [26], and concrete solutions were constructed
[27,28].
A common feature of the theories that evaded the no-hair

theorems was the presence of higher-curvature terms, such
as the quadratic Gauss-Bonnet (GB) term inspired by the
string theory [29] or Horndeski theory [30]. It is the
presence of such terms that invalidate basic requirements
of the no-hair theorems and open the way for the con-
struction of black-hole solutions with scalar hair. In a recent
work of ours [31], we considered a general class of
Einstein-scalar-GB theories, of which the cases [10,26]
constitute particular examples. We demonstrated that,
under certain constraints on the form of the coupling
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function between the scalar field and the Gauss-Bonnet
term, and in conjunction with the profile of the scalar field
itself, a regular black-hole horizon regime and an asymp-
totically flat regime may be smoothly connected, and thus
the no-hair theorems may be evaded. A number of novel
black-hole solutions with scalar hair was thus determined
and briefly presented [31].
In the present work, we provide additional support to the

arguments presented in Ref. [31]. We consider a general
gravitational theory containing the Ricci scalar, a scalar
field, and the GB term, with the latter two quantities being
coupled together through a coupling function fðϕÞ. Guided
by the findings of our previous work [31], we impose the
aforementioned constraints on the coupling function f and
the scalar field ϕ and investigate the existence of regular,
black-hole solutions with a nontrivial scalar hair. We find a
large number of such solutions for a variety of forms for the
coupling function: exponential, polynomial (even and odd),
inverse polynomial (even and odd), and logarithmic. In all
cases, the solutions for the metric components, scalar
field, curvature-invariant quantities, and components of
the energy-momentum tensor are derived and discussed.
Further characteristics of the produced solutions, such as
the scalar charge, horizon area, and entropy, are also
determined, studied in detail, and compared to the corre-
sponding Schwarzschild values.

II. THEORETICAL FRAMEWORK

We start with the following action functional that
describes a general class of higher-curvature gravitational
theories [31]:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕþ fðϕÞR2

GB

�
: ð1Þ

In this, the Einstein-Hilbert term given by the Ricci scalar
curvature R is accompanied by the quadratic GB term R2

GB
defined as

R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð2Þ

in terms of the Riemann tensor Rμνρσ, Ricci tensor Rμν, and
the Ricci scalar R. A scalar field ϕ also appears in the
action (1) and couples to the GB term through a general
coupling function fðϕÞ. This is a necessary requirement in
order for the GB term, which is a total derivative in four
dimensions, to contribute to the field equations.
The gravitational field equations and the equation for the

scalar field may be derived by varying the action (1) with
respect to the metric tensor gμν and the scalar field ϕ,
respectively. These have the form

Gμν ¼ Tμν; ð3Þ
∇2ϕþ _fðϕÞR2

GB ¼ 0; ð4Þ

where Gμν is the Einstein tensor and Tμν is the energy-
momentum tensor. The latter receives contributions from
both the scalar field and the Gauss-Bonnet term and is
given by

Tμν ¼ −
1

4
gμν∂ρϕ∂ρϕþ 1

2
∂μϕ∂νϕ

−
1

2
ðgρμgλν þ gλμgρνÞηκλαβR̃ργ

αβ∇γ∂κfðϕÞ; ð5Þ

with

R̃ργ
αβ ¼ ηργστRσταβ ¼

ϵργστffiffiffiffiffiffi−gp Rσταβ: ð6Þ

Throughout this work, the dot over the coupling function
denotes its derivative with respect to the scalar field (i.e.,
_f ¼ df=dϕ), and we employ units in which G ¼ c ¼ 1.
Our aim is to find solutions of the set of Eqs. (3) and (4)

that describe regular, static, asymptotically flat black-hole
solutions with a nontrivial scalar field. In particular, we
will assume that the line element takes the spherically
symmetric form

ds2 ¼ −eAðrÞdt2 þ eBðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ ð7Þ
and that the scalar field is also static and spherically
symmetric, ϕ ¼ ϕðrÞ. In our quest for the aforementioned
solutions, we will consider a variety of coupling functions
fðϕÞ, which will, however, need to obey certain con-
straints [31].
By employing the line element (7), we may obtain the

explicit forms of Eqs. (3) and (4): the ðttÞ, ðrrÞ, and ðθθÞ
components of Einstein’s equations then, respectively, read

4eBðeB þ rB0 − 1Þ
¼ ϕ02½r2eB þ 16f̈ðeB − 1Þ�
− 8_f½B0ϕ0ðeB − 3Þ − 2ϕ00ðeB − 1Þ�; ð8Þ

4eBðeB − rA0 − 1Þ ¼ −ϕ02r2eB þ 8ðeB − 3Þ _fA0ϕ0; ð9Þ
eB½rA02 − 2B0 þ A0ð2 − rB0Þ þ 2rA00�
¼ −ϕ02ðreB − 8f̈A0Þ
þ 4_f½A02ϕ0 þ 2ϕ0A00 þ A0ð2ϕ00 − 3B0ϕ0Þ�; ð10Þ

while the equation for the scalar field takes the form

2rϕ00 þ ð4þ rA0 − rB0Þϕ0 þ 4_fe−B

r
½ðeB − 3ÞA0B0

− ðeB − 1Þð2A00 þ A02Þ� ¼ 0: ð11Þ
In the above, the prime in the metric functions A and B and
the scalar field ϕ denote their differentiation with respect to
the radial coordinate r.
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Before being able to numerically integrate the system of
Eqs. (8)–(11), we need to reduce the number of indepen-
dent variables. We observe that the ðrrÞ component (9) may
take the form of a second-order polynomial with respect to
eB, i.e., e2B þ βeB þ γ ¼ 0. Therefore, this can be solved to
give

eB ¼ −β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p
2

; ð12Þ

where

β ¼ r2ϕ02

4
− ð2_fϕ0 þ rÞA0 − 1; γ ¼ 6_fϕ0A0: ð13Þ

According to the above, the solution for the metric function
BðrÞ may be easily found once the solutions for the scalar
field ϕðrÞ and the metric function AðrÞ are determined.
In the remaining system of Eqs. (8), (10), and (11), eB may
therefore be eliminated by using Eq. (12), while B0 may be
replaced by the expression

B0 ¼ −
γ0 þ β0eB

2e2B þ βeB
; ð14Þ

which follows by differentiating Eq. (12) with respect to
the radial coordinate. Subsequently, the remaining three
equations (8), (10), and (11) form a system of only two
independent, ordinary differential equations of second
order for the functions A and ϕ:

A00 ¼ P
S
; ð15Þ

ϕ00 ¼ Q
S
: ð16Þ

In the above equations, P, Q, and S are complicated
expressions of ðr; eB;ϕ0; A0; _f; f̈Þ that are given in the
Appendix. Note that in these expressions we have elimi-
nated, via Eq. (14), B0 that involves A00 and ϕ00 but retained
eB for notational simplicity.

A. Asymptotic solution at black-hole horizon

We will start our quest for black-hole solutions with a
nontrivial scalar hair by determining first the asymptotic
solutions of the set of Eqs. (8)–(11) near the black-hole
horizon and at asymptotic infinity. These solutions will
serve as boundary conditions for our numerical integration
but will also provide important constraints on our theory
(1). Near the black-hole horizon rh, it is usually assumed
that the metric functions and the scalar field may be
expanded as

eA ¼
X∞
n¼1

anðr − rhÞn; ð17Þ

e−B ¼
X∞
n¼1

bnðr − rhÞn; ð18Þ

ϕ ¼
X∞
n¼0

ϕðnÞðrhÞ
n!

