
 

Quantum entanglement in de Sitter space with a wall
and the decoherence of bubble universes

Andreas Albrecht,1 Sugumi Kanno,2,3,* and Misao Sasaki4,5,†
1Center for Quantum Mathematics and Physics and Department of Physics,

University of California Davis, Davis, California 95616, USA
2Department of Theoretical Physics and History of Science,
University of the Basque Country, Bilbao 48080, Spain

3IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao 48013, Spain
4Center for Gravitational Physics, Yukawa Institute for Theoretical Physics,

Kyoto University, Kyoto 606-8502, Japan
5International Research Unit of Advanced Future Studies, Kyoto University, Kyoto 606-8502, Japan

(Received 8 March 2018; published 30 April 2018)

We study the effect of a bubble wall on the entanglement entropy of a free massive scalar field between
two causally disconnected open charts in de Sitter space. We assume there is a delta-functional wall
between the open charts. This can be thought of as a model of pair creation of bubble universes in de Sitter
space. We first derive the Euclidean vacuum mode functions of the scalar field in the presence of the wall in
the coordinates that respect the open charts. We then derive the Bogoliubov transformation between the
Euclidean vacuum and the open chart vacua that makes the reduced density matrix diagonal. We find that
larger walls lead to less entanglement. Our result may be regarded as evidence of decoherence of bubble
universes from each other. We also note an interesting relationship between our results and discussions of
the black hole firewall problem.
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I. INTRODUCTION

Quantum entanglement has fascinated many physicist
because of its counterintuitive nature. Quantum entangle-
ment makes it possible to know everything about a system
composed of two subsystems (in a pure state) but know
nothing at all about the subsystems (in the case of maximal
entanglement). After Aspect et al. succeeded in showing
experimental evidence of the quantum nature of entangle-
ment by measuring correlations of linear polarizations of
pairs of photons [1,2], much attention has been paid to this
genuine quantum property in various research areas includ-
ing quantum information theory, quantum communication,
quantum cryptography, quantum teleportation, and quan-
tum computation.
Quantum entanglement should play an important role in

cosmology. In de Sitter space where the universe expands

exponentially, any two mutually separated regions even-
tually become causally disconnected. This is most con-
veniently described by spanning open universe coordinates
on two open charts in de Sitter space. The positive
frequency mode functions of a free massive scalar field
for the Euclidean vacuum (the Bunch-Davies vacuum) that
have support on both regions were derived in Ref. [3].
Using them, quantum entanglement between two causally
disconnected regions in de Sitter space was first studied
by Maldacena and Pimentel [4]. They showed that the
entanglement entropy, which is a measure of quantum
entanglement, of a free massive scalar field between two
disconnected open charts is nonvanishing. Motivated by
this work, the entanglement entropy of α vacua [5,6], that
of the Dirac field [7] and axion field were examined [8,9].
The spectrum of cosmological fluctuation was also studied
in Refs. [10,11]. Quantum entanglement is also of consid-
erable interest in the context of the proposed “entanglement-
geometry correspondence”(e.g., Refs. [12,13]).
One of the cornerstones of inflationary cosmology is

that primordial density fluctuations have a quantum
mechanical origin. Inflation leads to an “initial state” of
the Universe following inflation that is highly entangled.
This invites the question of whether compelling observa-
tional evidence for the entangled nature of the initial
density fluctuations can be found. Several studies have
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been made to quantify the initial-state entanglement by
using some measure of entanglement such as the Bell
inequality [14–20], entanglement negativity [21–23], and
quantum discord [24,25]. There have also been several
attempts to find some observational signatures on the
cosmic microwave background when the initial state is a
non-Bunch-Davies vacuum due to entanglement between
two scalar fields [26,27], between two universes [28], and
due to scalar-tensor entanglement [29,30].
In this paper, we extend the calculation of Maldacena

and Pimentel [4] to the case in which a bubble wall is
present between the two open charts. The modes of the
scalar field are changed by the presence of the wall, which
in turn changes the entanglement entropy between the two
regions. We find that for sufficiently large walls the
entanglement entropy approaches zero. Our technical
results may prove useful in several of the areas discussed
above. Here, we focus on the possible implications for the
decoherence of bubble universes.
The paper is organized as follows. In Sec. II, we review

the method developed by Maldacena and Pimentel [4]
with some comments relevant to the calculation of the
entanglement entropy with a bubble wall. In Sec. III, we
introduce the bubble wall in the system and construct the
positive frequency mode functions for the Bunch-Davies
vacuum. We then compute the entanglement entropy and
logarithmic negativity. Finally, we summarize our result
and discuss the implications in Sec. IV.

II. ENTANGLEMENT ENTROPY
IN de SITTER SPACE

Recently, Maldacena and Pimentel studied quantum
entanglement between two causally disconnected regions
in de Sitter space in Ref. [4]. They showed that the
entanglement entropy of a free massive scalar field between
two disconnected open charts is nonvanishing. In this
section, we review their result.

