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The quark-meson model is often used as a low-energy effective model for QCD to study the chiral transition
at finite temperature 7, baryon chemical potential yp, and isospin chemical potential x;. We determine the
parameters of the model by matching the meson and quark masses, as well as the pion decay constant to their

physical values using the on shell (OS) and modified minimal subtraction (MS) schemes. In this paper, the
existence of different phases at zero temperature is studied. In particular, we investigate the competition

between an inhomogeneous chiral condensate and a homogeneous pion condensate. For the inhomogeneity,
we use a chiral-density wave ansatz. For a sigma mass of 600 MeV, we find that an inhomogeneous chiral
condensate exists only for pion masses below approximately 37 MeV. We also show that due to our parameter

1

fixing, the onset of pion condensation takes place exactly at u§ = 5 m, in accordance with exact results.
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I. INTRODUCTION

The phases of dense QCD as functions of the baryon
chemical potential yp or the quark chemical potential y =
% up have been studied in detail since the first phase
diagram was suggested in the 1970s [1-3]. For baryon
chemical potentials lower than the nucleon mass my and at
T = 0, we are in the vacuum phase. For larger values of the
baryon chemical potential, one expected a first-order
transition to quark matter, a phase in which chiral sym-
metry is approximately restored and where quarks are no
longer confined to the individual nucleons. It turns out that
the phase diagram is very rich. For asymptotically large
values of the quark chemical potential, we have one of the
few rigorous results. Due to asymptotic freedom, the
system is weakly interacting and an attractive quark-quark
interaction from one-gluon exchange gives rise to color
superconductivity and the so-called color-flavor locked
phase. For lower values of the quark chemical potential,
one cannot use perturbative QCD, and instead one has to
use low-energy effective models of QCD such as the quark-
meson (QM) model or Nambu-Jona-Lasinio (NJL) model.
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These models predict a plethora of superconducting phases
depending on e.g. the quark masses and other external
parameters such as magnetic fields [4—6]. Other possibil-
ities include the quarkyonic phase [7,8], whose existence is
unambiguously argued in the large-N . limit, where N, is
the number of colors.

Another interesting aspect of the QCD phase diagram at
T =0 is the possibility of inhomogeneous phases, see
[9,10] for reviews. These are phases where two quarks (or a
quark and an antiquark) with momenta p 4+ q and —p + q
pair, resulting in a Cooper pair with a net momentum 2q
and a complex order parameter of the form Ae?d*,

Instead of considering only the baryon chemical poten-
tial, one can allow for an independent chemical potential s,
for each quark flavor f. For two quark flavors, using y, and
U1y is equivalent to using up and an isospin chemical
potential y;. Systems at zero baryon chemical potential
and finite isospin chemical potential are of particular
interest, since the fermion determinant is real and one
can perform lattice simulations using standard importance
sampling techniques, see e.g. [11-15]. The picture that
emerges from the simulations is that at 7 = 0, the chiral
condensate is constant for yu; below a critical value,
uy = %mﬂ.l The critical value of the isospin chemical
potential marks the onset of pion condensation, and the
transition is of second order. This picture is consistent with
the predictions of chiral perturbation theory [16,17].

lDepending on convention, uj = m, is also frequently found
in the literature.
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In addition to chiral perturbation theory [16-20], there
have also been a number of other approaches and model
calculations studying various aspects of the QCD phase
diagram at finite isospin density. These include the resonance
gas model [21], random matrix models [22], the NJL. model
[23-34], the quark-meson model [35-37], perturbative QCD
[38], and hard-thermal-loop perturbation theory [39].

In the present paper, we use the quark-meson model to
study possible phases at 7 = 0 and at finite baryon and
isospin chemical potentials. In particular, we extend certain
aspects of earlier studies [40-43] by looking at the
competition between an inhomogeneous chiral condensate
and a homogeneous pion condensate. Studies of the
competition between homogeneous and inhomogeneous
condensates have been carried out in the 1 4 1 dimensional
NJL model in [44-46].

The paper is organized as follows. In Sec. II, we briefly
discuss the quark-meson model, and in Sec. III we calculate
the effective potential in the mean-field approximation. In
Sec. IV, we present the phase diagram in the y—u; plane at
zero temperature, and in Sec. V, we summarize and con-
clude. In Appendix A, we list a number of integrals needed
in the calculations, while Appendix B provides the reader
with some details of how the parameters are determined. In
Appendix C, we show that the critical isospin chemical

1

potential is exactly uj = 3m, in our approximation.

II. QUARK-MESON MODEL

The Lagrangian of the two-flavor quark-meson model in
Minkowski space is

L= l[(8 0)(0"6) + (0,73)(9"73)]

]

o

+ (0, + 2ipy80) 7w (0" = 2ip; )™

1 A
- Emz(a2 + a3+ 2nt ) - % (6 + 2% +2ntnm)?
+ ho +wlid +pup® — glo + ir’t - 7)ly, (1)

where i is a color N -plet, a four-component Dirac spinor
as well as a flavor doublet

y = <Z> (2)

and p, = diag(p,.p,), where p, and p,, are the quark
chemical potentials, y; is the isospin chemical potential, z;
(i=1, 2, 3) are the Pauli matrices in flavor space,
x = (7,71, m3), and 7+ = %(ﬂ'] +im,).

Apart from the global SU(N,.) symmetry, the Lagrangian
(1) has a U(1)z x SU(2), x SU(2)g symmetry for h =0
and a U(l)g x SU(2),, symmetry for h#0. When
My F Mg, this symmetry is reduced to U(1)z x Uy, (1) x
Upg(1) for h =0 and U(1)g x Uy, (1) for h # 0.