ðr − rhÞn; ð19Þ

where ðan; bnÞ are constant coefficients and ϕðnÞðrhÞ
denotes the (nth) derivative of the scalar field evaluated
at the black-hole horizon. Equations (17) and (18) reflect
the expected behavior of the metric tensor near the horizon
of a spherically symmetric black hole with the solution
being regular if the scalar coefficients ϕðnÞðrhÞ in Eq. (19)
remain finite at the same regime.
In a recent work of ours [31], we followed instead the

alternative approach of assuming merely that, near the
horizon, the metric function AðrÞ diverges, in accordance
with Eq. (17). Then, the system of differential equations
was evaluated in the limit r → rh, and the finiteness of the
quantity ϕ00 was demanded. This approach was followed in
Ref. [10], in which an exponential coupling function was
assumed between the scalar field and the GB term. In
Ref. [31], the form of the coupling function fðϕÞ was left
arbitrary, and the requirement of the finiteness of ϕ00

h was
shown to be satisfied only under the constraint

r3hϕ
0
h þ 12_fh þ 2r2hϕ

02
h
_fh ¼ 0; ð20Þ

where all quantities have been evaluated at the horizon rh.
The above is a second-order polynomial with respect to ϕ0

h
and may be easily solved to yield the solutions

ϕ0
h ¼

rh
4_fh

 
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

96_f2h
r4h

s !
: ð21Þ

The above ensures that an asymptotic black-hole solution
with a regular scalar field exists for a general class of
theories of the form (1). The only constraint on the form of
the coupling function arises from the demand that the first
derivative of the scalar field on the horizon must be real,
which translates to the inequality

_f2h <
r4h
96

: ð22Þ

Assuming the validity of the constraint (20), Eq. (15) then
uniquely determines the form of the metric function A in
the near-horizon regime; through Eq. (12), the metric
function B is also determined. Therefore, the asymptotic
solution of Eqs. (12), (15), and (16), in the limit r → rh, is
given by the expressions
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eA ¼ a1ðr − rhÞ þ � � � ; ð23Þ

e−B ¼ b1ðr − rhÞ þ � � � ; ð24Þ

ϕ ¼ ϕh þ ϕh
0ðr − rhÞ þ ϕh

00ðr − rhÞ2 þ � � � ð25Þ

and describes, by construction, a black-hole horizon with a
regular scalar field provided that ϕ0 obeys the constraint
(21) and the coupling function f satisfies Eq. (22). We note
that the desired form of the asymptotic solution was derived
only for the choice of the (þ) sign in Eq. (12) as the (−)
sign fails to lead to a black-hole solution [31].
The aforementioned regularity of the near-horizon sol-

ution should be reflected to the components of the energy-
momentum tensor Tμν as well as to the scalar invariant
quantities of the theory. The nonvanishing components of
the energy-momentum tensor (5) are

Tt
t ¼ −

e−2B

4r2
½ϕ02ðr2eB þ 16f̈ðeB − 1ÞÞ

− 8_fðB0ϕ0ðeB − 3Þ − 2ϕ00ðeB − 1ÞÞ�; ð26Þ

Tr
r ¼

e−Bϕ0

4

�
ϕ0 −

8e−BðeB − 3Þ _fA0

r2

�
; ð27Þ

Tθ
θ ¼ Tφ

φ ¼ −
e−2B

4r
½ϕ02ðreB − 8f̈A0Þ − 4_fðA02ϕ0

þ 2ϕ0A00 þ A0ð2ϕ00 − 3B0ϕ0ÞÞ�: ð28Þ

Employing the asymptotic behavior given in Eqs. (23)–
(25), we readily derive the following approximate behavior:

Tt
t ¼ þ 2e−B

r2
B0ϕ0 _f þOðr − rhÞ; ð29Þ

Tr
r ¼ −

2e−B

r2
A0ϕ0 _f þOðr − rhÞ; ð30Þ

Tθ
θ ¼ Tφ

φ ¼ e−2B

r
ϕ0 _fð2A00 þ A02 − 3A0B0Þ þOðr − rhÞ:

ð31Þ

The above expressions, in the limit r → rh, lead to constant
values for all components of the energy-momentum tensor.
Similarly, one may see that the scalar invariant quantities R,
RμνRμν and RμνρσRμνρσ, the exact expressions of which are
listed in the Appendix, reduce to the approximate forms

R ¼ þ 2e−B

r2
ðeB − 2rA0Þ þOðr − rhÞ; ð32Þ

RμνRμν ¼ þ 2e−2B

r4
ðeB − rA0Þ2 þOðr − rhÞ; ð33Þ

RμνρσRμνρσ ¼ þ 4e−2B

r4
ðe2B þ r2A02Þ þOðr − rhÞ: ð34Þ

In the above, we have used that, near the horizon, A0 ≈
−B0 ≈ 1=ðr − rhÞ and A02 ≈ −A00, as dictated by Eqs. (23)
and (24). Again, the dominant term in each curvature
invariant adopts a constant, finite value in the limit r → rh.
Subsequently, the GB term also turns out to be finite, in the
same limit, and is given by

R2
GB ¼ þ 12e−2B

r4
A02 þOðr − rhÞ: ð35Þ

B. Asymptotic solution at infinity

At the other asymptotic regime, that of radial infinity
(r → ∞), the metric functions, and the scalar field may be
again expanded in power series, this time in terms of 1=r.
Demanding that the metric components reduce to those of
the asymptotically flat Minkowski space-time while the
scalar field assumes a constant value, we write

eA ¼ 1þ
X∞
n¼1

pn

r
; ð36Þ

eB ¼ 1þ
X∞
n¼1

qn
r
; ð37Þ

ϕ ¼ ϕ∞ þ
X∞
n¼1

dn
r
: ð38Þ

The arbitrary coefficients ðpn; qn; dnÞ are in principle
determined upon substitution of Eqs. (36)–(38) in the field
equations of the theory. However, two of the coefficients,
namely, p1 and d1, remain as free parameters and are
associated with the Arnowitt-Deser-Misner mass and scalar
charge, respectively: p1 ≡ −2M and d1 ¼ D. The remain-
ing coefficients may be calculated to an arbitrary order: we
have performed this calculation up to order Oð1=r6Þ and
derived the following expressions:

eA ¼ 1−
2M
r

þMD2

12r3
þ24MD _fþM2D2

6r4

−
96M3D−3MD3þ512M2 _f−64D2 _fþ128MD2f̈

90r5

þOð1=r6Þ; ð39Þ
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eB ¼ 1þ 2M
r

þ 16M2 −D2

4r2
þ 32M3 − 5MD2

4r3
þ 768M4 − 208M2D2 − 384MD _f þ 3D4

48r4

þ 6144M5 − 2464M3D2 þ 97MD4 − 6144M2D _f þ 192D3 _f − 384MD2f̈
192r5

þOð1=r6Þ; ð40Þ

ϕ ¼ ϕ∞ þD
r
þMD

r2
þ 32M2D −D3

24r3
þ 12M3D − 24M2 _f −MD3

6r4

þ 6144M4D − 928M2D3 þ 9D5 − 12288M3 _f − 1536MD2 _f
1920r5

þOð1=r6Þ: ð41Þ

We observe that the scalar charge D modifies significantly
the expansion of the metric functions at order Oð1=r2Þ and
higher. The existence itself of D, and thus of a nontrivial
form for the scalar field, is caused by the presence of the
GB term in the theory. The exact form, however, of the
coupling function does not enter in the above expansions
earlier than the order Oð1=r4Þ. This shows that an asymp-
totically flat solution of Eqs. (8)–(11), with a constant
scalar field does not require a specific coupling function
and, in fact, arises for an arbitrary form of this function.
The asymptotic solution at infinity, given by Eqs. (36)–

