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We have simulated the SU(4) lattice gauge theory coupled to dynamical fermions in the fundamental and
two-index antisymmetric (sextet) representations simultaneously. Such theories arise naturally in the
context of composite Higgs models that include a partially composite top quark. We describe the low-lying
meson spectrum of the theory and fit the pseudoscalar masses and decay constants to chiral perturbation
theory. We infer as well the mass and decay constant of the Goldstone boson corresponding to the
nonanomalous U(1) symmetry of the model. Our results are broadly consistent with large-Nc scaling and
vector-meson dominance.
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I. INTRODUCTION

Gauge theories coupled simultaneously to more than one
fermion representation—“multirep” theories—open a new
dimension in the study of gauge dynamics. Apart from the
influence of each fermion species on the gauge field and
vice versa, phase transitions and symmetry breaking in each
species can affect the others dramatically. Of course, QCD
already contains light quarks, strange quarks, and heavy
quarks, and the influence of each species on the others is an
old and continuing object of QCD calculations. The differ-
ence is that QCD’s quarks are all equivalent, in that a tuning
of the masses can change one into another. Fermions in
inequivalent representations, on the other hand, enter the
dynamics with different strengths irrespective of their
masses.
As usual, symmetries offer the clearest perspective on the

physics of inequivalent fermions. Each species has its
maximal flavor symmetry, while no symmetries mix the
different species. If all the fermions are made massless, the
chiral symmetries of the species remain distinct. One
symmetry could break spontaneously while others do not.

This is a generalization of the old issue of scale separation,
whichwas originally seen as a possible separation of a chiral
scale from the confinement scale of the gauge theory [1–3].
It is possible that inequivalent representations, simultane-
ously coupled to the gauge field, define independent chiral
scales. This might find expression in the finite-temperature
physics of the theory, in the form of distinct phase transitions
for each fermion species as well as for the confinement
physics of the gauge field. Alternatively, one phase tran-
sition, possibly governed by the largest quadratic Casimir of
the fermion representations, might trigger all the others to
occur at the same scale.
We present here the first results of our work on the SU(4)

gauge theory with Nf ¼ 2 Dirac fermions in each of
two distinct representations, the fundamental 4 and two-
index antisymmetric 6 (a real representation). We have
chosen this model because it is close to a model pro-
posed by Ferretti for a hypercolor theory that yields a
composite Higgs boson [4,5] and a partially composite top
quark [6]. Ferretti’s model [7] contains 5 Majorana fer-
mions in the sextet representation and 3 Diracs fermions in
the fundamental; simulating this fermion content requires
the costly Rational hybrid Monte Carlo (RHMC) algo-
rithm, and so, instead, we study the theory with 4
Majoranas (equivalent to 2 Dirac fermions) in the sextet
and 2 Diracs in the fundamental. In Ferretti’s model, the
massless sextet Majorana fermions Ψ condense to break
their chiral symmetry according to SUð5Þ → SOð5Þ,
whereupon the Standard Model’s Higgs multiplet appears
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as Nambu-Goldstone (NG) bosons; our symmetry breaking
scheme is1 SUð4Þ → SOð4Þ. The fundamental fermions
ψ ð4Þ in Ferretti’s model are brought in so that the theory
will possess fermionic baryons constructed as ψ ð4Þψ ð4ÞΨ
“chimera” bound states, to be used as top partners;
they condense (again, in the chiral limit) according to
SUð3ÞL×SUð3ÞR→SUð3ÞV . In our model, the correspond-
ing symmetry-breaking scheme is SUð2ÞL × SUð2ÞR →
SUð2ÞV . We believe that our model contains all the
qualitative physics of Ferretti’s model while offering a
laboratory for developing quantitative techniques.
Multirep theories of physical significance are not easy to

come by. Apart from the phenomenological requirements,
Ferretti’s choice of model is constrained [8] by the simple
fact that higher-representation matter fields push gauge
theories into the conformal window unless the number of
fermions is quite small. It is essential that the gauge theory
of hypercolor exhibit confinement and the concomitant
breaking of global symmetries.
In this work we present results from the mesonic sector

of the theory, leaving baryonic observables for another
paper. We have already explored the mesonic and baryonic
spectrum of the SU(4) gauge theories with only funda-
mental [9] or only sextet fermions [10].2 Those results fit
nicely into the body of work on QCD and its generaliza-
tions to larger values of Nc. The analysis there, similar to
QCD studies, related the gauge coupling β and hopping
parameter κ to a physical scale r1 (the Sommer scale) and
the quark mass mq, and used the latter as an abscissa for
plotting particle masses and decay constants. Here, of
course, the space of bare couplings consists of the gauge
coupling β and two hopping parameters κ4 and κ6 for the
two fermion species. We translate these into the scale
parameter t0, derived from the Yang-Mills gradient flow,
and the two quark masses m4 and m6.
Our main tool for understanding the meson spectrum is a

recent generalization of chiral perturbation theory (χPT) to
the low-energy sector of a two-representation theory [12].
This form of χPT provides formulas for masses, decay
constants, and chiral condensates at next-to-leading order,
with m4 and m6 as independent variables. These formulas
contain an important qualitatively new piece of physics
compared to QCD—communication between the different
species. They describe, for instance, the dependence of the
masses of the NG bosons of all the broken chiral sym-
metries on both fermion masses.
Another new feature of the two-representation theory is

the existence of a nonanomalous singlet axial current, and a
corresponding singlet NG boson that must be included in

the low-energy chiral theory. This particle is denoted ζ in
Ref. [12] and is of significant phenomenological interest for
composite Higgs models [8,13,14]. In this work we do not
probe this singlet pseudoscalar state directly. Nevertheless
we extract information about it indirectly, via its virtual
contributions to the properties of the flavored NG bosons
associated with chiral symmetry breaking of the individual
representations. In particular, its decay constant in the
chiral limit is a parameter in the chiral Lagrangian and thus
appears as a fit parameter, allowing us to infer its mass
using the leading-order formula.
Besides the pseudoscalar channel, we calculate masses

and matrix elements of the lightest vector bosons. The
vector is the lightest narrow resonance in QCD, and its
properties are closely related to those of the pseudoscalars
within the framework of vector meson dominance (VMD).
We explore the evidence for VMD in our theory and its
consequences for the decay width of the vector. This is of
particular phenomenological interest, since in composite
Higgs models, the vector resonance is often one of the first
signatures expected in collider searches.
The paper is organized as follows. In Sec. II we describe

the lattice theory, the observables we use, and ensembles
we generated. In Sec. III we describe our application of
χPT, including the discretization effects of Wilson fer-
mions, and our scale-setting method which is based on t0.
In Sec. IV we present our results for the pseudoscalar
spectrum and decay constants, including the flavor singlet
ζ. We present the vector particles in Sec. Vand use VMD to
estimate decay widths. In Sec. VI we discuss our results
from the point of view of large-Nc predictions, and present
our overall conclusions.
The tables containing the various measured

quantities have been collected together in Appendix A.
In Appendix B we explain technical aspects of our analysis
of lattice data. In Appendix C we review the definition of
the U(1) axial current and of the mass parameter in Wilson
χPT. Finally, Appendix D contains a calculation of per-
turbative Z-factors for the nHYP lattice action with dis-
location suppression.

II. THE LATTICE THEORY

A. Symmetries

The chiral symmetry of the fundamental fermions and its
expected breaking are the same as in two-flavor QCD. The
specifics of chiral symmetry breaking for the sextet repre-
sentation are less well known, so we will discuss them
briefly; a more detailed explanation is given in [10,12].
The sextet representation of SU(4) is a real representa-

tion. Our model has two Dirac fermions charged under this
representation, ψ ð6Þ

i ; ψ̄ ð6Þ
i , i ¼ 1, 2, which are equivalent to

four Majorana fermions ΨI, I ¼ 1;…; 4. The global
symmetry of the continuum theory is thus also SU(4).
Using the language of Majorana fermions, the bilinear

1This scheme is not directly useful for model building since the
SUð4Þ=SOð4Þ coset does not accommodate the Higgs field.

2A preliminary exploration of the chimera states—using
configurations generated with only fundamental dynamical
fermions—was presented in [11].
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condensate hΨ̄IΨJi is symmetric in its Majorana-flavor
indices. Hence, after spontaneous symmetry breaking one
expects the unbroken symmetry to be SO(4) [15]. One
consequence of the enlarged symmetry is that ψ̄ ð6Þψ ð6Þ

mesons and ψ ð6Þψ ð6Þ diquarks (both gauge-singlet objects)
are members of a degenerate multiplet of the unbro-
ken group.
As usual, the chiral symmetries of the theory are explicitly

broken by the Wilson term in the lattice action. The lattice
theory thus has the same flavor symmetry as expected in the
continuum theory after spontaneous symmetry breaking:
SUð2ÞV × Uð1ÞB for the fundamental representation and
SOð4Þ for the sextet. Our use of Wilson fermions thus
assumes that the spontaneous breaking of chiral symmetries
is as would be forced by a bilinear condensate, and all
measured correlation functions reflect this.
A special feature of the two-representation theory is the

existence of a conserved U(1) axial current. While the
individual U(1) currents Jð4Þ5μ and Jð6Þ5μ are anomalous, one
can form a linear combination J5μ of these currents that
decouples from FF̃. Condensation of either fermion
species then spontaneously breaks the nonanomalous axial
symmetry, giving rise to a singlet NG boson that we denote
ζ. We review the normalization of the U(1) current in
Appendix C 1.

B. Lattice action and parameters

Our lattice action contains gauge-field terms and two
fermion actions, one for each representation:

S ¼ Sgauge þ Sð4ÞF þ Sð6ÞF : ð2:1Þ
Each fermion action is a Wilson-clover action built of
gauge links constructed by nHYP smearing [16,17]. In Sð6ÞF
the smeared links are promoted to the sextet representation
[10]. There are two hopping parameters, κ4 and κ6. We set
both clover coefficients equal to unity, cSW ¼ 1, a choice
known to work well with nHYP smearing in QCD [18] and
with fermions in higher representations [19].
The gauge-field action takes the form

Sgauge ¼ βSplaq þ γSNDS: ð2:2Þ

The first term is the usual plaquette action, while the second
is an nHYP dislocation-suppression (NDS) term [20],
constructed from the nHYP-smeared links. The NDS term
is designed to avoid singularities in the nHYP smearing.
For the present study, we hold the ratio γ=β fixed at 1=125
and use β as a free bare parameter.
Concurrent with the work described here, we are also

studying the finite-temperature phase structure of the
theory [21]. Comparison of the sextet-only limit of this
theory to earlier published results [10] shows that the use of
the NDS action removes the previously observed bulk
transition from the interesting region of parameter space

(see also Ref. [22]). In the multirep theory, we see no
evidence for a bulk transition anywhere near the range of
bare parameters at which we run, indicating that all of our
ensembles correspond to the confined continuum phase
with broken chiral symmetry.
We extract masses and decay constants in the usual way

from two-point correlation functions. We denote pseudo-
scalar masses and decay constants in the representation r by
MPr and FPr, respectively. The corresponding quantities in
the vector channel are denoted by MVr and FVr.
We define the fermion masses m4 and m6 by imposing

the axial Ward identity (AWI),

∂μh0jAðrÞ
μa ðxÞOrð0Þj0i ¼ 2mrh0jPðrÞ

a ðxÞOrð0Þj0i; ð2:3Þ
where x ≠ 0, and a is an isospin index. We use the local

unimproved axial current AðrÞ
μa and pseudoscalar density

PðrÞ
a in each representation r. For the determination of the

AWI mass, we do not renormalize these currents because
the mass itself is not a physical observable; based on our
perturbative renormalization of these currents described in
Appendix D (used for calculation of decay constants), the
effect of including the renormalization would be small
anyway, amounting to a few-percent shift of the masses.
ForOr we take a pseudoscalar source. When the distinction
between representations is irrelevant, we will refer to the
fermion mass defined by Eq. (2.3) as mAWI. Further
information about our conventions and methods for spec-
troscopy is given in Appendix B.