The number density associated with a chemical potential
Ha 18
ov
n = —_-—— N 3
A= (3)
where V is the effective potential. The baryon and isospin
densities can be expressed in terms of the quark densities n,,
and n, as

ny — %(m ), (4)

np=n, —ng. (5)

Equations (4)—(5) together with the chain rule can be used
to derive relations among the baryon and isospin chemical
potentials and the quark chemical potentials. We have
oV
Opy

()
Oy Opg

ny =

ou, OV Ouy 8V>
= - i 6
(3/41 Omy — Opy Opy ©)
This yields
Op, O,
= - =1. 7
Opy Opy @)

Similarly, we find O _ 94 _ 1 From this, we find the
Opgp Opp 3

following relations among the chemical potentials:

1

Hu = S H (8)

1

Ha = SHp = Hr- )

Introducing the quark chemical potential u = % up and
inverting the relations (8)—(9), we find

H :%(/’lu +Md)’ (10)
m:%(ﬂu—ﬂd)- (11)

In the following, we will express the equations and our
result in terms of u and y; instead of y, and py,.

III. EFFECTIVE POTENTIAL

In the following, we allow for an inhomogeneous chiral
condensate. To be specific, we consider a one-dimensional
chiral-density wave with a wave vector q pointing in the
positive z-direction. The expectation values of the fields are
written as

w3 = ¢y sin(qz) (12)
7wy, =0, (13)

o = ¢ho c0s(qz2),

Ty = 7y,
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where ¢, and 7z, are constant in space. The latter represents
a homogeneous pion condensate. A pion condensate breaks
the Uy, (1) x Uy g(1) symmetry to Up,y(1) or the Uy (1)
symmetry. Introducing A = g, and p = gz, the tree-level
potential in Euclidean space can be written as

14? 1 m? 1m? — 4u?
Vo=x5A2 4 - A2y _— 11,2
0 2 ¢ +292 +2 7

A h
+—— (A2 +p?)? - gAcos(qz)éq,o. (14)

24g4

The Kronecker-delta 6, in the last term in Eq. (14) is
necessary since a term A cos(gz) vanishes for a nonzero ¢
upon integrating the free energy density over a sufficiently
large spatial volume.

Expressing the parameters in the Lagrangian in terms of
the sigma mass m,, pion mass m,, pion decay constant f,,
and quark mass m,, we find

1 2 _ .2
m? = == (m2 = 3m2). 4:3M, (15)
m2
92 :f_zqa h = mlzrfﬂ (16)

Inserting these relations, we can write the tree-level
potential as

1 AZ 1 A2 +p2 P2
V:_22___2 2_3 27_222_
0 2f7rq mé 4fﬂ(m6 mﬂ) mé #lfn mé
1 A2 +p2 2
+§f%(m3_m%)%
22 A
—mifz m—cos(qz)éq,o. (17)

q

Since we want to integrate out the fermions, we need the
part of the Lagrangian that is bilinear in the quark fields

(18)
|

Lo =iy, + (u+3u)y° — Ae' 5% — iz yply.

We next redefine the quark fields, y — e‘%i7573qxz// and

v — li/e‘%i}’5’3qx. The transformation of the field y amounts
to a unitary transformation of the Dirac Hamiltonian,

H — H = e’ 59 He 2595 The Dirac operator D then
reads
; 0 1 s 5
D= i, + (u+wu)r” = A+ 57 rng —ingp).
(19)

In momentum space, the Dirac operator is

1 :
D= [17+ (u+73p)7° — A+ 5757/31361 - 17175/’} . (20)

The quark energies can be read off from the zeros of the
determinant of the Dirac operator, which are found to be,
see e.g. [47]

Ef :E(iqy_/"l)v Ej :E(iqvﬂl)»

EﬁzE(:i:q,,u,), E;,i:E(iqv—lh)» (21)
where we have defined
SCIRE
E(q,uz)Il<\/pi+<\/pﬁ+A2+Z> +u1> +p?| .
(22)

and where the wave vector q points in the positive pj
direction.
The one-loop contribution to the effective potential is

1
V)= _ENC/ (Ev + Ej + E; +E3),  (23)
p

where a sum over =+ is implied and the integral is in d =
3 —2¢ dimensions (See Appendix A). The integral in
Eq. (23) is ultraviolet divergent, and in order to isolate
the divergences, we need to expand the energies in powers
of ¢ and p; to the appropriate orders. This yields

3¢°uip* (AN +4pt — pt - p?)

/ 2 2 2 ﬂ%ﬂz
" , [ g P A

7*(p1 +p%)

16(p? + A2 + p?):

+
8(p? + A2 + )}

q*(p1 +p?)(4A% +4pj - p1 —,02)]
128(p? + A2+ p?):

AN (AT ¢ 2(A2 + p?)2T(=2 + €) + A (e) — 42 p°T(€) — 2242 A%’ T2 +e)
= 5 - € €) — €)— 5y €
(4”)2 A2 +p2 p q /’tlp q ”I (A2 +p2)2
4 2
q A
~aar (- a7+ 2001 + e)}. (24)
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The remainder Vy, is finite and reads
Viin = Vi = Vaiy. (25)
Note that Vy;, can be evaluated directly in d = 3 dimensions. In the case p = u; = 0, one can calculate Vy;, analytically, see

Ref. [48] for an explicit evaluation. In the present case, it must be evaluated numerically. Using the expressions for the
integrals listed in Appendix A, we can write the unrenormalized one-loop effective potential V = Vj 4+ V| as

lq 1 m? 1 m? — 4y? h
V = AZ ——A2 _ I 2 A2 22——A S
27 +2g +2 92 P +244( +p%) J c0s(qz)b,.0
2N 3 1 1 Y AZ(A2 +2p? A2p?
B (Y (L) gt S 8
(47)2 \A? + p? 2 e 12 (A*+p?) (A% +p?)
+ Viin + O(e). (26)

The unrenormalized one-loop effective potential contains poles in ¢, which are removed by mass and coupling constant
renormalization. In the MS scheme this is achieved by making the substitutions m* — Z,.m?*, 2 — Z,4, g* = Zg*, and
h — Z,h, where