A. Mode functions in the open chart

We consider a free scalar field ϕ with massm in de Sitter
space represented by the metric gμν. The action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ −

m2

2
ϕ2

�
: ð2:1Þ

The metric in each R and L region of open charts in de
Sitter space (see Fig. 1) can be obtained by analytic
continuation from the Euclidean metric,

ds2E ¼ H−2½dτ2 þ cos2 τðdρ2 þ sin2 ρdΩ2Þ�; ð2:2Þ
and expressed, respectively, as

ds2R ¼ H−2½−dt2R þ sinh2tRðdr2R þ sinh2rRdΩ2Þ�;
ds2L ¼ H−2½−dt2L þ sinh2tLðdr2L þ sinh2rLdΩ2Þ�; ð2:3Þ

whereH−1 is the Hubble radius and dΩ2 is the metric on the
2-sphere. Note that the regions R and L covered by the
coordinates (tL, rL) and (tR, rR), respectively, are the two
causally disconnected open charts of de Sitter space.1

The solutions of the Klein-Gordon equation are
expressed as

uσplmðt; r;ΩÞ ∼
H

sinh t
χp;σðtÞYplmðr;ΩÞ;

−L2Yplm ¼ ð1þ p2ÞYplm; ð2:4Þ

where ðt; rÞ ¼ ðtR; rRÞ or (tL, rL) and Yplm are harmonic
functions on the three-dimensional hyperbolic space. The
eigenvalues p normalized by H take positive real values.
The positive frequency mode functions corresponding to
the Euclidean vacuum (the Bunch-Davies vacuum) that are
supported in both the R and L regions are derived by Sasaki
et al. in Ref. [3],

χp;σðtÞ¼
8<
:

eπp−iσe−iπν
Γðνþipþ1

2
ÞP

ip
ν−1

2

ðcoshtRÞ−e−πp−iσe−iπν
Γðν−ipþ1

2
Þ P

−ip
ν−1

2

ðcoshtRÞ;
σeπp−ie−iπν
Γðνþipþ1

2
ÞP

ip
ν−1

2

ðcoshtLÞ−σe−πp−ie−iπν
Γðν−ipþ1

2
Þ P

−ip
ν−1

2

ðcoshtLÞ;
ð2:5Þ

where P�ip
ν−1

2

are the associated Legendre functions and the

index σ takes the values �1, which distinguishes two
independent solutions for each region, and ν is a mass
parameter,

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

H2

r
: ð2:6Þ

FIG. 1. The Penrose diagram of the de Sitter space is shown.
L and R are the two causally disconnected regions described by
the open charts. A late-time spatial hypersurface in each region is
depicted.

1The point between R and L regions is a part of the timelike
infinity where infinite volume exists.
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Here and below in the text, we focus on the case
m2=H2 < 9=4 to save space and make the discussion
clear. The extension to the case m2=H2 > 9=4 is straight-
forward, and the result we present will include both mass
ranges.
Note that ν ¼ 1=2 (m2 ¼ 2H2) is equivalent to a con-

formally coupled massless scalar. The minimally coupled
massless limit is ν ¼ 3=2. For 1=2 < ν < 3=2, it is known
that there exists a supercurvature mode p ¼ ik where
0 < k < 1, which may be regarded as a bound-state mode.
The role of supercurvature modes in the quantum entan-
glement is not clear. In Ref. [4], it is conjectured that they
will not contribute. In the body of this paper, we simply
ignore them. An analysis in the case of a conformal scalar
in the presence of a bubble wall is given in Appendix A. It
turns out that a bubble wall can make the effective potential
deep and allow a supercurvature mode to exist. In fact, we
find that the eigenvalue k can exceed unity and become
arbitrarily large as the effective potential becomes deeper,
and as a result, the contribution of the supercurvature mode
in the vacuum spectrum in each open chart is more
important.2

Going back to the solutions in Eq. (2.5), the Klein-
Gordon normalization fixes the normalization factor as

Np ¼ 4 sinh πp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh πp − σ sin πν

p
ffiffiffi
π

p jΓðνþ ipþ 1
2
Þj : ð2:7Þ

Since they form a complete orthonormal set of modes, the
field can be expanded in terms of the creation and
annihilation operators,

ϕ̂ðt; r;ΩÞ ¼ H
sinh t

Z
dp

X
σ;l;m

½aσplm χp;σðtÞ

þ a†σpl−m χ
�
p;σðtÞ�Yplmðr;ΩÞ

¼ H
sinh t

Z
dp

X
l;m

ϕplmðtÞYplmðr;ΩÞ; ð2:8Þ

where Y�
plm ¼ Ypl−m, ½aσplm; a†σ0p0l0m0 � ¼ δðp − p0Þ×

δσ;σ0δl;l0δm;m0 with aσplm annihilating the Bunch-Davies
vacuum, aσplmj0iBD ¼ 0, and we introduced a Fourier
mode field operator,

