PHYSICAL REVIEW D 97, 074009 (2018)

Heavy quarkonium suppression in a fireball

Nora Brambilla,l’2 Miguel A. Escobedo,3 Joan Soto,4 and Antonio Vairo'
lPhysik Department, Technische Universitit Miinchen, D-85748 Garching, Germany
*Institute for Advanced Study, Technische Universitit Miinchen,
Lichtenbergstrasse 2 a, D-85748 Garching, Germany
3Department of Physics, University of Jyviskyld, P.O. Box 35, FI-40014, Finland
4Departament de Fisica Quantica i Astrofisica and Institut de Ciencies del Cosmos,
Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia, Spain

® (Received 24 November 2017; published 9 April 2018)

We perform a comprehensive study of the time evolution of heavy-quarkonium states in an expanding
hot QCD medium by implementing effective field theory techniques in the framework of open quantum
systems. The formalism incorporates quarkonium production and its subsequent evolution in the fireball
including quarkonium dissociation and recombination. We consider a fireball with a local temperature that
is much smaller than the inverse size of the quarkonium and much larger than its binding energy. The
calculation is performed at an accuracy that is leading order in the heavy-quark density expansion and next-
to-leading order in the multipole expansion. Within this accuracy, for a smooth variation of the temperature
and large times, the evolution equation can be written as a Lindblad equation. We solve the Lindblad
equation numerically both for a weakly coupled quark-gluon plasma and a strongly coupled medium. As an
application, we compute the nuclear modification factor for the T(15) and T(2S) states. We also consider
the case of static quarks, which can be solved analytically. Our study fulfills three essential conditions: it
conserves the total number of heavy quarks, it accounts for the non-Abelian nature of QCD, and it avoids

classical approximations.
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I. DILEPTON EMISSION FROM QUARKONIUM

The main way in which heavy quarkonium is detected in
heavy-ion collisions is through its decay into a lepton pair.
Electromagnetic interactions are slow compared with the
strong interactions that drive the dynamics of the fireball;
therefore, the bulk of these decays will happen after freeze-
out. An observation that supports this understanding is that
the positions of the peaks in the dilepton emission spectrum
are the same in pp and AA collisions [1].

The decay rate into leptons in thermal equilibrium was
computed in [2]. Here we generalize that result to the
case of a medium that is not in thermal equilibrium.
The Hamiltonian of the system can be written as H =
Hqep + Hgyw, where Hgep is the QCD Hamiltonian, and
Hgy is the part of the Hamiltonian that includes leptons
and the electroweak interaction (for the following use, only
the electromagnetic part of the electroweak interaction is
relevant). At some early time 7, we have a system that only
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contains quarks and gluons. It is described by a density
matrix p(fy) = >, muPum(to)|n)(m|, where |n) are eigen-
states of Hgcp. At a much later time, the system is made by
an arbitrary number of quarks and gluons and a lepton pair,
ITI~. Hence, up to higher orders in the electromagnetic
coupling, @, the state describing such a system is the
product of a QCD state, |n), and a lepton-pair state, |/717):
n,IT17) = |n)|I"I7). Naming k; and k, the momenta of
the two outgoing leptons, the differential emission rate is

dR = zpz1m(t0> <m

n,m,j

< (j I (k)T (ky) [n)d* Ky d k. (1)

Jo U (k)1 (k2))

At leading order in a, we can write
(. 17 (k) (ks ) )
= e, / 41 %y Olad B T0e)AGR) ()
X Ay (%2)[0)gw (1 (x2) 1), (2)

where |0)gy is the vacuum of the electroweak theory, aj
and b‘,‘c; are the lepton and antilepton annihilation operators,
[ is the lepton field, A, the photon field, J* the quark
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electromagnetic current, and e, the fraction of electron
charge e carried by the heavy quark. Summing over the
polarizations, we obtain
_ e4€2QLW,(kl s kz)

K[|k (k) + kp)*

></d4x1d4x2e‘i(kl+kz)'(xl—xZ)

dR =

x Tr{p(to)J* (x1)J* (x2)} Pk Pk, (3)
where
L;w(kl’ k2) =k - k29/4u - klykZL/ - k2;¢klu' (4)

For p = e~ Haeo/T where T is a temperature, we recover the
results of [2].

In general, the medium formed in a heavy-ion collision
will be out of thermal equilibrium and characterized by
some correlation lengths that change with time. In this
work, in order to keep close contact with and take
advantage of existing studies of the medium in thermal
equilibrium, we will often assume that the medium evolves
in time in a quasistatic fashion. This means that the medium
is locally in thermal equilibrium and that at each time we
can define a temperature 7". This assumption allows us to
take over results obtained in thermal equilibrium, with the
only difference being that now the temperature depends on
time. Our explicit model for the time dependence of the
temperature will be discussed in Sec. II. A quantitative
characterization of a temperature varying slowly (quasis-
tatically) with time in the context of heavy quarkonium
dissociation will be given at the end of Sec. IIIB.
Nevertheless, it is worth stressing that the evolution
equations that we will derive in Sec. III B do not rely on
the quasistatic approximation and that in some of the
following discussions, including the rest of this introduc-
tion, we may simply understand 7 as the inverse of a
correlation length characterizing the system.

In order to write more explicitly Eq. (3), it is convenient
to take advantage of the heavy-quark mass, M, being much
larger than the typical momentum of the particles in the
fireball, which is proportional to T":

M>T. (5)

One can therefore use nonrelativistic QCD (NRQCD) to
describe the heavy-quark dynamics [3.,4]. In NRQCD,
heavy quarks are represented by a Pauli field y that
annihilates the heavy quark and a Pauli field y that creates
the heavy antiquark. Up to corrections of order a,(M) and
T/M, the NRQCD electromagnetic current reads

"The scale induced by the thermal bath is really z7T’; however,
here and in the following we will just write T for brevity.

JO(x) =y (X)w(x) = 7" (x)x (). (6)

Ji(x) = Myt (x)oy (x) — ey (x)a'y(x). (7)
In the quarkonium rest frame, it is v = (1,0). J° does not
contribute to the emission of the lepton pair with an
invariant energy around 2M. This contribution comes only
from J/. The Pauli matrix in J/ projects onto the subspace of
quarkonia with spin 1. In terms of the NRQCD heavy-
quark fields, the emission rate can be written as

AR — e462QLij(kl’ k2)
[k |[Ka| (kg + ko)*

X/d4x1d4xze—i(k1+k2—2Mv)-(x]—x2)

x Tr{p(to)y (x1)oy (x1 1" (x2) 6/wr (x2) } P ky d k.

(8)

The right-hand side of the previous equation will
depend on different energy scales, some coming from
the thermal plasma, which depend on the temperature 7',
and some from the nonrelativistic nature of the heavy-
quark-antiquark bound state. These last ones are the
typical heavy-quark-antiquark distance, a,, and the typical
quark-antiquark binding energy, E. They respect the non-
relativistic hierarchy:

1
M>—>FE. 9)
ao

The physics of heavy quarkonium in the fireball is going to
depend on the relation between these two sets of scales. We
will assume in the following that

1
—>T. (10)
do

Under the condition (10), we can use potential NRQCD
(pPNRQCD), which provides a valid description of the
quarkonium at energy scales below 1/a, [5-9]. In this
effective field theory (EFT), the heavy-quark-antiquark
system can be described in terms of a color-singlet field
S and a color-octet field O instead of the fields y and y of
NRQCD. At leading order,

)(I,(t,xl)l///;(t,xz) - Saﬂ(Lr’R)? (11)

where r = X; — X,; R = (x; +X,)/2; and a, § are spin
indices. The projection of the color-singlet field on S-wave
states may be decomposed into a spin-0 component
(644 Tr{S}/V/2) and a spin-1 component (¢4, Tr{Sc"}/

1v/2). Only the spin-1 component contributes to the S-wave
emission rate [R = (t,R), R' = (/,R’)]:
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2eteqLii(ky, ky)
3[ky ko] (ky + ky)*

o / P RAPR e-ilki+a=2M0)-(R-FR)

dR | S-wave

x Tr{p(1,)S¢7 (1,0, R)S? (¢, 0, R") }d®k, dk,
(12)

where S¢ = Tr{S6”}/+/2. The result reflects the expect-
ation that the emission of dileptons should be proportional
to the number of singlet states with spin 1.

The integration of the temporal components ¢ and ' may
be split into
|

/totF di(- ) +/: di(- ), (13)

where 7 is the time of freeze-out. The argument that most
of dilepton production from quarkonium happens in the
vacuum amounts to having

[m di(---) > /tf de(--). (14)

After freeze-out, the system evolves as it would in the
vacuum. Hence for ¢, ¢ larger than ¢5, we have

Tr{p(to)S”*(1.0.R)S* (¥, 0.R")} = (0.R'|p,(7":1)[0. R)

bl : / d3P . . dSPI o] / P/ !
_ ZezEm(z—rp)g—zE,,(z —tp)¢;(0)¢n(0)/(2ﬂ)3 ezj%(t—tp)—zPR/(zﬂ)3 e—z%(r —tr)+iP' R <n,P’|pS(tF;tF)|m,P>, (15)

where ¢,, (¢,,) is the wave function of the nth (mth) state, E, (E,,) is the corresponding energy (including the decay width as
an imaginary phase), and P (P’) the center-of-mass momentum; p,(¢’; r) will be defined in full generality later on [see (23)]
and will be the central object of our study. Therefore under the approximation (14) and in the quarkonium rest frame, we

have

dR =
s =5 ol

nm

where we have defined ¢ = k| + k».