4N g 8N g 4N g 2N,
Z,»=1 e, Z,=1 P —-6=]|, Z,=1 ~—, Z,=1 < 27
w = TG T T ane [9 7 7= T ln)e n = e D
The renormalized one-loop effective potential then reads
2 2
1 ¢ 1 MG 1M =4y - hee
Vl—loop 2 b} A2+2 ZMSAZ"'_z MS p) 2+24M4S A2+p2)2_%SACOS(qZ)5q,O
Ins MS MS MS
2N. A2 3 q* A2(A2+2p?) A2p?
c A2 1022 A2 — 4420211 (A2 22 L _0,2,2 Ve
(471_)2{[( +/) ) +q HipP ] 0g<A2+/)2> +2( +ﬂ ) 12 (A2+/)2)2 q K (A2+p2)2 + fin
(28)

where the subscript MS indicates that the parameters are running with the renormalization scale A. In Appendix B, we
discuss how one can express the parameters in the MS scheme in terms of physical masses and couplings. Using
Eqgs. (B14)—~(B17), the final expression for the one-loop effective potential in the large-N,. limit becomes

1 4m2N, A+ p? A?
V]—loop = Efzzzqz{l - I |:10g m2 + F(mlzt) + mIQrF/( ):| }

(47)°f2 7 mg
4m2N A2 2
2 e () LA
"4 " (4x) fﬂ my
1 4m2NC 4m? 4m‘2] A2 +p2
ik %{1 oy | (1 o+ = o) =i | 2
4m2N A%+ p? p
243f201——L 211 F 2F —
ﬂ[fﬂ{ ( )2f2|:0g m[z] + ( )+m ( ):|}m
1 { 4mIN, [ (log A%+ p? 3> < > (A% + p?)?
mgfaql— — | (mz) +mzF'(m2)| ¢ ~——g——
8 (4n 2f2 m 2 my
1 4mlN, (A% + p?)? 4mgN,. A
-3 mfz [1 zfﬂ mzF' (m )] T‘; — mzf7 [1 - mm%fﬁ(’"%)] m—qCOS(C]Z)éq,o
A? A2 + 2p ) A%p? }
4 2,2
2428 v 29
2{ qﬂ](A2+p2)2 f (29)
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The effective potential must be independent of ¢ in the limit
A — 0, it cannot depend on the wave vector if the
magnitude of the order parameter is zero. We have checked
numerically that this is the case for V_jo,p, in Eq. (29).
The matter part of the one-loop effective potential is

Vmat = _NCT/{IOg[l + e_ﬁ(Ef—ﬂ)]
P

+ log[1 + e PE=H)]
+log[l + e PEFD] 4 Tog[1 4+ e PE Y. (30)

In the limit 7 — 0, this contribution reads
Vo= N [ (8 =00 = E5) + (E5 = w)0lu— E).
p

(31)

The complete one-loop effective potential is then the sum
of Egs. (29) and (31) and is denoted by V.

IV. PHASE DIAGRAM

In this section, we discuss the phase diagram in the pu—;
plane at 7 =0. In the numerical work below, we set
N, =3, m, =600 MeV, and f, = 93 MeV. In the chiral
limit m, =0, while at the physical point, we set
m, = 140 MeV.

A. Homogeneous chiral condensate

We first restrict ourselves to a homogeneous chiral
condensate as well as a homogeneous pion condensate,
i.e. we set ¢ = 0 in Egs. (29) and (31). In the remainder of
this section we consider only the physical point.

InFig. 1, we show in the upper panel, the chiral condensate
(blue line) and pion condensate (red line) as functions of the
isospin chemical potential y; for y = 0 at vanishing temper-
ature. The onset of pion condensation is at y; = %mﬂ. The
pion condensate increases, while the chiral condensate
decreases. One can view this as a rotation of the chiral
condensate into a pion condensate as y; increases. For
ur < %m,r, the chiral condensate is constant, which reflects
the Silver Blaze property of the vacuum phase: physical
quantities are independent of the isospin chemical potential
for p; < u§, where the critical chemical potential is u§ =
% m,, [49]. In the lower panel of Fig. 1, we also show the chiral
condensate (blue line) and pion condensate (red line) as
functions of the isospin chemical potential u;, now for
1 =260 MeV. We notice that there is a region of y, where
A decreases before the onset of pion condensation. This
corresponds to a phase which is different from the vacuum
phase since the thermodynamic observables (here the chiral
condensate) depend on the isospin chemical potential.

More generally, the effective potential, and therefore
thermodynamic observables are independent of y and y; in

300t
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0 50 100 150 200
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300t
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S 200f
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E; 150
<

100
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0 ‘ . .
0 50 100 150 200
Hr (MeV)

FIG. 1. Chiral condensate (blue line) and pion condensate (red
line) as functions of the isospin chemical potential y; for y = 0
(upper panel) and u = 260 MeV (lower panel) at the physical
point and 7 = 0.

the region bounded by the u; and p axes, and the straight
lines given by y + p; = gf, = m, and y; = p§ =3m,. In
particular, the quark and isospin densities, which are
defined by

N — _ OV N —
q 8” 9 I

_ aVfu]l
Opy

(32)

vanish in this region. We therefore refer to this region as the
vacuum phase. This is shown in Fig. 2, where the vacuum
phase is bounded below the solid blue and red lines. The
red line shows the phase boundary between a phase with
p = 0 and a pion-condensed phase. The transition is second
order when the red line is solid and first order when it is
dashed. The solid dot indicates the position of the critical
end point where the first-order line ends. The critical end
point is located at (u, y;) = (264,91) MeV. The green line
indicates the boundary between a chirally broken phase and
a phase where chiral symmetry is approximately restored.
For a sigma mass of m, > 600 MeV this transition is a
crossover before it attaches to the dashed red line.” The
region bounded by the three lines is a phase with chiral
symmetry breaking but no pion condensate. The effective

At the physical point, we define the green line by the
inflection point of A as a function of y for fixed y;. For smaller
sigma masses, the green line represents a first-order transition
[35]. This line ends at a critical point.

