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We report on the calculation of first-order quantum electrodynamics (QED) corrections for the
γp → lþl−p0 process. An upcoming experiment at MAMI (Mainz) aims to compare the cross sections
of muon- and electron-pair production in this reaction to test lepton universality. Precise knowledge of the
electromagnetic radiative corrections is needed for these measurements. As a first step, we present the
leading QED radiative corrections in the soft-photon approximation when accounting for the finite lepton
mass. For the kinematics at MAMI, we find corrections of the percent level for muons, and of order 10% for
electrons.
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I. INTRODUCTION

Recent experiments found a significant difference in the
proton charge radius, comparing measurements with elec-
trons and muons. Currently, the most precise measurements
with electron scattering were performed by the A1
Collaboration in Mainz [1,2]. The proton radius extracted
from these measurements is RE ¼ 0.879ð8Þ fm. For
muonic measurements, there is currently only the proton
radius extraction by muonic spectroscopy [3,4], yielding a
significantly smaller value than the extraction by electron
scattering experiments. The reported value of the muonic
hydrogen experiments is RE ¼ 0.84087ð39Þ fm [4].
This discrepancy, often referred to as the proton radius

puzzle, has triggered a lot of activity in recent years.
Explanations for this puzzle reach from systematic errors in
the extraction, see Refs. [5–12], to physics beyond the
standard model, see for example in Refs. [13–22]. If one
tries to explain this puzzle by new physics, one has to give
up lepton universality as a consequence, since this requires
the same, universal coupling for all leptons.
To shed further light on this puzzle and test lepton

universality, the MUSE experiment has been proposed,
which aims at comparing the scattering of muons and
electrons on a proton target [23,24]. In Ref. [25], the
authors suggested another test of lepton universality by
comparing the cross section of lepton-pair production for
muons and electrons in the process γp → lþl−p0. Such

experiment only requires a relative measurement through
the ratio of electron- and muon-pair production cross
sections slightly above dimuon production threshold.
According to the finding of Ref. [25], the measurement
of this ratio with absolute precision of around 7 × 10−4 can
test lepton universality at 3σ significance level. An upcom-
ing experiment at MAMI is planned to perform such
measurements [26].
For a precise theoretical prediction, it is, however,

necessary to include higher-order corrections to the proc-
ess. In this article, we report as a first step on the calculation
of the first-order QED corrections in the soft-photon limit
when accounting for the finite lepton mass.
The outline of the paper is as follows. In Sec. II, we

introduce the kinematical notations for the process γp →
lþl−p0 and give the formulas for the cross section at tree
level. In Sec. III, we evaluate the first-order QED correc-
tions to the cross section in the soft-photon approximation.
This limit is defined by a soft scaling of the loop momenta.
We give the analytic expressions for the real and virtual
corrections. We show that they factorize in terms of the tree
level cross section, and explicitly check the cancellation of
infrared divergences. In Sec. IV, we present the results of
this work. We quantify how the ratio of cross sections
of muon- and electron-pair production to electron-pair
production is affected by radiative corrections. We give
our conclusions and an outlook in Sec. V.

II. LEPTON-PAIR PRODUCTION
AT TREE LEVEL

The Bethe-Heitler process at tree level is described by
two graphs, see Fig. 1. We use p (p0) for the momenta of
the initial (final) proton, and p3 (p4) for the momenta of
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leptons l− (lþ) respectively. The initial photon has momen-
tum p1, and the virtual photon momentum in the
one-photon exchange graphs of Fig. 1 is defined as
p2 ¼ p − p0. The Mandelstam variables for this process
are defined as