The above equation tells us that the emission rate of
dileptons with the energy of a given quarkonium state n
[¢° = 2M + Re(E,) + q*>/4M] will be proportional to the
projection of p(tg;1x) into that state at freeze-out time.
The problem reduces to find p,(7x; 7x) given some initial
conditions at r = 0, p,(0;0). Within this framework, the
yield of quarkonium S states in AA collisions normalized
with respect to the yield in pp collision is given by

(n,qlps(tritp)|n,q)

RaanS) = 00 mq)

(17)

Note that the ratio above depends in principle on the center-
of-mass momentum of the quarkonium state q. We will
eventually neglect this dependence and write |nS) for
n.q).

The paper is structured in the following way. In Sec. II
we briefly describe the evolution of the medium in a simple
model. In Sec. III we derive the general evolution equations
for the heavy-quark-antiquark densities in the framework of
pNRQCD. This section contains the main theoretical
results of the paper. In Sec. IV we write the Lindblad
equation and solve it for a quarkonium in a weakly coupled
plasma that fulfills the hierarchy 1/ay, > T > E > myp,
where my, is the Debye mass (for details see Appendix B),

2¢t e Lii(ky, ko) 3 P (0)$4(0)(n. dlp(tp: 1r)|m. q)
[90 —2M = E;, — */(4M)][qo — 2M — E, — ¢*/ (4M)]

&Pk, (16)

|

while in Sec. V we do the same for a quarkonium in a
strongly coupled plasma that fulfills the hierarchy 1/aq >
T ~mp>E (the weakly coupled case 1/ag>T >
mp > E is also addressed as a particular case; see
Appendix C). Numerical results are presented for the
bottomonium states Y(1S) and Y(2S). The analytical
solution of the Lindblad equation in the case of static
sources is derived in Appendix A. Finally, in Sec. VI we
draw some conclusions and discuss possible developments.
A concise version of the evolution equations and their
solution in the case of a strongly coupled plasma has been
presented in [10].

II. TIME EVOLUTION OF THE
THERMAL MEDIUM

We will consider a medium that is infinite, homo-
geneous, and isotropic in space but that changes with time.
These approximations are appropriate for very large nuclei
in central collisions. For the description of these kinds of
systems we can use Bjorken’s evolution [11]. These
assumptions about the medium could be relaxed by
describing the medium using relativistic hydrodynamics
(see [12] for a review); however, this is not the largest
source of uncertainty in our calculation (higher-order
corrections, uncertainties related to the hierarchy of scales,

074009-3



BRAMBILLA, ESCOBEDO, SOTO, and VAIRO

PHYS. REV. D 97, 074009 (2018)

and the assumed Coulombic nature of some excited
quarkonium states appear to have a larger impact).

According to [11], the effective temperature of the
system evolves in time following

to v?
T=Tyl—| .,
(7)

where Ty and 1, are, respectively, the initial temperature
and initial (proper) time, and v, is the velocity of sound in
the medium. In a deconfined plasma at a very high
temperature, v2 = 1/3. As values of T, and f, for central
collisions at the LHC, we use T,= 475 MeV and
to = 0.6 fm. These values are taken from [13].

We will study collisions with different centralities. As we
are assuming the plasma to be homogeneous and isotropic,
the only effect that a difference in centrality will produce
will be to change the initial value of the energy density and
hence T. For this we assume the initial energy density to
be proportional to T¢ (this is consistent with the sound
velocity that we are using). Moreover, we assume the initial
energy density to depend on the number of participants.
From (2.6) of [14] we obtain

(18)

To(b)2,0)[1 = (1 — ZTall/20yAN 1/4
To(b) =To(b = 0)< 7,(0,0)[1 (1 _%éo))f;] ) ,
(19)

where b is the impact parameter; A the number of nucleons;
and o the nucleon scattering cross section, which, accord-
ing to [15], is taken as ¢ = 64 &= 5 mb = 164 £ 13 GeV 2
and

Ty(r.y) = / dzpa(%:2),

[58)

(20)

where p, is the nucleon density distribution in the nucleus.
Following [15], we approximate p, by a Woods-Saxon

500

450

70 15 20 25 30 35 40 45 50
time(fm)

FIG. 1.
Table 1.

TABLE 1. Initial temperature of the fireball for different
centrality bins and its mean impact parameter. When we say
0%-—10% centrality, we mean that from all the collisions we select
the 10% that are most central.

Centrality (%) (b) (fm) Ty (MeV)
0-20 4.76 466
0-10 3.4 471
10-20 6.0 461
20-90 11.6 360
20-30 7.8 449
30-40 9.35 433
40-50 10.6 412
30-50 9.9 425
50-70 12.2 366
50-100 13.6 304

profile (assuming that the nucleon density is proportional to
the charge density) taken from [16]:

Po
X, y,2) ~ = 21
patry )L e
where P =x>4+y2+7% ¢=662+0.06fm; &=

0.546 £ 0.01 fm; and p, is fixed by fd3rpA = A, which,
in the case of lead at the LHC, is 207.

Experimentally, the results are given in terms of central-
ity bins. When possible [15], we characterize each central-
ity bin used in CMS by its mean impact parameter. There
are some centrality bins whose mean impact parameter is
not given in [15]. In these cases we perform the compu-
tation ourselves, following [17]. In all calculations in the
rest of the paper, we will describe the different centralities
by the different 7'y given in Table I. For all the centrality
bins given in this table except 20%—90%, the value of T,
corresponds to To((b)) [which is similar to (T(b))]. In the
case of 20%—90% centrality, the value given is (T(b)) due
to the fact that the bin is so large that it is not well
represented by the average impact parameter. In Fig. 1 we

310
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280F
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260}

T(MeV)

250

240
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220 . . . . . . .
0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4

time(fm)

Time evolution of the temperature according to (18) for the most central (left) and the most peripheral (right) collisions of
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show the time evolution of the temperature according to
(18) for the most and least central collisions of Table I. The
evolution starts at 7, = 0.6 fm and ends at about 4 fm for
the most central collisions and at about 1.1 fm for the most
peripheral ones, when the fireball has cooled down to a
temperature of about 250 MeV, which is the smallest
temperature, but still larger than the crossover temperature
to the quark-gluon plasma, where we expect the framework
of our calculation to be safely realized. Indeed, we will
need 7 > E to be always fulfilled, and, in the weakly
coupled plasma case, we will also need 7T large enough to
trust our perturbative calculations. In the strong coupling
case, the last limitation does not apply, but in practice the
lack of lattice data below 1.5T. for the relevant non-
perturbative quantities forces us to stick to the above-
mentioned temperature. We recall that the crossover
temperature to the quark-gluon plasma, 7., is expected to
be at about 150 MeV [18-20]. Henceforth, we will compute
the quarkonium nuclear modification factors R 4 4 at the earlier
time when a temperature of about 250 MeV is reached.
Clearly the last piece of the evolution from 250 MeV to the
freeze-out temperature is missing. Nevertheless, we expect it
to have a modest impact on our results.

III. TIME EVOLUTION OF THE QUARKONIUM
DENSITY MATRIX FOR 1/ay>T

The typical LHC temperature of the fireball goes from
around 475 MeV to the freeze-out temperature. The energy
scale induced by the temperature is z7, which is at most
about 1.5 GeV. Since the fireball expands very fast at the
beginning of the thermal evolution, it will reach very soon
lower energies. The inverse of the Bohr radius, 1/a, of the
Y(1S) is in the vacuum about 1.3 GeV. The conclusion is
that, for most of the evolution of the fireball (except perhaps
for a very short time at the beginning), the condition (10) is
fulfilled at least by the bottomonium ground state.
Moreover, 1/ay ~ 1.3 GeV > Aqcp implies that the bound
state is Coulombic, i.e., described by a Coulomb potential.

A. pNRQCD for an open quantum system

Under the condition (10) and the assumption that the
bound state is Coulombic, 1/ay > Agcp, we can describe
the quarkonium evolution in the fireball using pNRQCD.
The Lagrangian of pNRQCD at next-to-leading order in the
multipole expansion is [5-7]

ﬁpNRQCD = / d3rTr[ST(laO - hS)S+ OT(lD() - ho)O]
+Tr {OTrgESnLS"'r-gEO

1 .
+§(0Tr.gE0+ O'0r-gE) | + Liign, (22)

where r is the distance between the heavy quark and the
heavy antiquark, and S = §1./\/N, and O = 20°T*
stand for the heavy-quark-antiquark fields in a color-
singlet and color-octet configuration, respectively. The
operator h, =p?/M + V is the color-singlet Hamiltonian.
The potential V, is the color-singlet potential, which at
leading order reads V, =—Cra,(1/ay)/r; Cp=(N2—1)/
(2N.) =4/3 is the Casimir of the fundamental represen-
tation and N, = 3 is the number of colors. The operator
h, =p?/M +V, is the color-octet Hamiltonian. The
potential V,, is the color-octet potential, which at leading
order reads V, = a,(1/aq)/(2N.r). We have made mani-
fest that the strong coupling in the potentials is evaluated
at a scale that is of the order of the inverse Bohr radius.
We have set equal to 1 the Wilson coefficients of the
dipole operators (corrections are suppressed by powers of
a, and are beyond our aimed leading-order accuracy). The
term Ly is the QCD Lagrangian with light quarks.

In (22) there is a covariant derivative acting on the octet
field O. This can be eliminated by means of suitable field
redefinitions: O = QO'Q" and E = QE'Q. The only
effect of them is to change DyO into 0,0’ in (22) and
to rename the fields O and E into O’ and E’. The field Q
can be chosen to be a Wilson line going from —oco to #:
Q = exp [—ig [* dsAy(s,R)]. In the following, we will
adopt these field redefinitions and we will understand the
octet field and the chromoelectric field as the redefined
ones. We drop, however, the superscript / to simplify the
notation.