ϕplmðtÞ≡
X
σ

½aσplm χp;σðtÞ þ a†σpl−m χ
�
p;σðtÞ�: ð2:9Þ

For convenience, we write the mode functions and the
associated Legendre functions of the R and L regions
in a simple form: χp;σðtÞ≡ χσ, Pip

ν−1=2ðcosh tR;LÞ≡ PR;L,

P−ip
ν−1=2ðcosh tR;LÞ≡ PR�;L�. Also, below, we omit the

indices p, l, and m of ϕplm, aσplm, and a†σpl−m for

simplicity. For example, aσ ¼ aσplm, and a†σ ¼ aσpl−m
unless there may be any confusion.3

B. Bogoliubov transformations and entangled states

Next, we consider the positive frequency mode functions
for the R or L vacuum that have support only on the R or L
region, respectively. They are given by

φq ¼
�
Ñ−1

p Pq in region q;

0 in the opposite region;

Ñp ¼
ffiffiffiffiffiffi
2p

p
jΓð1þ ipÞj ; ð2:10Þ

where q ¼ ðR;LÞ. As the Fourier mode field operator (2.9)
should be the same under this change of mode functions,
we have

ϕðtÞ ¼ aσ χσ þ a†σ χσ� ¼ bqφq þ b†qφq�; ð2:11Þ
where we have introduced the new creation and annihila-
tion operators (bq, b

†
q) such that bqj0iq ¼ 0. The operators

(aσ, a
†
σ) and (bq, b

†
q) are related by a Bogoliubov trans-

formation. The Bunch-Davies vacuum may be constructed
from the states over j0iq as

j0iBD ∝ exp

�
1

2

X
i;j¼R;L

mijb
†
i b

†
j

�
j0iRj0iL; ð2:12Þ

where mij is a symmetric matrix. The condition
aσj0iBD ¼ 0 determines mij,

mij ¼ eiθ
ffiffiffi
2

p
e−pπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh 2πpþ cos 2πν
p

�
cos πν i sinhpπ

i sinhpπ cos πν

�
;

ð2:13Þ
where eiθ contains all unimportant phase factors for ν2 > 0.
This is an entangled state of the HR ⊗ HL Hilbert space.
The density matrix ρ ¼ j0iBDBDh0j is not diagonal in the

j0iRj0iL basis unless ν ¼ 1=2 or 3=2. To make the
calculation easier for tracing out the degrees of freedom
in, say, the L space later, we perform a further Bogoliubov
transformation in each of R and L regions. Apparently, this
Bogoliubov transformation does not mix the operators in
HR space and those in HL space. We introduce new
operators cq ¼ ðcR; cLÞ that satisfy

cR ¼ ubR þ vb†R; cL ¼ u�bL þ v�b†L ð2:14Þ
to obtain

2See Eq. (3.10) in Ref. [31].

3It may be noted that this abbreviation implies ðaσÞ† ¼
a†σplm ≠ a†σ ¼ a†σpl−m. But since this is a small technical problem
that can be easily solved by doubling the degrees of freedom,
below we assume ðaσÞ† ¼ a†σ .
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j0iBD ¼ N−1
γp exp ðγpc†Rc†LÞj0iR0 j0iL0 : ð2:15Þ

Note that the condition juj2 − jvj2 ¼ 1 is assumed so that
the new operators satisfy the commutation relation
½ci; ðcjÞ†� ¼ δij. The normalization factor Nγp is given by

N2
γp ¼ j exp ðγpc†Rc†LÞj0iR0 j0iL0 j2 ¼ 1

1 − jγpj2
; ð2:16Þ

where jγpj < 1 should be satisfied. The consistency rela-
tions from Eq. (2.15) (cRj0iBD ¼ γpc

†
Lj0iBD, cLj0iBD ¼

γpc
†
Rj0iBD) give

γp¼
1

2ζ

�
−ω2þζ2þ1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2−ζ2−1Þ2−4ζ2

q �
; ð2:17Þ

where we defined ω≡mRR ¼ mLL and ζ ≡mRL ¼ mLR in
Eq. (2.13). Note that a minus sign in front of the square-root
term is taken to make γp converge. Putting the ω and ζ
defined in Eq. (2.13) into Eq. (2.17), we obtain

γp ¼ i

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2πpþ cos 2πν

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2πpþ cos 2πνþ 2

p :

ð2:18Þ

Note that γp simplifies to jγpj ¼ e−πp for ν ¼ 1=2 (con-
formal) and ν ¼ 3=2 (massless). The u and v may be
determined by inserting the above γp into the consistency
conditions.