C. Scale setting

We set the scale in our simulations using the flow scale,
t0, introduced by Lüscher [23]. The flow scale is defined by
the implicit equation

t2hEðtÞijt0 ¼ C; ð2:4Þ
where EðtÞ ¼ 1

4
Ga

μνGa
μνðtÞ is constructed from the clover

form of the field strength Ga
μν at flow time t. Here C is a

dimensionless number, conventionally [23] taken to be 0.3
in QCD.With this choice,

ffiffiffiffi
t0

p
corresponds to a length scale

of 0.14 fm (i.e., an energy scale of 1.4 GeV) in QCD
simulations [24,25].
For an arbitrary gauge theory, any value for C is

a priori as good as any other. However, for comparison
to existing studies with different gauge groups, it is
useful to let C vary with Nc. Arguments from large-Nc
QCD, supported by lattice data [25,26], suggest that
t0 ∼ Nc at leading order. For the SU(4) simulations of this
work we therefore use

t2hEðtÞijt0 ¼ 0.3 ×
4

3
¼ 0.4: ð2:5Þ

Lattice calculations give masses as dimensionless num-
bers Ma and gradient-flow scales as t0=a2. Dimensionless
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products like M̂ ≡M
ffiffiffiffi
t0

p
eliminate the lattice spacing a,

and our tables and figures will display such quantities. To
aid the intuition, one can mentally convert M

ffiffiffiffi
t0

p
to

M=ð1.4 GeVÞ.
We return to the subject of scale-setting and connect it to

χPT in Sec. III below.

D. Ensembles

The ensembles used in this study are listed in
Tables II–IV in Appendix A They fall into three groups.
The short runs with the smallest lattices, of size
V ¼ n3s × nt ¼ 163 × 18, were used for general orientation
in the three-dimensional coupling space ðβ; κ4; κ6Þ. The
most important observables for this step were

ffiffiffiffi
t0

p
, the scale

defined by gradient flow (see Tables V–VII), and the
masses MPr of the pseudoscalars constructed respectively
from fermions in the r ¼ 4 and 6 representations (see
Tables VIII–X).
The goal of this orientation was to find couplings that

give t0=a2 ¼ Oð1Þ along with pseudoscalar masses that are
reasonably light, for subsequent comparison to χPT. It
turned out that these short runs yielded results that are in
themselves usable for the chiral fits to be presented below,
and hence we include them in our analysis.
As can be seen in the tables, some ensembles differ in

small changes to their κr values. Our orientation runs found
that t0=a2 and aMP are often sensitive to these small
changes.
We demanded that our ensembles satisfy the criterion

MPrL > 4 for both representations, where L ¼ nsa is
the spatial size of the lattice. This is the familiar rule
of thumb from QCD, based on the fact that leading-
order finite-volume corrections are proportional to
e−MπL; a more detailed study of finite-volume effects
in our data is given in Appendix B 4. We considered
cutting data above a maximum value of t0=a2 beyond
which finite-volume effects severely contaminate deter-
mination of the flow scale; such a cut was found to be
unnecessary following the cuts on MPL. We did
eliminate ensembles with t0=a2 < 0.94 because in these
cases the flow did not enter a linear regime. These
correspond to a large lattice spacing—in QCD lan-
guage, 1=a < 1.3 GeV.
Having found interesting regions for study, we continued

with high-statistics runs on lattices with V ¼ 163 × 32.
Finally, we have four extended runs on lattices with
V ¼ 243 × 48. These runs were done at large t0=a2 and
small M̂P, so that the constraint MPL > 4 demanded an
increase in L=a.
The pseudoscalar masses for all the ensembles are given

in Tables VIII–X. To show our coverage of MP values, we
map them in the ðMP4;MP6Þ plane in Figs. 1 and 2. The
first shows the pseudoscalar masses obtained for
0.94 <

ffiffiffiffi
t0

p
=a < 1.41, which translates to a cutoff of

1.3 GeV < 1=a < 2 GeV in QCD language (most are in
the neighborhood of

ffiffiffiffi
t0

p
=a ¼ 1.05, or 1=a ¼ 1.45 GeV).

The second plot represents ensembles in the range
1.41 <

ffiffiffiffi
t0

p
=a < 1.64, or 2 GeV < 1=a < 2.3 GeV.
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3 × 32

FIG. 1. Map of our ensembles in the plane of pseudoscalar
masses MPr. These are coarse lattices, with 0.94 <

ffiffiffiffi
t0

p
=a <

1.41. We define arbitrarily
ffiffiffiffi
t0

p ¼ ð1.4 GeVÞ−1 for comparison
with QCD. For most of these ensembles 1=a ≃ 1.45 GeV by this
measure.
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FIG. 2. Same as Fig. 1, but here we plot ensembles on fine
lattices,

ffiffiffiffi
t0

p
=a > 1.41. If we fix

ffiffiffiffi
t0

p ¼ ð1.4 GeVÞ−1 then this
means 1=a > 2 GeV. The blue squares are all at 1=a ≃ 2.1 GeV.
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III. CHIRAL PERTURBATION THEORY

The standard framework for analyzing the light pseu-
doscalar sector is χPT. The generalization of χPT to a
theory with fermions in two different representations was
developed in Ref. [12], and the next-to-leading-order
(NLO) results of this work provide the basis for our fits
for the pseudoscalar masses and decay constants. We will
also need Wilson chiral perturbation theory (WχPT), the
extension of chiral perturbation theory to include the
discretization errors of Wilson fermions [27–32].

A. Using a yardstick

We need a yardstick with which to measure dimensionful
quantities as the fermion masses are varied. In this paper,
we use

ffiffiffiffi
t0

p
for the characteristic length scale of every

ensemble. To measure an observable in units of t0 simply
means to multiply it by the power of t0 that renders it
dimensionless. Since t0 itself admits a chiral expansion
[33], the resulting dimensionless quantity admits a chiral
expansion whenever the original dimensionful observable
does.
To see how this works, consider a gauge theory with

mass-degenerate fermions of mass m, all in the same
representation. In continuum χPT, the NLO expression
for the decay constant is

FNLO ¼F

�
1þc

2Bm
8π2F2

logð2Bm=μ2ÞþL
2Bm
F2

�
: ð3:1Þ

B and F are the familiar parameters of the LO lagrangian.
[Our normalization convention for the pseudoscalar decay
constant is larger by

ffiffiffi
2

p
than that commonly used in the

χPT literature. See Eq. (4.1) below.] We recall that the LO
pseudoscalar mass is

ðM2ÞLO ¼ 2Bm: ð3:2Þ

The remaining parameters in Eq. (3.1) are μ, the renorm-
alization scale, and L, which is a (dimensionless) linear
combination of the NLO low-energy constants (LECs),
whose value depends on the choice of μ. The coefficient c
of the logarithmic term is a calculable number that depends
only on the fermion representation and on the number of
flavors [34].
The NLO result for t0 is

tNLO0 ¼ t0;ch

�
1þ k̃1

2Bm
F2

�
; ð3:3Þ

where t0;ch is the value of t0 in the chiral limit, and k̃1 is a
new LEC. Notice that this expression depends analytically
on the fermion mass m. As was shown in Ref. [33],
logarithmic corrections to t0 occur for the first time at the
next-to-next-to-leading order (N2LO).

Combining Eqs. (3.1) and (3.3) we obtain the NLO result
for the dimensionless product F̂≡ F

ffiffiffiffi
t0

p
,

F̂NLO ¼ F
ffiffiffiffiffiffiffiffi
t0;ch

p �
1þ c

2Bm
8π2F2

logð2Bmt0Þ

þ ðLþ k̃1=2Þ
2Bm
F2

�
: ð3:4Þ

Here we have chosen the renormalization scale to be
μ ¼ t−1=20;ch . LECs are independent of the fermion mass,
and to preserve this feature we rescale them with t0;ch, for

example defining F
̥
¼ F

ffiffiffiffiffiffiffiffi
t0;ch

p
. Equation (3.4) can then be

written as

F̂NLO ¼ F
̥ �

1þ c
2B
̥
m
̥

8π2F
̥
2
logð2B

̥
m
̥ Þ þ ðLþ k̃1=2Þ

2B
̥
m
̥

F
̥
2

�
:

ð3:5Þ

The expansion parameter is now m
̥
, which is the fermion

mass m measured in units of t0;ch.
Equation (3.5) is inconvenient because m

̥
is not known

for a given ensemble until t0;ch is known. Finding t0;ch (in
units of t0 of the given ensemble) requires a complicated
fitting procedure that we wish to avoid. Instead, we opt for
rescaling all observables of a given ensemble, including the
fermion mass, with t0 of the same ensemble. Introducing
m̂≡m

ffiffiffiffi
t0

p
we now use Eq. (3.3) to relate the rescaled

masses,

m
̥ ¼ m̂

�
1 − k̃1

Bm
F2

�
; ð3:6Þ

which allows us rewrite Eq. (3.5) as

F̂NLO ¼ F
̥ �

1þ c
2B
̥
m̂

8π2F
̥
2
logð2B

̥
m̂Þ þ ðLþ k̃1=2Þ

2B
̥
m̂

F
̥
2

�
:

ð3:7Þ

The transition from m
̥

to m̂ left no trace, because the
difference is a higher-order correction. More generally, at
NLO the transition from m

̥
to m̂ can always be absorbed

into a redefinition of the LECs. (A case where the
redefinition is nontrivial is the NLO result for the pseu-
doscalar mass.)
An appealing feature of Eq. (3.7) is that it looks the same

as Eq. (3.1). In particular, the coefficient of the logarithmic
term is unchanged. The only minor change is that the
coefficient of the NLO analytic term is now Lþ k̃1=2
instead of L. (At N2LO things would become technically
more complicated, because N2LO logarithmic corrections
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for t0 would have to be incorporated as well.) It can be
checked that this nice feature generalizes to an arbitrary
fermion content. In the NLO fit formulas that we present
below, all the logarithmic terms will thus have the same
coefficients as in the usual continuum NLO expressions
[12,34].

B. Wilson chiral perturbation theory

The extension of continuum chiral perturbation theory to
include the discretization errors of Wilson fermions goes
under the name of Wilson chiral perturbation theory, or
WχPT. In the light pseudoscalar sector, WχPT allows us to
extrapolate both to the chiral limit, m → 0, and to the
continuum limit, a → 0. WχPT comes in two variants,
depending on the choice of a power-counting scheme. In
this paper we follow the “generic small mass,” or GSM,
power counting, defined by

p2 ∼m ∼ a; ð3:8Þ

where p is an external momentum, m is the fermion mass,
and a is the lattice spacing, all measured in terms of a
typical hadronic scale. The alternative power-counting
scheme, known as the “large cutoff effects,” or LCE, power
counting, is defined by

p2 ∼m ∼ a2: ð3:9Þ

The GSM scheme is appropriate when the fermion mass is
not too small, and Oða2Þ effects may be considered as
subleading corrections. (We must, of course, remain within
the chiral regime, meaning that m̂ ¼ m

ffiffiffiffi
t0

p
is small.) In

particular, our determination of the critical surface κcr ,
where the mass of fermions in representation r vanishes,
is done via extrapolation from the GSM regime. As a result,
we do not probe the possible existence of an Aoki phase.
For more details, see Appendices B 3 and C 2.
The fermion mass appearing in the LO Lagrangian of

WχPT is the so-called shifted mass, defined by

mshifted ¼ mctm þ aW0=B; ð3:10Þ

where mctm is the fermion mass of continuum χPT, andW0

is a new LEC from WχPT. The difference between the
shifted and continuum masses vanishes in the continuum
limit. For this lattice study, we need to know how the
shifted mass mshifted compares to the fermion mass mAWI
measured in our simulations via the axial Ward identity
Eq. (2.3). As was shown in Ref. [35],mshifted ¼ mAWI, up to
corrections that are higher order in either of the above
power-counting schemes. In view of the important role that
this result plays in our analysis, we briefly summarize the
derivation of Ref. [35] in Appendix C 2. For our chiral fits
we thus define

m̂ ¼ mAWI
ffiffiffiffi
t0

p
: ð3:11Þ

The last ingredient we need for our fits is the lattice
spacing. Since we are measuring all dimensionful quan-
tities in units of t0, it is natural to adopt a mass-dependent
prescription, and to measure also the lattice spacing in units
of t0. We thus introduce

â≡ a=
ffiffiffiffi
t0

p
: ð3:12Þ

The Wilson discretization effects of any hatted (dimension-
less) observable will be accounted for by an expansion in â.
In QCD, it is common to choose a mass-independent

scale-setting prescription, whereby the lattice spacing is a
function of the bare coupling β, but is independent of the
bare fermion masses (see for example Refs. [36,37]). In
brief, for every constant-β plane, this procedure requires
finding the point where certain dimensionless quantities
(such asMπ=Fπ andMK=FK) attain their real-world values.
The value in lattice units of some dimensionful observable
at the reference point is then used to determine the lattice
spacing in physical units.
Here we have opted for mass-dependent scale setting

because of several important differences. First, the BSM
context does not provide us with any experimental results
that could be used to define a reference point. This problem
might be circumvented by invoking the chiral limit as a
reference point on each constant-β plane. This, however,
has the undesirable feature that the scale-setting procedure
would necessarily involve an extrapolation.
Second, in our model, as in many other models that have

been studied in the BSM context, we observe a rapid
change of t0=a2 with the fermion mass, especially when the
latter becomes light. Moreover, this phenomenon is quite
general, and is seen for virtually any quantity that might be
used to set the scale; its proper interpretation is thus that the
lattice spacing itself is changing rapidly. The underlying
reason is that, in comparison with QCD, BSM theories tend
to have a large number of fermionic degrees of freedom,
which have a strong screening effect on the bare coupling.
When we consider the dependence of a hatted quantity,
such as M̂P, on the hatted mass parameter, m̂, we expect to
see some deviations from the continuum values, but such
scaling violations should be small when the bare coupling
is small enough. By contrast, as explained above, the lattice
spacing â itself can vary rapidly with the fermion mass(es).
By using the mass-dependent scale-setting prescription of
Eq. (3.12) we can incorporate this effect into our analysis.
As we will see, the remaining scaling violations in the
hatted quantities are small and amenable to WχPT.