As discussed in Sec. I, we want to compute
Tr{p(t)S*"(t,r,0)S%(¢,r',0)}. The experimental fact
that the number of bottom quarks found in heavy-ion
collisions is much smaller than that of lighter quarks
implies that Tr{p(#,)} is dominated by contributions
to the density matrix, p, coming from states made of
light quarks and gluons. This is clearly the case in thermal
equilibrium, where contributions coming from the
heavy quarks are suppressed by a factor e /7. A conse-
quence of this is that Tr{p(#))S?"(¢,r,0)8%(¢,r,0)} <
Tr{p(ty)S* (¢, r',0)S7(t,r,0)} and similarly for the
octet field.

We may look at the heavy quarks as an open quantum
system that interacts with the (slowly) evolving medium
of the fireball made of light quarks and gluons. The
computation can be done in the close-time-path formalism
(see [21] for the thermal equilibrium version and [22] for
the nonequilibrium case). The formalism consists in
rewriting field correlators by allowing the time to evolve
from a path that goes from —co to oo and then from
o0 — ie to —oo — ie. The fields are then ordered along the
path. To make the ordering manifest, we call the fields on
the upper branch type 1 and those on the lower branch
type 2, and we identify them by a corresponding index.
Hence, we write
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Tr{p(1,)St (.x. R)S(¢. ¥, R)}
= (8,(¢, ¥, R")S}(t,r,R))
= (r', R'|p,(7;1)|r,R), (23)

Tr{p(1y) 0 (1., R) 0! (7., R')}
= (0}(7, ¥, R")05"(1,r,R))
ab

= /,R/ ol‘/;t _
(. R'|p, (1) N1

r,R) (24)

where in each equation the last equality defines the color-
singlet and the color-octet density respectively. Since we
do not have a preferred direction in color space, the octet
density is taken as diagonal in color.

We further assume that the heavy quarks are comoving
with the medium. Under this simplifying assumption, the
evolution does not depend on R and we drop it from the
arguments of the densities. To simplify the notation, we
have also dropped the dependence on the heavy-quark-
antiquark distance; nevertheless, the densities should be
understood as operators that depend on it.

We emphasize that the situation that we consider here is
different from the one studied in [8,9], where the system
formed by the plasma plus the heavy-quark states was
assumed to be in thermal equilibrium. Under that condition
the density of heavy-quark states is exponentially sup-
pressed and, when computing heavy-quark correlators,
we only need to include heavy-quark fields living on the
upper branch of the closed-time path. This is not the case
here, where the number of heavy-quark states is not the
equilibrium distribution. As a technical remark, we further
observe that the 12 propagator does not select a specific
time ordering, while the 11 and 22 propagators descri-
bing heavy-quark fields living on the upper and lower
branch, respectively, select instead the forward and back-
ward propagation: they are proportional to (¢ — t) and
0(t — '), respectively.

B. Evolution equations

We assume the following simplified model for the

evolution of the quarkonium in the medium.

(a) From t = 0 (which could also be taken as a time in
the infinite past, t = —o0) until ¢ = 7,, the heavy
quarks evolve as in the vacuum. Therefore up
to corrections of relative order a3E°, which are

|

negligible with respect to thermal corrections as
long as T > E, the color-singlet and color-octet
densities evolve as

ps(t's1) = e py(0;0)e™ !, (25)

po(t's1) = e p,(0;0)e"e". (26)

The singlet and octet Hamiltonians have to be
understood as operators in the relative-distance
space like the densities. The initial conditions,
050(0;0), of the densities will be discussed in
Sec. III E.

(b) At t =ty, suddenly the medium appears and the
heavy quarks start interacting with it. We model the
medium as a fireball that follows Bjorken’s time
evolution (see Sec. II). Since the number of heavy
quarks in the medium is relatively small, we organ-
ize the computation as an expansion in the heavy-
quark densities, p, and p,. The 12 propagators are
proportional to these densities. We compute them by
keeping only Feynman diagrams with a single 12
propagator of heavy quarks, which amounts to
considering only terms that are linear in the
heavy-quark densities. Diagrams that contain two
12 correlators are quadratic in the densities of heavy
quarks, and so on. Since we compute only diagrams
that are linear in the heavy-quark densities, we
consistently ignore the density dependence in the
11 and 22 propagators too.

The initial conditions p; ,(fy;%,) are determined from
the evolution starting at ¢+ =0 and ending at f=1¢,
computed in (a). We calculate now corrections to p(t; )
for t > t, at order 2. The relevant diagrams are shown in
Fig. 2. From the pNRQCD Lagrangian it follows that at
zeroth order in the multipole expansion, p(f;¢) is just
given by the tree-level diagram

_ —iha(t—to) ) ihs(t—to)
> e o) pg(to;to)e 0), (27)

If the initial and final times are different, then the tree-level

12 propagator reads e~":(=%)p (1y;1,)e("=). Such

propagators enter in the following one-loop diagrams.
The second diagram in Fig. 2 reads

& — / dt e 1 s( 1)5 (t )e T s(l 0)p (t 7t )ez s( 0)7
2 1 1 1 to

with
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! tz&t’ ‘ & &
+ + +
1 2 1 1 1 2 2 2 1 2 2 1 1

FIG.2. Diagrams contributing at order 72 to p. A single line stands for a singlet propagator, a double line for an octet propagator, and a
curly line for gluons. The vertices (circle with a cross) are the chromoelectric dipole vertices of the pPNRQCD Lagrangian (22). The
numbers 1 or 2 near the vertices mean insertions of fields from the upper or lower branches of the closed-time path, respectively. In the
second diagram we also write explicitly the time variables of the propagators according to Eq. (28).

2

() =

2 t . . . . . .
g / dtyr =it =1) i1 (B (1, 0) E4 (1, 0)). (29)
2N, /i,

The expression (E“i(t,0)E*/(t,,0)), like similar expressions below, stands for the in-medium light degrees of freedom
average of the correlator of two chromoelectric fields. We recall that the fields in the previous expression are the redefined
ones and hence gauge invariant by themselves. In this work, we assume that the medium is isotropic in space and color, and
locally and instantaneously in thermal equilibrium at a temperature 7. The third diagram in Fig. 2 is the complex conjugate

of this one:
t
o ) B —— 30)
‘&‘ = — dtq e ihs(t—to) s t 7t eZhS(tl to) ZT t eth(t t1) . (
B 3 = ’ /to 1 ps(tosto) i(t)

Finally the last diagram in Fig. 2 reads

t

g i%@ . , 31)
_ dt efzhs(tftl) Eso (¢ ;t ,t ezhs(tftl) , (

5 5 ; y /to 1 (po(tosto),t1)

with

2

B0 (o (to3 10), 1) = m/ dtz[rle—lho(f—lo)po(to; to)elhg(fz—lo)rJelh;(l—lz)<Ea»](t2’O)Ea,l(t’ 0)) + Hcl, (32)

Ty
where H.c. stands for Hermitian conjugate.

Taking into account all the diagrams in Fig. 2 and deriving both sides with respect to ¢, we get the evolution equation
for pg:

dp,(t;t ) ) ) . .
PAED) (1] = B, 0)e 000, (1 1) P 000 — o) (1 1) MW 0) + B, i ). 1) (33)

A similar computation leads to the evolution equation for p,:

dpo 1t . i _ i — —i — i -
# = _l[ho’po(t; t)} - Za(t)e holt IO)po(ZO; [0)(3 ho(t=to) — 4 ot tO)po(IO; tO)e holt tO)ZZ(t)
+Eos(ps([0;t0)’t) +E‘00(p0([0;t0)’t)’ (34)
with

t ) . N2 -4 . o . .

2(}(;) = ﬁ/ dtyr |:e—th;(l—lz) + ‘Te—lh”(t—lz) Pl etiho(t=12) <Ea.t(t’ O)E“‘/(tz, 0)>’ (35)
c c ty
2 [t o 4 o ) .
Eos(ps(to. t0), 1) = 2”(1]\/ / diy[rie= (=10 p (1y; 1g) e (2h0) pl o l1=2) (B2 (1, 0) E*(1,0)) + H.c.], (36)
cJiy
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—o—=—»—++& + &Jr———&
2 1 2 1 1 1 2 2 2 1 2 2 1 1

:‘ZZI'F:‘:&' +
2 1 2 1 1 1

2 2 2 17 2 2 1 1

2 1 1 1

FIG. 3.

G (N2 —4)

= loslp), ) = —5——
00(/’0(0 0) ) 4NC(N%—1

Both Egs. (33) and (34) are such that their right-hand
sides depend on e sol=N0)p  (10:1,)etso(t=10) - This
combination is p ,(#;¢) at tree level. The question arises
whether one should solve the equations above as they stand
or if one should substitute e~s(=10)p  (1y; 1) esoli=t0)
by p,.(t;t). First, one notices that substituting
emhali=lp (193 19) e+ =0) by pg,(ri1) in Egs. (33)
and (34) induces new terms at order 7* only; hence this
substitution is consistent with the accuracy of those
equations, which is of order r%. Furthermore, promoting
e Msolt=10)p (103 1g)e™s(=10) to p. (;1) in the right-hand
sides of Egs. (33) and (34) makes the equations Markovian
and, in particular, leads to the standard evolution equations
for the density matrix in the case of unitary evolution
Es, =0, EI,,, = =X ,). Finally, it has the advantage of
providing a set of equations that hold for arbitrarily large
times. One should notice in fact that the validity of the
expansion in Fig. 2 relies upon the restriction (z — )%,
(t —1)E, ... < 1. This restriction is lifted by the promo-
tion. After the promotion of e~s(=0)p  (1y: 1) eso(i=10)
to p,,(t;1), the system of equations for the singlet- and
octet-density evolutions takes the form

dp(1:1) _ —ilhy. ps(1:0)] = Z,()ps (1:1)

dt
—ps(OZI(E) + By (p, (1), 1), (38)

-%—k:ﬁ&
2 2 2 17 2 2 1 1

Coupled Schwinger-Dyson equations for the singlet and octet 12 propagators.

t . . . . . . .
)/ dty[rle=he =) p (14: 1y)eMol2=t0) plgihol=) (E%i (1, 0)E%'(£,0)) + H.c.].  (37)
)

Do) _ it o] = Zo(Dpot:1)

dt
= po(L;0)Zo(1) + B (ps(t:1), 1)
1),

+ B (0, (551), (39)
where E;,, E,,, and E,, are as in Egs. (32), (36), and (37)
with the replacement e~soli=0)p  (10:1,)etsoli=10) —
Ps.o(t;1). The interactions of the density matrices with
the medium are characterized by only three independent
operators, as we make explicit in Appendix D. The
equations above are equivalent to the Schwinger-Dyson
equations represented in Fig. 3.”