076005-5



JENS O. ANDERSEN and PATRICK KNESCHKE

PHYS. REV. D 97, 076005 (2018)

200 ,
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FIG. 2. Phase diagram in the y—; plane at the physical point in
the homogeneous case at 7 = 0. See main text for details.

potential depends on u and y;, and therefore the quark and
isospin densities are nonzero.

Since we have determined the parameters of the
Lagrangian such that the pion propagator including the
self-energy has a pole at m, = 140 MeV, the onset of pion
condensation is exactly at y; = %m,[ [16]. We show this
explicitly in Appendix C. The result can be understood as
follows. The energy of a zero-momentum pion in the
vacuum phase is m, — 2u;. If it is a second-order transition
it must take place exactly at a point where the (medium-
dependent) mass of the pion drops to zero because in the
condensed phase there is a massless Goldstone mode
associated with the breaking of the U(1) symmetry.’ If
one uses matching at tree level, there will be finite
corrections to this relation. Likewise, if one uses the
effective potential itself to define the pion mass, one uses
the pion self-energy at zero external momentum and so the
pole of the propagator is not at the physical mass. Again
there will be finite corrections to y; = %m,, and in some
cases, the deviation can be substantial [35]. Finally, we
mention that the lattice result [13—15] for the onset of pion
condensation at 7= 0 for 2 + 1 dynamical quarks is in
agreement with this. Likewise, their simulations strongly
suggest that the transition is second order in the O(2)
universality class in agreement with expectations.

In Fig. 3, we show A (blue line) and p (red line) as
functions of the chemical potential for fixed value of the
isospin chemical potential, y; =0 in the upper panel
and p; =90 MeV in the lower panel. For y; = 0 there
is no pion condensate, and there is a crossover at
u = 323.6 MeV. For sigma masses below 600 MeV, this
transition is first order.

B. Inhomogeneous chiral condensate versus
homogeneous pion condensate

In this section, we generalize our result to nonzero g, i.e.
we allow for an inhomogeneous chiral condensate.

It is the U, (1) symmetry mentioned in Sec. II which is
broken by the pion condensate.

‘w0 : : :
250F
= 200
L
2 150f
<
100F
s0F
0 ‘ ‘ ‘
0 100 200 300 400
1 (MeV)
2o : : : ¥
200F ) 3
N
5 150F 3
=3
Q
3 100} 3
sof ]
0 kv L L
0 100 200 300 400
p (MeV)

FIG. 3. Chiral condensate (blue line) and pion condensate (red
line) as functions of the chemical potential u for x; = 0 (upper
panel) and y¢; = 90 MeV (lower panel) at the physical point and
T=0.

It is known from earlier studies of inhomogeneous
phases [41] in the NJL and QM models that the size of
the region where an inhomogeneous phase exists depends
rather sensitively on the mass of the pion. In Fig. 4, we
show the lower and upper values of the chemical potential u
for which an inhomogeneous phase exists as a function of
m,, at zero isospin chemical potential. The curves meet at
ms = 37.1 MeV, beyond which no inhomogeneous phase
exists. In particular, no inhomogeneous phase exists at the
physical point. The mechanism behind this is as follows.
The symmetry-breaking term ~ — m2f% cos(gz)8, ¢ is non-
zero only for ¢ = 0. When the pion mass is sufficiently
large, this term is large enough for the homogeneous phase
to be preferred over the inhomogeneous one. This is in

350 T T T

340 ]

330

H(MeV)

0 10 20 30 40
m;(MeV)

FIG. 4. Lower and upper limits of the chemical potential u
where an inhomogeneous phase exists as a function of
m,, for u; = 0.
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. —C . . .
150( . —p=po 1
\\\ —— homogeneous
\
~ N —— inhomogeneous
> 100f I ¢ 1
2 AN
3 AN
1
50+ | :
1
0 . . I .
260 280 300 320 340
H(MeV)
FIG. 5. Phase diagram in the y—y; plane at 7 = 0 in the chiral

limit. See main text for details.

contrast to the results of [41], where an inhomogeneous
phase exists all the way up to m, = 140 MeV. We can
think of at least two reasons for this qualtitative difference.
Firstly, in Ref. [41] tree-level parameters were used.
Secondly, a solitonic ansatz for the inhomogenity was
used, and it is possible that this can sustain a inhomo-
geneous phase for larger pion masses.

In Fig. 5, we show the phase diagram in the p—u; plane at
vanishing temperature for m, = 0. Solid lines indicate
second-order transitions, while dashed Ilines indicate
first-order transitions. The black dot is the end point of
the first-order line. To the left of the blue line there is a
homogeneous pion condensate that does not change with
increasing chemical potential and is equal to p, =
p(u =0,u;). Between the blue and green line the pion
condensate decreases and the quark density is nonzero. In
both homogeneous phases we find A =0, except for
uy = 0.* The region between the green and the red line is
the inhomogeneous phase, where the chiral condensate and
wave vector g are nonzero. In this phase, the pion condensate
vanishes, implying that an inhomogeneous chiral condensate
and a homogeneous pion condensate do not coexist. Similar
conclusions have been drawn in studies of the 1 4 1 dimen-
sional NJL model [44,45]. Finally, the region to the right of
red, blue, and green line segments is the symmetric phase,
where A = p = g = 0. The blue dot marks the Lifshitz point
where the homogeneous, inhomogeneous and chirally sym-
metric phases connect.

In Fig. 6, we show a cross section of the phase diagram in
Fig. 5 in the chiral limit for 4 = 0. The pion condensate is
shown as a function of the isospin chemical potential ;.
We notice that the chiral condensate in the vacuum
immediately vanishes once y; > 0 and is rotated to a pion
condensate with the value p = m,. The pion condensate
increases further as we increase the isospin chemical
potential ;.