(38), is also characterized by regular components of Tμν

and curvature invariants. Employing the facts that, as
r → ∞, ðeA; eB;ϕÞ ≈Oð1Þ while ðA0; B0;ϕ0Þ ≈Oð1=r2Þ,
we find for the components of the energy-momentum
tensor the asymptotic behavior

Tt
t ≃ −Tr

r ≃ Tθ
θ ≃ −

1

4
ϕ02 þO

�
1

r6

�
: ð42Þ

Clearly, all of the above components go to zero, as
expected. Similar behavior is exhibited by all curvature
invariants and the GB term, in accordance with the
asymptotically flat limit derived above. In particular, for
the GB term, we obtain

R2
GB ≈

48M2

r6
: ð43Þ

C. Connecting the two asymptotic solutions

In the previous two subsections, we have constructed a
near-horizon solution with a regular scalar field and an
asymptotically flat solution with a constant scalar field—
which was achieved under mild constraints on the form of
the coupling function fðϕÞ. However, given the complexity
of the equations of the theory, it is the numerical integration
of the system (15) and (16) that will reveal whether these
two asymptotic solutions may be smoothly matched to
create a black-hole solution with scalar hair valid over the
entire radial domain.
In fact, theoretical arguments developed decades ago, the

so-called no-hair theorems, excluded in the past the

emergence of such solutions in a variety of scalar-tensor
theories. The older version of the no-hair theorem [3] was
applied in theories with minimally coupled scalar fields: it
employs the scalar equation of motion and relies on the
sign of V 0ðϕÞ, where VðϕÞ is the potential of the scalar
field. In most theories studied, the quantity V 0ðϕÞ had the
sign opposite of the demanded one, and this excluded the
emergence of the desired black-hole solutions. In Ref. [31],
the same argument was applied in the case of the theory (1),
appropriately altered to yield a constraint on the effective
potential VeffðϕÞ ¼ fðϕÞR2

GB of the scalar field. Although
this constraint was of an integral form over the entire
radial regime, in special cases, it merely demanded that
fðϕÞR2

GB > 0. In Eqs. (35) and (43), the asymptotic values
of the GB term near the horizon and at infinity were
derived: they are both positive, with the latter decreasing as
r increases. These results point to a monotonic decreasing
behavior of the GB term from an initial positive value near
the horizon to a vanishing value at radial infinity—as we
will shortly demonstrate in the next section, this is indeed
the behavior of the GB term. In that case, the only
requirement for the evasion of the old no-hair theorem is
apparently the positivity of the coupling function fðϕÞ.
As the old no-hair theorem imposes in general mild

constraints on a theory, in Ref. [31], we considered in
addition the novel no-hair theorem [7] that applies also in
theories with a conformal coupling of the scalar fields to
gravity (see also Ref. [8]). This argument relies on the
profile of the Tr

r component of the energy-momentum
tensor of the theory in terms of the radial coordinate. In a
large class of theories, under the assumptions of positivity
and conservation of energy, it is in general extremely
difficult to smoothly match the near-horizon and asymp-
totic-infinity values of Tr

r. That prevents the emergence of
black-hole solutions with scalar hair. However, the novel
no-hair theorem was shown to be evaded in the context of
the Einstein-scalar-Gauss-Bonnet theory with an exponen-
tial coupling function [10] or a linear coupling function
[26]. In both theories, the presence of the GB term played a
catalytic role for the emergence of the solutions. Therefore,
in Ref. [31], we kept again the form of the coupling
function fðϕÞ arbitrary and reconsidered the argument of
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the novel no-hair theorem. Our analysis revealed that the
evasion of this theorem holds for a general class of theories
involving the GB term: the profile of Tr

r in terms of r may
be easily made smooth and monotonic under the assump-
tions that, near the horizon,

_fϕ0 < 0; _fϕ00 þ f̈ϕ02 > 0: ð44Þ

The first constraint, according to Eq. (30), ensures the
positivity of Tr

r in the near-horizon regime; the second
ensures that ðTr

rÞ0 is negative in the same regime. Then, in
conjunctionwith the behavior described by Eq. (42) at radial
infinity, Tr

r is positive and decreasing over the whole radial
regime. This behavior invalidates the requirements set by the
novel no-hair theorem and thus causes its evasion.
In fact, the first of the constraints listed in Eq. (44) is

already satisfied: Eq. (21) dictates that the combination _fϕ0
at the horizon is always negative to ensure the regularity of
the black-hole horizon. Therefore, if _f > 0, then ϕ0

h must be
necessarily negative, or vice versa. The remaining constraint
_fϕ00 þ f̈ϕ02 > 0 may be alternatively written as
∂rð _fϕ0Þjrh > 0; this merely demands that the aforemen-

tioned negative value of the quantity ð _fϕ0Þjrh should be
constrained away from the horizon so that the two asymp-
totic solutions (23)–(25) and (36)–(38) can smoothlymatch.
As we will see in the next section, this second constraint is
automatically satisfied for all the solutions found and does
not demand any fine-tuning of our parameters.

III. NUMERICAL SOLUTIONS

The derivation of exact solutions, valid over the entire
radial domain, demands the numerical integration of the
system (15) and (16). Our integration starts at a distance
very close to the horizon of the black hole, i.e., at r ≈ rh þ
Oð10−5Þ (for simplicity, we set rh ¼ 1). There, we use as
boundary conditions the asymptotic solution (23)–(25)

together with Eq. (21) for ϕ0
h upon choosing a particular

coupling function fðϕÞ. The integration proceeds toward
large values of the radial coordinate until the form of the
derived solution matches the asymptotic solution (36)–(38).
In the next subsections, we present a variety of regular
black-hole solutions with scalar hair for different choices of
the coupling function fðϕÞ.

A. Exponential coupling function

First, we consider the case in which fðϕÞ ¼ αeκϕ.
According to the arguments presented in Sec. II .3, the
evasion of the old no-hair theorem is ensured for fðϕÞ > 0;
therefore, we focus on the case with α > 0. As the
exponential function is always positive definite, the sign
of _f ¼ ακeκϕ is then determined by the sign of κ. To evade
also the novel no-hair theorem and allow for regular black-
hole solutions to emerge, we should satisfy the constraint
_fϕ0 < 0, or equivalently κϕ0 < 0, near the horizon.
Therefore, for κ > 0, we should have ϕ0

h < 0, which causes
the decreasing of the scalar field as we move away from the
black-hole horizon. The situation is reversed for κ < 0
when ϕh

0 > 0 and the scalar field increases with r.
The case of fðϕÞ ¼ αeϕ, with α > 0, was studied in

Ref. [10] and led to the well-known family of dilatonic
black holes. The solutions were indeed regular and asymp-
totically flat with the scalar field decreasing away from the
horizon, in agreement with the above discussion. Here, we
present the complimentary case with fðϕÞ ¼ αe−ϕ (the
exact value of κ does not alter the physical characteristics of
the solution, and, here, we set it to κ ¼ −1). In the left plot
of Fig. 1, we present a family of solutions for the scalar
field ϕ for different initial values ϕh: for κ ¼ −1 < 0, the
scalar field must have ϕh

0 > 0 and therefore increases as r
increases. The value of the coupling constant α, once the
form of the coupling function and the asymptotic value ϕh
are chosen, is restricted by the inequality (22)—here, we
present solutions for indicative allowed values of α.