The interpretation of the functions appearing in (38)
and (39) is clear. The self-energies X, and X, provide the
in-medium induced mass shifts, om; ,, and widths, I'; ,, for

7If Pso(t;t) is  written as  py, (1) = e Mol
pl,(t;1)eMso=10) then p! , is the density matrix in the interaction
picture. At tree level p! ,(1;1) = p;.,(to: o), but loop corrections
modify this relation and make the time evolution of p ,(f;1)
sensitive to two different time scales. One will come from the
energy exponentials es+("=) and will be of the order of the
inverse of the binding energy, 1/E, whereas the other will come
from pl ,(#;¢) and will be of the order of 1/(a,a3A?), due to the
pNRQCD power counting. A is generically the next relevant scale
in the system (7 or E or a combination of them); hence
1/ay > A. Since 1/(aa3A3) > 1/E, the evolution of pf,
may be considered slow.
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the color-singlet and color-octet heavy-quark-antiquark
systems, respectively:

_izs.o(t) + iz-si-,a(t) = 2Re(_i2s,0(t)) = 25ms.o(t)7 (40)

o (1) + (1) = =2Im(=iZ (1)) =T ,(1).  (41)

The function E,, accounts for the production of singlets
through the decay of octets, while the functions E,; and E,,,
account for the production of octets through the decays of
singlets and octets, respectively. There are two octet
production mechanisms that can eventually be traced back
to the two octet chromoelectric dipole vertices in the
pNRQCD Lagrangian (22).

Finally, we note that the conservation of the trace of the
sum of the densities, which amounts to the conservation of
the number of heavy quarks, requires the functions X, X,
Eos Zps, and B, to satisfy

Tr{p,(1:1)(2,(1) + Z3(1)} = Te{Eps(ps(1:1). 1)}, (42)

Tr{p, (1 1)(Z, (1) + 25 (1))} = Tr{E,, (p,(t:1). 1)
+Epo(po(t;0), 1)} (43)

The above equations, relating the singlet and octet decay
widths to the corresponding production matrix elements,
represent nothing else than the optical theorem in the
problem at hand. They are fulfilled by the expressions in
(29), (32), and (35)—(37), which becomes apparent if they
are written like in Appendix D.

In the following we will assume 7 — #, to be larger than
any other time scale that appears in the problem. This is
indeed so for any time of the order of magnitude of the
freeze-out time. It also amounts to assuming that the time
during which the subsystem is observed is much larger than
the time scale of any correlation between the subsystem and
the environment. Under this assumption, we will approxi-
mate

/tot dtr f(1,) ~ Aw dsf(r—s). (44)

Furthermore, we will approximate

(B (1,0)E%i (1 — 5,0)) ~ (E% (s, 0)E* (0, 0))
~ (E*(0,0)E%/(=s,0)).  (45)

This is an exact equality in vacuum and in thermal
equilibrium. In the out-of-equilibrium case that we are
considering here, the equality is broken by the time
dependence of the temperature. Nevertheless, if the evo-
lution of the temperature is quasistatic, which is our case at

large times [cf. (18) 1/T x dT/dt ~ 1/t < E], the time
dependence of the temperature may be neglected at leading
order. One should point out that this approximation may be
problematic at early times.

C. Lindblad equation

Equations (38) and (39) form a system of equations that
can be solved if the properties of the medium and the initial
conditions for p, and p, are known. This set of equations is
the main result of this work. Although it is possible to solve
these equations numerically for given initial conditions, it is
indeed very challenging and computationally expensive.
For this reason we have chosen here to focus on cases
where these equations can be simplified to a Lindblad
equation [23,24]. The Lindblad equation is well known in
the fields of quantum optics and quantum information. It
was studied in relation with quarkonium in [25]. From a
mathematical point of view, the Lindblad equation follows
from requiring the time evolution of the density matrix of
the open quantum system to be Markovian, to preserve the
trace, the equation to be linear in the density, and the
corresponding linear operator to be a completely positive
map. It has the following form:

dp . PR R
E = l[H,,D] + ; (Cn,gcn 2 {Cncmp}>’ (46)

where H is a Hermitian operator and the operators C, are
called collapse operators. In our case, p is the matrix

S

D. Expansion in spherical harmonics

We solve the Lindblad equation using numerical libraries
available in the literature [26,27] and putting the system on
a lattice. However, this lattice is three dimensional, making
the number of entries for operators in the Lindblad equation
still prohibitively large for our present means. As a way to
deal with this practical difficulty, we do an expansion in
terms of spherical harmonics. We define

plm;l’m’ :/dQ(?)dQ(?/)Ylm(?)pyl/m,*(?/)- (48)

Since there is no preferred direction in space, during the
entire evolution only the components with [ = [’ and m =
m' are nonzero. Moreover, by the same argument, all
polarizations are equally possible; therefore, all the infor-
mation can be encoded in
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,01 = Zplm;lm_ (49)

The normalization of p! has been chosen to ensure that
S°pt = Tr{p}. The crucial approximation that simplifies
the numerics of the calculation is to consider only / = 0 and
[ = 1. We have checked that the results change very little if
we also include [ = 2. The reason is that we are interested
in the suppression factor of S-wave states. Via a chromo-
electric dipole transition, these states can decay to or be
generated by P-wave states only. Hence, they are affected
by states with [ larger than 1 only indirectly. Under this
approximation the density matrix can be written as

0 0

0 p! 0 0
= 50
P 00 (50)

0 0 0 pl

The corresponding Hamiltonian is
1 /0> 20 (1+1)

lo=—==+=%= , . 1
o M <8r2 * r@r) Voo Mr? S

E. Initial conditions for p, and p,

The computation of the production cross section of
quarkonium in pp and pA and its extrapolation to AA
collisions is a nontrivial problem and an active topic of
research (see [28] and references therein). An additional
difficulty is that results for production are usually written
as expectation values for the different quarkonium states,
while what we need is the reduced density matrix, which
contains more information (for example, the relative phase
between the different states). Moreover, the thermalization
procedure from the collision time until the hydrodynamic
regime and the way in which quarkonium is affected by
the medium between these two times are still largely
unknown.

Facing these difficulties, we choose to make a naive
assumption about the form of the initial conditions. We
impose that the relation between p, and p,, at the initial time
be controlled by just one parameter 6. The fact that the
creation of heavy quarks requires high energies tells us that
singlets and octets will be formed in a configuration similar
to a Dirac delta, which implies an S-wave state; this
assumption can also be found in [29]. Because our
evolution equations are linear in the densities and we are
interested in R,,, which is a ratio, we do not need to care
about the absolute size of p, and p, but only about their
relative size. The production cross section of singlets in
S-wave states was computed at leading order in [30] and
that of octets in [31]. Since the production of singlets is a;

suppressed compared to that of octets, we use as an initial
condition that at collision time (¢ = 0)

p5(0;0) = N[0)(0

, (52)

5
as(M)’

P0(0;0) = ps(0;0) (53)

where |0) is an eigenstate of r with eigenvalue r = 0. The
normalization N is fixed by Tr{p,} + Tr{p,} = 1. In the
following we will perform the computations using different
values of 6 (1, 0.1, and 10).

Between the collision of the two ions at r =0 and
the beginning of the hydrodynamic evolution at = 0.6 fm,
we assume that quarkonium evolves as if it were in
vacuum. We use the bottom mass M = 4.8 GeV. We
obtain the Bohr radius for the 1S bottomonium state from
the condition 1/ay = MCras(1/ay)/2. Using the MS
scheme and one-loop running with Ay = 250 MeV, we
get 1/ay = 1.334 GeV. The pNRQCD singlet and octet
Hamiltonians are given after (22) and for each angular
momentum component in (51). For the singlet and octet
potentials V; and V,, we use the expressions given below
(22) in accordance with the tree-level matching of
pNRQCD with NRQCD. To compute the evolution of p,
and p, (in vacuum and in the medium) we use a lattice of
size 40a, and spacing a(/10. For the numerical compu-
tation we make use of the library Qutip [26,27].

IV. QUARKONIUM IN A WEAKLY COUPLED
PLASMA: 1/ay>T > E > my,

In this section, we derive the Lindblad equation and solve
it for a weakly coupled quark-gluon plasma in a particular
thermodynamical regime. A plasma is weakly coupled if
T > mp, where mp, is the Debye mass. Because in pertur-
bation theory m, ~ g(T)T, the condition is indeed fulfilled
if the coupling ¢(7) is small. If there is no dynamical scale in
between T and mp the evolution equations are a particular
case of the strongly coupled case, T ~ mp, that we will
address in more generality in the next section. Explicit
expressions can be found in Appendix C.

Here we consider the particular thermodynamical
regime where the binding energy is in between 7 and
mp. This means that we consider a system that fulfills the
hierarchy of scales: 1/ay > T > E > mp, Agcp. In this
situation and for thermal equilibrium, the modifications to
the heavy quarkonium dynamics have been studied in
detail [32]. Both the energy levels and the decay widths
get thermal corrections. The thermal corrections to the
width are mostly due to gluodissociation [33] (the
dissociation of a quarkonium through the scattering with
a real-time-like gluon from the medium), which at
temperatures such that £ > my, is a dissociation mecha-
nism more important than the dissociation by inelastic
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parton scattering [34] (the dissociation of the quarkonium
through scattering with partons in the medium). In [35] it
has been argued that this hierarchy of scales might be
realized by the Y(1S) state produced in heavy-ion
collisions at the LHC.