*On the u-axis, i.e. for y; = 0, the effective potential is a function
of A% + p? with a minimum at mé up to u = my,,. Since the critical
isospin chemical potential is 4§ = 0, pion condensation starts away
from the p-axis, and we chose A = m, as the minimum.

T T T

400 1

300 1

200 1

p (MeV)

100 1

0 50 100 150 200
H1 (MeV)

FIG. 6. Pion condensate as a function of the chemical potential
u; in the chiral limit for 4 = 0.

400 9
________ 1
F==-- 1
|

_ 300f ! ]
> |
] 1
=) |

= 200f ! 1
< |
1
1

100+ : ]
\‘:

0 . ‘ ‘ ‘
0 20 40 60 80 100

i (MeV)

FIG. 7. Chiral condensate A (blue line) and wave vector ¢ (red
line) as a function of the isospin chemical potential y; in the chiral
limit for y = 325 MeV.

In Fig. 7, we show a cross section of the phase diagram in
Fig. 5 in the chiral limit for g = 325 MeV. The chiral
condensate is the blue line, and the wave vector is the red
line. The transition to the symmetric phase is of second
order. Note that the pion condensate is zero in the
inhomogeneous phase.

In Fig. 8, we show the chiral condensate (blue line),
wave vector (red line), and pion condensate (green line) as
functions of the chemical potential i in the chiral limit for
u; =5 MeV. In the homogeneous phase, a pion conden-
sate is favored over a chiral condensate. At the first-order
transition at 4 = 323 MeV, the pion condensate drops to

400

w
(=3
=4

A,p,q (MeV)
1)
[=3
(=)

S
S
T

280 290 300 310 320 330 340 350
u (MeV)

FIG. 8. Chiral condensate (blue line), wave vector (red line),
and pion condensate (green line) as functions of the chemical
potential x in the chiral limit for y; = 5 MeV.
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FIG. 9. Pion condensate p as a function of the chemical
potential u in the chiral limit for y; = 75 MeV.

zero, and we enter a phase with an inhomogeneous chiral
condensate. At p = 329.8 MeV, there is a second-order
transition to the symmetric phase.

In Fig. 9, we show the pion condensate as a function
of the chemical potential in the chiral limit and for
u; =75 MeV. There are two first-order transitions at
1 =302.5 MeV and p = 312.3 MeV, respectively, where
the value of the pion condensate jumps discontinuously.

V. SUMMARY

In the present paper, we have studied the phases of QCD
at T = 0 in the p—y; plane using the quark-meson model as
a low-energy effective model. Combining the MS and OS
schemes, we have determined the parameters of the model,
whose values are consistent with the approximation that we
used for the effective potential. In contrast to other model
calculations, where the parameters are fixed at tree level,
our method guarantees that the critical isospin chemical
potential at T = 0 is exactly at y; = %mﬂ.

Moreover, we found that the existence of an inhomo-
geneous chiral condensate depends on the value of the pion
mass, which is in agreement with earlier model calculations
[41]. Specifically, we found that the chiral density wave
is disfavored for pion masses larger than approxi-
mately 37 MeV. The existence of such a critical pion
mass is in contrast to the results of Ref. [41], where an

/p\/p2+M2 = —% <%/2\2>6F(—2+6) = —2(1:[—;2 (ﬁ—i)e[é+%+0(e)}

A42

1
/p Pt mE (4n)?

/,, (p? +1 M) <4i>2 (ey;ﬁz)er(e) =

e’ N2

Jw = o (&) 10 = () e+ 00

inhomogeneous chiral condensate exists all the way up to
m, = 140 MeV. The difference is probably due to tree-
level versus one-loop matching of the parameters as well as
different ansitze for the inhomogeneity.

Finally, we mapped out the phase diagram at 7 = 0 in the
u—p; plane both in the chiral limit and at the physical point.
In the chiral limit, we have seen that there is a region where
an inhomogeneous chiral condensate is favored. The cor-
responding Lifshitz point is a tricritical point, as three phases
meet. At the physical point, the phase diagram is in
qualitative agreement with the mean-field calculations in
[35]. However, they have also performed a functional
renormalization group (FRG) calculation of the phase
diagram and including the mesonic fluctuations gives rise
to qualitative differences. One important difference is that
the transition to a Bose-condensed phase is second order in
the entire y—u; plane. It would be very interesting to perform
an FRG calculation including inhomogeneous phases to see
whether the mean-field picture found here will change.
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APPENDIX A: INTEGRALS

With dimensional regularization, the momentum integral
is generalized to d = 3 — 2¢ spatial dimensions. We define
the dimensionally regularized integral by

p— d 5

» 47 (27)
where A is the renormalization scale in the modified
minimal subtraction scheme MS. It is convenient to write

the integral as
errA? €/dd_1pi /°°dP||
4r ()il J_o 2z

/,,:

In order to calculate the effective potential, we need the
vacuum integrals

(A1)

(A2)

(A3)
e (o) [+ 0] -
A? (A6)

076005-8



CHIRAL DENSITY WAVE VERSUS PION CONDENSATION ... PHYS. REV. D 97, 076005 (2018)

(P + pf + M) ~ 3(4n)
16 A2(A2 +2%)

= S s 1+ 0 (A7)

(PL+P)AA2 —p* +4pi—pl) 16 [ A’ ¢ A? s
/,, ( ) ( [(1—€)A% +2070(1 + )

= N A2 +p2)2

/(4A2—p2+4p2—pi) 16

erA? e A2 16 A?
(p2 +A2 _l_pZ)% - 3(471.)2 ( > ( 2F(2+€) = 3 2 [1 + (’)(6)] (AS)

A2 +p?) (A4 p?) (47)* (A% +p?)