C. Reduced density matrix and entanglement entropy

Given the density matrix in the diagonalized form, it is
straightforward to obtain the reduced density matrix. From
Eqs. (2.15) and (2.16), we obtain the density matrix for
each mode labeled by p, l, and m as

ρR ¼ TrLj0iBDBDh0j

¼ ð1 − jγpj2Þ
X∞
n¼0

jγpj2njn;plmihn;plmj; ð2:19Þ

where we defined jn;plmi ¼ 1=
ffiffiffiffiffi
n!

p ðc†RÞnj0iR0 . In the
conformal (ν ¼ 1=2) and massless (ν ¼ 3=2) cases, the
reduced density matrix reduces to a thermal state with
temperature T ¼ H=ð2πÞ.
The entanglement entropy for each mode is given by

Sðp; νÞ ¼ −TrρRðpÞlog2ρRðpÞ

¼ −log2ð1 − jγpj2Þ −
jγpj2

1 − jγpj2
log2jγpj2: ð2:20Þ

Then, the total entanglement entropy between two causally
disconnected open regions is obtained by integrating over p
and a volume integral over the hyperboloid,

SðνÞ ¼ Vreg
H3

Z
∞

0

dpp2

2π2
Sðp; νÞ ¼ 1

π

Z
∞

0

dpp2Sðp; νÞ;

ð2:21Þ

where Vreg
H3 ¼ 2π is the regularized volume of the hyper-

boloid [4]. The result is plotted in Fig. 2. We see that the
entanglement is largest for small mass (positive ν2) and
decays exponentially for large mass (negative ν2). The two
peaks correspond to the massless (ν ¼ 3=2) and conformal
(ν ¼ 1=2) cases.

III. EFFECTS OF A BUBBLE WALL
ON THE ENTANGLEMENT

Now, we study the effect of a bubble wall on the
entanglement. The Penrose diagram of our setup is depicted
in Fig. 3. We consider the same action as Eq. (2.1) but now
with m2 as a function of the background geometry that
contains a wall. In the case in which the background
geometry is given by an instanton solution with σðτÞ being
the scalar field configuration and ϕ being its fluctuations,
m2 will be given by

FIG. 2. Plot of the entanglement entropy normalized by the
conformal scalar case (ν ¼ 1=2) as a function of ν2.

FIG. 3. The Penrose diagrams of de Sitter spacewith andwithout
a delta-function wall. We assume that pair creation of identical
vacuum bubbles through false vacuum decay and that the bubbles
are separated by an infinitesimally thin wall in region C.
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m2ðτÞ ¼ d2VðσÞ
dσ2

; ð3:1Þ

where V is the potential of the σ field and the τ dependence
of m2 is through its σ dependence. In a realistic situation,
m2 would be a smooth function of τ and is positive on both
sides of the wall but negative at the wall where the potential
has a peak. For simplicity, however, here, we model the
wall with a delta function.

A. Setup

We consider the same action as Eq. (2.1) but now with a
delta-functional wall in region C parametrized by Λ
according to

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ−

m2−ΛδðtCÞ
2

ϕ2

�
; ð3:2Þ

where the metric is expressed as

ds2C ¼ H−2½dt2C þ cos2 tCð−dr2C þ cosh2 rCdΩ2Þ�: ð3:3Þ

Note that the radial coordinate tC in the region C coincides
with τ of the instanton solution [see Eq. (3.6) below]. Note
also that if we denote the width of the wall by Δτw we
have Λ ¼ jd2V=dσ2jHΔτw.
Setting the field ϕ as

ϕ ¼ H
cos tC

χpðtCÞYplmðrC;ΩÞ; ð3:4Þ

the solution of the mode function χp in theC region is given

by the associated Legendre function, χp ∝ P�ip
ν−1

2

ðsin tCÞ.

B. Mode functions in the presence of a wall

Now, we want to pick up the positive frequency mode
functions that are relevant for the pair creation of bubble
universes through false vacuum decay, namely, those mode
functions that describe the Euclidean vacuum in the
presence of a wall in region C. They are obtained by
requiring regularity in the lower hemisphere of the
Euclidean de Sitter space with the wall when they are
analytically continued to that region [3,31].

1. Relation between the Lorentzian
and the Euclidean coordinates

The open chart is obtained by analytic continuation of
the Euclidean sphere S4. The Lorentzian coordinates of the
regions L, R, and C are related to the Euclidean coordinates
given in Eq. (2.2) as

�
tR ¼ iðτ − π

2
Þ; tR ≥ 0

rR ¼ iρ; rR ≥ 0
ð3:5Þ

�
tC ¼ τ; − π

2
≤ tC ≤ π

2

rC ¼ iðρ − π
2
Þ; 0 ≤ rC ≤ ∞

ð3:6Þ
�
tL ¼ ið−τ − π

2
Þ; tL ≥ 0

rL ¼ iρ; rL ≥ 0.
ð3:7Þ

For simplicity, we write sin tC ≡ zC, cosh tR ≡ zR, and
cosh tL ≡ −zL below. Then, the above relations give
zC ¼ zR ¼ −zL.