ðp3 þ p4Þ2 ¼ sll; ð1Þ

ðp3 − p1Þ2 ¼ tll; ð2Þ

p2
2 ¼ ðp − p0Þ2 ¼ t: ð3Þ

The on-shell condition for external particles implies:

p2
3 ¼ p2

4 ¼ m2; ð4Þ

p2 ¼ p02 ¼ M2; ð5Þ

p2
1 ¼ 0: ð6Þ

At leading order, the scattering amplitude M0 is
given by

M0 ¼ ūðp3ÞðieÞ
�
γν

ið=p3 − =p1 þmÞ
ðp3 − p1Þ2 −m2

γμ

þ γμ
ið=p1 − =p4 þmÞ
ðp1 − p4Þ2 −m2

γν
�
ðieÞvðp4Þ

−i
t
ενðp1Þ

× ūðp0Þð−ieÞΓμðtÞuðpÞ; ð7Þ

where the electromagnetic vertex Γμ for the proton is
expressed as

ΓμðtÞ ¼ FDðtÞγμ − iFPðtÞ
σμνðp2Þν

2M
; ð8Þ

with the proton’s Dirac and Pauli form factors FD and FP,
respectively.
The corresponding unpolarized differential cross section

dσ0 is given by

�
dσ

dtdslldΩ
CMlþl−

ll

�
0

¼ 1

ð2πÞ4
1

64

β

ð2MEγÞ2
�X

i

X
f

ðM�
0M0Þ

�
; ð9Þ

where Eγ is the lab energy of the initial photon and

ΩCMlþl−

ll is the solid angle of the lepton pair in their
center-of-mass frame, in which the lepton velocity is
denoted by

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

sll

s
: ð10Þ

In Eq. (9), we average over all polarizations in the initial
state and sum over the polarizations in the final state. We
express the cross section as a product of hadronic and
leptonic parts as

�
dσ

dtdslldΩ
CMlþl−

ll

�
0

¼ α3β

16πð2MEγÞ2t2
LμνHμν; ð11Þ

where the fine-structure constant is defined as
α≡ e2=4π ≈ 1=137. Furthermore, the unpolarized leptonic
tensor Lμν (including the average over the initial photon
polarization) is given by

Lμν ¼ −
1

2
Tr

�
ð=p3 þmÞ

�
γα

ð=p3 − =p1 þmÞ
ðp3 −p1Þ2 −m2

γμ

þ γμ
ð=p1 − =p4 þmÞ
ðp1 −p4Þ2 −m2

γα
�
ð=p4 −mÞ

×

�
γν

ð=p3 − =p1 þmÞ
ðp3 −p1Þ2 −m2

γα þ γα
ð=p1 − =p4 þmÞ
ðp1 −p4Þ2 −m2

γν
��

;

ð12Þ

and the unpolarized hadronic tensor Hμν by

Hμν ¼ 1

2
Tr½ð=p0 þMÞΓμð=pþMÞðΓ†Þν�: ð13Þ

Using (8), the unpolarized hadronic tensor can be
expressed as

Hμν ¼
�
−gμν þ pμ

2p
ν
2

p2
2

�
½4M2τG2

MðtÞ�

þ p̃μp̃ν 4

1þ τ
½G2

EðtÞ þ τG2
MðtÞ�; ð14Þ

where p̃≡ ðpþ p0Þ=2, τ≡ −t=ð4M2Þ, and where we
conveniently express the hadronic tensor in terms of
electric ðGEÞ and magnetic ðGMÞ form factors defined as

FIG. 1. The Bethe-Heitler process at tree level.

HELLER, TOMALAK, and VANDERHAEGHEN PHYS. REV. D 97, 076012 (2018)

076012-2



GE ¼ FD − τFP; ð15Þ

GM ¼ FD þ FP; ð16Þ

which are functions of the spacelike momentum transfer t.
For the electric and magnetic proton form factors, which

enter the total cross sections for lepton-pair production, we
exploit the fit of Ref. [2], which is based on a global
analysis of the electron-proton scattering data at Q2 <
10 GeV2 with an empirical account of TPE corrections.
In the experimental setup, when only the recoil proton is

measured, one has to integrate (11) over the lepton angles:

�
dσ

dtdsll

�
0

¼ α3β

16πð2MEγÞ2t2
·
Z

dΩCMlþl−

ll LμνHμν: ð17Þ

The kinematical invariant t is in one-to-one relation with
the recoiling proton lab momentum p⃗0 (or energy E0):

jp⃗0j ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1þ τÞ

p
; ð18Þ

E0 ¼ Mð1þ 2τÞ; ð19Þ

whereas the invariant sll is then determined from the
recoiling proton lab scattering angle:

cos θp0 ¼ sll þ 2ðsþM2Þτ
2ðs −M2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τð1þ τÞp ; ð20Þ

where s is the squared center-of-mass energy, which can be
expressed in terms of the initial photon-beam energy Eγ:

s ¼ 2EγM þM2: ð21Þ

In Ref. [25], the authors calculated the ratio R of cross
sections between electron- and muon-pair production:

Rðsll; s0llÞ≡ ½σ0ðμþμ−Þ�ðsllÞ þ ½σ0ðeþe−Þ�ðsllÞ
½σ0ðeþe−Þ�ðs0llÞ

; ð22Þ

which depends on the invariant mass of the lepton pair sll,
and a reference point s0ll to which the measurement is
normalized.
The corresponding plot for the kinematical range acces-

sible at MAMI is shown in Fig. 2. The normalization is
shown for the choice s0ll ¼ sll, i.e., at each point above the
muon-pair production threshold the sum of the cross
sections for muon- and electron-pair production is divided
by the corresponding cross section for electron-pair pro-
duction. In this plot, the blue curve describes the scenario,
when lepton universality holds, i.e., Gμ

E ¼ Ge
E, while the

red curve corresponds to a case when lepton universality is
broken by an amount of 1%. The blue band describes the 3σ
deviation if this observable is measured with an absolute

accuracy of 7 × 10−4. We will show in this work that
radiative corrections shift this curve by more than 3σ,
making their inclusion indispensable for a comparison with
experiment.

III. LEADING-ORDER RADIATIVE
CORRECTIONS IN THE
SOFT-PHOTON LIMIT

We evaluate the first-order QED corrections to the
γp → lþl−p process in the soft-photon limit. This limit
is defined by a scaling of the momenta k of virtual photons
in the loops and real photon momenta in the bremsstrah-
lung process, with respect to external scales, as

k ∼ λ; ð23Þ

where λ is a small parameter. We calculate the diagrams at
leading order in λ. This procedure reproduces all infrared-
divergent contributions and results in a finite, gauge-
invariant piece. The resulting cross section correction
factorizes in terms of the tree-level cross section given
by Eq. (11).

A. Virtual corrections

We start by calculating the one-loop virtual radiative
corrections. In the soft-photon approximation, only box
diagrams contribute. We list all propagators and their
scaling with λ in Table I:
The integral measure d4k scales as

d4k ∼ λ4: ð24Þ

Therefore, to obtain a contribution of order 1, we need a
denominator of order λ4. This is only possible for the box
diagrams when the first 3 propagators of Table I are present
in a Feynman integral.

FIG. 2. Ratio of the cross sections in γp → ðeþe− þ μþμ−Þp vs
γp → ðeþe−Þp. The blue band corresponds to a 3σ band, where
σ ¼ 7 × 10−4.
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For the box diagrams shown in Fig. 3, we obtain the
following leading contribution:

Mbox ¼ ðie2Þ4 · ðp3p4Þ ·M0μ
4−d

×
Z

ddk
ð2πÞd

1

ðp3þ kÞ2−m2

1

ðk−p4Þ2 −m2

1

k2
þOðλÞ

¼−
e2

8π2
ðsll− 2m2Þ ·M0 ·C0ðm2; sll;m2;0;m2;m2Þ;

ð25Þ

with the 3-point function C0 in dimensional regularization,
see Ref. [27]1:

C0ðm2; sll;m2;0;m2;m2Þ

¼ 1

sllβ

��
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
ln

�
β− 1

βþ 1

�

þ 2Li2

�
β− 1

2β

�
þ ln2

�
β− 1

2β

�
−
1

2
ln2

�
β− 1

βþ 1

�
−
π2

6

�
:

ð26Þ

In Eqs. (25), (26), μ is a scale introduced to account for
the correct energy dimension of the integral. Physical
quantities have to be independent of this scale, as well
as of the infrared regulator ϵIR ≡ 2 − d=2 < 0. All other
diagrams are infrared finite and scale at least as λ.
Therefore, the other graphs do not contribute in the soft-
photon limit.
Although the box diagrams are UV finite, we have to

include counterterm corrections, shown in Fig. 4, since they
contain infrared-divergent parts in the on-shell subtraction
scheme, which we follow here. We describe these con-
tributions according to Ref. [28].
In the on-shell subtraction scheme, the vertex counter-

term is defined to fix the electron charge e at q2 ¼ 0.
Considering the vertex function in Fig. 5, one can decom-
pose the diagram into two tensor structures with corre-
sponding form factors F and G:

ūðp0ÞΓμuðpÞ¼ ūðp0Þ
�
ð1þFðq2ÞÞγμþiGðq2Þσμν qν

2m

�
uðpÞ;

ð27Þ

with

q ¼ p0 − p: ð28Þ

Only Fðq2Þ is UV divergent, and one finds at q2 ¼ 0 the
renormalization constant:

Z1 ¼ 1 − Fð0Þ

¼ 1 −
e2

ð4πÞ2
��

1

ϵUV
− γE þ ln

�
4πμ2

m2

��

þ 2

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
þ 4

�
: ð29Þ

This leads to the renormalized vertex:

Γ̃μ ¼ Γμ þ ðZ1 − 1Þγμ; ð30Þ

that in the soft-photon limit ðΓ̃μ
sÞ, which corresponds to

taking only the infrared-divergent part, is expressed as

Γ̃μ
s ¼ −

α

2π
γμ
�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
: ð31Þ

The contribution of the two vertex counterterms in Fig. 4 is
then given by

Mct
vertex ¼ −

α

π

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
M0: ð32Þ

The self-energy counterterm is defined from the lepton
self-energy correction ΣðpÞ, which is expressed in terms of
the lepton propagator S:

FIG. 3. QED box diagrams contributing to the radiative
corrections calculation in the soft-photon approximation.

TABLE I. Scaling of the propagator denominators with the
expansion parameter λ. Only integrals with the first 3 propagators
contribute, since these integrals have a denominator scaling as λ4,
which is the scaling of the integral measure in the numerator.

Propagator denominator Scaling at least as

ðkþ p3Þ2 −m2 λ
ðk − p4Þ2 −m2 λ
k2 λ2

ðp3 − p1 þ kÞ2 −m2 1

1We use the same notation for this function as in http://qcdloop
.fnal.gov/
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iS ¼ iS0 þ iS0ð−iÞΣðpÞiS; ð33Þ

with free fermion propagator given by

S0ðpÞ ¼ =pþm

p2 −m2
: ð34Þ

Calculating up to first order, we have to include the one-
loop correction:

−iΣð=pÞ ¼ −e2μ4−d
Z

ddk
ð2πÞd

γαð=pþ =kþmÞγα
ððpþ kÞ2 −m2Þk2 : ð35Þ

The on-shell renormalization condition fixes the pole at
p2 ¼ m2 with residue equal to one. This gives the renorm-
alization constants Z2 and Zm:

Z2 ¼ 1þ dΣð=pÞ
d=p

				
=p¼m

; ð36Þ

ð1 − ZmÞZ2m ¼ ΣðmÞ: ð37Þ

The evaluation of ΣðpÞ and its derivative, results in the
renormalization constants:

Z2 ¼ 1 −
e2

ð4πÞ2
��

1

ϵUV
− γE þ ln

�
4πμ2

m2

��

þ 2

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
þ 4

�
; ð38Þ

Z2Zm ¼ 1 −
e2

ð4πÞ2
�
4

�
1

ϵUV
− γE þ ln

�
4πμ2

m2

��

þ 2

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
þ 8

�
: ð39Þ

The renormalized self-energy is then given by

Σ̃ðpÞ ¼ ΣðpÞ − ðZ2 − 1Þ=pþ ðZ2Zm − 1Þm: ð40Þ

Taking only the infrared-divergent piece in the soft-photon
limit ðΣ̃sÞ, we obtain:

Σ̃sðpÞ ¼
α

2π
ð=p −mÞ

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
: ð41Þ

The contribution of the self-energy counterterm Mct
se in

Fig. 4 is therefore given by

Mct
se ¼

α

2π

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
M0: ð42Þ

Adding virtual corrections of Eq. (25) and counterterms
of Eqs. (32) and (42), we obtain the virtual one-loop
correction in the soft-photon limit Ms;V:

FIG. 4. Counterterm diagrams, which contribute to the γp → lþl−p process. These give rise to infrared-divergent contributions in the
on-shell subtraction scheme and have therefore to be accounted for when calculating the radiative corrections in the soft-photon
approximation.

FIG. 5. Diagrams for the calculation of the counterterms. The
upper diagram defines the vertex counterterm, the lower diagram
corresponds to the lepton self-energy.
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Ms;V ¼ −
α

2π

�
ðsll − 2m2ÞC0ðm2; sll; m2; 0; m2; m2Þ

þ
�
1

ϵIR
− γE þ ln

�
4πμ2

m2

���
M0: ð43Þ

The resulting virtual correction to the cross section is
then given, to first order in α, by

�
dσ

dtlldsll

�
s;V

¼ 2Re½M�
0 ×Ms;V�: ð44Þ

It can be expressed as

�
dσ

dtlldsll

�
s;V

¼
�

dσ
dtlldsll

�
0

ðδIRs;V þ δs;VÞ; ð45Þ

with the infrared-divergent part:

δIRs;V ¼
�
−α
π

���
1þ β2

2β

�
ln

�
1 − β

1þ β

�
þ 1

�

×
�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
; ð46Þ

and the finite part:

δs;V ¼
�
−α
π

��
1þ β2

2β

�

×

�
2Li2

�
2β

β þ 1

�
þ 1

2
ln2

�
1 − β

1þ β

�
− π2

�
: ð47Þ

B. Soft-photon bremsstrahlung

Besides the QED virtual radiative corrections, one has to
account for processes with radiation of undetected photons.
The diagrams contributing to the soft bremsstrahlung

from the lepton side are shown in Fig. 6. Note that the
diagram, where the photon is attached to the internal lepton
line, vanishes for λ → 0 and does not contribute in the
soft-photon limit. Denoting the momentum of the photon
by k, we find the squared matrix element for this process in
the form:

jMðγp→γslþl−pÞj2

¼jMðγp→ lþl−pÞj2ð−e2Þ
�
pμ
3

p3 ·k
−

pμ
4

p4 ·k

�
·

�
p3μ

p3 ·k
−

p4μ

p4 ·k

�
:

ð48Þ

To calculate the contribution to the cross section, one then
has to integrate over the undetected soft-photon energy up
to a small value ΔEs, determined by the experimental
resolution.