APPENDIX B: PARAMETER FIXING

In this appendix, we briefly discuss the fixing of the model parameters. At tree level, the relations between these
parameters and the physical quantities are given by Eqgs. (15)—(16). In the on shell scheme, the divergent loop integrals are
regularized using dimensional regularization, but the counterterms are defined differently from those in the minimal
subtraction scheme. The counterterms in the on shell scheme are chosen so that they exactly cancel the loop corrections to
the self-energies’ and couplings evaluated on the mass shell, and consequently, the renormalized parameters are
independent of the renormalization scale and satisfy the tree-level relations [S0-52]. In the MS scheme, the counterterms
are chosen so that they cancel only the poles in € of the loop corrections. The bare parameters are the same in the two
schemes and so we can relate the corresponding renormalized parameters. The running parameters in the MS scheme can
therefore be expressed in terms of the physical masses m,, m,, and m, as well the pion decay constant. In Ref. [48] we
found

_ 1 3
mi/[_s = m2 + Slgch |:A(m§> + Z (mg. - 4m§)B(mg> - Zm,er(m%)} - 5m§/l—s
4¢°N. 2 1 3
s o8 2520 - 0 4m) () + 2nr()|. (B1)
12i?N, , ooy N2PNe 5o > 2pi(2
s = 4= (mg — 4m3)B(my) + ——5—mzB(mz) — 4idg*N [B(m) + mB' (m})] — 6lys

122N, A2 A2
=1+ {(4ﬂ)2f72z [(mtzy —4m3) <logm—3 + F(m?,)) +m2 <logm—2 + F(m2) + m2F'(m2)

(2 1og2—; +2r ) + P ) |} (B2)

2
2 2 _4i*N . B(m2 2B (m2)] — s — "4 ) 492Ncl A_2 Flm2 2 (2 B3
_g lg c[ (mﬂ')+mﬂ (mﬂ)] gM_S_f2 +(4]7,’)2 Ogm2+ (mﬂ)+mﬂ (mﬂ) ’ ( )
T q

2

2¢*N A
hys = h — 2igchm,2[f,,[B(m,2[) — m,z,B’(m,z,)] — Ohys = h{l + (Z )ZC [Iog—2 + F(m2) — m,%F’(m,Z,)] }, (B4)
7 m
q

where A(m3), B(p?), and B'(p?) are integrals in d = 4 — 2¢ dimensions in Minkowski space. Going to Euclidean space,
they can be straightforwardly computed and read

= [t (o)

q q

And such that the residues of the propagators evaluated on the mass shell are unity.
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o 1
20 - | T
— s (B [From v o] me
B () = (o P07 (87)

Here we have defined

1
F(p?) =2 —2rarctan <—) (BS)
r
- 4m2r 1 1
F'(p?) = —p2(4m§ - rz)arctan . —?, (B9)
4m2

with r = /= — 1.
p

The running parameters satisfy the following renormal-
ization group equations:

g () SNt (A (A)

Bl
dA (47)? ’ (B10)
2
dggs(A) _ 8N g (A )’ (B11)
dA (47[)
dlyg(A) 16N, » 4
e = Tamy P (N() ~ 654N (B12)
2 __
Adhm(/\) _ 4Ncgm(A)th(A) (B13)
dA (47)?
The solutions to Egs. (B10)—(B13) are
2
m
mas(A) = —— 0 (B14)
1 -0 log
(4z)?
_ %
(4n)*
Ao — 4fg0 “lo g
(B16)

L e o )2,

hy
2(}0
=G

s (A) = (B17)

log

where m3, g3, Ay and hy, are the values of the running
parameters at the scale Ay. We choose A to satisfy

2

A
1ogm—2 + F(m2) + m2F'(m2) = 0. (B18)
q

F(m2) and m2F'(m2) vanish in the chiral limit which
implies that Ay = m,. We can now evaluate Egs. (B1)~(B4)
at A=Ay to find m3, A, ¢3, and hy. Inserting
Egs. (B14)—(B17) into Eq. (28) using the results for m(z),
A0 g%, and A, we obtain the final result Eq. (29).

APPENDIX C: ONSET OF PION CONDENSATION

In order to show that the onset of pion condensation is
exactly at u; =5 Lm,, we expand the one-loop contribution
to the free energy in powers of p to fourth order to obtain an
effective Ginzburg-Landau energy functional. For simplic-
ity, we consider the case y = 0 where the finite-density
contribution (31) vanishes.

After renormalization, the one-loop effective potential
will be of the form
(C1)

Vl —loop — Qo + (12/) + 0‘4P ’

where the coefficients «; depend on the physical quantities
My, My, fr My and A. The critical isospin chemical
potential xj is defined by a, =0 evaluated at A = m,,
i.e. its vacuum value. If a4 > 0 at yj and A = m,, then
there is a second order transition at yj.

Setting ¢ = 0 in Eq. (23) the one-loop vacuum energy
reduces to

Vl——2NC/p\/(\/p2+A2:I:/41)2+,02. (C2)

Expanding Eq. (C2) in powers of p up to fourth order, we
find

2 1 p4

Vl_—2N/[\/p +A2:l://l]+ — :|
P 2y/p? +Azi/«l1 8(\/ +A2:I:,u1>

(C3)

In order to isolate the divergence, we expand the different terms in Eq. (C3) in powers of y; to the appropriate power order,

then add and subtract suitable terms. This yields

1 1
V== [ [ rar e g ¥
p 2 Vp?+ A2

] + Viin1 + Viin2,

Hi 1 P!
__ Cc4
(p* + Az)%> 8 (p? + A2) ()

where the finite terms can be calculated directly in d = 3 and read
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. 5 VA 1 . ou 16N, L L[ 1
Vi = —2Np 5> ——a| = >p*ui |1 — s arctan , (C5)
p PP+ A= PP E AT (PP A (4)* s

N 4/{ 1 2 ] 2N, 4[1+1(3A2 2) t <1>} ©8)
in2 — 7 VP - 3| = Prl5+=|—5— arctan( — | |,
R N RS s B R CESAN 5

where s = /4 —1.1In analogy with Eq. (28), we obtain the renormalized vacuum potential through order p*
Vi = 10 S g2, ) m“‘/‘l P I (x2S A Gos(2)6,
—loop 4 — 4.
2 95 2 2495 Ims
2N, 2 2 2 3 A4 2.2
(4n)? (A% +p?)*log 2+4Pﬂ log 2+2A +2A%" b + Viing + Viino- (C7)