C. Summary of χPT formulae

Our central fits below will include terms through NLO in
the GSM power counting. These formulas depend exclu-
sively on the dimensionless quantities we have introduced
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in the previous subsections. The NLO expressions for the
pseudoscalar masses of the two representations are

ðM̂2
P4ÞNLO ¼ 2m̂4B

̥
4

�
1þ LM

44m̂4 þ LM
46m̂6 þ

1

2
Δ4 −

4

5
Δζ

�

þW
̥
M
44âm̂4 þW

̥
M
46âm̂6 þW

̥
M
4 â2; ð3:13Þ

ðM̂2
P6ÞNLO ¼ 2m̂6B

̥
6

�
1þ LM

66m̂6 þ LM
64m̂4 −

1

4
Δ6 −

1

5
Δζ

�

þW
̥ M
66âm̂6 þW

̥ M
64âm̂4 þW

̥ M
6 â2; ð3:14Þ

while the expressions for the decay constants are

ðF
̥
P4ÞNLO¼F

̥
4ð1þLF

44m̂4þLF
46m̂6−Δ4ÞþW

̥ F
4 â; ð3:15Þ

ðF
̥
P6ÞNLO¼F

̥
6ð1þLF

66m̂6þLF
64m̂4−2Δ6ÞþW

̥
F
6 â: ð3:16Þ

The one-loop chiral logarithms enter as

Δ4 ¼
2m̂4B

̥
4

8π2F
̥
2

4

log ð2m̂4B
̥
4Þ;

Δ6 ¼
2m̂6B

̥
6

8π2F
̥
2

6

log ð2m̂6B
̥
6Þ;

Δζ ¼
M̂2

ζ

8π2F
̥
2

ζ

logðM̂2
ζÞ; ð3:17Þ

where the dimensionless mass-squared of the singlet NG
boson is defined by

M̂2
ζ ¼

8

5

�
2F
̥
2

4m̂4B
̥
4 þ F

̥
2

6m̂6B
̥
6

F
̥
2

ζ

�
: ð3:18Þ

This corresponds to the LO result of Ref. [12], rescaled by
t0. Further technical details related to the ζ and our
conventions for the conserved axial current appear in
Appendix C 1.
The most important parameters in the expressions above

are the LO LECS of the continuum two-representation
theory (rescaled by

ffiffiffiffiffiffiffiffi
t0;ch

p
): B
̥
4, B
̥
6, F
̥
4, F
̥
6, and F

̥
ζ. The

dimensionless parameters LM
rs and LF

rs, r ¼ 4, 6, are linear
combinations of the continuum NLO LECs and of similar
NLO LECs originating from the chiral expansion of the
flow scale [cf. Eq. (3.3)]. The general form of the analytic
NLO continuum terms was discussed in [12]. Because we
do not have enough independent quantities to distinguish
the individual NLO LECs, we instead consider LM

rs and LF
rs

as the parameters for the fit. Finally, the various W
̥

parameters account for the NLO analytic terms of WχPT
in the GSM power-counting scheme. Overall, these

formulas contain 21 undetermined parameters, which we
will fit below using 172 correlated points of data: four data
points for each of our 43 ensembles.
We have not presented NLO fit formulas for the mass

and decay constant of the singlet NG boson ζ. We do not
make use of these formulas in this work because we have
not calculated fermion-disconnected diagrams, which is
technically challenging, and so we do not have direct access
to the singlet sector. Nevertheless, through their depend-
ence on Δζ, virtual ζ loops contribute to the masses and
decay constants of the other NG bosons at NLO. In the next
section we will explore what can be learned about the
singlet sector from this effect.
Another interesting quantity is the chiral condensate in

each representation. At lowest order in χPT (equivalently,
in the corresponding chiral limit, m̂r → 0), the fermion
condensate per flavor is given by

Σ̂r ¼ −B
̥
rF
̥
2

r : ð3:19Þ

Instead of measuring the condensates directly—a formi-
dable task with Wilson fermions—we will make use of
Eq. (3.19) to extract their values in the (double) chiral limit
from our analysis of the pseudoscalar masses and decay
constants.

IV. PSEUDOSCALAR MESONS

A. Masses and decay constants

We begin with the pseudoscalar mesons, which become
NG bosons in the chiral limit. For a first look, we plot in
Fig. 3 the squared masses M̂2

Pr. The sextet mass M̂P6 is
plotted against the AWI mass m̂6 of the sextet fermion,
ignoring the dependence on the fundamental fermion mass
m̂4, and likewise for M̂P4, plotted against m̂4. As expected
from leading-order chiral perturbation theory, the overall

FIG. 3. Squared mass of the two pseudoscalar species, each
plotted against the AWI mass of the corresponding fermion
species, all in units of the flow scale t0.
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behavior of each squared mass is approximately linear. One
supposes that the scatter around the straight lines is due to
the hidden dependence on the other fermion mass, as well
as corrections from NLO and from lattice artifacts. We will
examine this hypothesis shortly.
The pseudoscalar decay constants are defined by

h0jAðrÞ
4a jPðrÞ

b i ¼ δabMPrFPr; ð4:1Þ

at zero spatial momentum, which is the convention that
gives Fπ ≃ 130 MeV in QCD. We calculate FPr with the
procedure described in Appendix B 2, renormalizing
according to the analog of Eq. (B5). We plot the (rescaled)
decay constants F̂Pr in Fig. 4. The data show a steady rise
with m̂r. The same qualitative behavior is seen in QCD,
where the pion decay constant is an increasing function of
the quark mass.
We have presented in Sec. III C the predictions of χPT in

NLO for pseudoscalar observables. We conduct a joint fit
of the four observables M̂2

Pr and F̂Pr to the NLO formulas
of Eqs. (3.13)–(3.16). On each ensemble, we use single-
elimination jackknife to construct the 6 × 6 correlation
matrix among pseudoscalar masses, decay constants, and
AWI masses of the fermions. These correlation matrices
enter into the χ2 that is minimized for the fit. We do not
include correlations with the flow scale t0, which has
negligible error compared to the other quantities we extract.
The full NLO fit to 21 parameters and 172–21 ¼ 151

degrees of freedom gives χ2=DOF ¼ 0.48. Table I contains
the resulting values for the LECs and demonstrates the
presence of important lattice artifacts in our data. For the
masses, the most significant terms are theOðm̂râÞ artifacts,
in the same representation. For the decay constants, the
OðâÞ artifacts are also significant. From an empirical
perspective, these four NLOWilson terms form a necessary
minimal set of artifact terms for modeling the data.

Figures 5 and 6 illustrate the sizes of the Wilson artifacts
(red) emerging from this fit. In these figures, the “cor-
rected” data (dark blue) result from subtracting the lattice
artifacts from the data (light blue), allowing us to extrapo-
late to the continuum limit, â → 0. The corrected data
follow fairly well the tree-level formula for the pseudo-
scalar masses and the continuum NLO result for the decay
constants, respectively, both indicated by green bands. (The
bands represent 1σ in the fit parameters.) In order to display
a smooth curve for the continuum NLO result for the decay
constants, we have included only the same-representation
terms when drawing the green band (indicated by “con-
tinuum NLO SREP” in the figure). The remaining scatter
and deviation in the subtracted data (dark blue) is evidence
of coupling between the representations.
Table I demonstrates that all five leading-order LECs are

well determined by the NLO fit. We note that the singlet
decay constantF

̥
ζ is larger than F

̥
4 and similar in size toF

̥
6.

Because measurement of chiral logarithms is known to be a
difficult task in QCD studies, we return to the question of
the stability of this result below.

FIG. 4. Decay constant of each pseudoscalar species plotted
against the mass of the corresponding fermion species, in units of
the flow scale t0.

TABLE I. Parameter values from a joint fit to the full NLO χPT
formulas.

LO: B
̥
4

2.4(2)

B
̥
6

2.7(1)

F
̥
4

0.114(7)

F
̥
6

0.17(1)

F
̥
ζ

0.16(2)

Continuum NLO: LF
44

3.4(5)

LF
46

1.4(6)

LF
64

0.3(4)

LF
66

3.9(5)

LM
44

0.1(7)

LM
46

3.(1)

LM
64

0.4(7)

LM
66

0.5(7)

Lattice NLO: W
̥ F
4

−0.055ð6Þ

W
̥ F
6

−0.08ð1Þ

W
̥ M
4

0.01(1)

W
̥ M
44

−1.9ð3Þ

W
̥ M
46

−0.6ð3Þ

W
̥
M
6

0.001(9)

W
̥
M
64

0.1(2)

W
̥
M
66

−2.5ð4Þ
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Turning our attention to the NLO LECs, we examine the
communication between the representations. The ratios
LM
46=L

M
44 and LF

46=L
F
44 quantify the relative influence of the

sextet fermions on M̂2
P4 and F̂P4, respectively, in the

continuum theory. Similarly, the ratio W
̥
M
46=W

̥
M
44 measures

the relative influence of the sextet artifact term compared to
the fundamental artifact term in M̂2

P4. Taking into account
correlations, the following ratios are different from zero at
the 2σ level:

LF
46=L

F
44 ¼ þ0.4ð2Þ; ð4:2Þ

W
̥ M
46=W

̥ M
44 ¼ þ0.30ð15Þ: ð4:3Þ

The converse influence of the fundamentals upon the
sextets follows from exchanging ð4⇋6Þ. The ratios

LM
64=L

M
66, L

F
64=L

F
66, and W

̥ M
64=W

̥ M
66 are all consistent with

zero. Despite the large uncertainties, this suggests that the

sextets influence the fundamentals significantly, while the
converse is not true. The same qualitative conclusion is also
evident, for instance, in the NLO continuum behavior of the
decay constants. Figure 6 shows that subtracted data (dark
blue) are, to good approximation, a smooth function of m̂6

only. In contrast, the corresponding fundamental result in
Fig. 5 (also in dark blue) exhibits a conspicuous jagged-
ness, indicating important dependence on the sextet fer-
mion mass.

B. Stability of the NLO fit

In this subsection we explore the stability of the NLO fit.
First, since we are using priors to ensure convergence of the
nonlinear fitting procedure, it is important to verify that our
results were not biased by them. To this end, we have
redone the fit using the results of the first fit as initial guess,
while multiplying the width of all priors by 10. Figure 7
shows the results of both fits for the 5 LO LECs in the two
lines at the bottom. The results are indistinguishable,

FIG. 5. Breakdown of the contribution of lattice artifacts in the
joint fit to χPT for the fundamental masses and decay constants.

FIG. 6. Breakdown of the contribution of lattice artifacts in the
joint fit to χPT for the sextet masses and decay constants.