Due to the energy-momentum conserving δ-function,
δ4ðp1 þ p − p3 − p4 − p0 − kÞ, the integration domain has
a complicated shape in the lab system. The integration can
be carried out in the rest frame S of the real (p1Þ and virtual
(p2) photons, which is also the rest frame of the dilepton
pair and soft photon, defined by

p⃗1 þ p⃗2 ¼ p⃗3 þ p⃗4 þ k⃗ ¼ 0: ð49Þ

In such frame, the dependence of the integral with respect
to the soft-photon momentum becomes isotropic. For the
differential cross section, we then need to evaluate:

�
dσ

dtdsll

�
s;R

¼ −
�

dσ
dtdsll

�
0

e2

ð2πÞ3
Z
jk⃗j<ΔEs

d3k⃗
2k0

×

�
m2

ðp3kÞ2
þ m2

ðp4kÞ2
−

2ðp3p4Þ
ðp3kÞðp4kÞ

�
; ð50Þ

where the integration is performed in the frame S.
The integrals are infrared divergent and can be carried

out analytically after dimensional regularization. They have
been worked out, e.g., in Ref. [29]. For the kinematics in
system S, where the soft-photon momentum:

jk⃗j ≪ jp⃗3j; jp⃗4j; ð51Þ

FIG. 6. Diagrams with real photon emission from the lepton
lines for the Bethe-Heitler process. In the soft-photon limit, the
diagram with the photon attached to the internal (off-shell)
fermion line does not contribute.
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with the lepton momenta:

p0
3 ¼ p0

4 ¼
ffiffiffiffiffi
sll

p
2

; p⃗3 ¼ −p⃗4; ð52Þ

we obtain:�
dσ

dtdsll

�
s;R

¼
�

dσ
dtdsll

�
0

ðδIRs;R þ δs;RÞ; ð53Þ

where δIRs;R is the infrared-divergent contribution due to real
photon emission:

δIRs;R ¼
�
−α
π

���
1þ β2

2β

�
ln

�
1þ β

1 − β

�
− 1

�

×

�
1

ϵIR
− γE þ ln

�
4πμ2

m2

��
; ð54Þ

and δs;R is the corresponding finite part:

δs;R¼
�
−α
π

��
ln

�
4ΔE2

s

m2

��
1þ

�
1þβ2

2β

�
ln

�
1−β

1þβ

��

þ1

β
ln

�
1−β

1þβ

�

þ
�
1þβ2

2β

��
2Li2

�
2β

1þβ

�
þ1

2
ln2

�
1−β

1þβ

���
: ð55Þ

The maximum value of the undetected soft-photon
energy ΔEs is defined in the system S. One can reexpress
it in terms of the detector resolutions. We consider the case
of detecting the recoil proton only. The energy E0 and angle
θp0 of the scattered proton are measured in the lab frame.
The missing mass Mmiss of the system is defined by

M2
miss ¼ ðp3 þ p4 þ kÞ2 ¼ sll þ 2MmissEs; ð56Þ

Es ¼
M2

miss − sll
2Mmiss

; ð57Þ

where Es denotes the soft-photon energy.
The missing mass Mmiss is experimentally determined

from the quantity:

M2
miss ¼ ðp1 þ p − p0Þ2

¼ 4Mτ

�
Eγ

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

τ

r
cos θp0 − Eγ −M

�
; ð58Þ

where τ is determined from the lab proton momentum by
Eq. (18), and θp0 is the experimentally measured recoil
proton scattering angle in the laboratory frame.
For the process without radiation, this angle is given by

Eq. (20), which can be equivalently obtained from Eq. (58)
by the replacement M2

miss → sll:

sll ¼ 4Mτ

�
Eγ

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

τ

r
cos θp0 jno rad − Eγ −M

�
: ð59Þ

Combining Eqs. (58) and (59), we can express the soft-
photon energy of Eq. (57) approximately as:

Es ¼
2MEγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1þ τÞp
ffiffiffiffiffi
sll

p ½cos θp0 − cos θp0 jno rad�: ð60Þ

Consequently, the experimental recoiling proton angular
resolution, denoted as Δθp0 , determines the maximum
value ΔEs of the undetected soft-photon energy, which
enters the radiative correction of Eq. (55), as