Whereas it is clear that the real and imaginary parts of the
singlet potential computed in [32] must be related to X, it
may not be obvious that they can be taken to be the same. In
Appendix B we show that up to a redefinition of the density
matrices, this is indeed the case. An additional motivation
for this redefinition is to obtain a system that can be solved
using a Lindblad equation. We show in Appendix D that, in
general, (38) and (39) are not positive, and hence cannot be
written in the Lindblad form. However, if we consider a
medium that changes from thermal equilibrium in a
quasistatic way, and an evolution time large enough so
that X, only depends on the medium through the temper-
ature (see the discussion at the end of Sec. III B), then (38)
and (39) simplify and can be brought to the Lindblad form
by the same redefinitions that led to the thermal equilibrium
results of [32]. Taking over those results by just allowing a
slow change of temperature with time, we see that they read
at leading order

) T
Re(—i%) = §NCCFas(ﬂT)as(l/aO)T2r

2
+ 30 Croag(ur)T?, (54)
2 2 1 T
Im(—iZS) _ _NcCFas(ﬂEgas( /aO)
_ 4N Cras(ug)as(1/ag)T _ 8Cra (ue)TP’
3Mr 3M? ’

(55)

where we have distinguished between the strong coupling
running with the temperature scale, uy = z7; the one
running with the scale of the energy, up= —Ej=
1/(Ma}); and the one coming from the Coulomb potential
running with the inverse of the Bohr radius.

The thermal modifications to the octet potential were not
calculated in [32]. The calculation is very similar to the one
for the singlet. We present it in Appendix B 3 for com-
pleteness. The result reads at leading order

. T T
Re(_lza) = —EGS(MT)GS(I/QO)TZF + 3MNC as(HT)Tz
x N2—4
6M N as(.uT)Tz’ (56)

_Ncas(ﬂE)a%(l/aO)T Zas(/"E)as(l/aO)T

12 3Mr

_ 4(15 (.uE)sz _ 2(N% - 4)as (ﬂE)TP2
3N .M? 3N .M?

Im(—i%,) =

(57)

The different Z’s must be computed directly from (32),
(36), and (37). They must also fulfill (42) and (43), which
follow from the conservation of the number of heavy
quarks. Those equations, for instance, implement the fact
that the decay width of the singlet is related with =
because any singlet that decays contributes to the creation
of an octet. As discussed in Appendix B, the final
expressions for the Z’s can be cast, after a suitable
redefinition of the density matrices, in the following form:

2 T
Esa(pm t) = % (riho - hsri)po(hori - rihs)’ (58)
4C T
E‘os(ps’ t) = w (hori - rihs)ps(rihu - hsri)’
(59)
- N2 — Aoy (ug)T
Zo(prt) = DU i), (60)

3N,

which are suitable to be written in a Lindblad form.
The Hermitian operator H entering the Lindblad equa-
tion is

h + Re(—iZ;) 0
( 0 h, + Re(—iZ,) > (61)

Furthermore, the Lindblad equation is made in this case by
a set of nine collapse operators C?, C!, and C?, which are

o 2a,(ug)T [2ip;  Neag(1/a,)r;] (0 1
C?_\/ 3N, [M + 2r ](0 0)’ (62)
1 4CF055(/4E)T _2iPi Ncas(l/ao)ri 0 0
c =V 3 M 2r 1 0)°

(63)

2 (N%_4)as( E)T 00
C%:M\/Tcﬂp"(o 1)’ ()

where p; = —id/0x'.

To solve the Lindblad equation numerically, we proceed
along the lines discussed in Sec. IIID and perform an
expansion in spherical harmonics, keeping only the S- and
P-wave terms. The Hamiltonian reduces to
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h? + Re(—iZ,) 0 0 0
0 h! + Re(—iZ, 0 0
. (=iZ,) (65)
0 0 h% + Re(—i%,) 0
0 0 0 h! + Re(—iZ,)
The nine collapse operators above combine into three upon projection,
;(%+%)+Nr“s(]/”o)
0 0 0 sz
O — lzas?)(ll’\;E)T 0 0 %%—F Nras(zl/%) 0 ’ (66)
¢ 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
[ACra(ug)T
Cl = Fsi _L(g+g)+chls(1/"o> R (67)
8 NL'aS(]/a())
—20 4 T/ 0 0 0
00 0 O
2 |V -4auyr| 0 0 00
C=—-i— 0 0 242 . (68)
M 3N, N
)
00 45 O

The operators 9/0r and d/0r + 2/r come from p; acting
on S-wave and P-wave states, respectively.

A. Results

In Fig. 4 (left plot), we show the results that we obtain
using ur = 900 MeV (chosen to be the closest scale to —E|,

1.0

— 1S
-- 25

0.8¢

0.61

Ryq

0.4t

0.2r

00 25
time(fm)

3.0 35 4.0

where perturbation theory may still apply) and the initial
conditions as defined in Sec. [II E with 6 = 1. We see that
the suppression is slightly larger for T (15) than for T(2S5)
and strong for both. This is in fact consistent with the
leading order (LO) behavior of the decay widths calculated
in [32], but clashes with experimental observations. This

1.0

— 1S
-- 25

0.8-

0.6r

Rya

0.4} \

0.2r N

00 20 25 30
time(fm)

10 15 35 40

FIG. 4. Time evolution of R4, for bottomonium in the regime 1/ay, > T > E > m with § = 1 and up = 900 MeV (left plot) and
ug = =T (right plot). We consider only the most central collisions [» = 0 in (19)].
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1.0 T T 1.0 , :
— 15 — 15
-- 25 -- 25
0.8 0.8
0.6/ \ 0.6f
< W < W
< )\ < \
8 \ ~ A\
0.4t "\ 0.4\
0.2} 0.2}
0035 15 20 25 30 35 40 00—Tp 15 20 25 30 35 40
time(fm) time(fm)
FIG.5. Time evolution of R4, for bottomonium in the regime 1/ay > T > E > mp with § = 0.1 (left plot) and § = 10 (right plot),
and pp = nT.

can be due to the fact that one (or several) of the assumed
hierarchies of energy scales may not be fulfilled (e.g., if
T ~ mp, the plasma is not weakly coupled; see the next
section) or that o is not small enough. In particular, for our
choice of ug, a,(ug) is rather large. Hence, it could happen
that perturbation theory is still reliable at the scale 7, but
not at the scale E. If we repeat the computation using
up = nT, we obtain the result shown in Fig. 4 (right plot).
We see now that the suppressions of Y(1S5) and T (2S) are
similar, but still very strong, both features are difficult to
reconcile with experimental observations. Finally, we
investigate the sensitivity to the initial conditions. We show
in the left and right plots of Fig. 5 the results for 6 = 0.1
(more singlets than in the LO NRQCD production) and
0 = 10 (more octets than in the LO NRQCD production),
respectively. While the case 6 = 0.1 is similar to the case
0 =1, for 6 =10 we observe slightly less quarkonium
suppression. This indicates that above some threshold the
suppression pattern will be quite sensitive to the ratio
between the singlets and the octets initially produced. In
particular, the larger the initial fraction of the quark-
antiquark color octets is, the more marked is the feedback
of singlets coming from the octet decays. This is at the
origin of the small kink at about 2 fm in the right plot
of Fig. 5.

V. QUARKONIUM IN A STRONGLY COUPLED
PLASMA: 1/ay>T ~mp > E

In this section we apply the general equations derived in
Sec. 111 to the case in which the thermodynamical scales are
smaller than 1/ay but larger than the binding energy F.
Thermodynamical scales are 7 and the Debye mass mp. In
a weakly coupled plasma, one assumes that 7' > mp ~ gT'.
In this section, however, we assume more generally that the
plasma is strongly coupled. This means that we take
T ~mp. As we will see, the evolution equations can be
written in terms of just two real constants [10]. Because the

entire information about the medium is contained in these
two constants that we are not going to evaluate, we do not
need to make here any special assumption about the
properties and degrees of freedom of the medium (which
in the previous section was explicitly taken to be a quark-
gluon plasma). Hence, everything that we write in this
section applies to a generic strongly coupled hot medium.

If 1/ag > T, Agcp, we can describe the evolution of the
heavy-quark densities in the fireball by means of the
equations found in Sec. III. If 7 is larger than E, we
may neglect the energy-dependent exponentials e*//is0(=12)
that appear in the definitions of the X’s and E’s: for
t—ty~1/T, e*ho(i=12) ~ 1 holds. Using also the approx-
imations (44) and (45) (this is where the quasistatic
approximation enters), we can write

[iS]

r

5.0 = S0 + ir(0), (69)
2,0) = s D) + i) (10
ZaolPort) = 7 rip,r'(t), (71)
Bos(pss 1) = ripsr'(1), (72)
Bulpt) = gp s PR, (1

The real quantity x is the heavy-quark momentum
diffusion coefficient [36,37]:

2
g +0o0
= Re

o 92 «© a,i a,i
-L / ds({E*/(5.0).E*“(0,0)}),  (74)

ds(TE“(s,0)E%(0,0))
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where 7 stands for time ordering. The quantity « is related
to the thermal decay width of the heavy quarkonium. In
particular for 1§ states, we have [see (41)]

I(15) = —2(Im(—i%,)) = 3a3«. (75)

The heavy-quark momentum diffusion coefficient has been
recently computed on the lattice [38]:

—_<34. (76)

The above estimate has been obtained from pure SU(3)
calculations at temperatures of about 1.5 T.. Higher
temperatures seem to suggest a smaller x and/or a temper-
ature dependence of /T3 [39]. Also, light quarks may
modify the above values. A perturbative determination
of x at next-to-leading order can be found in [40]. At
next-to-leading order, x/T> turns out to be in the range
9 <k/T? < 18, but, as pointed out in [40], the perturbative
series does not converge for any realistic value of the strong
coupling. In fact, at leading order [see (C4)] it turns out to
deliver a negative « for realistic LHC temperatures. At the
moment no definite statement can be drawn from looking at
K in perturbation theory.
The real quantity y is defined as

g2 +oo X X
r=2 i / ds(TE (s, 0)E+ (0, 0))

6

N a.i a.i
—,6NCA ds([E%i(5,0), E*/(0,0)]).  (77)

The quantity y is related to the thermal mass shift of
the heavy quarkonium. In particular for 1S states, we have
[see (40)]

SM(1S) = (Re(—iZ%,)) = %a%y. (78)

So far y has not been computed on the lattice. The only
estimate we have for y is the perturbative calculation done
at leading order in [8]; see (C2). Note that in our setup both
k and y depend on time through the evolving temperature of
the plasma.