2. Analytic continuation in the presence of the wall

Let χRpðzRÞ¼Pip
ν−1

2

ðzRÞ and χLpðzLÞ¼Pip
ν−1

2

ðzLÞ (zL¼−zR),
where

Pμ
νðzÞ ¼ 1

Γð1 − μÞ
�
zþ 1

z − 1

�μ
2

F

�
−ν; νþ 1; 1 − μ;

1 − z
2

�
;

z > 1 or z < −1: ð3:8Þ

(i) From R (R¼fzR>1g) to Cþ (Cþ ¼ f0 < zC < 1g):
Analytic continuation is through ℑzR < 0. This

means that the argument of zR − 1 ¼ zC − 1 is −π.
Hence, zR − 1 ¼ zC − 1 ¼ e−iπð1 − zCÞ. Thus,

ð1þ zCÞ ¼ ð1þ zRÞ;
ð1 − zCÞ ¼ j1 − zRjeiπ ¼ ðzR − 1Þeiπ; ð3:9Þ

which gives
�
1þ zR
zR − 1

�
ip
2 ¼ e−

π
2
p

�
1þ zC
1 − zC

�
ip
2 ð3:10Þ

when analytically continued from zR > 1 to zR ¼
zC < 1. This means

χRpðzCÞ ¼ e−
π
2
pP̃ip

ν−1
2

ðzCÞ; ð3:11Þ

for zR ¼ zC < 1, where P̃μ
νðxÞ for −1 < x < 1 is

defined as

P̃μ
νðxÞ¼ 1

Γð1−μÞ
�
1þx
1−x

�μ
2

F

�
−ν;νþ1;1−μ;

1−x
2

�
:

ð3:12Þ

(ii) From Cþ to C− (C− ¼ f−1 < zC < 0g):
Assuming there is a delta-functional wall of

height Λ at zC ¼ 0, χRpðzCÞ is deformed to

χRpðzCÞ ¼ e
π
2
p

�
Ape−πpP̃

ip
ν−1

2

ðzCÞ þBpeπpP̃
−ip
ν−1

2

ðzCÞ
�
;

ð3:13Þ

in C−, where Ap and Bp are given by
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Ap ¼ 1þ π

2i sinh πp
Λ
H2

jP̃ip
ν−1

2

ð0Þj2; ð3:14Þ

Bp ¼ −
π

2i sinh πp
Λ
H2

e−2πp
�
P̃ip
ν−1

2

ð0Þ
�

2

: ð3:15Þ

Note that in the absence of a wall (Λ ¼ 0) we have
Ap ¼ 1 and Bp ¼ 0.

(iii) From L (L ¼ fzL < −1g) to C− (C− ¼
f−1 < zC < 0g):
Now, we express the above solution in terms of

χLp. To do this, we first introduce ẑC ¼ −zC and
analytically continue χLp from L to C−, where
0 < ẑC < 1. It is exactly the same as the analytic
continuation from R to Cþ, and we have

χLpðẑCÞ ¼ e−
π
2
pP̃ip

ν−1
2

ðẑCÞ; ð3:16Þ

for zL ¼ ẑC < 1.
(iv) Matching χR with χL:

We now express χRp in terms of χLp and χL−p. To do

this, we express P�ip
ν−1

2

ðzCÞ ¼ P�ip
ν−1

2

ð−ẑCÞ in terms of

P�ip
ν−1

2

ðẑCÞ, which can be achieved by using the

transformation formulas for the hypergeometric
functions in Appendix B. We find

Pip
ν−1

2

ð−ẑCÞ ¼ CpP
ip
ν−1

2

ðẑCÞ þDpP
−ip
ν−1

2

ðẑCÞ; ð3:17Þ

where

Cp¼
cosπν
isinhπp

;

Dp¼−e−2πp
cosðνþ ipÞπ
isinhπp

Γð1
2
þνþ ipÞ

Γð1
2
þν− ipÞ : ð3:18Þ

Using Eq. (3.17), χRp is expressed as4

χRpðzCÞ ¼ e
π
2½ApP

ip
ν−1

2

ð−ẑCÞ þ BpP
−ip
ν−1

2

ð−ẑCÞ�
¼ ðApCp þ BpD−pÞχLpðẑCÞ
þ eπpðApDp þ BpC−pÞχL−pðẑCÞ: ð3:20Þ

Notice that P−ip
ν−1

2

ð−ẑCÞ is not complex conjugate

of Pip
ν−1

2

ð−ẑCÞ.

3. Euclidean vacuum in the presence of the wall

Finally, the positive frequency mode functions for the
Euclidean vacuum in the presence of the bubble wall are
found to be

χRpðzÞ ¼
1

Nw

8<
:

Pip
ν−1

2

ðzRÞ;
ðApCp þ BpD−pÞPip

ν−1
2

ðzLÞ þ eπpðApDp þ BpC−pÞP−ip
ν−1

2

ðzLÞ;
ð3:21Þ

χLpðzÞ ¼
1

Nw

8<
:

ðApCp þ BpD−pÞPip
ν−1

2

ðzRÞ þ eπpðApDp þ BpC−pÞP−ip
ν−1

2

ðzRÞ;
Pip
ν−1

2

ðzLÞ;
ð3:22Þ

where the Klein-Gordon normalization for the above solutions is

N2
w ¼ Ñp

2ð1þ jfpj2 − jgpj2Þ; ð3:23Þ

where Ñp is defined in Eq. (2.10) and we have defined

fp ¼ ApCp þ BpD−p; gp ¼ eπpðApDp þ BpC−pÞ: ð3:24Þ

Note that in the absence of the wall (Λ ¼ 0) we have fp ¼ Cp and gp ¼ eπpDp.