ΔEs ¼
2MEγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1þ τÞp
ffiffiffiffiffi
sll

p sin θp0Δθp0 : ð61Þ

C. Total result and exponentiation

Adding the real and virtual contributions of Eqs. (54) and
(46), we find a cancellation of all infrared divergences on
the level of the cross section:

δIRs;R þ δIRs;V ¼ 0: ð62Þ

For the finite part of the first-order QED corrections in the
soft-photon approximation:

δ ¼ δs;R þ δs;V; ð63Þ

we find the result:

δ ¼ −
�
α

π

���
ln

�
4ΔE2

s

m2

�
þ ln

�
1 − β

1þ β

��

×

�
1þ

�
1þ β2

2β

�
ln

�
1 − β

1þ β

��

þ
�
1 − β

β

�
ln

�
1 − β

1þ β

�

þ
�
1þ β2

2β

��
4Li2

�
2β

1þ β

�
− π2

��
; ð64Þ

which reduces in the limit sll ≫ 4m2 to:

δ ¼ −
�
α

π

��
ln

�
4ΔE2

s

sll

��
1þ ln

�
m2

sll

��
−
π2

3

�
: ð65Þ

To account for the emission of a higher amount of soft
photons or higher-order virtual corrections due to soft
photons in the loop, we follow Ref. [30] and exponentiate
the terms leading to double logarithmic enhancements as
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�
dσ

dtdsll

�
s;tot

¼
�

dσ
dtdsll

�
0

· F exp

�
−
α

π

�
ln

�
4ΔE2

s

m2

�
þ ln

�
1 − β

1þ β

���
1þ

�
1þ β2

2β

�
ln

�
1 − β

1þ β

���

×

�
1 −

α

π

��
1 − β

β

�
ln

�
1 − β

1þ β

�
þ
�
1þ β2

2β

��
4Li2

�
2β

1þ β

�
− π2

���

≡
�

dσ
dtdsll

�
0

ð1þ δexpÞ: ð66Þ

Note that in Eq. (66) terms of single logarithmic nature
of order α are still missing, and require a full one-loop
calculation. The normalization factor F in Eq. (66) is due to
the physical assumption that in an experiment the sum of all
soft-photon energies is smaller than ΔEs, instead of
requiring that each soft-photon energy is individually
smaller than ΔEs. It was shown in Ref. [30] that when
including the leading correction from unity, the normali-
zation factor F is given by:

F ¼ 1 −
α2

3

�
1þ

�
1þ β2

2β

�
ln

�
1 − β

1þ β

��
2

þ � � � ð67Þ

Although we account for the factor F explicitly, its
deviation from unity is quite small: for sll¼0.077GeV2

approximately −2.4 × 10−3 for electrons and −8.5 × 10−6

for muons.

IV. RESULTS AND DISCUSSION

In Fig. 7, we show the corrections at fixed sll ¼
0.077 GeV2 as a function of the soft-photon energy. We
observe a logarithmic behavior of the correction factor δ
which gives rise to the so-called radiative tail. We also show
the exponentiated form, δexp, given by Eq. (66), which
estimates higher-order effects of soft-photon corrections.
Assuming a value ΔEs ¼ 0.01 GeV, δ at first order differs
by about 0.006 for electron-pair production and is indis-
tinguishable at the level of precision for muon-pair pro-
duction (the difference is around −1.0 × 10−4).
In Fig. 8, we show the radiative corrections to the cross

section in the kinematical range of sll between 0 and
0.08 GeV2. The muon threshold is at sll ¼ 4m2

μ ≈
0.045 GeV2 (vertical dashed red line in Fig 8). We observe
that the corrections for electrons are negative of order 10%,
while the corrections for muons are positive of order 1%.
Taking radiative corrections into account, the ratio of