FIG. 1. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ αe−ϕ.
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In the right plot of Fig. 1, we present the energy-
momentum tensor components for an indicative solution
of this family: clearly, all components remain finite over
the whole radial regime. In particular, Tr

r remains positive
and monotonically decreases toward infinity, exactly the
behavior that ensures the evasion of the novel no-hair
theorem. As discussed in the previous section, apart from
choosing the input value ϕ0

h for our numerical integration in
accordance with Eq. (21), no other fine-tuning is necessary;
the second constraint for the evasion of the novel no-hair
theorem, i.e., _fϕ00 þ f̈ϕ02 > 0, is automatically satisfied
without any further action, and this is reflected in the
decreasing behavior of Tr

r component near the horizon.
In the left and right plots of Fig. 2, we also present the

solution for the two metric components (jgttj; grr) and the
GB term R2

GB, respectively. The metric components exhibit
the expected behavior near the black-hole horizon with gtt
vanishing and grr diverging at rh ¼ 1. To ensure asymptotic
flatness at radial infinity, the free parameter a1 appearing in
the near-horizon solution (23) is appropriately chosen. On
the other hand, the GB term remains finite and positive
definite over the entire radial domain—in fact, it displays

the monotonic behavior, hinted at by its two asymptotic
limits (35) and (43), that causes the evasion of the old no-
hair theorem. As expected, it contributes significantly near
the horizon, where the curvature is large, and quickly fades
away as we move toward larger distances. The profile of the
metric components and GB term exhibit the same quali-
tative behavior in all families of black-hole solutions
presented in this work, so we refrain from giving additional
plots of these two quantities in the next subsections.
The profile of the scalar charge D as a function of the

near-horizon value ϕh and of the mass M is given in the
left and right plots, respectively, of Fig. 3 (each dot in
these, and subsequent, plots stands for a different black-
hole solution). For the exponential coupling function
fðϕÞ ¼ αe−ϕ, and for fixed α and rh, the scalar field near
the horizon ϕh may range from a minimum value, dictated
by Eq. (22), up to infinity. As the left plot reveals, as
ϕh → ∞, the coupling of the scalar field to the GB term
vanishes, and we recover the Schwarzschild case with a
trivial scalar field and a vanishing charge. On the other
hand, in the right plot, we observe that as the mass of
the black-hole increases the scalar charge decreases in

FIG. 2. The metric components gtt and grr (left plot) and the Gauss-Bonnet term R2
GB (right plot) in terms of the radial coordinate r, for

fðϕÞ ¼ αe−ϕ.

FIG. 3. The scalar charge D as a function of the near-horizon value ϕh (left plot) and of its mass M (right plot), for fðϕÞ ¼ αe−ϕ.
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absolute value, and thus larger black holes tend to have
smaller charges.
It is also interesting to study the profiles of the area of the

black-hole horizon, Ah ¼ 4πr2h, and of the entropy Sh of
this class of solutions. The entropy is defined through the
relation [32]

Sh ¼ β

�∂ðβFÞ
∂β − F

�
; ð45Þ

where F ¼ IE=β is the Helmholtz free energy of the system
given in terms of the Euclidean version of the action IE.
Also, β ¼ 1=ðkBTÞ with the temperature following easily
from the definition [33,34]

T ¼ k
2π

¼ 1

4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffijgttgrrj

p ���� dgttdr

����
�

rh

¼
ffiffiffiffiffiffiffiffiffiffi
a1b1

p
4π

: ð46Þ

The calculation of the temperature and entropy of the
dilatonic black hole, with an exponential coupling function
of the form fðϕÞ ¼ αeϕ, was performed in detail in
Ref. [17]. By closely repeating the analysis, we find the
expressions for the temperature,

T ¼ 1

4π

ð2M þDÞ
r2h þ 4fðϕhÞ

; ð47Þ

and entropy,

Sh ¼
Ah

4
þ 4πfðϕhÞ; ð48Þ

of a GB black hole arising in the context of our theory (1)
with a general coupling function fðϕÞ between the scalar
field and the GB term. We easily confirm that, in the
absence of the coupling function, the above quantities
reduce to the corresponding Schwarzschild ones, T ¼ 1=
ð4πrhÞ and Sh ¼ Ah=4, respectively.
By employing the expressions for Ah and Sh as given

above, we depict the horizon area and entropy, in terms of the
mass of the black hole, in the left plot of Fig. 4; we observe

that both quantities increase fast as the mass increases. The
right plot allows us to compare more effectively our solutions
to the Schwarzschild one. The lower curve depicts the ratio
of Ah to the area of the Schwarzschild solution ASch ¼
16πM2, as a function ofM; we observe that, for large black-
hole masses, the ratio Ah=ASch approaches unity, and there-
fore, large GB black holes are not expected to deviate in their
characteristics from the Schwarzschild solution of the same
mass. On the other hand, in the small-mass limit, the ratio
Ah=ASch significantly deviates from unity; in addition, a
lower bound appears for the black-hole radius and thus of the
mass of the black hole, due to the constraint (22) not present
in the Schwarzschild case—this feature has been noted
before in the case of the dilatonic black holes [10,25]. It
is worth noting that the GB term, as an extra gravitational
effect, causes the shrinking of the size of the black hole as the
ratio Ah=ASch remains for all solutions below unity.
Turning finally to the entropy Sh of our black-hole

solutions, we find a similar pattern: very small GB black
holes differ themselves from the Schwarzschild solution by
having a lower entropy, whereas largeGBblack holes tend to
acquire, among other characteristics, also the entropy of the
Schwarzschild solution. We observe, however, that, apart
from thevery small-mass regime close to theminimumvalue,
the “exponential” GB black holes have in general a higher
entropy than the Schwarzschild solution, a characteristic that
points to the thermodynamical stability of these solutions.
In fact, the dilatonic GB black holes [10], which comprise a
subclass of this family of solutions with a coupling function
of the form fðϕÞ ¼ αeϕ, have an identical entropy pattern
and were shown to be linearly stable under small perturba-
tions more than 20 years ago.

B. Even polynomial function

Next, we consider the case in which fðϕÞ ¼ αϕ2n, with
n ≥ 1. Since the coupling function must be positive
definite, we assume again that α > 0. The first constraint
for the evasion of the novel no-hair theorem, _fϕ0 < 0 near

FIG. 4. The horizon area Ah and entropy Sh of the black hole (left plot) and their ratios to the corresponding Schwarzschild values
(right plot) in terms of the mass M for fðϕÞ ¼ αe−ϕ.
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the horizon, now translates to ϕhϕ
0
h < 0. Therefore, two

classes of solutions appear for each value of n: one for
ϕh > 0, where ϕ0

h < 0 and the solution for the scalar field
decreases with r, and one for ϕh < 0, where ϕ0

h > 0 and the
scalar field increases away from the black-hole horizon. In
the left plot of Fig. 5, we depict the first family of solutions
with ϕh < 0 and ϕ0

h > 0 for the choice fðϕÞ ¼ αϕ2, while
in the left plot of Fig. 6, we depict the second class with
ϕh > 0 and ϕ0

h < 0 for the choice fðϕÞ ¼ αϕ4. The
complimentary classes of solutions may be easily derived
in each case by reversing the signs of ϕh and ϕ0

h.
The form of the energy-momentum tensor components

for the two choices fðϕÞ ¼ αϕ2 and fðϕÞ ¼ αϕ4, and for
two indicative solutions, are depicted in the right plots of
Figs. 5 and 6, respectively. We observe that the qualitative
behavior of the three components largely remains the same,
despite the change in the form of the coupling function
fðϕÞ (note also the resemblance with the behavior depicted
in the right plot of Fig. 1). In fact, the asymptotic behavior
of Tμν near the black-hole horizon and radial infinity is
fixed, according to Eqs. (29)–(31) and (42), respectively.

Independently of the form of the coupling function fðϕÞ, at
asymptotic infinity, Tr

r approaches zero from the positive
side, while Tt

t and Tθ
θ do the same from the negative side.