With the above functions, we can write the evolution
equations (38) and (39) in the Lindblad form (46). In
addition to the Hermitian Lindblad operator H,

hy 0 r2 1 0
H= (" + (e 2n ), (79
(0 m) 2”)(0 —25;;31) 7

we need six collapse operators C? and C!, which are

K . 0 1
= N—g(i)fl( N > (80)
(V2 =4)k() (0 0
G-\ (o) @

Following Sec. III D, the numerical computation is done by
expanding the density matrix and the collapse operators in
spherical harmonics, and keeping only S- and P-waves.
The projected Hamiltonian reads

R0 0 0
0 K 0 0
H:
0 0 K 0
0 0 0 K
10 0 0
> 01 0 0
+ —y(t NZ-2 , 82
/0o 0 2 o (82)
N2-2
00 0 ey

and the six collapse operators above are combined into two,

1
0 0 0 7
k(1) 0 0 1 0
= N2 — 1}" O N%—l O O N (83)
¢ V3
N-1 0 0 0
0O 0 0 O
2 _ 0O 0 0 O
2(NC — l) 0 0 O 7
0O 0 1 O
A. Results

In the bottomonium case, the time evolutions of R,4 for
30%—-50% centrality and 50%—-100% centrality are shown
in the left and right plots of Fig. 6, respectively. Note that,
in the left plot, the R4, for the 2 state becomes insensitive
to k at large times, an indication that it reaches a steady state
before the quark-gluon plasma vanishes.

We have taken /77 in the range (76), while we have set
y = 0and 6 = 1. We have no a priori knowledge for either
7, since a nonperturbative determination of this parameter is
missing, or J, since we ignore the precise initial conditions.
Hence, we have scanned for several values of y and 6. Here,
we have restricted ourselves to y < 0, the sign of the
perturbative result (C2). We find that the CMS results of [1]
prefer small values of y, which is the rationale for choosing
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FIG. 6. Time evolution of R, for bottomonium with x/73 in the range (76), y = 0 and § = 1, for 30%—-50% centrality (left plot) and

for 50%—-100% centrality (right plot).

y = 0. We further find that the results are rather insensitive
to 8, in contrast to the weakly coupled case discussed in the
previous section. The choice § = 1 assumes the initial ratio
of octets over singlets to be just 1/a,(M).

In Table II we show our predictions for the centrality bins
studied by CMS at 2.76 TeV in [41]. Results in this table are
corrected for feed-down effects using the method of [42]
with the updated feed-down fractions from [43]. The reason
why feed-down is taken into account in the table and not
in the time evolution plots is that it takes place after
freeze-out. In order to be on the safe side regarding the
condition 1/ay > T ~ mp > E, we focus only on central-
ities between 30% and 70%. All our determinations are
summarized and compared with the CMS data in Fig. 7.
The theoretical error band accounts only for the lattice
uncertainty in .

T suppression in heavy-ion collisions has also been
studied by the Alice Collaboration [44]. They have only
considered the centrality bins 0%—20% and 20%—-90%. The
initial temperature for the 0%—-20% centrality bin is too
high for our present study. Regarding the centrality bin
20%-90%, the average initial temperature happens to be
very similar to the one in the centrality bin 50%—70% and,
therefore, our prediction is approximately the same.
Analyses for LHC data at 5.02 TeV are under way [45].

In order to check that the hierarchy of scales assumed at
the beginning of Sec. V is maintained during the evolution
of the Y states in the fireball, we have computed the

TABLE 1. Results for R, (1S) and R,4(2S) for /T in the
range (76). y =0 and 6 = 1 in the bottomonium case.

30%—40% centrality [40%—50% centrality |S0%—70% centrality
Raa(18) 305 [Raa(1S) 305 | Raa(1S) 4G5

RA/\(IS> R/\A(ls) RAA<IS>
0207019 0251011 10.2710110.21 +0.08|0.47019 0.101004

time evolution of the matrix element (nS|{1/r,p,}/2|nS)
and of the binding energy E,s for bottomonium n = 1
and n = 2 states. This is shown in Fig. 8. We see that
both (1S{1/r.p,}/2|15)/(1Slp,|1S) and (2S|{1/r.p,}/
2|28)/(2S|p,|2S) remain close to their initial, in-vacuum,
values: 1.334 and 0.884 GeV, respectively. For our choice
of parameter y = 0, the Hamiltonian H coincides with the
in-vacuum one [see (79)], and so do the binding energies:
E5~0.37 GeV and E,g ~ 0.04 GeV. This implies that the
in-vacuum hierarchy between the inverse sizes of the bound
states and their binding energies is preserved during the
evolution in the plasma. Furthermore, we also plot zT as a
function of time for the 30%-50% centrality class. We
observe that the hierarchy between the bound-state scales
and the thermal scale is preserved for late time evolution.

Many effects that have not been considered in the
present analysis or considered in a simplified form
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FIG.7. Ry, as obtained from Table II (dots) compared with the
CMS data of [41] (triangles). Upper (red) entries refer to the
T(1S), and lower (green) entries to the Y(2S). The vertical
dashed lines highlight the window in which we expect the
approximation 1/ag > T ~ mp > E to be valid.
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Time evolution of (nS|{1/r, p,}/2|nS) (continuous line), the binding energy E, g (dotted line), and the temperature (dashed

line) for bottomonium n = 1 (left plot) and n = 2 states (right plot), with /7> = 2.6, y =0, § = 1, and for 30%—-50% centrality

collisions.

(e.g., the hydrodynamical evolution) have the potential to
quantitatively impact the nuclear modification factor cal-
culated here. Inside the framework presented here, the
results depend on the initial conditions and on just
the parameters k and y. The impact of a value of « outside
the range in (76) or of a positive value of y is shown for two
illustrative examples in Fig. 9. The result suggests that there
may exist values of x, y, and ¢ that reproduce the present
data. The fact that a value of x lower than the lattice
prediction is needed may be explained if most of the quark-
antiquark pairs are moving with respect to the plasma
[46,47], at least in the weak-coupling case. As mentioned
before, the lattice results of [39] also seem to point to a
lower value of kappa at higher temperatures. Note finally
that a positive value of y means that the medium is very
different from a weakly coupled quark-gluon plasma, since
the latter has a negative gamma. This reinforces the need for
a lattice evaluation of y.
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From the comparison between strongly and weakly
coupled results, it can be seen that there is more suppres-
sion in the weakly coupled case than in the strongly
coupled one, which might seem surprising. In order to
understand this, one has to take into account the several
differences between the two cases. In the weakly coupled
case, we restrict ourselves to very central collisions (in
order to guarantee high temperatures and make the weakly
coupled case plausible), while in the strongly coupled
scenario, which is more phenomenologically oriented, we
focus on less central collisions since there our approx-
imations are more likely to be fulfilled. Another important
difference is that the leading-order thermal corrections in
the weakly coupled case are approximately linear with the
temperature, while in the strongly coupled one they are
cubic. In a system that expands following Bjorken evolu-
tion and with a sound velocity close to the ideal gas case,
linear corrections tend to have a larger impact than cubic
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FIG.9. R4, as obtained using x/T> = 0.25 and y = 0 in the left plot and /7> = 2.6 and y/T> = 6 in the right plot (dots) compared
with the CMS data of [41] (triangles). Upper (red) entries refer to the Y(1S), and lower (green) entries to the Y (2S5). The vertical dashed
lines highlight the window in which we expect the approximation 1/ay > T ~ mp > E to be valid.
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ones. This can be seen by looking at our analysis of the
static limit in Appendix A.

VI. CONCLUSIONS AND OUTLOOK

In the paper we present a systematic description in an
effective field theory framework (pNRQCD) of heavy-
quark-antiquark systems as open quantum systems inter-
acting with an environment made of light quarks and
gluons, the fireball formed in heavy-ion -collisions.
While this work derives its original inspiration from
[25], it is quite different from all previous studies on the
subject [48-56], as the derived evolution equations fulfill
three essential conditions: they conserve the total number
of heavy quarks (i.e., Tr{p,} + Tr{p,} is preserved by the
evolution equations); they account for the non-Abelian
nature of QCD (through gluon exchanges’ color-singlet
quarkonia may dissociate into quark-antiquark color-octet
states, and vice versa quark-antiquark color-octet states
may generate quarkonia); and, finally, they do not rely on
classical approximations but rather follow from the closed-
time-path formalism applied to quantum field theory. The
work substantially extends, updates, and completes a
previous strongly coupled analysis done in [10]. A recent
study also based on pNRQCD can be found in [57].