Using Egs. (A3)—(A5) as well as (B14)—(B17), the renormalized effective potential up to order p* is

3 4m2N. A? +p
Victoop = 4m72rf72z{ ZF/(m )}

(47 )2f2 myg
L 5., 4m2Nc 4m 4m?
- 1 1- F(m2) + —L — F(m2) — m%F'(m
grra{ v e | (12 )+ 22— ) -
4mlN, A? 1
—Zu%f%{l— m2 2[1 — + F(mz) + mzF'(m}) — 2—|—25arctan—}}p—2
(47)°f my
_ 11— F 2 2F/ 2
a1 s o - )+ P+ i )|
1 4m2N, A% + p? 4m2N. A
T [ >] il ) mif? { )| &
8 (47)°f% (47)"f% mg
2N. (3 1 1 3A2 1
+ (4)’ {ZA“ +2A%p% + { 1t 3 </ﬁ - 2> arctan(s>]p4}. (C8)
From the effective potential Eq. (C8), we can read off the coefficients a, and a4. Evaluated at A = m,, we find
LR, 1 AmgN . 2 (2 4211 AmiN. Flm?2 2F (m2) — F(42 9
Ay = Emié my - (4”)2f72z my (mﬂ) — aHT - (4ﬂ)2f72;( (mﬂ) + my (mlr) - ( /’ll)) ’ ( )

1 m2f2 4miN 4m? 1 mif2 4m2N,
o 1 — c | 1——4\F 2 F 2 2F/ 2 n) 1— qgtVc 2F, 2
ay = 8 mg { (477)2f2 g (mo-) + (mﬂ) + my (mﬂ) 8 mé (4”)2](]2[ my (mn)

2N, [1 3A2 1
+—5 = + —2 |arctan( — | |. (C10)

(4n)* |s Ul s
Thus a, = 0 for u§ = 2m,,, and we find a4 > O for all values of m,, specifically a, = 0.0514 for m, = 600 MeV and
m, = 140 MeV. We therefore conclude that the transition from the vacuum to the pion-condensed phase is second order

and the onset is for yf = m . This results holds for all u < m, é m, when the finite-density part of the potential becomes
nonzero, as seen in Fig. 2

076005-11



JENS O. ANDERSEN and PATRICK KNESCHKE

PHYS. REV. D 97, 076005 (2018)

[1] K. Rajagopal and F. Wilczek, At the Frontier of Particle
Physics, (World Scientific, Singapore, 2001), Vol. 3,
p- 2061.
[2] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schifer,
Rev. Mod. Phys. 80, 1455 (2008).
[3] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001
(2011).
[4] E.J. Ferrer, V. de la Incera, and C. Manuel, Phys. Rev. Lett.
95, 152002 (2005); Nucl. Phys. B747, 88 (2006).
[5] K. Fukushima and H.J. Warringa, Phys. Rev. Lett. 100,
032007 (2008).
[6] J. L. Noronha and I. A. Shovkovy, Phys. Rev. D 76, 105030
(2007); 86, 049901 (2012).
[7] T. Kojo, Y. Hidaka, L. McLerran, and R. D. Pisarski, Nucl.
Phys. A843, 37 (2010); A875, 94 (2012).
[8] T. Kojo, R. D. Pisarski, and A. M. Tsvelik, Phys. Rev. D 82,
074015 (2010).
[9] R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R.
Gatto, M. Mannarelli, and M. Ruggieri, Rev. Mod. Phys. 86,
509 (2014).
[10] M. Buballa and S. Carignano, Prog. Part. Nucl. Phys. 81, 39
(2015).
[11] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 014508
(2002).
[12] J.B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 034505
(2002).
[13] B.B. Brandt and G. Endrodi, Proc. Sci., LATTICE2016
(2016) 039.
[14] B.B. Brandt, G. Endrodi, and S. Schmalzbauer, arXiv:
1709.10487.
[15] B.B. Brandt, G. Endrodi, and S. Schmalzbauer, arXiv:
1712.08190 [Phys. Rev. D (to be published)].
[16] D.T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592
(2001).
[17] K. Splittorff, D. T. Son, and M. A. Stephanov, Phys. Rev. D
64, 016003 (2001).
[18] M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034
(2003).
[19] E.S. Fraga, L. F. Palhares, and C. Villavicencio, Phys. Rev.
D 79, 014021 (2009).
[20] S. Carignano, L. Lepori, A. Mammarella, M. Mannarelli,
and G. Pagliaroli, Eur. Phys. J. A 53, 35 (2017).
[21] D. Toublan and J.B. Kogut, Phys. Lett. B 605, 129
(2005).
[22] B. Klein, D. Toublan, and J. J. M. Verbaarschot, Phys. Rev.
D 68, 014009 (2003).
[23] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562,221
(2003).
[24] D. Toublan and J. B. Kogut, Phys. Lett. B 564, 212 (2003).

[25] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,
Phys. Rev. D 69, 096004 (2004).

[26] L. He and P.-F. Zhuang, Phys. Lett. B 615, 93 (2005).

[27] L. He, M. Jin, and P.-F. Zhuang, Phys. Rev. D 71, 116001
(2005).

[28] L. He, M. Jin, and P.-F. Zhuang, Phys. Rev. D 74, 036005
(2006).

[29] D. Ebert and K. G. Klimenko, J. Phys. G 32, 599 (2006).

[30] D. Ebert and K.G. Klimenko, Eur. Phys. J. C 46, 771
(20006).

[31] J. O. Andersen and L. Kyllingstad, J. Phys. G 37, 015003
(2010).

[32] H. Abuki, R. Anglani, R. Gatto, M. Pellicoro, and M.
Ruggieri, Phys. Rev. D 79, 034032 (2009).