In the near-horizon regime, Eqs. (29)–(31) dictate that

signðTt
tÞh; signðTr

rÞh ∼ −signðϕ0
h
_fhÞ; ð49Þ

signðTθ
θÞh ∼þsignðϕ0

h
_fhÞ: ð50Þ

Using that _fhϕ0
h < 0 and the scaling behavior of the metric

functions near the horizon, we may easily derive that ðTt
tÞh

and ðTr
rÞh always assume positive values while ðTθ

θÞh
assumes a negative one. The form of fðϕÞ merely changes
the magnitude of these asymptotic values: in the case of a
polynomial coupling function, the higher the degree is, the
larger the asymptotic values near the horizon are.
One could assume that the intermediate behavior of

the scalar field and the energy-momentum tensor always
remains qualitatively the same. In fact, this is not so.
Let us fix for simplicity the values of rh and ϕh and
gradually increase the value of the coupling parameter α;

FIG. 5. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ αϕ2.

FIG. 6. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ αϕ4.
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this has the effect of increasing the magnitude of the GB
source term appearing in the equation of motion (4) for ϕ.
For an indicative case, in the left plot of Fig. 7, we depict
the behavior of ϕ for four large values of α, and in the
right plot, we depict the behavior of Tμν for one of these
solutions. We observe that all of these quantities are not
monotonic anymore; they go through a number of maxima
or minima—with that number increasing with the value of
α—before reaching their asymptotic values at infinity.
Note that the near-horizon behavior of both ϕ and Tμν is
still the one that guarantees the evasion of the no-hair
theorem. We may thus conclude that the presence of the
GB term in the theory not only ensures that the asymptotic
solutions (23)–(25) and (36)–(38) may be smoothly
connected to create a regular black hole, but it allows
for this to happen even in a nonmonotonic way.
Let us also study the characteristics of this class of

black-hole solutions arising for an even polynomial
coupling function. In Fig. 8 (left plot), we depict the
scalar charge D in terms of the mass M of the black hole,
for the quadratic coupling function fðϕÞ ¼ αϕ2: we
observe that, in this case, the function DðMÞ is not
monotonic in the small-mass regime but it tends again

to zero for large values of its mass. In terms of the near-
horizon value ϕh, the scalar charge exhibits the expected
behavior: for large values of ϕh, the effect of the GB term
becomes important andD increases; on the other hand, for
vanishing ϕh, i.e., a vanishing coupling function, the
scalar charge also vanishes (in order to minimize the
number of figures, we refrain from showing plots depict-
ing the anticipated behavior). In the same spirit, we
present no new plots for the quartic coupling function
as it leads to exactly the same qualitative behavior.
Turning to the horizon area Ah and entropy Sh of these

black-hole solutions, we find that, in terms of the mass M,
they both quickly increase, showing a profile similar to that
of Fig. 4 (left plot) for the exponential case. The ratio
Ah=ASch remains again below unity over the whole mass
regime and interpolates between a value corresponding to
the lowest allowed value of the mass, according to Eq. (22),
and the asymptotic Schwarzschild value at the large-mass
limit. The entropy ratio Sh=SSch, on the other hand, is found
to have a different profile by remaining now always below
unity—this feature points perhaps toward a thermodynamic
instability of the “even polynomial” GB black holes
compared to the Schwarzschild solution.

FIG. 7. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ αϕ2 and various values of the coupling constant α.

FIG. 8. The scalar charge D (left plot) and the ratios Ah=ASch and Sh=SSch (right plot) in terms of the mass M, for fðϕÞ ¼ αϕ2.
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C. Odd polynomial function

We now consider the case of fðϕÞ ¼ αϕ2nþ1, with n ≥ 0

and α > 0. Here, the constraint _fϕ0 < 0 translates to
ϕ2nϕ0 < 0, or simply to ϕ0

h < 0 for all solutions. In
Fig. 9, we have chosen the linear case, i.e., fðϕÞ ¼ αϕ,
and presented an indicative family of solutions for the
scalar field (left plot) and the components of the energy-
momentum tensor for one of them (right plot). The
decreasing profile of ϕ for all solutions, as we move away
from the black-hole horizon, is evident and in agreement
with the above constraint. The energy-momentum tensor
clearly satisfies the analytically predicted behavior at the
two asymptotic regimes, which once again ensures the
evasion of the novel no-hair theorem.
The two plots in Fig. 10, left and right, depict the same

quantities but for the case fðϕÞ ¼ αϕ3. Their profile agrees
with that expected for a regular, black-hole solution with a
scalar hair. The alerted reader may notice that, here, we
have chosen to present solutions with ϕh < 0; for an odd
polynomial coupling function, these should have been
prohibited under the constraint fðϕÞ > 0, which follows

from the old no-hair theorem [3,31]. Nevertheless, regular
black-hole solutions with a nontrivial scalar field that do
not seem to satisfy fðϕÞ > 0 do emerge. A set of such
solutions is shown in the left plot of Fig. 10 (we refrain
from showing the set of solutions with ϕh > 0 as these have
similar characteristics). As we observe, all of them obey the
ϕ0
h < 0 constraint imposed by the evasion of the novel no-

hair theorem and lead to the expected behavior of Tμν; the
latter may be clearly seen in the right plot of Fig. 10 in
which such a “prohibited” solution is plotted. The behavior
of the metric components and the GB term continue to be
given by plots similar to the ones in Fig. 2.
The emergence of solutions that violate the constraint

fðϕÞ > 0 is in fact a general feature of our analysis and not
an isolated finding in the case of the odd polynomial
coupling function. Apparently, the presence of the coupling
of the scalar field to the GB term not only opens the way for
black-hole solutions to emerge but renders the old no-hair
theorem incapable of dictating when this may happen.
Looking more carefully at the argument on which the old
no-hair theorem was based in Refs. [3,31], one readily

FIG. 9. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ αϕ.

FIG. 10. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ αϕ3.
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realizes that this involves the integral of the scalar equation
over the entire exterior regime and thus the global solution
of the field equations of which the characteristics cannot be
predicted beforehand. In contrast, the evasion of the novel
no-hair theorem is based on local quantities, such as the
energy-momentum components and their derivatives at
particular radial regimes, which may be easily computed.
In addition, this is indifferent to the behavior of the solution
in the intermediate regime, which may indeed exhibit an
arbitrary profile as the one presented in the plots of Fig. 7.
In fact, all solutions found in the context of our analysis,
with no exception, satisfy the constraints that ensure the
evasion of the novel no-hair theorem.
In this case, too, one may derive solutions for a variety of

values of the coupling constant α, as long as these obey the
constraint (22). In Fig. 11 (left plot), we depict a family of
solutions with ϕh ¼ 0.01 and a variety of values of α.
This family of solutions presents a less monotonic profile
compared to the one exhibited by the solutions in Fig. 10.
The components of the energy-momentum tensor for one of
these solutions are depicted in the right plot of Fig. 11, and
they present a more evolved profile with the emergence of
minima and maxima between the black-hole horizon and

radial infinity. We also notice that the solutions for the
scalar field, although they start from the positive-value
regime (ϕh ¼ 0.01), cross to negative values for fairly small
values of the radial coordinate. This behavior causes the
odd coupling function to change sign along the radial
regime, a feature that makes any application of the old
no-hair theorem even more challenging.
Turning again to the characteristics of the “odd poly-

nomial” black-hole solutions, in Fig. 12 (left plot), we
depict the scalar charge D in terms of the mass M of the
black hole, for the linear coupling function fðϕÞ ¼ αϕ:
here, the function DðMÞ is monotonic and approaches a
vanishing asymptotic value as M increases. The scalar
chargeD has no dependence on the initial scalar-field value
ϕh since it is the first derivative f0ðϕÞ that appears in the
scalar equation (4) and, for a linear function, this is merely a
constant. The horizon area Ah and entropy Sh exhibit again
an increasing profile in terms of M similar to that of Fig. 4
(left plot) for the exponential case. The more informative
ratios Ah=ASch and Sh=SSch are given in the right plot of
Fig. 12: as in the case of quadratic and quartic coupling
functions, both quantities remain smaller than unity and
interpolate between a lowest value corresponding to the

FIG. 11. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ αϕ3 and a variety of values of the coupling constant α.