SPECTROSCOPY OF SU(4) COMPOSITE HIGGS THEORY … PHYS. REV. D 97, 074505 (2018)

074505-9



indicating that the LO LECs were not influenced by the
priors. (The same is also true for the NLO LECs.)
The chiral fit provides a posteriori justification for the

use of the GSM power-counting scheme, where Oða2Þ
terms are not part of the LO lagrangian. Both fermion
masses in our ensembles lie roughly in the range

0.02≲ m̂r ≲ 0.10: ð4:4Þ

The range of lattice spacings we explore is

0.4≲ â2 ≲ 1.1: ð4:5Þ

[Recall that our scale setting implies â2 ¼ a2=t0 by
definition; see Eq. (3.12).] The OðmrÞ contribution to

the pseudoscalar masses is 2B
̥
rm̂r, while the Oða2Þ con-

tribution is W
̥ M
r â2. For our fermion masses and lattice

spacings, these contributions lie approximately within the
following ranges:

2B
̥
rm̂r∶ 5 × ½0.02; 0.1� ≈ ½0.1; 0.5�; ð4:6Þ

W
̥ M
r â2∶ 0.01 × ½0.4; 1.1� ≈ ½0.004; 0.01�: ð4:7Þ

We see that the OðmrÞ terms are at least an order of
magnitude larger than the Oða2Þ terms, showing that the

GSM power counting is the appropriate one (as long as this
picture is not upset by large N2LO corrections, see below).
Measurement of the LECs also provides information

about the convergence of the chiral expansion. With our
convention for the decay constant, the expansion param-

eters of continuum χPT are ξr ≡ 2B
̥
rm̂r=8π2F

̥
2

r . With the
central-fit values for the LECs, these fermion masses
correspond to the following ranges for the expansion
parameters:

0.09≲ ξ4 ≲ 0.50; ð4:8Þ

0.04≲ ξ6 ≲ 0.20: ð4:9Þ

We see that the maximum of the sextet expansion parameter
ξ6 is smaller by a factor of 2.5 than the fundamental

expansion parameter ξ4. The main reason is that F
̥
6 is

significantly larger than F
̥
4, as might be expected based on

the relative dimension of the two representations (see
Sec. VI A).
It is quite plausible that ξ6 is sufficiently small that the

expansion in m6 converges well over our entire ensemble
set. The same may not be true for ξ4, whose value can be as
large as 0.5. In the next three lines of Fig. 7 we study the
influence on the LO LECs of dropping ensembles at the
high end of the m̂4 range: m̂4 > 0.09, >0.07, and finally
>0.05. We see that truncating our data set has only a

FIG. 7. Exploring the stability of leading-order LECs in chiral fits. We take the NLO result to define our central values, which appear
at the bottom of each column. The variations are described in the text.
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modest effect on the F
̥
r and B

̥
r parameters. On the other

hand, since we only obtain F
̥
ζ through NLO logarithms, it

is not surprising that the increase in the error bar of F
̥
ζ is

much more pronounced. Indeed, when we restrict to

m̂4 < 0.05, F
̥
ζ is only 2σ away from zero.

The next two lines in Fig. 7 investigate the possible
influence of finite-volume effects on our central analysis;
further discussion appears in Appendix B 4. The minimum
cutoff on MPL in data used in the central fit is varied from
its initial value of 4.0 in our main analysis to 4.5 and 5.0,
excluding more data which would be expected to have the
largest finite-volume contamination. Finally, in the top line
we repeat our fit with all V ¼ 163 × 18 ensembles excluded
from the analysis, in order to test for systematic effects in
our correlator analysis due to the smaller time extent. No
significant change to our results is seen in any case.
The main systematic uncertainty about this non-QCD

system is the neglect of N2LO corrections. We do not really
know how high can we go in ξ4 and ξ6 if we want these
corrections to remain below a certain level. While our
stability tests give us some insight, we do not have enough
data for a quantitative study of N2LO. Nevertheless, we
take the smallness of ξ6 and our stability tests on m̂4 as
evidence that the data are in the regime where NLO ChPT
applies, even if we do not have enough information to
quantify the corresponding systematic error.

C. The singlet Goldstone boson ζ

As explained in Sec. III C, the chiral fit in the fundamental
and sextet sectors allows us to probe the ζmeson as well.We
examine its mass in the chiral-sextet limit, m̂6 → 0. Figure 8
shows M̂2

ζ , constructed using Eq. (3.18) and the parameters

of the central fit, in the continuum (â → 0) limit, as a
function of the mass m̂4 of the fundamental fermions. The
figure shows that the singlet boson is consistently lighter
than the pseudoscalar of the fundamental sector in this limit.
We can make a conservative prediction regarding the ζ

mass as follows. As we have just explained, we do not
know how large m̂4 can be while keeping the N2LO
corrections below, say, 10% or 20%. Lowering the maximal

value of m̂4 raises the uncertainty in F
̥
ζ, as seen in Fig. 7.

Still, even if we lower the maximal value of m̂4 so as to, say,

double the uncertainty of F
̥
ζ, we would still find thatM2

ζ <
M2

4 at the 1σ level.
The chiral-sextet limit is interesting for composite-Higgs

models. In many models, including those proposed by
Ferretti and Karateev [8], the symmetries of the Standard
Model are embedded into the unbroken global symmetries,
so that neither the fundamental nor the sextet fermions are
required to be strictly massless. Nonetheless, successful
models are likely to have very light sextet fermions,
because a large sextet mass would prevent the Higgs field
from condensing even after the generation of a potential
from the coupling of the Higgs to Standard Model fields.

V. VECTOR MESONS

A. Masses and decay constants

We now turn to our results for vector masses and decay
constants. Vector-meson decay constants appear in the
literature with a variety of conventions. We define FVr
to have units of energy,

h0jVðrÞ
ia jVðrÞ

jb i ¼ δabδijFVrMVr; ð5:1Þ

where the vector meson is at rest. The indices are i, j ¼ 1,
2, 3, for the spatial directions, and as usual, a, b ¼ 1, 2, 3,
for isospin. This definition is frequently used in the
phenomenology literature on precision electroweak observ-
ables, for example Ref. [38].
Figures 9 and 10 show results for M̂Vr and F̂Vr,

respectively, each plotted against the fermion mass m̂r in
the same representation. As before, we measure all quan-
tities in units of t0. The data for these plots are listed in
Tables XI–XIII. Both quantities shows a modest, plausibly
linear rise against the fermion mass, albeit with a large
spread.
Figure 11 shows the ratio of the pseudoscalar and

vector masses,MPr=MVr, again plotted against the fermion
mass m̂r in the same representation. This ratio is greater
than or equal to a half for all but the smallest masses.
Because the decay V → PP is p-wave, the vector is stable
if MP=MV > 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k2min=M

2
V

p
, where kmin ¼ 2π=L is

the minimum nonzero momentum. This condition is
satisfied for both representations on all of our ensembles,
so the vectors are indeed stable.

FIG. 8. Mass squared M̂2
ζ of the nonanomalous NG boson in the

combined continuum (â → 0) and chiral-sextet (m̂6 → 0) limits,
as extracted using Eq. (3.18) and the central fit’s parameters,
plotted against m̂4. The pseudoscalar mass M̂2

4 in the fundamental
sector in the same limit is shown for comparison.
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We model M̂Vr and F̂Vr as linear functions of the
fermion mass in the same representation and of the lattice
spacing, for example,

M̂V4 ¼ c0 þ c1m̂4 þ c2â: ð5:2Þ

For this analysis, we restrict ourselves to the 30 ensembles
for which we were able to measure the vector decay
constants (see Tables XI–XIII). The individual correlated
fits are successful, with typical χ2=DOF≲ 1.0 for 30 − 3 ¼
27 degrees of freedom. Figures 12 and 13 illustrate the
contribution of lattice artifacts to these fits in the same
manner as for the pseudoscalars above; the green bands
represent the linear continuum terms in each fit.

B. Vector meson dominance and the KSRF relations

The pseudoscalar and vector decay constants are related
through the hypothesis of vector meson dominance (VMD).
Kawarabayashi, Suzuki, Riazuddin, and Fayyazuddin
(KSRF) showed long ago [39–41] that VMD leads to the
prediction

FIG. 9. Vector masses vs fermion masses in units of the flow
scale t0.

FIG. 10. Vector decay constants vs fermion masses in units of
the flow scale t0.

FIG. 11. The mass ratio MPr=MVr in a fixed representation.

FIG. 12. Breakdown of the contribution of lattice artifacts in the
empirical models for the vector masses and decay constants in the
fundamental representation.
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FV ¼
ffiffiffi
2

p
FP; ð5:3Þ

independent of representation. Figure 14 shows the ratio
FVr=FPr in each representation, after subtracting lattice

artifacts. The KSRF prediction is qualitatively successful.
(In QCD, the experimental value is roughly 1.66.)
Another result of KSRF is that the on-shell coupling

constant gVPP mediating the decay of a vector into two
pseudoscalars is given by

gVPP ¼ MV

FP
: ð5:4Þ

We plot this ratio in Fig. 15. As already noted, in our
ensembles the vector meson is stable. Nevertheless, we may
use the KSRF result as a phenomenological estimate for the
behavior close to the chiral limit. Using the tree-level
formula for the V → PP decay width in the limit where
MPr ≪ MVr,

ΓV→PP ≃
g2VPPMV

48π
; ð5:5Þ

FIG. 13. Breakdown of the contribution of lattice artifacts in the
empirical models for the vector masses and decay constants in the
sextet representation.

FIG. 14. Ratio of the vector and pseudoscalar decay constants
in each representation. The KSRF prediction is a constant value
of

ffiffiffi
2

p
.

FIG. 15. Ratio of the vector mass and pseudoscalar decay
constant in a fixed representation. KSRF identify this quantity
with the coupling gVPP. In QCD, this ratio is roughly 5.9.

FIG. 16. Tree-level estimates for the width-to-mass ratio of the
vector mesons according to KSRF. The KSRF estimate for this
ratio is roughly 0.23 in QCD.
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we can estimate the mass-to-width ratio for each vector
resonance,

ΓV→PP

MV
≃

M2
V

48πF2
P
: ð5:6Þ

From Fig. 15 we thus obtain Fig. 16. For the physical ρ
meson, this ratio has a value of roughly 0.23. (The
experimental value is 0.19.)

VI. DISCUSSION

A. Large-Nc counting

Wewant to put our results in context with comparisons to
QCD. Large-Nc counting (for Nc colors) is a way to do
that. Any quantity Q is expected to scale across Nc as

QðNcÞ ¼ Np
c

�
Q0 þ

Q1

Nc
þQ2

N2
c
þ � � �

�
; ð6:1Þ

where p is some characteristic exponent determined by
large-Nc considerations, and the Qi are a set of expansion
coefficients. Before we get to the (limited) comparisons
between different Nc’s we can make, our theory gives us a
unique opportunity to compare the expansion coefficients
for different representations. More specifically, if we
neglect all the subleading corrections, our data allow us
to compare the leading expansion coefficient Q0 between
the fundamental and two-index antisymmetric representa-
tions, for various obesrvables.
We start with meson masses, which are predicted to be

independent of Nc [p ¼ 0 in Eq. (6.1)]. Figures 3 and 9
reveal near independence of representation of the pseudo-
scalar and vector masses when plotted against the corre-
sponding fermion mass. This is further supported by the

near equality of B
̥
4 and B

̥
6 in Table I. We conclude that Q0

is roughly independent of representation for the pseudo-
scalar and vector meson masses.
Decay constants scale as

ffiffiffiffiffiffi
Nc

p
for single-index fermions

and as Nc for two-index fermions. As for the leading
expansion coefficient, a possible guess might be that the
product Np

cQ0 follows the leading large-Nc behavior of
ðdim rÞ1=2. This would imply that there exists a constant
c such that Q0 ≈ c for mesons made of fundamental-
representation fermions, while Q0 ≈ c=

ffiffiffi
2

p
for mesons

made out of fermions in the two-index antisymmetric
representation. For Nc ¼ 4 we thus expect F6=F4≈ffiffiffiffiffiffiffiffiffiffiffi
Nc=2

p ¼ ffiffiffi
2

p
. The ratio F6=F4 is plotted in Fig. 17 for

the pseudoscalar and vector mesons, showing good (per-
haps too good) agreement with this expectation. Another
consequence is that the ratio FVr=FPr is expected to be
roughly independent of representation r, in agreement with
Fig. 14 and the KSRF relation.

In this context, we can also compare the fermion
condensates in the two representations. We can use the
results of the chiral fit to calculate these (per flavor), each in
its corresponding chiral limit. Using Eq. (3.19) we find
Σ̂6=Σ̂4 ¼ 2.4ð3Þ for the ratio of condensates in the (double)
chiral limit, reflecting our empirical findings that B

̥
6=B
̥
4 ≃

1 and F
̥
6=F
̥
4 ≃

ffiffiffi
2

p
.

Finally, we compare our results for the ratioMVr=FPr to
the SU(3) case. We expect that this ratio for either SU(4)
representation will be smaller than its value in QCD, which
is 770 MeV=130 MeV ¼ 5.9. This is borne out by Fig. 15.
At a more quantitative level, large-Nc scaling predicts this
value to be 5.9 ×

ffiffiffiffiffiffiffiffi
3=4

p
≈ 5.1 for the fundamental repre-

sentation, in good agreement with the data. If we regard the
fundamental representation of SU(3) as the two-index
antisymmetric one, we obtain a large-Nc prediction of
5.9 × 3=4 ≈ 4.4 for the sextet. While the average value of
this ratio is smaller for the sextet, one can say that this
prediction is consistent with the general trend of our data. If
we add to this the KSRF relation, we find correspondingly
smaller values for the width to mass ratio of our vector
mesons compared to the physical ρ meson.