The evolution equations in terms of quark-antiquark
color-singlet and color-octet density matrices have been
written in (38) and (39). The equations rely on the
assumption that the typical inverse size of the quark-
antiquark system, 1/ay, is larger than any other scale of
the medium and larger than Agcp. This implies that the
quark-antiquark interaction is mainly Coulombic and
that the interaction with the medium may be multipole
expanded. The evolution equations follow from the calcu-
lation of the singlet and octet density matrices at the leading
nontrivial order in the multipole expansion. Since the heavy
quark density is expected to be small, we only keep linear
terms in them. Then we show that, at the order in the
multipole expansion we are working, the time derivative of
the density matrices at a given time can be written as a
linear function of the density matrices at the same time.
This produces an evolution equation that is reliable at
arbitrarily large times and that turns out to be equivalent to
the Schwinger-Dyson equations depicted in Fig. 3. The
evolution equations (38) and (39) do not make any special
assumption on the medium and may be valid either for a
quark-gluon plasma or a different medium formed in the
heavy-ion collisions. They are also valid either if the
medium is in thermal equilibrium or if it is far from it
(provided that no dynamical scale is larger than 1/ag, as
mentioned above). The evolution equations preserve the
number of heavy quarks, but, in general, they are not of the
Lindblad form.

In order to get a Lindblad equation, we consider some
specific cases where we assume that the time scales we are
interested in are larger than any other time scale in the

problem and that the evolution is quasistatic. For a
quasistatic evolution, the environment may be locally in
thermal equilibrium. Thermal equilibrium allows us to
define at each time a temperature. In Sec. IV we consider
the explicit case of a weakly coupled quark-gluon plasma.
The temperature, 7, and the Debye mass, m, are assumed
to be such that 7> E > mp, where E is the typical
binding energy of the heavy-quark-antiquark system. In
Sec. V we consider a strongly coupled plasma at a
temperature T ~ mp > E. In Appendix C we also discuss
the case T > mp > E. In order to numerically solve the
Lindblad equation, we further make a truncation on the
number of partial waves taken into account. This approxi-
mation is of a technical nature, and it is only useful to
simplify the solution in the face of limited computing time.
In the future, one may relax some of these approximations,
or even solve directly the evolution equations (38) and (39).

The numerical solutions of the Lindblad equations are
presented and discussed in Sec. IVA for the weakly
coupled quark-gluon plasma, and in Sec. VA for the
strongly coupled medium. We analyze some specific set
of initial conditions, parameter, and time evolution of the
thermal medium [we work with the Bjorken evolution
(18)]. A more extensive study is surely due in the future.
For instance, the Bjorken evolution could be substituted by
more refined hydrodynamical models (see [58] for a review
of the state of the art). There is also plenty of room for
improvement at early times, where color glass condensate
physics [59,60] may be included or higher-order NRQCD
production results (see [61] and references therein) for the
initial conditions of the density matrices may be incorpo-
rated. Eventually, the momentum dependence of the quark-
antiquark pairs should also be addressed. This requires
enlarging the Hilbert space of the density matrices and
incorporating the effects of the relative motion of the pair
with respect to the medium; see, for instance, [46,47].

The strongly coupled plasma case may be of particular
interest at the LHC, since the temperature 7" or even zT
may not be much larger than mp. The Lindblad equation
for the strongly coupled case depends on only two
parameters: the heavy-quark momentum diffusion coeffi-
cient k, defined in (74), and y, defined in (77). While « has
been computed on lattice QCD (although in pure gluody-
namics and for a limited range of temperatures), y has not.
A first determination of y remains therefore the most urgent
missing ingredient for the computation of the suppression
factor Ryy.
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APPENDIX A: STATIC LIMIT

In this appendix, we consider the evolution equations for
static quarks under the condition

s

1
->T> (A1)
.

r

Interestingly, this case can be solved analytically.

Because T is much larger than the typical energy scale,
the energy-dependent exponentials in (29), (32), (35), (36),
and (37) can be set equal to 1. We obtain

(25 + Zz)ps = E‘osv (Az)

- = 1
(Zo + Zj’)po — 00 = S50 = 12 (ZS + Z;r)po‘
N—1

(A3)
The evolution equations depend, therefore, on only one
time-dependent  parameter [',(r) = Z(¢) + Zi(¢), the
color-singlet width, and they read

dﬂ%(tt;l) =T,(1) L\(é(t— ll) — po(ts t)} . (A4)

dﬂ%(tt;t) _ _FS(Z‘) |:A(;%(E li) _psr(l‘; t):| . (AS)

The initial condition describes two heavy quarks at a given
distance r in an arbitrary color state:

ps(to3to) = pyr(to: 10)[r) (x| (A6)
po(tO;t0> :por(tO;t0)|r> <I‘| (A7)
The problem consists in solving the evolution

equations (A4) and (A5) for the two functions p,, and
Por- The solution is

t,t e I
pﬁuﬂ:&%%£h1+m@_weﬁﬂﬁhﬁ
tos 1, — " at Ju(t
4 Porlloito) g = fl ety

e (A8)

e ;t i e
p0r<t;t):p"r(lv—02())[N%_l_(N%_l)e .ﬁodt/O)]
Por(tos 1o) — ["ar ju(e)
+T%[N%—l+e ﬁo ], (A9)

. 2_ o .
with u(t) = N&Z‘I%(Z). The static limit does not give us

information on how the singlets are distributed in the
different possible states [for example, T(1S5), T(2S), and
so on], but it does give qualitative information on how the
population of singlets compares to that of octets. The
crucial parameter is u(t): for t — 1y < u(t), the thermal
medium has a small impact on the distribution of quarko-
nia, while for 7 —ty > u(#), the density approaches the
large-time asymptotic value.

(a) As a first special situation, we consider a strongly
coupled plasma:

T ~myp. (A10)

From (69) it follows that in this case, I';(r) = Z,(¢) +

>!(t) = k(1)r%. The heavy-quark momentum diffusion
coefficient x has been defined in (74). The equations do
not depend on the coefficient y defined in (77).

We estimate the order of magnitude of u(z) by taking
r = ay [the Bohr radius of the Y(15)], the average temper-
ature 7 = 317 MeV (that we define as the average between
the temperature at f = 0.6 fm and 7 = 250 MeV), and
k = 2.5T3. We obtain u ~ 4 fm, which is about the time the
fireball temperature is above T'. for central collisions (see
Fig. 1). In Fig. 10 we plot p, as a function of ¢ for the two
extreme initial conditions.

(b) The second situation that we consider is the one of a
weakly coupled quark-gluon plasma:

1.0 : :
— only singlet initially
= = only octet initially
0.8
z
S 06} R
Qo
<
o
204} i
o
£
0]
0.2 i
0.0L= -~ T - ! ! !
2 4 6 8 10
time(fm)

FIG. 10. Evolution in time of the color-singlet density for static
quarks in a strongly coupled plasma. The blue continuous line
shows the evolution when the initial state is made only of singlets,
whereas the green dashed line shows the evolution when the
initial state is made only of octets. Asymptotically both curves
approach 1/N? =1/9~0.11.
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FIG. 11. Like in Fig. 10, but in a weakly coupled quark-gluon

plasma with the choice ag ~ 0.4 for all strong couplings.

%> mp. (A11)
.

From (55) in the infinite mass limit it follows
that T, () = =,(¢) + Z:(t) _ Nc(NE—l)as(gE)HZ“(l/ao)T'

If we choose up =T, we get u~ 1.6 fm. This is
qualitatively consistent with what we see in Figs. 4 and
5. The computations done in [32] were used in [62] to fit
lattice results using a, =~ 0.4 independently of the renorm-
alization scale. If we proceed like that, we get u = 2.16 fm.
The plot of p, as a function of 7 for the two extreme initial
conditions corresponding to this last choice of the coupling
is shown in Fig. 11.

(c) Finally, let us consider the more general case where
Iy has an unspecified power-law dependence on the
temperature:

) n

This case allows to understand, at least qualitatively, the
interplay between the time evolution of the decay width and
Bjorken’s expansion in the time evolution of the color-
singlet and color-octet densities. Note that, if we neglect the
running of the strong coupling, both previously considered
situations, (a) and (b), are of this type.

Using the time dependence of the temperature in
Bjorken’s expansion (18), one gets

T

T (A12)

r(1) =110

2

NZ-1 1 t\ "
H)=—"— [ — , Al3
(1) Nz Ty(T) (fo> (AL3)
which implies
tdr NZ T (Tt AN
[ R ()
o u(t) Ni—11-nv; to

Inserting (A14) into (A8) and (A9) provides the solution of
the evolution equations:

074009-

psr(ts1) =1 = po,(t51)

_ Nz =1 (por(t03 1)
MTTN Mo
]X% rx(TO)’O[l_(L)l—nug]
_psr(tO;tO)) eve! 1o 0 . (AlS)

The solution shows three very different behaviors
depending on the value of nv?.
(1) If nv? > 1, the color-singlet density never reaches
the value 1/N2, which is its thermal equilibrium
value. Instead it approaches the value

1 N2—1 fo: 1 N2 Ty
— - c 5 or(20 0) _psr(IO;IO) eN%—l 1-no? .
NN N2

(A16)

The physical interpretation is that for nv? > 1, the
decrease with time of the decay width in the fireball,
described by Bjorken’s expansion, is so fast that the
static quark-antiquark densities do not have time to
equilibrate.

In the case nv? < 1, we are exactly in the opposite
situation. In the absence of freeze-out effects that
could modify the evolution, the color-singlet and
color-octet densities reach their thermal equilibrium
values exponentially fast. This is the situation
realized by static quarks and antiquarks in the
weakly coupled plasma of case (b), for which n = 1.