FIG. 12. The scalar charge D (left plot) and the ratios Ah=ASch and Sh=SSch (right plot) in terms of the mass M, for fðϕÞ ¼ αϕ.
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black-hole solution with the lowest mass and the
Schwarzschild limit acquired at the large mass limit.
We now separately address the characteristics of the

black-hole solutions arising in the case of the cubic
coupling function fðϕÞ ¼ αϕ3 since here we find a dis-
tinctly different behavior. As mentioned above, also in this
case, as the coupling constant α increases, from zero to its
maximum value (for rh and ϕh fixed), solutions with no
monotonic profile in terms of the radial coordinate arise
(see the left plot of Fig. 11). We depict the scalar charge D
in terms of the mass M of the black hole, for the whole α
regime, in the left plot of Fig. 13; we may easily observe the
emergence of two different branches of solutions (with a
third, short one appearing at the end of the upper branch)
corresponding to the same mass M. These branches appear
at the small-mass limit of the solutions, whereas for large
masses, only one branch survives with a very small scalar
charge. In the right plot of Fig. 13, we show the ratio
Sh=SSch in terms of the mass M; this quantity also displays
the existence of three branches with the one that is
smoothly connected to the Schwarzschild limit having
the higher entropy. The two additional branches with the

larger values of scalar charge, compared to the one of the
“Schwarzschild” branch, have a lower entropy, and they are
probably less thermodynamically stable. This behavior was
not observed in the case of the quadratic coupling function
in which more evolved solutions for the scalar field also
appeared (see the left plot of Fig. 5): there, the function
DðMÞ was not monotonic but was always single valued.
That created short, disconnected “branches” of solutions
with slightly different values of entropy ratio Sh=SSch but
all lying below unity. Let us finally note that the horizon
area ratio Ah=ASch, not shown here for brevity, has the same
profile as the one displayed in Fig. 12 for the linear
function, while the DðϕhÞ function shows the anticipated
increasing profile as ϕh, and thus the GB coupling,
increases.

D. Inverse polynomial function

The next case to consider is the one in which
fðϕÞ ¼ αϕ−k, where k > 0, and α is also assumed to be
positive, for simplicity. Let us consider directly some
indicative cases:

FIG. 13. The scalar charge D (left plot) and the ratios Ah=ASch and Sh=SSch (right plot) in terms of the mass M, for fðϕÞ ¼ αϕ3.

FIG. 14. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ α=ϕ.
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(i) k ¼ 1: In this case, the constraint for the evasion
of the novel no-hair theorem becomes _fϕ0 ¼
−2αϕ0=ϕ2 < 0, which demands ϕ0

h > 0 for all
solutions. At the left plot of Fig. 14, we present a
family of solutions for the scalar field emerging
for this coupling function. All solutions are increa-
sing away from the black-hole horizon in accordance
to the above comment. The components of the
energy-momentum tensor are also well behaved, as
may be seen from the right plot of Fig. 14. As in the
case of the odd polynomial function, an additional
set of solutions arises with ϕh < 0 with similar
characteristics.

(ii) k ¼ 2: In this case, the constraint becomes _fϕ0 ¼
−αϕ0=ϕ3 < 0, which demands ϕhϕ

0
h > 0. A family

of solutions for the scalar field emerging for this
coupling function, with ϕh > 0 and increasing with
r, is presented at the left plot of Fig. 15—a
complementary family of solutions with ϕh < 0
and decreasing away from the black-hole horizon
was also found. The components of the energy-
momentum tensor for an indicative solution are

depicted at the right plot of Fig. 15 and clearly
remain finite over the whole exterior regime.

Concerning the characteristics of the “inverse polyno-
mial” GB black holes, we find again interesting behavior—
in Fig. 16, we depict the inverse linear case, as an indicative
one. The scalar charge D exhibits a monotonic decreasing
behavior in terms of the massM, as one may see in the left
plot of the figure, approaching zero at the large-mass limit.
In terms of the input parameter ϕh, the scalar charge
presents the anticipated behavior (and thus is not shown
here): for an inverse coupling function, D increases as
the value of ϕh, and thus of the GB coupling, decreases.
The quantities Ah and Sh increase once again quickly with
the massM, as in Fig. 4. The ratio Ah=ASch is shown in the
right plot of Fig. 16 and reveals again the constantly smaller
size of the GB black holes compared to the asymptotic
Schwarzschild solution as well as the existence of a lowest-
mass solution. The ratio Sh=SSch, depicted also in Fig. 16,
reveals that the entire class of these black-hole solutions—
independently of their mass—has a higher entropy com-
pared to the asymptotic Schwarzschild solution. This
feature is in fact unique for the inverse linear function; a

FIG. 15. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ α=ϕ2.

FIG. 16. The scalar charge D (left plot) and the ratios Ah=ASch and Sh=SSch (right plot) in terms of the mass M, for fðϕÞ ¼ α=ϕ.
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similar analysis for the inverse quadratic coupling function
has produced similar results for the quantities DðMÞ,
DðϕhÞ, Ah=ASch, and Sh=SSch with the only difference
being that the very-low-mass regime of the “inverse
quadratic” GB black holes has a lower entropy than the
Schwarzschild solution; i.e., the situation resembles more
the one depicted in Fig. 4.

E. Logarithmic function

We finally address the case in fðϕÞ ¼ α lnðϕÞ. Here,
black-hole solutions emerge for _fϕ0 ¼ αϕ0=ϕ < 0, near the
black-hole horizon; for α > 0, this translates to ϕ0

h < 0

(since the argument of the logarithm must be a positive
number, i.e., ϕ > 0). As a result, the solutions for the scalar
field are restricted to having a decreasing behavior as we
move away from the black-hole horizon—this is indeed the
behavior observed in the class of solutions depicted in the
left plot of Fig. 17. One may also observe that the plot
includes solutions with either ϕh > 1 or ϕh < 1, or equiv-
alently with f > 0 or f < 0. Once again, the old no-hair
theorem is proven to be inadequate to exclude the presence

of regular black holes with scalar hair even in subclasses of
the theory (1). In contrast, the derived solutions continue to
satisfy the constraints for the evasion of the novel no-hair
theorem.
The components of the energy-momentum tensor are

presented in the right plot of Fig. 17: they exhibit the same
characteristics as in the cases presented in the previous
subsections with the most important being the monotonic,
decreasing profile of the Tr

r component. The coupling
constant α can also take a variety of values as long as it
satisfies Eq. (22); in this case, the monotonic behavior of ϕ
over the whole exterior space of the black hole is preserved
independently of the value of α. The energy-momentum
tensor also assumes the same form as in Fig. 17, and thus
we refrain from presenting any new plots.
The scalar chargeD of the “logarithmic” GB black holes

in terms of the mass M is shown in the left plot of Fig. 18.
Once again, we observe that, as the mass of the black-hole
solution increases, D decreases toward a vanishing value—
our previous analysis has shown that this feature is often
connected with the thermodynamical stability of the sol-
utions. Indeed, as it may be seen from the right plot of

FIG. 17. The scalar field ϕ (left plot) and the energy-momentum tensor Tμν (right plot) in terms of the radial coordinate r, for
fðϕÞ ¼ α lnϕ.

FIG. 18. The scalar charge D (left plot) and the ratios Ah=ASch and Sh=SSch (right plot) in terms of the mass M, for fðϕÞ ¼ α lnϕ.