B. Conclusions

In this paper we have described the low-lying mesonic
spectrum of SU(4) gauge theory coupled to dynamical
fermions in the fundamental and sextet representations.
These multirep simulations are the first of their kind. Our
choice of this theory was inspired by its close similarity to a
composite-Higgs model first studied by Ferretti [7].
Our analysis focused on the masses of the pseudoscalar

and vector states and their associated decay constants.
Using the extension of χPT that accounts for the discre-
tization errors of Wilson fermions, we carried out a global
fit of the pseudoscalar masses and decay constants of the

FIG. 17. The ratio of the decay constants in the sextet and
fundamental representations in both the pseudoscalar (dark
green) and vector (light green) channels.
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two representations, to NLO in the GSM power-counting
scheme. We found significant lattice artifacts, which we
were able to subtract, obtaining predictions for continuum-
limit values. Our chiral fit provides mild evidence for
coupling between the two fermion representations, a novel
feature of multirep theories.
Through both the mass terms and the Wilson terms, our

lattice setup incorporates the expected symmetry breaking
patterns: SUð2ÞL × SUð2ÞR → SUð2ÞV in the fundamental
sector, and SUð4Þ → SOð4Þ in the sextet sector. We did not
carry out a dedicated study of alternative symmetry break-
ing patterns. Still, the success of the chiral fits provides
some confirmation that the above symmetry breaking
patterns are the right ones.
The main theoretical uncertainty of our chiral fits

concerns the size of N2LO effects. Thanks to a large decay
constant, the chiral expansion converges quickly in the
sextet sector, supporting the hypothesis that N2LO effects
are small in this sector. In the fundamental sector the chiral
expansion converges more slowly. Hence, keeping N2LO
effects below a certain comfortable level might require the
exclusion of ensembles where m̂4 is on the high side. More
quantitative statements cannot be made given our data.
The correlation functions that we calculated probe

directly the pseudoscalar states made purely of fundamental
or purely of sextet fermions. This is reflected in the stability
of the LO parameters F

̥
r and B

̥
r if we constrain the

maximal value of m̂4 to successively smaller values. The

last LO parameter, the decay constant F
̥
ζ of the axionlike

singlet NG boson, is not well determined because we have
not calculated propagators in the ζ channel. The ζ meson
does contribute through virtual loops to the correlation
functions we have studied. Accordingly, our fits depend on

F
̥
ζ, but only through NLO logarithmic terms. F

̥
ζ is more

sensitive to the upper limit on m̂4; as a result, so is our
prediction for the mass of the ζ boson. Nonetheless, we
have argued that the ζ is lighter than the fundamental-sector
NG bosons, Mζ < M4, in the sextet-chiral limit m̂6 → 0, a
limit which is interesting for the phenomenology of
Ferretti’s model. In a full composite-Higgs model, however,
the masses of all pseudoscalar states can receive important
corrections from the couplings to Standard Model fields.
In modeling our results for the vector mesons, we found

that the ratio of pseudoscalar to vector decay constants
agrees well with the KSRF result based on vector meson
dominance. As discussed in Sec. VI A, comparing the
KSRF prediction for the decay rate of the vector meson in
the chiral limit to the QCD case shows reasonable agree-
ment with large-Nc counting.
Although our estimates for ΓV=MV depend on the well-

motivated but nonrigorous assumption of vector meson
dominance, the resulting narrowness is almost certainly
generic. In large-Nc, the widths of mesons made of
fundamental-representation fermions scales as 1=

ffiffiffiffiffiffi
Nc

p

and thus they become narrower as Nc increases. Insofar
as large-Nc provides the cleanest explanation for the
narrowness and existence of mesons in QCD, the vector
mesons should become narrower in theories with more
colors. We proposed that in multirep theories, the gener-
alization of

ffiffiffiffiffiffi
Nc

p
is ðdim rÞ1=2, a hypothesis supported by

our data. This result is good news for phenomenologists
looking to constrain models like the Ferretti model, since
narrower states typically provide clearer signals in col-
lider data.
As we have mentioned, we are also exploring the

phase diagram of this multirep theory [21]. We have been
looking for—and not finding—scale separation between
the representations in the confinement and chiral transi-
tions. We are also studying the baryon spectrum, a
particularly interesting sector of the theory given its
connection to top-quark physics and partial compositeness
in the Ferretti model.
Other interesting avenues for the future work in this

model (or multirep composite Higgs theories more gen-
erally) include quantities related to the Higgs potential.
The contribution of the Standard Model’s gauge fields to
the Higgs potential, ΠLR, is conceptually identical to the
physics of electromagnetic splittings between pions in
QCD and has been the subject of a recent pilot study on
the lattice [42]. The top-quark contribution to the Higgs
potential is considerably more challenging [43,44].
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APPENDIX A: DATA TABLES

In this appendix we show Tables II–XIII.
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TABLE II. List of ensembleswithV¼ 163×18generated for this
study. Configurations are separated by 4 Monte Carlo trajectories.

Ensemble β κ4 κ6 Configurations

1 7.2 0.13173 0.13423 67
2 7.2 0.1318 0.1341 29
3 7.2 0.132 0.134 42
4 7.3 0.1314 0.1333 17
5 7.3 0.1315 0.1333 17
6 7.308 0.1304 0.1339 29
7 7.31 0.1305 0.1339 17
8 7.32 0.13 0.134 17
9 7.33 0.1314 0.1332 17
10 7.33 0.1314 0.1333 17
11 7.33 0.1315 0.1335 17
12 7.4 0.1307 0.133 17
13 7.4 0.131 0.133 29
14 7.5 0.13 0.132 17
15 7.5 0.13 0.1325 29
16 7.5 0.13 0.1327 29
17 7.5 0.13 0.1328 29
18 7.5 0.1305 0.1327 29
19 7.75 0.129 0.131 29
20 7.75 0.129 0.1315 29

TABLE III. List of ensembles with V ¼ 163 × 32. Configura-
tions are separated by 10 Monte Carlo trajectories.

Ensemble β κ4 κ6 Configurations

21 7.25 0.13095 0.13418 61
22 7.25 0.13147 0.13395 71
23 7.276 0.13157 0.13364 96
24 7.3 0.13117 0.13363 61
25 7.3 0.13118 0.13361 96
26 7.3 0.13162 0.1334 71
27 7.308 0.1304 0.13393 96
28 7.33 0.1314 0.1332 96
29 7.4 0.1307 0.133 96
30 7.55 0.129 0.1325 84
31 7.55 0.13 0.1325 84
32 7.65 0.128 0.131 49
33 7.65 0.129 0.1308 49
34 7.65 0.13 0.131 84
35 7.65 0.13 0.132 84
36 7.75 0.128 0.131 84
37 7.75 0.129 0.1308 54
38 7.75 0.1295 0.1315 34
39 7.85 0.129 0.1308 44

TABLE IV. List of ensembles with V ¼ 243 × 48. Configura-
tions are separated by 10 Monte Carlo trajectories.

Ensemble β κ4 κ6 Configurations

40 7.51 0.1307 0.1328 133
41 7.55 0.13 0.1327 80
42 7.55 0.1305 0.1325 91
43 7.55 0.1307 0.13234 80

TABLE V. Measured gradient flow scale t0 and fermion masses
m̂r ¼ mr

ffiffiffiffi
t0

p
in the ensembles with volume V ¼ 163 × 18.

Ensemble t0=a2 m̂4 m̂6

1 1.07(2) 0.024(1) 0.022(1)
2 0.92(3) 0.026(2) 0.030(2)
3 0.89(2) 0.023(1) 0.033(1)
4 0.99(3) 0.034(3) 0.043(4)
5 0.93(2) 0.028(2) 0.043(2)
6 1.07(3) 0.056(2) 0.024(2)
7 1.26(2) 0.054(3) 0.023(3)
8 1.20(3) 0.066(4) 0.018(2)
9 1.15(3) 0.027(3) 0.043(3)
10 1.22(1) 0.026(2) 0.037(1)
11 1.40(2) 0.020(1) 0.029(1)
12 1.26(2) 0.041(2) 0.041(4)
13 1.45(2) 0.030(2) 0.039(2)
14 1.09(3) 0.061(3) 0.067(4)
15 1.33(2) 0.056(2) 0.046(2)
16 1.49(4) 0.055(3) 0.035(3)
17 1.67(2) 0.055(2) 0.031(1)
18 1.89(3) 0.034(3) 0.031(3)
19 1.99(6) 0.075(2) 0.071(2)
20 2.38(6) 0.072(3) 0.043(2)

TABLE VI. Same as Table V, but in the ensembles with volume
V ¼ 163 × 32.

Ensemble t0=a2 m̂4 m̂6

21 1.093(9) 0.042 2(7) 0.020 3(10)
22 1.135(9) 0.027 9(11) 0.025 1(12)
23 1.128(24) 0.024 3(7) 0.032 6(7)
24 1.132(12) 0.034 5(8) 0.032 3(14)
25 1.100(10) 0.033 1(5) 0.032 5(5)
26 1.111(9) 0.022 8(6) 0.0381(8)
27 1.174(10) 0.055 6(7) 0.022 0(9)
28 1.095(12) 0.028 2(7) 0.042 7(7)
29 1.226(10) 0.041 6(8) 0.040 3(8)
30 1.418(12) 0.086 5(11) 0.041 4(15)
31 1.845(18) 0.049 5(11) 0.034 0(13)
32 0.916(5) 0.106 8(8) 0.085 8(15)
33 1.067(5) 0.081 6(10) 0.089 6(8)
34 1.463(15) 0.045 9(18) 0.080 1(22)
35 2.294(22) 0.038 2(13) 0.035 7(21)
36 1.556(12) 0.107 7(12) 0.070 8(10)
37 1.754(15) 0.073 0(19) 0.077 1(16)
38 2.621(20) 0.046 5(13) 0.040 2(14)
39 2.670(22) 0.060 2(14) 0.059 9(12)

TABLE VII. Same as Table V, but in the ensembles with
volume V ¼ 243 × 48.

Ensemble t0=a2 m̂4 m̂6

40 2.260(16) 0.019 6(4) 0.019 4(9)
41 2.166(11) 0.046 8(5) 0.020 5(4)
42 2.182(12) 0.026 4(5) 0.029 3(6)
43 2.118(6) 0.018 9(5) 0.036 0(7)
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TABLE VIII. Measured pseudoscalar masses M̂Pr¼MPr
ffiffiffiffi
t0

p
and decay constants F̂Pr ¼ FPr

ffiffiffiffi
t0

p
in the ensembles with volume

V ¼ 163 × 18.

Ensemble M̂P4 M̂P6 F̂P4 F̂P6

1 0.28(1) 0.29(1) 0.102(8) 0.143(8)
2 0.28(2) 0.32(2) 0.106(4) 0.155(6)
3 0.26(1) 0.33(1) 0.109(17) 0.149(15)
4 0.34(3) 0.41(2) 0.115(17) 0.178(33)
5 0.29(2) 0.38(2) 0.108(13) 0.170(11)
6 0.42(2) 0.31(2) 0.120(8) 0.141(19)
7 0.43(2) 0.30(2) 0.132(10) 0.163(23)
8 0.47(1) 0.28(3) 0.138(10) 0.148(19)
9 0.28(2) 0.39(2) 0.110(10) 0.169(10)
10 0.29(2) 0.38(2) 0.129(17) 0.166(28)
11 0.32(5) 0.32(2) 0.113(5) 0.170(11)
12 0.38(2) 0.40(2) 0.127(17) 0.177(23)
13 0.33(1) 0.39(1) 0.115(9) 0.176(11)
14 0.46(2) 0.50(2) 0.142(7) 0.199(9)
15 0.45(1) 0.43(1) 0.133(10) 0.183(14)
16 0.45(2) 0.38(2) 0.141(14) 0.184(19)
17 0.46(1) 0.36(1) 0.145(9) 0.179(14)
18 0.35(2) 0.35(2) 0.122(11) 0.185(13)
19 0.53(2) 0.55(2) 0.159(6) 0.223(17)
20 0.53(2) 0.43(3) 0.153(14) 0.190(20)

TABLE IX. Same as Table VIII, but in the ensembles with
volume V ¼ 163 × 32.

Ensemble M̂P4 M̂P6 F̂P4 F̂P6

21 0.366(9) 0.263(10) 0.119(6) 0.142(9)
22 0.305(9) 0.303(8) 0.105(4) 0.151(5)
23 0.275(6) 0.341(7) 0.108(4) 0.162(5)
24 0.340(5) 0.340(9) 0.119(4) 0.168(9)
25 0.339(3) 0.344(6) 0.107(4) 0.148(13)
26 0.279(7) 0.368(11) 0.103(4) 0.167(13)
27 0.423(4) 0.279(5) 0.127(4) 0.159(7)
28 0.300(8) 0.391(8) 0.115(6) 0.173(6)
29 0.372(6) 0.391(4) 0.126(3) 0.173(8)
30 0.559(8) 0.408(12) 0.156(6) 0.187(7)
31 0.429(10) 0.375(9) 0.140(9) 0.189(10)
32 0.597(8) 0.554(5) 0.159(9) 0.208(13)
33 0.514(8) 0.576(9) 0.154(8) 0.219(11)
34 0.412(9) 0.565(9) 0.141(7) 0.224(8)
35 0.400(9) 0.408(10) 0.132(6) 0.192(17)
36 0.636(7) 0.538(8) 0.166(6) 0.210(8)
37 0.530(5) 0.571(7) 0.154(4) 0.223(12)
38 0.443(14) 0.428(15) 0.135(9) 0.188(13)
39 0.505(13) 0.529(17) 0.148(8) 0.216(8)

TABLE X. Same as Table VIII, but in the ensembles with
volume V ¼ 243 × 48.