4In the language of Ref. [31], we have

αp ¼ eπpðApDp þ BpC−pÞ; βp ¼ ApCp þ BpD−p: ð3:19Þ

We can check the symmetry, α�p ¼ e−2πpα−p, β�p ¼ β−p.
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C. Bogoliubov transformations and entangled states

We perform the same Bogoliubov transformation in Eq. (2.11) that mixes the operators in the Hilbert spacesHR andHL.
The derivation of the symmetric matrix mij is given in Appendix C. The components of the mij in Eq. (2.13) are now
expressed as

ω ¼ −F
�
ðfp þ f�pÞ

�
1 −

jgpj2
1 − f�2p

�
− ð1þ jfpj2 − jgpj2Þ

�
fp −

f�pjgpj2
1 − f�2p

��
; ð3:25Þ

ζ ¼ −F
�
ðfp þ f�pÞ

�
fp −

f�pjgpj2
1 − f�2p

�
− ð1þ jfpj2 − jgpj2Þ

�
1 −

jgpj2
1 − f�2p

��
; ð3:26Þ

where

F ¼ g�p
1 − f�2p

1

E
; E ¼

�
1 −

jgpj2
1 − f�2p

�
2

−
�
fp −

f�pjgpj2
1 − f�2p

�
2

: ð3:27Þ

If there is no wall, ω is real (ω ¼ ω�), and ζ is pure
imaginary (ζ ¼ −ζ�) for positive ν2, then the second
Bogoliubov transformation was simplified as in
Eq. (2.14). In the presence of the wall, however,
Eqs. (3.25) and (3.26) are neither real nor imaginary,
respectively, for positive ν2. In this case, we need to
perform the Bogoliubov transformation of the form

cR ¼ ubR þ vb†R; cL ¼ ūbL þ v̄b†L ð3:28Þ

to get the relation (2.15). Note that juj2 − jvj2 ¼ 1 and
jūj2 − jv̄j2 ¼ 1 are assumed. Then, the consistency rela-
tions (cRj0iBD ¼ γpc

†
Lj0iBD, cLj0iBD ¼ γpc

†
Rj0iBD) give

the system of four homogeneous equations:

ωuþv− γpζv̄� ¼ 0; ζu− γpū�− γpωv̄� ¼ 0;

ωūþ v̄− γpζv� ¼ 0; ζū− γpu�− γpωv� ¼ 0: ð3:29Þ

To have a nontrivial solution in the above system of
equations, γp must be [5]

jγpj2¼
1

2jζj2
h
−ω2ζ�2−ω�2ζ2þjωj4−2jωj2þ1þjζj4

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2ζ�2þω�2ζ2− jωj4þ2jωj2−1− jζj4Þ2−4jζj4

q i
;

ð3:30Þ

where we took a minus sign in front of the square-root term
to reduce Eq. (2.17) when there is no wall. Then, putting
Eqs. (3.25) and (3.26) into Eq. (3.30), we can calculate the
entanglement entropy for each mode in Eq. (2.20). The
resulting total entanglement entropy, Eq. (2.21), is plotted
in Fig. 4.

D. Entanglement entropy

From the left panel in Fig. 4, we see that the entangle-
ment entropy decreases as the effect of the wall increases
for small mass (positive ν2). For large mass (negative ν2),
the entanglement entropy decays exponentially in the
absence of the wall (Λ ¼ 0). In the presence of the wall,

FIG. 4. The left panel shows plots of the entanglement entropy versus ν2 for several values of Λ. Running from top to bottom on the
right side of the panel: Λ ¼ 0 (blue), Λ=H2 ¼ 1 (orange), Λ=H2 ¼ 3 (green), Λ=H2 ¼ 5 (red), and Λ=H2 ¼ 8 (purple). The right panel
shows the Λ dependence of the entanglement entropy, where the horizontal axis is in units of H ¼ 1. Again running from top to bottom
along the right, we show the massless case (ν ¼ 3=2, blue), ν ¼ 1 (orange), and the conformal case (ν ¼ 1=2, green).
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the peak at the conformally coupled scalar (ν ¼ 1=2) shifts
to the left and eventually disappears as the effect of the wall
increases. The right panel also shows that the peak of the
entanglement entropy corresponding to the massless case
and the conformally coupled scalar is an identical value in
the absence of the wall (Λ ¼ 0). However, as the effect of
the wall becomes large, the entanglement entropy in the
case of a conformally coupled scalar decays faster than that
of the massless case.