BLACK-HOLE SOLUTIONS WITH SCALAR HAIR IN … PHYS. REV. D 97, 084037 (2018)

084037-15



Fig. 18, the ratio Sh=SSch is above unity for a very large
part of the mass regime; it is again the small-mass regime
that is excluded from the thermodynamical stable solutions.
The scalar charge D has again the anticipated behavior
in terms of the parameter ϕh: since it is the f0ðϕÞ ¼ α=ϕ
that enters the scalar equation (4), the scalar charge
increases as ϕh decreases. The ratio Ah=ASch is also shown
in the right plot of Fig. 18; as in the previous cases, it
corresponds to a class of smaller black-hole solutions,
compared to the Schwarzschild solution of the same mass,
with a minimum-allowed mass that approaches the asymp-
totic Schwarzschild solution as M reaches large values.

IV. CONCLUSIONS

The emergence of regular black-hole solutions in
theories with scalar fields has always attracted the interest
of researchers especially in conjunction with the no-hair
theorems. The latter were formed in an attempt to limit
the emergence of black-hole solutions in the context of
theories beyond General Relativity. However, a small
number of theories, in which the evasion of those
theorems was realized, have been found in the literature
over the years, leading to novel solutions with scalar hair.
A main characteristic of those theories was the coupling

of the scalar field with higher-order gravitational terms.
When one focuses on theories in which the higher-
curvature term is the quadratic Gauss-Bonnet term, the
number of black-hole solutions with nontrivial scalar hair,
which have been found in the literature, is very limited
[10,28]. These two works considered the particular cases
of a string-inspired, exponential coupling function
between the scalar field and the GB term and a shift-
symmetric linear coupling function, respectively. In a
previous work of ours [31], we nevertheless demonstrated
that regular black-hole solutions with scalar hair may be
constructed in the context of a much more general class of
theories that contain the GB term. For this to be realized
and the theory to evade the no-hair theorems, the general
coupling function fðϕÞ had to satisfy two constraints. The
first constraint was imposed on the value of ϕ0

h; this
uniquely determined this quantity that could then be used
as an input parameter for the construction of the solutions.
Using this, we were indeed able to produce asymptotically
flat, regular black-hole solutions; these were briefly
presented in Ref. [31].
In the present work, we have extended the analysis of

Ref. [31] by considering several subclasses of the general
theory that contained the Ricci scalar, a scalar field, and the
GB term.We have studied a large number of choices for the
coupling function fðϕÞ between the scalar field and theGB
term: exponential, polynomial (even and odd), inverse
polynomial (even and odd), and logarithmic. In each case,
employing the constraint (21) for the value of ϕ0

h, we
constructed a large number of exact black-hole solutions
with scalar hair and studied in detail their characteristics.

Our solutions were characterized by a universal behavior
of the components of the metric tensor, having the
expected behavior near the black-hole horizon and asymp-
totic flatness at radial infinity. All curvature-invariant
quantities were examined and found to have a similar
universal profile, independently of the form of the cou-
pling function f, which ensured the finiteness of the space-
time and thus the regularity of all solutions.
The same regularity characterized the components of the

energy-momentum tensor over the whole radial regime. In
fact, the first constraint on the value of ϕ0

h—necessary for
the evasion of the novel no-hair theorem—simultaneously
guarantees the regularity of the scalar field at the black-
hole horizon and therefore the regularity of the solution.
The second constraint for the evasion of the no-hair
theorem involves both ϕ0

h and ϕ00
h and determines the

behavior of Tr
r near the black-hole horizon; this constraint

was automatically satisfied by all the constructed solutions
and demanded no further action or fine-tuning of the
parameters. It is worth noting that these constraints were
local as they applied to the black-hole radial regime and
were therefore easy to check. On the other hand, the old no-
hair theorem, based on an integral constraint over the whole
radial regime, failed to lead to a unique constraint, the
violation or not of which would govern the existence of
regular black-hole solutions. A special form of it, i.e.,
fðϕÞ > 0, was found to lead, indeed, to novel solutions
when satisfied, but it could not exclude their emergence in
the opposite case.
The profile for the scalar field ϕ was found in all of the

cases considered and was indeed regular over the entire
radial domain. The scalar field increased or decreased
away from the black-hole horizon, always in accordance
with the constraint (21), and approached a constant value
at asymptotic infinity. The scalar chargeDwas determined
in each case, and its dependence on either ϕh or M was
studied. In terms of the first parameter, the value of which
determines the magnitude of the GB coupling in the
theory, its behavior was the anticipated one: for large
values of that coupling,D assumed a large value, while for
small couplings,D tended to zero. Its profile in terms of the
mass M of the black hole had a universal behavior in the
large-M limit, with D assuming increasingly smaller
values; however, in the small-M limit, each family of
solutions presented a different behavior (either monotonic
or not monotonic). In all cases, however, the scalar charge
is an M-dependent quantity, and therefore our solutions
have a nontrivial scalar field but with a “secondary” hair.
The horizon area Ah and entropy Sh of the solutions were

also found in each case. Both quantities quickly increased
with the mass M, with the former always dominating over
the latter. The function AðMÞ also revealed a generic feature
of all black-hole solutions found, namely, the existence of a
lower value for the horizon radius rh and thus of the horizon
area Ah of the black hole; this was due to the constraint (22)
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that, for fixed ϕh and parameter α, did not allow for regular
solutionswith horizon radius smaller than aminimumvalue,
given by ðr2hÞmin ¼ 4

ffiffiffi
6

p j _fhj, to emerge. This, in turn,
imposed a lower-bound on the mass of the black-hole
solution, and therefore all curves AðMÞ terminated at a
specific point in the low-mass regime.
The study of the ratios Ah=ASch and Sh=SSch, with respect

to the corresponding quantities of the Schwarzschild sol-
ution with the same mass, had even more information to
offer. The first ratio remained below unity for all classes of
black-hole solutions found and for all mass regimes; as a
result, we may conclude that the presence of the additional,
gravitational GB term leads to the formation of more
compact black holes compared to the standard General
Relativity. In the large-mass limit, the horizon area of all
black-hole solutions approached the Schwarzschild value—
the same was true for the entropy ratio Sh=SSch; these two
features together suggest that, for large masses, it will be
extremely difficult to distinguish between GB black holes
and their General Relativity analogs.
Do we really expect to detect any of these classes of

GB black holes in the Universe? This depends first on their
stability behavior, a topic that needs to be studied carefully
and individually for each class of solutions presented in this
work. The curves Sh=SSchðMÞ, which we produced, may
provide hints for their stability: as mentioned above, the
entropy of all solutions found here approached, in the large-
M limit, the Schwarzschild value, and thus it is quite likely
that large GB black holes share the stability of the
Schwarzchild solution. For smaller masses, in which the
GB black holes are expected to differ from their GR analog,
different profiles were observed: the “exponential,” inverse-
quadratic, and logarithmic GB black holes had a ratio
Sh=SSch larger than unity for the entire intermediate mass
regime but smaller than unity in the very-low-mass regime.
These results point toward the thermodynamical stability of
solutions with intermediate and large masses but to an
instability for solutionswith smallmasses [although, even in
the latter case, an accretion of mass from their environment
could lead to an increase in theirmass and to a change in their
(in)stability]. On the other hand, the “quadratic,” “quartic,”
and “linear” GB black holes had their entropy ratio Sh=SSch
below unity over the entire mass regime and perhaps did not
lead to stable configurations. Finally, two classes of sol-
utions, the “inverse-linear” and the first branch of the
“cubic” GB black holes have their ratio Sh=SSch larger than
unity for all values of the black-hole mass—small, inter-
mediate, and large—and may hopefully lead to stable
solutions with a variety of masses. In all cases, a careful
study of all the above solutions under perturbations is
necessary in order to verify or refute the above expectations
(the only class of GB black-hole solutions that has been
studied under linear perturbations are the exponential ones
that were found to be indeed stable [10] in accordance with
the above comments).