Ensemble M̂P4 M̂P6 F̂P4 F̂P6

40 0.278(4) 0.291(10) 0.114(4) 0.167(7)
41 0.418(5) 0.295(7) 0.139(4) 0.169(4)
42 0.317(6) 0.355(8) 0.125(4) 0.182(8)
43 0.267(9) 0.394(8) 0.114(4) 0.184(5)

TABLE XI. Measured vector masses M̂Vr ¼ MVr
ffiffiffiffi
t0

p
and

decay constants F̂Vr ¼ FVr
ffiffiffiffi
t0

p
in the ensembles with volume

V ¼ 163 × 18. Some ensembles did not yield reliable measure-
ments of FVr because of insufficient statistics. The figures and
tables omit data from such ensembles.

Ensemble M̂V4 M̂V6 F̂V4 F̂V6

1 0.50(3) 0.57(4) � � � � � �
2 0.51(8) 0.59(6) 0.14(3) 0.27(4)
3 0.48(3) 0.56(9) 0.17(3) 0.23(4)
4 0.56(6) 0.67(5) � � � � � �
5 0.54(7) 0.61(4) � � � � � �
6 0.62(2) 0.62(6) � � � � � �
7 0.61(4) 0.60(8) � � � � � �
8 0.62(4) 0.61(16) � � � � � �
9 0.52(7) 0.64(7) 0.17(4) 0.26(4)
10 0.56(8) 0.63(5) � � � � � �
11 0.56(14) 0.60(5) 0.21(3) 0.30(4)
12 0.60(6) 0.67(14) 0.20(4) 0.29(3)
13 0.60(8) 0.69(4) � � � � � �
14 0.66(4) 0.73(4) 0.22(2) 0.31(3)
15 0.66(3) 0.72(4) 0.22(2) 0.30(2)
16 0.66(4) 0.68(9) � � � � � �
17 0.66(3) 0.66(3) 0.21(1) 0.28(1)
18 0.64(8) 0.67(5) 0.22(3) 0.29(7)
19 0.75(4) 0.82(3) 0.23(2) 0.34(4)
20 0.74(4) 0.77(10) � � � � � �

TABLE XII. Same as Table XI, but in the ensembles with
volume V ¼ 163 × 32.

Ensemble M̂V4 M̂V6 F̂V4 F̂V6

21 0.56(2) 0.55(3) 0.19(2) 0.275(1)
22 0.51(2) 0.58(3) 0.17(3) 0.265(1)
23 0.53(3) 0.61(1) 0.18(1) 0.263(1)
24 0.56(2) 0.61(2) 0.19(1) 0.265(2)
25 0.52(3) 0.59(2) 0.19(1) 0.265(1)
26 0.50(3) 0.62(2) � � � � � �
27 0.59(2) 0.57(3) 0.20(1) 0.250(2)
28 0.55(3) 0.65(2) 0.19(1) 0.290(3)
29 0.59(1) 0.66(2) 0.20(1) 0.287(1)
30 0.73(2) 0.71(2) 0.24(3) 0.308(2)
31 0.65(2) 0.70(5) 0.21(1) 0.291(2)
32 0.74(1) 0.78(1) 0.24(2) 0.316(2)
33 0.70(1) 0.79(1) 0.22(1) 0.319(1)
34 0.66(3) 0.82(3) 0.22(3) 0.339(2)
35 0.68(5) 0.77(5) 0.20(5) 0.310(3)
36 0.81(1) 0.80(3) 0.25(1) 0.326(2)
37 0.74(2) 0.82(2) 0.23(4) 0.322(4)
38 0.69(4) 0.76(5) 0.24(2) 0.334(3)
39 0.75(2) 0.83(2) 0.24(2) 0.350(4)
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APPENDIX B: TECHNICAL
MATTERS—LATTICE

1. Correlator fitting

In calculating correlation functions, we use a smeared
source operator on the t ¼ 0 time slice while using both
point and smeared operators at the sink, projected onto zero
spatial momentum. Smearing is done after fixing to the
Coulomb gauge, always with smearing radius r0 ¼ 6a. On
the large lattices we use antiperiodic boundary conditions
in time for the fermion propagators. For the V ¼ 163 × 18
ensembles, on the other hand, we superimpose propagators
computed with periodic and anti-periodic boundary con-
ditions, which effectively doubles the temporal size of the
lattice—a technique sometimes called the “P+A trick” (see
Ref. [45] and references therein).
After restricting each correlator to a range ½tmin; tmax� we

find acceptable fits with single-exponential models, that is,
without inclusion of excited states. In each representation,
we extract the fermion mass mr from the axial Ward
identity (2.3) via joint fits to the hAPi and hPPi correlators
with a point sink.
We use the publicly available Python packages LSQFIT

[46] and GVAR [47] for nonlinear fitting and classical error
propagation. When computing ratios of quantities derived
from different fits, we use single-elimination jackknife to
propagate errors including correlations.
For each correlator, our fitting procedure is as follows.

First, we vary the initial and final times ½tmin; tmax� used in the
fits, amounting to a grid search over possible range fits. The
best fit is chosen automatically using a criterion from theQCD
literature with a preference for small χ2=dof, large fit ranges,
and well-determined fit parameters [48]. We maximize

Q≡ p × NdofP
nσ

2
pn

; ðB1Þ

where p is the unconstrained p-value, Ndof denotes the
number of degrees of freedom in the fit, and σpn

denotes the
statistical error in thenth fit parameter. Although this criterion
is ultimately arbitrary, it coincides with intuition about which
fits ought to be considered good and removes subjective bias.
We confirm that masses emerging from this procedure are
consistent with expectations from effective mass plots; a
representative comparison is shown in Fig. 18. We have also
experimented with a “two-state” double-exponential ansatz,

observing no significant changes in the ground-state masses
within the combined statistical and systematic errors esti-
mated using this procedure.
For an estimate of the systematic uncertainty associated

with our fit-choice procedure, we compute the spread in the
model parameters emerging from all nominally good fits
satisfying Q ≥ 0.1. We then combine the statistical and
systematic uncertainties conservatively using

σtot ¼ σstat þ σsyst: ðB2Þ
The systematic error assigned by this procedure is often
comparable to the statistical error, and is occasionally
significantly larger. The error estimates for the fermion
massesmr in TablesV–XIII include this fit-range systematic.

2. Decay constants and operator renormalization

The lattice operators appearing in the correlation func-
tions are subject to finite renormalization in order to obtain

TABLE XIII. Same as Table XI, but in the ensembles with
volume V ¼ 243 × 48.

Ensemble M̂V4 M̂V6 F̂V4 F̂V6

40 0.57(6) 0.61(2) � � � � � �
41 0.64(2) 0.60(4) 0.17(1) 0.29(2)
42 0.59(3) 0.66(5) � � � � � �
43 0.57(3) 0.70(2) 0.20(2) 0.32(1)

FIG. 18. Representative plot showing the effective mass ma
extracted from a smeared-source, point-sink pseudoscalar corre-
lator on a typical 163 × 18 ensemble (top) and 163 × 32 ensemble
(bottom) used in this study. The black lines indicate the mass and
error (including range-fit systematic uncertainty) extracted from a
full nonlinear fit of the correlator. The horizontal width of the
black lines indicates the starting and ending times ðti; tfÞ used in
the best range fit as determined by the MILC criterion. Note that
in the lower panel, the small difference between the central value
from the best fit and the effective mass at larger t=a is covered by
the statistical þ systematic error band, showing that our range-fit
uncertainty is working as expected.
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the continuum-normalized operators that are required for
determination of decay constants. We carry out this
procedure in lattice perturbation theory including tadpole
improvement; the procedure is described in Appendix D.
The explicit relationship between lattice and continuum
operators is given by Eq. (D28).
Simultaneous fits to the smeared-source, point-sink

(s, p) and smeared-source, smeared-sink (s, s) correlation
functions allow us to extract the mass, decay constant, and
smeared amplitude. For example, the hVVi correlators in
representation r give us the vector decay constant FVr
defined in Eq. (5.1). The fit functions are

Cðs;pÞ
Vr ðtÞ ¼ As

VrA
p
Vr

2MVr
ðe−MVrt þ e−MVrðT−tÞÞ; ðB3Þ

Cðs;sÞ
Vr ðtÞ ¼ As

Vr
2

2MVr
ðe−MVrt þ e−MVrðT−tÞÞ; ðB4Þ

giving the vector mass MVr and the point and smeared
amplitudes Ap

Vr and As
Vr, respectively. In order to obtain

decay constants with continuum normalizations, we apply
the renormalization factors of Eq. (D28). The result is

FVr ¼ ZVr

�
1 −

3κr
4κcr

�
Ap
Vr

MVr
: ðB5Þ

3. Fermion mass determination and κcr
To determine the critical values κcr , which enter into the

field normalization for decay constants defined in
Appendix B 2, we perform a global fit to the AWI fermion
masses in units of the flow scale t0 as given in Tables V–VII.
We use the model function

ffiffiffiffi
t0

p
m4 ¼ c0 þ c1β þ κ4ðd0 þ d1βÞ þ κ6ðd00 þ d01βÞ ðB6Þ

and similarly for
ffiffiffiffi
t0

p
m6 (with a separate set of coefficients).

We find that these terms, which are a subset of all possible
combinations of the bare parameters fβ; κ4; κ6g through
quadratic order, are sufficient to provide reasonable fit
quality.
Since we are interested in the regions where mr → 0, we

use only those ensembles that have
ffiffiffiffi
t0

p
mr < 0.08, a value

determined empirically by inspecting our data for devia-
tions from the simple analytic behavior of Eq. (B6). Our fits
give χ2=dof of 16=24 and 21=24 for fitting

ffiffiffiffi
t0

p
m4 andffiffiffiffi

t0
p

m6, respectively. The resulting κc curves at two β values
are shown in Fig. 19.
As noted above, because κc is determined by extrapola-

tion, we do not probe the existence of a possible Aoki phase.

4. Study of finite-volume corrections

All of our ensembles satisfy the criterion MPrL > 4 for
both pseudoscalar meson masses. Using Eq. (3.18) with the
results of our central fit, we further verify that MζL > 4 in
all cases. Although this cut is known to provide a useful
threshold for the suppression of finite volume effects in
QCD, since we are studying a new system a more cautious
treatment is worthwhile. Here we present three different
analyses and arguments which lead us to estimate that
finite-volume effects are no more than a few percent for our
data, and are thus not resolved within the uncertainty of our
results. One particular source of finite-volume effects can
be the freezing of the evolution of topological charge
[49,50]; we measure the topological charge Q on our
ensembles using the Wilson flow to smear the gauge fields
out to t=a2 ¼ 5.0 and find an acceptable distribution of Q
in all cases.