Eq. (22) is now given by

Rðsll; s0llÞ≡ ½σ0ðμþμ−Þð1þ δμÞ�ðsllÞ þ ½σ0ðeþe−Þð1þ δeÞ�ðsllÞ
½σ0ðeþe−Þð1þ δeÞ�ðs0llÞ

; ð68Þ

FIG. 7. QED corrections to the cross section in the soft-photon
limit as a function of the soft-photon energy ΔEs, which
corresponds to the integrated over angular bins Δθp0 according
to Eq. (61). This variation stems from the integrated over radiative
tail. The external kinematics and the di-lepton invariant mass
sll ¼ 0.077 GeV2 are indicated on the plot.

FIG. 8. First-order QED corrections to the cross section in the
soft-photon limit, using ΔEs ¼ 0.01 GeV. The vertical dashed
red line indicates the muon-pair production threshold at
sll ≈ 0.045 GeV2.
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which depends on the measured invariant lepton mass sll
and the reference point s0ll, to which the cross section is
normalized. δe and δμ are given by Eq. (66). One chooses
s0ll < 4m2

μ, such that the reference measurement is below
the muon-pair-production threshold, and only electron
pairs are created.
In Fig. 9, we show the differential cross section ratio R of

Eq. (22), including first-order QED corrections in the soft-
photon approximation with ΔEs ¼ 0.01 GeV. One sees
from this plot, that the inclusion of radiative corrections is
indispensable, since the ratio of cross sections, defined in
Eq. (22), is shifted to higher values by more than the 3σ
band. The radiative corrections to R are of the order of a
few percent. The red curve in Fig. 9 shows the scenario
when lepton universality is violated by Gμ

E=G
e
E ¼ 1.01.

Following Ref. [25], we use 3σ bands around the curves,

with the experimental resolution σ ¼ 7 × 10−4. The state-
ment that lepton universality can be tested with a 3σ
confidence level remains true if one adds radiative correc-
tions as can be seen in Fig. 9.
In Fig. 10, we show the corresponding ratio between the

cross sections normalized to a value below the muon-pair
production threshold. As a reference point, we choose
s0ll ¼ 0.02 GeV2. The bands now correspond to the renor-
malized 3σ bands, i.e.,

σ ¼ 7 × 10−4 ·
σðeþe−ÞðsllÞ
σðeþe−Þðs0llÞ

:

V. CONCLUSIONS AND OUTLOOK

In this work, we have calculated QED radiative correc-
tions to the photoproduction of electron and muon pairs on
a proton target in the soft-photon approximation. Only
radiation from the produced pair and box diagrams with
photon and lepton legs contribute in this approximation
when accounting for the finite lepton mass. The resulting
correction to the cross section factorizes in terms of the
tree-level contribution. We expressed the proportionality
factor in a compact analytical form. With account of
radiative corrections, the ratio of photoproduction cross
sections of eþe− þ μþμ− to eþe− pairs at the same beam
energy (as well when compared to the eþe− cross section at
an energy below the muon-production threshold) increases
by a percent amount comparing to the tree level result. Such
changes are significantly larger than the precision needed to
distinguish between the proton charge radii extractions
from experiments with muons and electrons. It makes a
correct inclusion of radiative corrections paramount for the
experimental realization. As a next step, we plan to extend
the radiative correction result in the soft-photon approxi-
mation presented in this work to a full one-loop QED
calculation on the lepton side and to include the box
diagrams resulting from the two-photon exchange between
lepton and proton with an intermediate proton state using
the techniques developed in Refs. [31,32] for elastic l−p
scattering. For the leading corrections resulting from the
hadronic side we expect, from the corresponding results for
the elastic l−p scattering, to receive cross section correc-
tions at the percent level for the electron case. Such
anticipated corrections would translate in a change of
the ratio of eþe− þ μþμ− to eþe− cross sections at
the per mille level, corresponding with the 1σ accuracy
goal discussed above for this quantity.
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