E. Logarithmic negativity

To characterize the entanglement of a quantum state,
there have been many entanglement measures proposed.
The logarithmic negativity is one such measure of quantum
entanglement. This measure is derived from the positive
partial transpose criterion for separability [32]. The idea of
it is to characterize an entangled state as a state that is not
separable. In this subsection, we compute the entanglement
of our model with the logarithmic negativity.
The second Bogoliubov transformation (2.15) is rewrit-

ten as

j0iBD ¼ N−1
γp

X∞
n¼0

γnpjn;plmiR0 jn;plmiL0 ; ð3:31Þ

where the states jn;plmiR0 and jn;plmiL0 are n particle
excitation states in R0 and L0 spaces. For a pure state, any
state has a Schmidt decomposition expressed as

jψi ¼
X
i

ffiffiffiffi
λi

p
jiiA ⊗ jiiB; ð3:32Þ

where λi is the probability to observe the ith state and
satisfies

P
iλi ¼ 1. By using the eigenvalues, the logarith-

mic negativity is expressed as

LN ¼ 2 log2

�X
i

ffiffiffiffi
λi

p �
: ð3:33Þ

Thus, if we compare Eq. (3.31) with the Schmidt decom-
position, we can read off the corresponding eigenvalues

ffiffiffiffi
λi

p
¼ N−1

γp jγpjn; ð3:34Þ

and the logarithmic negativity for each mode is calculated
as [22]

LN ðp; νÞ ¼ 2 log2

�X
i

N−1
γp jγpjn

�
¼ log2

1þ jγpj2
1 − jγpj2

:

ð3:35Þ

Then, the logarithmic negativity is obtained by integrating
over p and a volume integral over the hyperboloid,

LN ðνÞ ¼ 1

π

Z
∞

0

dpp2LN ðp; νÞ: ð3:36Þ

The result is plotted in Fig. 5. We find that the qualitative
features are the same as the result of entanglement entropy.

IV. SUMMARY AND DISCUSSION

We have studied the effect of a bubble wall on the
entanglement entropy of a free massive scalar field between
two causally disconnected open charts in de Sitter space.
We assume there is a delta-functional wall between them
parametrized by our wall parameter Λ. This may be
regarded as a model describing the pair creation of identical
bubble universes separated by a bubble wall. To analyze the
system, we first derived the Euclidean vacuum mode
functions of the scalar field in the presence of the wall
in the coordinates that respect the open charts. We then

FIG. 5. The left panel shows plots of the logarithmic negativity versus ν2. We setH ¼ 1. Running from top to bottom on the right side
of the panel: Λ ¼ 0 (blue), Λ=H2 ¼ 1 (orange), Λ=H2 ¼ 3 (green), Λ=H2 ¼ 5 (red), and Λ=H2 ¼ 8 (purple). The right panel shows the
Λ dependence of the logarithmic negativity, where the horizontal axis is in units of H ¼ 1. Again running from top to bottom along the
right, we show the massless case (ν ¼ 3=2, blue), ν ¼ 1 (orange), and the conformal case (ν ¼ 1=2, green).
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gave the Bogoliubov transformation between the Euclidean
vacuum and the open chart vacua that makes the reduced
density matrix diagonal. We derived the reduced density
matrix in one of the open charts (R space) after tracing out
the other (L space). We then computed the entanglement
entropy of the scalar field by using the reduced density
matrix and compared the result with the case of no bubble
wall. We found that larger values of parameter Λ corre-
spond to less entanglement. We also computed a different
measure of entanglement called logarithmic negativity. The
qualitative features were found to be the same as the result
of entanglement entropy.
In the limit of small entanglement entropy, the Bunch-

Davies quantum state approached a product of ground-state
wave functions for each of the charts. Our results thus show
that for largeΛ the dynamics of bubble formation select this
product state and ensure its stability under evolution. These
are the features identified in the literature5 to correspond to
the selection of special “pointer states” via the decoherence
process. Our results thus may be regarded as evidence of
the decoherence of bubble universes from (and by) each
other.
We also note that in discussions of the black hole firewall

problem [38,39] it is argued that the absence of entangle-
ment implies the existence of a firewall. We are intrigued by
a certain parallel, in a kind of reverse-engineered way, with
our results: we show a particular example of how the
presence of a wall can reduce entanglement.
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APPENDIX A: SUPERCURVATURE MODE

On the de Sitter background, there exists a supercurvature
mode in the open chart if the mass squared is in the range
0 < m2=H2 < 2 [3]. The supercurvature mode has an
imaginary eigenvalue, p¼ik, where 0<k<1. Therefore,
this may be regarded as a bound-state mode in the spectrum.
The role of supercurvature modes in the quantum

entanglement is not known. In Ref. [4], it is conjectured
that they do not contribute to the entanglement. Here, we
consider the effect of the presence of a bubble wall on the
supercurvature mode by focusing on the simplest case of
m2=H2 ¼ 2, i.e., the conformal scalar case. In this case, if

there is no wall, there is no supercurvature mode. We see
below that a supercurvature mode appears when there is
a wall.
Let us first write down the equation for the mode

function χpðtCÞ in region C,
�
d2

dt2C
þ daðtCÞ
aðtCÞdtC

d
dtC

þ 2 −M2ðtCÞ þ
p2

H2a2ðtCÞ
�
χp ¼ 0;