FIG. 19. κc curves with uncertainties for both representations at two values of the bare coupling β, based on our fits to
ffiffiffiffi
t0

p
mr as

described in the text. The red (horizontal) curve is where m6 vanishes, defining the function κc6ðβ; κ4Þ. The blue (vertical) curve is where
m4 vanishes, defining κc4ðβ; κ6Þ.
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First, to obtain a theoretical estimate of the expected
size of finite-volume effects, we consider the size of
leading-order finite-volume correction to tadpole dia-
grams in chiral perturbation theory [9,32,51]. The dimen-
sionless figure of merit for this effect is 2I1ðMPr; LÞ=F2

Pr,
where

I1ðM;LÞ ¼ 6

�
M2

16π2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

ðMLÞ3
s

e−ML: ðB7Þ

This quantity gauges the effect of mesons interacting with
their finite-volume image points. In Fig. 20 we plot

2I1ðMPr; LÞ=F2
Pr for all of our ensembles, with each

representation r plotted against the corresponding m̂r. We
therefore expect that finite volume corrections do not
exceed a few percent in the ensembles of this study. This
formula assumes the applicability of chiral perturbation
theory, which requires that FPrL≳ 1; over all of our
ensembles we find that FP4L≳ 1.3 and FP6L≳ 1.9.
Second, we recalculate the observablesMPr, FPr, and t0

on ensembles with several spatial volumes at two sets of
bare parameters, ðβ; κ4; κ6Þ ¼ ð7.75; 0.128; 0.131Þ and
(7.75,0.129,0.1308). These bare parameters match the
production V ¼ 163 × 32 ensembles 36 and 37 as listed
in Table III. Four ensembles hold Nt ¼ 32 fixed and vary
the spatial volume as Ns ¼ 12, 14, 16, 18; the fifth
ensemble at each point has Ns ¼ 24 and Nt ¼ 48.
Results of this test are shown in Figs. 21–23 below. For

both sets of bare parameters, all observables down to the
smallest Ns ¼ 12 are seen to be within �5% of the central
value obtained on Ns ¼ 24, and within 2%–3% for Ns ¼
16 which is the smallest spatial volume used in our central
analysis.
Finally, we have included explicit variation of the finite-

volume cut on pseudoscalar meson masses (i.e., minimum
cut on MPr

L) in the stability analysis of our central chiral
fit, as presented in Sec. IV B and Fig. 7. We also consider
the effects of the finite temporal direction by cutting the
Nt ¼ 18 ensembles out of the analysis. All of the fit results
are seen to be stable at the one-sigma level as we vary
the finite-volume cut. We conclude that finite-volume
effects are not significant in our results at the level of
precision we obtain.

FIG. 20. Quantifying the size of leading-order finite volume
corrections, Eq. (B7).

FIG. 21. Explicit test of the dependence of the pseudoscalar masses and decay constants on spatial volume at bare parameters
ðβ; κ4; κ6Þ ¼ ð7.75; 0.128; 0.131Þ. The dashed lines indicate variations of �5% with respect to the mean value of the rightmost
Ns ¼ 24 point.
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APPENDIX C: TECHNICAL MATTERS—THE
AXIAL CURRENT AND WχPT

1. Conserved U(1) axial current

The conserved axial current is given by

J5μ ¼
X
r¼4;6

qrJ
ðrÞ
5μ : ðC1Þ

As usual, the normalization of U(1) currents is arbitrary. We
normalize the individual axial currents JðrÞ5μ such that all
right-handed fields have unit charge. The ratio q4=q6 is
then fixed by the group traces of the two representations.
For the normalization of J5μ we adopt the same prescription
as in Ref. [12]. The resulting charges are

q4 ¼
2ffiffiffi
5

p ; q6 ¼ −
1ffiffiffi
5

p : ðC2Þ

These charges were used in the χPT formulas of
Sec. III C.
Tracing Eqs. (3.13)–(3.16) back to the general NLO

expressions of Ref. [12], one can check that they only
depend on the ratios qr=Fζ. These ratios are independent of
the choice of normalization for the axial current, because a
rescaling of J5μ by a factor λ implies a rescaling by the
same factor of both the charges q4 and q6 and of the
singlet’s decay constant Fζ. All other LECs in Eqs. (3.13)–
(3.16) are independent of this rescaling (for more details,
see Ref. [12]). Of course, once the normalization of the
charges is fixed according to Eq. (C2), the normalization of
Fζ is fixed as well.

2. AWI mass and Wilson chiral perturbation theory

In this appendix we review the proof of Ref. [35] that
the mass defined by imposing the axial Ward identity,
mAWI, is equal to the shifted mass mshifted, which is the
mass parameter occurring in the LO Lagrangian of
WχPT, up to higher-order corrections. For simplicity,
we will consider the GSM power counting used through-
out this paper.
A nice feature of the GSM scheme is that the LO

lagrangian takes the same form as in the continuum. The
reason is that the only new operator at OðaÞ is the Pauli
term aψ̄σμνFμνψ , which has the same chiral transformation
properties as the fermion mass term. The Pauli term enters
the Symanzik action with a coefficient that depends linearly
on the parameter cSW of the clover term in the Wilson
action. After the transition to the chiral effective theory, the
nonderivative terms in the LO Lagrangian take the form

FIG. 23. Explicit test of the dependence of the Wilson flow
scale t0=a2 on spatial volume at two sets of bare parameters, as
described in the text. The dashed lines indicate variations of�5%
with respect to the mean value of the rightmost Ns ¼ 24 point.

FIG. 22. Explicit test of the dependence of the pseudoscalar masses and decay constants on spatial volume at bare parameters
ðβ; κ4; κ6Þ ¼ ð7.75; 0.129; 0.1308Þ. The dashed lines indicate variations of �5% with respect to the mean value of the rightmost
Ns ¼ 24 point.
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Lm ¼ −
F2

4
trðχ†Σþ Σ†χÞ − F2

4
trðÂ†Σþ Σ†ÂÞ; ðC3Þ

where the mass term has been mapped to the first term on
the right-hand side, and the Pauli term to the second. χ is
the usual spurion of continuum χPT, and Â is a new spurion
with the same chiral transformation properties as χ. The
“expectation values” of the spurions are [52]

χ ¼ 2Bmctm; Â ¼ 2W0a; ðC4Þ

where B and W0 are low-energy constants. Substituting
back into Eq. (C3) gives

Lm ¼ −
F2

4
ð2Bmctm þ 2W0aÞtrðΣþ Σ†Þ

¼ −
F2

2
BmshiftedtrðΣþ Σ†Þ; ðC5Þ

where the shifted mass is defined by Eq. (3.10). For brevity,
in the rest of this appendix we denote the shifted mass asm.
As explained in Sec. II B, in our numerical simulations

we define the fermion mass mAWI by imposing the axial
Ward identity, Eq. (2.3). Before we can use WχPT, we need
to know the relation between mAWI and the shifted mass m
of Eq. (3.10), in terms of which the chiral expansion
is done.
This relation was analyzed carefully in Ref. [35] for the

case of two-flavor QCD. The pseudoscalar density that was
considered there, and which is also used in our work, is the
usual local density,3

Pa
loc ¼ ψ̄γ5Taψ : ðC6Þ

For the axial current, Ref. [35] considered

Aa
μ ¼ Aa

μ;loc þ acA∂μPa
loc; ðC7Þ

where ∂μ stands for a lattice derivative; the local axial
current is

Aa
μ;loc ¼ ψ̄γ5γμTaψ : ðC8Þ

For the purpose of this discussion, we may consider cA in
Eq. (C7) as a free parameter. In our numerical simulations
we use the naive axial current, which corresponds to cA ¼ 0.
To first order in the pion field, the lattice operators are

mapped to the effective theory according to

Pa
eff ¼

ffiffiffi
2

p
FBπað1þOðaÞÞ; ðC9Þ

Aa
μ;eff ¼

ffiffiffi
2

p
F∂μπ

að1þOðaÞÞ; ðC10Þ

where πa is the effective pion field. The precise form of the
OðaÞ corrections may be found in Ref. [35]. In both
equations, they depend linearly on the clover parameter
cSW . In addition, the OðaÞ correction in Eq. (C10) depends
linearly on cA. Plugging this into Eq. (2.3) and using the
LO pion mass, given by M2 ¼ 2Bm, we find

mAWI ¼ mð1þOðaÞÞ þOða2Þ: ðC11Þ

To the order we are working, in general one expects also
an Oðm2Þ correction. This correction vanishes, however,
because the continuum theory satisfies mAWI ¼ m identi-
cally. While the derivation of Ref. [35] was given for a
complex representation, a similar argument applies to real
(or pseudoreal) representations.
Equation (C11) is robust in that changing the clover

coefficient cSW or changing the parameter cA in Eq. (C7)
will change the OðamÞ corrections, but will not affect the
simultaneous vanishing of mAWI and the shifted mass m.
This feature is disrupted only by Oða2Þ effects, which is as
it should be. Indeed, as shown in Ref. [27], depending on
the sign of a particular Oða2Þ LEC, in the region where
m ∼ a2 one either encounters the Aoki phase, or a first-
order discontinuity line at which the pion mass reaches a
nonzero minimum.
As a corollary of Eq. (C11), we may use the value of

mAWI, taken from the numerical simulations, for the shifted
mass m. At the order we are working, the differences
between the two are absorbed into a redefinition of NLO
parameters of the chiral expansion.

APPENDIX D: GLUON PROPAGATOR AND
PERTURBATIVE CALCULATIONS

FOR nHYP LINKS

To perform one loop perturbation theory for the NDS
action [20], we need the gluon propagator. This appendix
describes its construction and gives perturbative results for
current renormalization factors.
Normalized hypercubic links Vx;μ are constructed from

the dynamical gauge field Ux;μ via three successive
smearing steps [16,17]. Each step uses a weighted sum
over staples, which is then reunitarized. Explicitly,

Ωx;ρ;ξ ¼ ð1 − α3ÞUx;ρ þ
α3
2
ðUx;ξUxþξ̂;ρU

†
xþρ̂;ξ

þU†
x−ξ̂;ξ

Ux−ξ̂;ρUx−ξ̂þρ̂;ξÞ;
V̄x;ρ;ξ ¼ PðΩξ;ρ;ξÞ; ðD1aÞ

Ω̄x;μ;ν ¼ ð1 − α2ÞUx;μ þ
α2
4

X
ξ≠μ;ν;ρ
ρ≠μ;ν

ðV̄x;ρ;ξV̄xþρ̂;μ;ξV̄
†
xþμ̂;ρ;ξ

þ V̄†
x−ρ̂;ρ;ξV̄x−ρ̂;μ;ξV̄x−ρ̂þμ̂;ρ;ξÞ;

Ṽx;μ;ν ¼ PðΩ̄x;μ;νÞ; ðD1bÞ3In this subsection we disregard renormalization factors.
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Ω̃x;μ ¼ ð1 − α1ÞUx;μ þ
α1
6

X
ν≠μ

ðṼx;ν;μṼxþν̂;μ;νṼ
†
xþμ̂;ν;μ

þ Ṽ†
x−ν̂;ν;μṼx−ν̂;μ;νṼx−ν̂þμ̂;ν;μÞ;

Vx;μ ¼ PðΩ̃x;μÞ: ðD1cÞ

The reunitarization operator P is defined as

V ¼ PðΩÞ≡ΩQ−1=2; ðD2Þ

where

Q ¼ Ω†Ω: ðD3Þ

The best way to understand the smearing is to go in
reverse order. The staple sum extends into a different
direction at each smearing step, such that each fat link
Vx;μ depends on a particular thin linkUy;ν, if and only if there
exists a hypercube to which both Vx;μ and Uy;ν belong.
The dislocation-suppressing action adds a new term to

the pure-gauge action Sg

Sg ¼ Splaq þ SNDS; ðD4Þ

where the new term is

SNDS¼
1

2Nc

X
x

tr
�
γ1
X
μ

Q̃−1
x;μþγ2

X
μ≠ν

Q̄−1
x;μ;νþγ3

X
ρ≠ξ

Q−1
x;ρ;ξ

�
:

ðD5Þ

In practice we fix the αi’s and take γ1 ¼ γ2 ¼ γ3 ¼ γ ¼ zβ
where z is held constant. The weak-coupling expansion to
be sketched below gives the bare coupling g20 as

1

g20
¼ β

2Nc
þ 1

Nc

�
γ1α1
3

þ γ2α2 þ γ3α3

�
: ðD6Þ

To construct the gluon propagator we need to compute
the gauge action in quadratic order. This is pretty standard;
a good reference is Ref. [53]. We take the lattice action,

S ¼ a4
X
x

Lðψ̄ ;ψ ; UÞ; ðD7Þ

and replace the link field by an expansion in terms of gauge
fields

UμðxÞ ¼ exp½igaAμðxÞ�

¼ 1þ igaAμðxÞ −
1

2
g2a2AμðxÞ2 þ � � � ; ðD8Þ

where AμðxÞ ¼
P

aðλa=2ÞAa
μ gives the decomposition into

color components. There is an identical expansion for the
fat link, which we write as VμðxÞ ¼ exp½igaBμðxÞ�.