[33] C.-F. Mu, L. He, and Y. Liu, Phys. Rev. D 82, 056006
(2010).

[34] T. Xia, L. He, and P. Zhuang, Phys. Rev. D 88, 056013
(2013).

[35] K. Kamikado, N. Strodthoff, L. von Smekal, and J.
Wambach, Phys. Lett. B 718, 1044 (2013).

[36] H. Ueda, T.Z. Nakano, A. Ohnishi, M. Ruggieri, and K.
Sumiyoshi, Phys. Rev. D 88, 074006 (2013).

[37] R. Stiele, E. S. Fraga, and J. Schaffner-Bielich, Phys. Lett. B
729, 72 (2014).

[38] T. Graf, J. Schaffner-Bielich, and E. S. Fraga, Phys. Rev. D
93, 085030 (2016).

[39] J.O. Andersen, N. Haque, M.G. Mustafa, and M.
Strickland, Phys. Rev. D 93, 054045 (2016).

[40] E. Nakano and T. Tatsumi, Phys. Rev. D 71, 114006 (2005).

[41] D. Nickel, Phys. Rev. D 80, 074025 (2009); Phys. Rev. Lett.
103, 072301 (2009).

[42] S. Carignano, D. Nickel, and M. Buballa, Phys. Rev. D 82,
054009 (2010).

[43] S. Carignano, M. Buballa, and B.-J. Schaefer, Phys. Rev. D
90, 014033 (2014).

[44] N. V. Gubina, K. G. Klimenko, S. G. Kurbanov, and V. Ch.
Zhukovsky, Phys. Rev. D 86, 085011 (2012).

[45] P. Adhikari and J. O. Andersen, Phys. Rev. D 95, 054020
(2017).

[46] T. G. Khunjua, K. G. Klimenko, R. N. Zhokhov, and V. C.
Zhukovsky, Phys. Rev. D 95, 105010 (2017).

[47] F. Dautry and E. M. Nyman, Nucl. Phys. A319, 323 (1979).

[48] P. Adhikari, J. O. Andersen, and P. Kneschke, Phys. Rev. D
96, 016013 (2017).

[49] T. D. Cohen, Phys. Rev. Lett. 91, 222001 (2003).

[50] A. Sirlin, Phys. Rev. D 22, 971 (1980).

[51] A. Sirlin, Phys. Rev. D 29, 89 (1984).

[52] M. Bohm, H. Spiesberger, and W. Hollik, Fortschr. Phys.
34, 687 (1986).

076005-12


https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1103/PhysRevLett.95.152002
https://doi.org/10.1103/PhysRevLett.95.152002
https://doi.org/10.1016/j.nuclphysb.2006.04.013
https://doi.org/10.1103/PhysRevLett.100.032007
https://doi.org/10.1103/PhysRevLett.100.032007
https://doi.org/10.1103/PhysRevD.76.105030
https://doi.org/10.1103/PhysRevD.76.105030
https://doi.org/10.1103/PhysRevD.86.049901
https://doi.org/10.1016/j.nuclphysa.2010.05.053
https://doi.org/10.1016/j.nuclphysa.2010.05.053
https://doi.org/10.1016/j.nuclphysa.2011.11.007
https://doi.org/10.1103/PhysRevD.82.074015
https://doi.org/10.1103/PhysRevD.82.074015
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1103/PhysRevD.66.014508
https://doi.org/10.1103/PhysRevD.66.014508
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1103/PhysRevD.66.034505
http://arXiv.org/abs/1709.10487
http://arXiv.org/abs/1709.10487
http://arXiv.org/abs/1712.08190
http://arXiv.org/abs/1712.08190
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1103/PhysRevD.79.014021
https://doi.org/10.1103/PhysRevD.79.014021
https://doi.org/10.1140/epja/i2017-12221-x
https://doi.org/10.1016/j.physletb.2004.11.018
https://doi.org/10.1016/j.physletb.2004.11.018
https://doi.org/10.1103/PhysRevD.68.014009
https://doi.org/10.1103/PhysRevD.68.014009
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1016/S0370-2693(03)00701-9
https://doi.org/10.1103/PhysRevD.69.096004
https://doi.org/10.1016/j.physletb.2005.03.066
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.74.036005
https://doi.org/10.1103/PhysRevD.74.036005
https://doi.org/10.1088/0954-3899/32/5/001
https://doi.org/10.1140/epjc/s2006-02527-5
https://doi.org/10.1140/epjc/s2006-02527-5
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1088/0954-3899/37/1/015003
https://doi.org/10.1103/PhysRevD.79.034032
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1103/PhysRevD.88.074006
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1103/PhysRevD.93.085030
https://doi.org/10.1103/PhysRevD.93.085030
https://doi.org/10.1103/PhysRevD.93.054045
https://doi.org/10.1103/PhysRevD.71.114006
https://doi.org/10.1103/PhysRevD.80.074025
https://doi.org/10.1103/PhysRevLett.103.072301
https://doi.org/10.1103/PhysRevLett.103.072301
https://doi.org/10.1103/PhysRevD.82.054009
https://doi.org/10.1103/PhysRevD.82.054009
https://doi.org/10.1103/PhysRevD.90.014033
https://doi.org/10.1103/PhysRevD.90.014033
https://doi.org/10.1103/PhysRevD.86.085011
https://doi.org/10.1103/PhysRevD.95.054020
https://doi.org/10.1103/PhysRevD.95.054020
https://doi.org/10.1103/PhysRevD.95.105010
https://doi.org/10.1016/0375-9474(79)90518-9
https://doi.org/10.1103/PhysRevD.96.016013
https://doi.org/10.1103/PhysRevD.96.016013
https://doi.org/10.1103/PhysRevLett.91.222001
https://doi.org/10.1103/PhysRevD.22.971
https://doi.org/10.1103/PhysRevD.29.89
https://doi.org/10.1002/prop.19860341102
https://doi.org/10.1002/prop.19860341102