Assuming therefore that one or more classes of the
aforementioned black-hole solutions are stable, we then
need a number of signatures or observable effects that
would distinguish them from their GR analogs and con-
vince us of their existence. A generic feature of all GB
black holes is their minimum horizon radius: if, in the
small-mass limit, certain families of GB black holes are
more favorable to emerge compared to the Schwarzschild
solution—from the stability point of view, then, the
observed black holes will not have an arbitrarily small
mass. Also, in the small-mass limit, observable effects may
include deviations from standard GR in the calculation of
the bending angle of light, the precession observed in near-
horizon orbits, and the spectrum from their accretion discs.
Studies of this type have been performed [35] for black
holes in the Einstein-scalar-GB theory with a linear
coupling [26]—a special case of our analysis—and shown
that the near-horizon strong dynamics may leave its imprint
on all of these observables.
Our GB black-hole solutions are characterized also by

a scalar charge. A previous analysis of dilatonic (expo-
nential) GB black holes [36] has revealed that scalar
radiation is rather suppressed, especially for nonspinning
black holes, unless particular couplings are introduced in
the theory between the scalar field and ordinary matter.
In addition, in Ref. [37], it was demonstrated that the
scalar charge of neutron stars, emerging in the context of
the same theory, is extremely small. We would like to add
to this that, according to our analysis, the more stable
configurations tend to correspond to black holes with
small scalar charge. Perhaps, future observations of
gravitational waves from black-hole or neutron-star
processes could lead to clear signatures (or impose
constraints) on the existence of GB compact objects,
provided that these objects have a small mass and/or a
large scalar charge. Finally, the measurement of the
characteristic frequencies of the quasinormal modes
(especially the polar sector) will also help to distinguish
these solutions from their GR analogs [36].
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Note added.—Recently, two additional works, that studied
black-hole solutions with scalar hair in the context of the
Einstein-scalar-Gauss-Bonnet theory, appeared [38,39].

APPENDIX A: SET OF DIFFERENTIAL
EQUATIONS

Here, we display the explicit expressions of the coef-
ficients P,Q, and S that appear in the system of differential
equations (15) and (16), the solution of which determines
the metric function A and the scalar field ϕ. They are
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P ¼ þe4Bð32A0 _f − 48rA02 _f − 8r2ϕ0 − 4r3A0ϕ0 − 64rϕ02 _fÞ þ e3Bð−64A0 _f þ 96rA02 _f

þ 48r2A03 _f þ 8r2ϕ0 − 4r3A0ϕ0 − 4r4A02ϕ0 þ 128A02ϕ0 _f2 þ 96rA03ϕ0 _f2 þ 64rϕ02 _f

þ 24r2A0ϕ02 _f − 20r3A02ϕ02 _f − 2r4ϕ03 þ 96rA0ϕ03 _f2 − 16r3ϕ04 _f þ 32r2ϕ03f̈

þ r5A0ϕ03 þ 16r3A0ϕ03f̈Þ þ 16e2Bð8A0 _f − 12rA02 _f − 20r2A03 _f − 64A02ϕ0 _f2

− 112rA03ϕ0 _f2 − 14r2A0ϕ02 _f þ 19r3A02ϕ02 _f − 96A03ϕ02 _f3 − 32rA0ϕ03 _f2

þ 36r2A02ϕ03 _f2 þ 8r3ϕ04 _f − 4r4A0ϕ04 _f − 8r2ϕ03f̈ þ 4r3A0ϕ03f̈ − 32r2A0ϕ04 _f f̈Þ
þ 16eBð8A02ϕ0 _f2 þ 38rA03ϕ0 _f2 þ 64A03ϕ02 _f3 þ 18rA0ϕ03 _f2 − 17r2A02ϕ03 _f2Þ
− 1152A03ϕ02 _f3; ðA1Þ

Q ¼ þ32e5Br − e4Bð64rþ 24r2A0 þ 160ϕ0 _f þ 48rA0ϕ0 _f þ 4r3ϕ02 þ 128rϕ02f̈Þ
þ e3Bð32rþ 24r2A0 − 8r3A02 þ 320ϕ0 _f þ 224rA0ϕ0 _f − 32r2A02ϕ0 _f − 12r3ϕ02

þ6r4A0ϕ02 þ 256A0ϕ02 _f2 − 32rA02ϕ02 _f2 − 24r2ϕ03 _f þ 12r3A0ϕ03 _f − 32rϕ04 _f2

−r5ϕ04 þ 256rϕ02f̈ þ 128r2A0ϕ02f̈ þ 640ϕ03 _f f̈þ256rA0ϕ03 _f f̈−16r3ϕ04f̈Þ
þ e2Bð128r2A02ϕ0 _f − 160ϕ0 _f − 176rA0ϕ0 _f − 640A0ϕ02 _f2 þ 320rA02ϕ02 _f2

þ152r2ϕ03 _f − 52r3A0ϕ03 _f þ 128A02ϕ03 _f3 þ 256ϕ04r _f2 − 80r2A0ϕ04 _f2 þ 4r4ϕ05 _f

−128rϕ02f̈ − 128r2A0ϕ02f̈ − 1280ϕ03 _f f̈−1280rA0ϕ03 _f f̈þ16r3ϕ04f̈

−1280A0ϕ04 _f2f̈ þ 64r2ϕ05 _f f̈Þ þ eBð384A0ϕ02 _f2 − 672rA02ϕ02 _f2 − 768A02ϕ03 _f3

−480rϕ04 _f2 þ 144r2A0ϕ04 _f2 þ 640ϕ03 _f f̈þ1024rA0ϕ03 _f f̈þ3584A0ϕ04 _f2f̈

−64r2ϕ05 _f f̈Þ þ 1152A02ϕ03 _f3 − 2304A0ϕ04 _f2f̈;

S ¼ þ128r _fe4B þ 8e3Bðr4ϕ0 − 32r _f − 16r2A0 _f − 80ϕ0 _f232rA0ϕ0 _f2 þ 4r3ϕ02 _fÞ
þ 32e2Bð4r _f þ 4r2A0 _f þ 40ϕ0 _f2 þ 40rA0ϕ0 _f2 − 3r3ϕ02 _f þ 40A0ϕ02 _f3 − 4r2ϕ03 _f2Þ
þ 8eBð32r2ϕ03 _f2 − 80ϕ0 _f2 − 128rA0ϕ0 _f2 − 448A0ϕ02 _f3Þ þ 2304A0ϕ02 _f3: ðA2Þ

APPENDIX B: SCALAR QUANTITIES

By employing the metric components of the line element (7), one may compute the following scalar-invariant
gravitational quantities:

R ¼ þ e−B

2r2
ð4eB − 4 − r2A02 þ 4rB0 − 4rA0 þ r2A0B0 − 2r2A00Þ; ðB1Þ

RμνRμν ¼ þ e−2B

16r4
½8ð2 − 2eB þ rA0 − rB0Þ2 þ r2ðrA02 − 4B0 − rA0B0 þ 2rA00Þ2þr2ðrA02 þ A0ð4 − rB0Þ þ 2rA00Þ2�;

ðB2Þ

RμνρσRμνρσ ¼ þ e−2B

4r4
½r4A04 − 2r4A03B0 − 4r4A0B0A00 þ r2A02ð8þ r2B02 þ 4r2A00Þþ16ðeB − 1Þ2 þ 8r2B02 þ 4r4A002�;

ðB3Þ

R2
GB ¼ þ 2e−2B

r2
½ðeB − 3ÞA0B0 − ðeB − 1ÞA02 − 2ðeB − 1ÞA00�: ðB4Þ
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