The action has an expansion in powers of A. In terms of
the integral over the four-dimensional Brillouin zone,

Z
q
≡
Z

π=a

−π=a

d4q
ð2πÞ4 ; ðD9Þ

and the vector potential,

AμðxÞ ¼
Z
q
AμðqÞeiqðxþaμ̂=2Þ; ðD10Þ

the free gauge boson action is

SG0 ¼−
1

2

Z
pp0

ð2πÞ4δ4ðpþp0Þ½Aa
μðp0ÞDab

μνðpÞAb
νðpÞ�: ðD11Þ

For the gauge boson,Dab
μν ¼ δabDμν. Just as in a continuum

theory, the gauge boson action cannot be inverted to give the
propagator without fixing the gauge. A conventional choice
for a gauge fixing term is [introducing k̂μ ¼ 2=a sinðakμ=2Þ]

Sgf ¼ −
1

2

X
μν

Z
k
Tr

1

ξ
k̂μk̂νAa

μð−kÞAa
νðkÞ: ðD12Þ

Then the gauge boson propagator is found by solving the
field equation

X
ν

�
1

ξ
k̂μk̂ν þDμνðkÞ

�
GντðkÞ ¼ δμτ: ðD13Þ

We simply do this numerically, inverting the four by four
matrix for each k value.
To perform the perturbative expansion of the NDS

action, we look at each term in turn. Consider

Qx;ρ;ξ ¼ Ω†
x;ρ;ξΩx;ρ;ξ: ðD14Þ

Multiplying this out, we find that Q is a sum of loops of
perimeter four and perimeter six, labeled P and E,
respectively. The planar E loops, Eμν, are 1 × 2 loops
extending in the �ν direction from site x. Hence,

Q ¼ 1þ α3ð1 − α3Þ
X
j

Pj þ
α3
4

X
k

Ek: ðD15Þ

Expanding each term out in terms of A’s, we discover that
Q−1 ¼ 1 − SQ where now the expressions are quadratic
functions of the gauge fields. Slightly abusing notation, we
write P and E for the objects made of Aμ ’s, so that

SQ ¼ α3ð1 − α3Þ
X
j

Pj þ
α3
4

X
k

Ek: ðD16Þ

Nearly identical results obtain for the other twoQ’s, with
several small exceptions. First, the analogs of the plaquettes
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are built of one thin link AμðxÞ while the other three links
are fattened. Second, the perimeter-six links are built
entirely of fat links. Finally, in addition to the 1 × 2 Eμν

plaquettes, there are “chair” plaquettes Cμνρ which are
“folded” about the μ axis. They extend in four directions
(�ν, �ρ).
The analog of the fat to thin relation for the links

(U → V) is a fat to thin gauge field relation,

BλðqÞ ¼
X
μ

AλðqÞhμλðqÞ: ðD17Þ

This means that all the perimeter-six contributions can be
easily computed beginning with the fat links, whose gauge-
unfixed action is D0

μνðqÞ. The thin link action is

DμνðkÞ ¼
X
λ1λ2

hμλð−qÞD0
λ1λ2

ðqÞhνλðqÞ: ðD18Þ

Finally, by convention the action DμνðqÞ ∼ δμνk2 − kμkν
so we have to rescale the action to remove explicit factors of
the coupling constants, giving

S ¼ 1

N
ðPþ zQ̃−1 þ zQ̄−1 þ zQ−1Þ; ðD19Þ

where N ¼ 2Nc=ðβg2Þ ¼ ½1þ 2zðα1=3þ α2 þ α3Þ�, basi-
cally Eq. (D6).
The fattened terms in the action are awkward to compute.

The plaquette is an example. It is probably best to record

FμρðqÞ ¼ iq̂μBρðqÞ þ AμðqÞ expð−iqρ=2Þ
− BμðqÞ; expðiqρ=2Þ ðD20Þ

where Bμ is the fat link gauge potential, and then to
substitute in Eq. (D17); to write (schematically)

FμρðqÞ ¼
X
λ

AλðqÞCλμνðqÞ; ðD21Þ

and then

Dλ1λ2ðqÞ ¼
X
μν

Cλ1μνð−qÞCλ2μνðqÞ: ðD22Þ

We also need perturbative expressions for the partially
fattened links. They are

Āμ;ρηðqÞ ¼ AμðqÞ þ
α3
2
½q̂μq̂ωAωðqÞ − q̂2ωAμðqÞ�; ðD23Þ

where ω ≠ μ, ν, ρ, and

Ãμ;ρðqÞ ¼ AμðqÞ þ
α2
2

X
η≠μ;ρ

q̂η

�
1þ α3 − q̂2ω

α3
2

�

× ½AηðqÞq̂μ − AμðqÞq̂η�; ðD24Þ

where ω ≠ μ, η, ρ.
Our simulations are done with z ¼ 1=125. At that value

of z, the perturbative properties of the NDS gauge action
are almost indistinguishable from those of a pure Wilson
action. Here are three examples.
First, the plaquette has an expansion TrUplaq=Nc ¼ 1 −

g2pCF where CF is the quadratic Casimir for fundamentals
and p is a constant. For the Wilson action, p ¼ 0.5. This
expression is often replaced by

− ln

�
1

Nc
TrUplaq

�
¼ g2pCF: ðD25Þ

This defines a coupling g2 in the so-called αV scheme,
because the potential is written as

VðqÞ ¼ −CF
4παVðqÞ

q2
: ðD26Þ

The scale of the coupling is set by the Lepage-Mackenzie
[54] prescription,

logq� ¼
R
d4q log qIðqÞR

d4qIðqÞ : ðD27Þ

Results for p and q� for several values of z are given in
Table XIV.
With the gluon propagator in hand we can immediately

compute the static Coulomb potential. With our conven-
tions, the continuum potential is VðrÞ ¼ 1=ð4π rÞ, and so
plotting the rescaled lattice potential 4πrV ðrÞ immediately
exposes the lattice artifacts of a particular action. We show
results for this quantity in Fig. 24 for z ¼ 1=125, plotted
together with the Wilson action result.

TABLE XIV. Results of one loop lattice perturbation theory for selected observables, for the NDS action for several values of z.
Uncertainties are �2 in the rightmost digit. Each one is interleaved with its momentum scale from Eq. (D27). The plaquette expectation
is p. The quantities zV , zA, zP and zS are the renormalization factors for the local vector, axial vector, pseudoscalar, and scalar currents.

z p q� zV q� zA q� zP q� zS q�

0 0.5 3.41 −1.38 1.68 −1.30 1.65 −0.12 2.28 0.04 2.31
0.008 0.504 3.41 −1.37 1.70 −1.30 1.66 −0.11 2.42 0.05 2.48
0.02 0.510 3.41 −1.38 1.71 −1.29 1.69 −0.12 2.48 0.04 2.54
0.05 0.525 3.41 −1.40 1.70 −1.31 1.69 −0.15 2.40 0.02 2.45
0.10 0.548 3.43 −1.42 1.74 −1.34 1.72 −0.19 2.70 −0.02 2.79
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Last, we have the renormalization factors for currents.
Calculations of matrix elements require a conversion to
continuum regularization. We adopt the old tadpole-
improved procedure of Lepage and Mackenzie [54]. In
this scheme a continuum-regulated fermionic bilinear
quantity Q̄ with engineering dimension D [we have in
mind finding the MS (modified minimal subtraction) value
at scale μ] is related to the lattice value by

Q̄ðμ ¼ 1=aÞ ¼ QðaÞ
�
1 −

3κ

4κc

�
ZQ; ðD28Þ

with

ZQ ¼ 1þ α
CF

4π
zQ; ðD29Þ

where α ¼ g2=ð4πÞ, CF is the quadratic Casimir for the
fermion, and zQ is a scheme matching number. Results for
nHYP clover fermions without the NDS term are tabulated
in Ref. [55] and allow us to check the z ¼ 0 limit. For more
discussion of the calculation of the zQ’s, see Ref. [56].
Table XIV gives selected values of zQ for the vector, axial
vector, pseudoscalar, and scalar currents.
To evaluate the final Z-factors, we run αVðqÞ obtained at

aq⋆ ¼ 3.43 using the Lepage-Mackenzie prescription to
the appropriate aq⋆ for each zQ enumerated in the table.
Running of αV is carried out by numerical integration of the
two-loop β-function,

βðαVÞ ¼ q2
dαV
dq2

¼ −β0α2V − β1α
3
V − � � � ; ðD30Þ

where the required coefficients for a theory with multiple
fermion representations are [57]

β0 ¼
1

3ð4πÞ
�
11C2ðGÞ − 2

X
r

NrC2ðrÞ
�

ðD31Þ

β1¼
1

3ð4πÞ2
�
34C2ðGÞ2−2

X
r

NrTðrÞ½5C2ðGÞþ3C2ðrÞ�
�
:

ðD32Þ

HereNr denotes thenumber ofDirac flavors in representation
r, while TðrÞ and C2ðrÞ are the standard trace and Casimir
invariant for each representation. For our SU(4) multirep
theory, we obtain β0¼53=ð24πÞ and β1¼1531=ð192π2Þ.

[1] J. B. Kogut, M. Stone, H.W. Wyld, J. Shigemitsu, S. H.
Shenker, and D. K. Sinclair, Phys. Rev. Lett. 48, 1140
(1982).

[2] J. B. Kogut, J. Shigemitsu, and D. K. Sinclair, Phys. Lett. B
145, 239 (1984).

[3] F. Karsch andM. Lütgemeier, Nucl. Phys.B550, 449 (1999).
[4] H. Georgi and D. B. Kaplan, Phys. Lett. 145B, 216 (1984).
[5] M. J. Dugan, H. Georgi, and D. B. Kaplan, Nucl. Phys.

B254, 299 (1985).
[6] D. B. Kaplan, Nucl. Phys. B365, 259 (1991).
[7] G. Ferretti, J. High Energy Phys. 06 (2014) 142.
[8] G. Ferretti and D. Karateev, J. High Energy Phys. 03 (2014)

077.

[9] T. DeGrand and Y. Liu, Phys. Rev. D 94, 034506 (2016); 95,
019902(E) (2017).

[10] T. DeGrand, Y. Liu, E. T. Neil, Y. Shamir, and B. Svetitsky,
Phys. Rev. D 91, 114502 (2015).

[11] T. A. DeGrand, D. Hackett, W. I. Jay, E. T. Neil, Y. Shamir,
and B. Svetitsky, Proc. Sci., LATTICE2016 (2016) 219.

[12] T. DeGrand, M. Golterman, E. T. Neil, and Y. Shamir, Phys.
Rev. D 94, 025020 (2016).

[13] G. Ferretti, J. High Energy Phys. 06 (2016) 107.
[14] A. Belyaev, G. Cacciapaglia, H. Cai, G. Ferretti, T. Flacke,

A. Parolini, and H. Serodio, J. High Energy Phys. 01 (2017)
094; 12 (2017) 088.

[15] M. E. Peskin, Nucl. Phys. B175, 197 (1980).

FIG. 24. Comparison of the potential for the NDS action, with
γ=β ¼ 1=125 (diamonds), with that of the usual Wilson action
(crosses).

SPECTROSCOPY OF SU(4) COMPOSITE HIGGS THEORY … PHYS. REV. D 97, 074505 (2018)

074505-25

https://doi.org/10.1103/PhysRevLett.48.1140
https://doi.org/10.1103/PhysRevLett.48.1140
https://doi.org/10.1016/0370-2693(84)90346-0
https://doi.org/10.1016/0370-2693(84)90346-0
https://doi.org/10.1016/S0550-3213(99)00129-7
https://doi.org/10.1016/0370-2693(84)90341-1
https://doi.org/10.1016/0550-3213(85)90221-4
https://doi.org/10.1016/0550-3213(85)90221-4
https://doi.org/10.1016/S0550-3213(05)80021-5
https://doi.org/10.1007/JHEP06(2014)142
https://doi.org/10.1007/JHEP03(2014)077
https://doi.org/10.1007/JHEP03(2014)077
https://doi.org/10.1103/PhysRevD.94.034506
https://doi.org/10.1103/PhysRevD.95.019902
https://doi.org/10.1103/PhysRevD.95.019902
https://doi.org/10.1103/PhysRevD.91.114502
https://doi.org/10.1103/PhysRevD.94.025020
https://doi.org/10.1103/PhysRevD.94.025020
https://doi.org/10.1007/JHEP06(2016)107
https://doi.org/10.1007/JHEP01(2017)094
https://doi.org/10.1007/JHEP01(2017)094
https://doi.org/10.1007/JHEP12(2017)088
https://doi.org/10.1016/0550-3213(80)90051-6


[16] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001).

[17] A. Hasenfratz, R. Hoffmann, and S. Schaefer, J. High
Energy Phys. 05 (2007) 029.

[18] C. W. Bernard and T. A. DeGrand, Nucl. Phys. B, Proc.
Suppl. 83–84, 845 (2000).

[19] Y. Shamir, B. Svetitsky, and E. Yurkovsky, Phys. Rev. D 83,
097502 (2011).

[20] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 90,
054501 (2014).

[21] V. Ayyar, T. DeGrand, D. C. Hackett, W. I. Jay, E. T. Neil, Y.
Shamir, and B. Svetitsky, arXiv:1802.09644.

[22] A. Hasenfratz, Y. Liu, and C. Y.-H. Huang, arXiv:
1507.08260.

[23] M. Lüscher, J. High Energy Phys. 08 (2010) 071; 03 (2014)
092.

[24] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 93,
094510 (2016).

[25] T. DeGrand, Phys. Rev. D 95, 114512 (2017).
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