ðA1Þ

where aðtCÞ ¼ H−1 cos tC and

M2 ¼ m2 − ΛδðtCÞ
H2

: ðA2Þ

By using the conformal coordinate dξ ¼ dtC=aðtCÞ, we
have a ¼ ðH cosh ξÞ−1, and Eq. (A1) is reexpressed as

�
−

d2

dξ2
þM2 − 2

cosh2ξ
− p2

�
χp ¼ 0: ðA3Þ

We set p2 ¼ −k2 ðk > 0Þ, since we consider a super-
curvature mode. For M2 ¼ 2, Eq. (A3) gives the solution

χk ∝ e�kξ for ξ ≠ 0: ðA4Þ
For either sign, the solution is singular at ξ →∓ ∞ if there
were no wall. However, the presence of a wall allows the
solution to be

χk ∝
�
e−kξ for ξ > 0;

ekξ for ξ < 0:
ðA5Þ

The matching condition at ξ ¼ 0 gives
�
−

d
dξ

χp

�þ
−
¼ Λ

H2
χp; ðA6Þ

which can be readily solved to obtain

k ¼ Λ
2H2

: ðA7Þ

Thus, the supercurvature mode exists for any value of
Λ > 0, and the eigenvalue k can be arbitrarily large, unlike
the case of the pure de Sitter background.
To complete the analysis, let us compute the normali-

zation factor of the supercurvature mode. Setting χk ¼
N−1

k e�kξ for ξ ≶ 0, we have

1 ¼
Z

∞

−∞
dξjχkj2 ¼

2

N2
k

Z
∞

0

dξe−2kξ ¼ 1

N2
kk

: ðA8Þ

Thus, we obtain a very simple result:

Nk ¼
1ffiffiffi
k

p : ðA9Þ5See, for example, Refs. [33–36] and also Ref. [37], Sec. IV-D,
for a nice review.
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Thus, the larger the eigenvalue k, the smaller the normali-
zation factor becomes, implying that its contribution to the
spectrum of the vacuum fluctuations in each open chart
becomes more and more important [31].

APPENDIX B: TRANSFORMATION FORMULAS

Fðα; β; γ; zÞ ¼ ΓðγÞΓðαþ β − γÞ
ΓðαÞΓðβÞ ð1 − zÞγ−α−β

× Fðγ − α; γ − β; γ − α − β þ 1; 1 − zÞ

þ ΓðγÞΓðγ − αþ βÞ
Γðγ − αÞΓðγ − βÞ

× Fðα; β; αþ β − γ þ 1; 1 − zÞ; ðB1Þ

and

Fðα; β; γ; zÞ ¼ ð1 − zÞγ−α−βFðγ − α; γ − β; γ; zÞ: ðB2Þ

APPENDIX C: BOGOLIUBOV COEFFICIENTS

From Eq. (2.11), the relation between the operators aI
and bJ is given by

bJ ¼ aIðMÞIJ; bJ ¼ ðbq;b†qÞ; aI ¼ ðaσ; a†σÞ; ðC1Þ

where the capital indices (I, J) run from 1 to 4; the
subscripts q, σ ¼ ðR;LÞ; M is a 4 × 4 matrix,

MI
J ¼

�
ασq βσq

βσ�q ασ�q

�
; ðC2Þ

and α and β are 2 × 2 matrices and consist of fp and gp in
Eq. (3.24) such as

ασq ¼
Ñp

Nw

�
1 fp
fp 1

�
; βσq ¼

Ñp

Nw

�
0 gp
gp 0

�
: ðC3Þ

The relation (C1) is rewritten as

aJ ¼ bIðM−1ÞIJ;

ðM−1ÞIJ ¼
�
ξqσ δqσ

δ�qσ ξ�qσ

�
;

�
ξ ¼ ðα − βα�−1β�Þ−1;
δ ¼ −α−1βξ�:

ðC4Þ

By using Eq. (C3), we find the above matrices ξ and δ are
expressed, respectively, as

ξ ¼ Nw

Ñp

1

E

0
B@ 1 − jgpj2

1−f�2p
−fp −

f�pjgpj2
1−f�2p

−fp −
f�pjgpj2
1−f�2p

1 − jgpj2
1−f�2p

1
CA; ðC5Þ

δ¼Nw

Ñp

1

E�
gp

1−f2p

�
fpþf�p −1− jfpj2þjgpj2

−1− jfpj2þjgpj2 fpþf�p

�
:

ðC6Þ

If we apply aσ to Eq. (2.12), then we have

0 ¼ aσj0iBD ⇒ mij ¼ −ðδ�ξ−1Þij; ðC7Þ

and mij is found to be

mij ¼
�
ω ζ

ζ ω

�
; ðC8Þ

where ω and ζ are given in Eqs. (3.25) and (3.26).
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