2

(3) If nv? =1, we have
/t ' N b (A17)
tou([/)_N%—l s\£0/%0 0 P

which implies that

psr(tst) = 1= p,.(t;1)
1 N2—1

_ N2

N?

dl
Like before, the color-singlet and color-octet den-
sities reach after some time their thermal equilibrium
values. Differently from the previous case, however,
the falloff is powerlike instead of exponential, which
means that the asymptotic values are reached slower
[in fact, much slower if I'y(T,)#, < 1]. The physical
interpretation is that we are describing a situation in
which the speed of the expansion of the fireball is
competing with the decrease of the decay width with
the temperature. The actual time required to reach
the thermal equilibrium values depends crucially on

por(tO; fo)
N1

(

(To)to

_psr(tO;t0)>

N
—<T
to NZ-1®

: (A18)
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the initial condition. This situation is realized by
static quarks and antiquarks in the strongly coupled
plasma of case (a), for which n = 3.

APPENDIX B: QUARKONIUM IN THE REGIME
1/ay > T > E > myp

In this appendix we consider quarkonium in a plasma
that realizes the regime 1/ay > T > E > m. We aim at
justifying Eqs. (54)—(60). We will start with some general
remarks and then apply them to the case at hand.

1. Density matrices’ redefinitions

The evolution equations (38) and (39) allow for the
following redefinitions of the density matrices p, and p,
and of the functions X, ¥, E,,, E,,, and E,, that preserve
the evolution equations at the given accuracy of order 2 in
the multipole expansion:

ps(t:1) = py(t:1) — ™10 (1)e™ p(151)
—ps(t;t)e™ 'O (1) T ehs!

+ e M0, (p,(1:1), )€™, (B1)
po(t1) = po(ts1) = €710, (1)e™p, (1;1)
= pol13 )0, (1) eih
+ e7 10, (py(1:1), 1) e’
+ €710, (py(1:1), 1), (B2)
L dOg(t) .
5,0 > 50 + e 90O s (p3)
. .dOo,(t) .
0 = B0 e Cellens, (pa)
Eio(po(ts1),1) = By (po(t:1),1)
. .dO tt),t) .
_|._e_lh.st SO(IDO( ) )e’hx’, (BS)
dt
Eos(ps(t:1),1) = Eos(ps(t:1), 1)
. dO tt),t) .
—I—e_lh"t os(ps( ) )elhot’ (B6)
dt
Eoo(Po(t;1),1) = Eoo(po(tst), 1)
. dO tt),t) .
+ e_lhot ()()(p()( ) )elhot, (B7)

dt

where O,, 0,, O,,, O,,, and O,,, are operators of order r>.
This implies that at order > we may neglect redefinitions
of the density matrices inside the functions E,,, E,,, and
E,,- Moreover, whenever dp,/dt or dp,/dt multiplies
functions of order %, we can replace them, through
the leading-order evolution equations, with —i[k,, p,] and

—i[h,,p,|, respectively. In order for these transforma-
tions to preserve the trace of the total heavy-quark density,
ie., Tr{p,} + Tr{p,}, the operators Oy, O,, Oy,, O,,, and
0,, must be related in such a way that the transformed
color-singlet and color-octet density matrices, and the
transformed functions X, ¥, E,,, E,, and E,, fulfill
the conditions (42) and (43). This is guaranteed if the
final evolution equation is of the Lindblad form (see
Sec. ITI C).

2. Computation of X, and Z,,

Equations (54) and (55) were originally derived in [32]
by computing the singlet self-energy in momentum space
for a generic incoming energy and by dropping terms that
would vanish on physical states. Such terms contribute to
the wave function normalization only. We may distinguish
two momentum regions in the chromoelectric correlator
appearing in the self-energy. The momentum region scaling
like the temperature 7" contributes with

2

3
—ig Cra,T? (—AVr2 - M) , (B8)

where AV = h, — hy = N.a,/(2r). The momentum region
scaling like the energy scale E contributes with

2
gczSCFT<AV2r2 +—t— .

The factor of T appearing in (B9) is a consequence of the
Bose enhancement. The real part of —i times (B8) gives
(54), and the imaginary part of —i times (B9) gives (55).

The function X, that appears in the evolution equa-
tion (38) has been defined in (29). It also gets contributions
from the scale T and the scale E. The contribution from the
scale 7', which is computed by expanding the exponents
and keeping terms linear in /4, and A, reads

.|y = Eq.(B8) + igCFast[hs, P, (B10)
The contribution from the scale E, which is computed by
expanding the Bose distribution function for large 7', reads

2
ZS|E:Eq.(B9)—|—§CFaST hg,=[hg, P2+ 1?AV|.  (BI1)

1
572

We see that neither (B10) nor (B11) coincides with (B8)
and (B9). The difference is significant: for instance, in
(B10) it gives rise to an imaginary part of —i2; that is larger
than the one listed in (55). However, assuming that the time
dependence of the temperature is a subleading effect (see
the comment at the end of Sec. III B), we may reabsorb the
difference in a redefinition of the color-singlet density, pq,
and X according to (B3) with

074009-20



HEAVY QUARKONIUM SUPPRESSION IN A FIREBALL

PHYS. REV. D 97, 074009 (2018)

. 2 1
0,(t) = e’hs’{gCF(JtSTzr2 - i§CFa8T<— [y, 1?]

2
+ r2Av> }e—ihs’.

Also E,,, defined in (32), may be computed in a similar
way by distinguishing contributions coming from the
momentum region 7,

(B12)

Eso‘T = 15_ ( [pmhn] [ripori’ hs])v (B13)

from contributions coming from the momentum region E,

Esolp = Eq.(58) + I(r [[pm h,), o]

- Z[Vi[pm h()]rl, hs] + [[rlp()rl7 hS]’ h"})

We see again that the sum of (B13) and (B14) differs
from (58) by a quantity that may be reabsorbed into a
redefinition of the color-singlet density, p,, and ZE,
according to (B5) with

(B14)

Oso(po(t51),1) =g%T2 eMirip,rieihst

c

a d
S T 1hrt —ihgt .
“a, L rperte™)

(B15)
As mentioned above, the redefinition relies on the time
dependence of the temperature being a subleading
effect and on using the leading-order evolution equations
whenever this is consistent with the order 7> accuracy of the
calculation.

3. Computation of X,, E,,, and Z,,

The octet thermal corrections (56) and (57), which are
related to the octet potential and width, have been written
here for the first time. They follow from the results in [32]
in a straightforward way. Two diagrams contribute to the
octet self-energy, one with a singlet propagator in the loop
and one with an octet propagator in it, because, according
to the pNRQCD Lagrangian (22), the octet may couple to
both the singlet and the octet itself through a chromo-
electric dipole. The contributions of the first diagram can be
obtained from the ones of the singlet self-energy (B8) and
(B9) by making the substitution h, <> h, (AV — —AV)
and correcting the global color factor Cx — 1/(2N..). This
(times —i) leads to the first two and three terms in (56) and
(57), respectively. The contributions of the second diagram
can be obtained in a similar way by making the substitu-
tions hy, — h, (AV =0) and Cr — (N2 —4)/4N,. This
(times —i) leads to the last term in both (56) and (57).

The computation of X, from (35) leads to an expression
that differs from (56) and (57) by an amount that can be

reabsorbed into a redefinition of the color-octet density, p,,,
and X, according to (B4) with
( [hy, 12 ]—rZAV>

asT[ho,rz]}e_ihO’.

(B16)

T ia
t_tht g'1"22 s
0,(1)=e {ISN " 73N,

x N2—4 Tzrz—LNC_4
36 N, 12 N,

The functions &, and E,, are computed from (36) and
(37). The calculation proceeds like in the E,, case dis-
cussed above, and the results may be copied from there
after having performed the same substitutions that allow us
to compute the two diagrams of X, from the one contrib-
uting to X;. The results one obtains differ from the
expressions listed in (59) and (60) by an amount that
can be reabsorbed into a redefinition of the color-octet
density, p,, and E,, and Z,, according to (B6) and (B7)
with

Ouslpy(1:0).1) = G- (NE = D)2t rip riemiht

9N,
37\;6( 3—1)Tjt( ol ripgrie=ihet),
(B17)
040 (po(1:1).1) = 1—”8;— (N2 = 4)T2elrip, rie=ihet
d, ...
6N > (N2 — 4)TE(e’hv’r’p0r’e ihot,
(B18)

Finally, we note that Tr{p,} + Tr{p,} is invariant under
the density redefinitions induced by the functions (B12)
and (B15)-(B18).

4. Impact on R4, (nS)

According to (17) and (23), the nuclear modification
factor, Ry4(nS), for S-wave quarkonia is proportional to
the matrix element

(nSlp,(£:1)|nS). (B19)

A redefinition of the color-singlet density matrix of the type
(B1) changes the above matrix element into

(nS|p,(£;1)|nS) — (nS|ps(z;1)[nS)
— (nSle=™0(1)e™'p,(: 1) nS)
= (nSlp,(r: t)e™™10,(1) ™! |nS)

+ (8|04 (p, (£ 1), 1) |nS). (B20)
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This shift in the color-singlet matrix element has been taken
into account when computing the results shown in Sec. IV
A. Tts numerical impact turns out to be small.

APPENDIX C: QUARKONIUM IN THE REGIME
1/ay>T>mp>E

We consider here quarkonium in a plasma that realizes the
regime 1/ag > T > mp > E. This regime was studied in
[8] for the static case and in [63] for muonic hydrogen. It is
straightforward to combine those results to obtain the
relevant expansions that enter the Lindblad equation.
Under the condition 1/ay> T > mp > E, all thermal
contributions can be encoded in modifications of the
potential. In addition, most of the contributions can
be regarded as a particular case of Sec. V, where y and «
can be computed in perturbation theory. The expected
leading contributions to y and x, which would be of
O(as(ur)T?), turn out to vanish. As a consequence, the
leading nonvanishing contributions to these quantities are of
O(a2(uy)T?) and O(ay(mp)m3T). They may compete in
size with terms of relative size of O(a,(puy)ET?) calculated
in (54) that come from higher-order terms in the E/T
expansion and are not included in y and «. Putting all the
contributions together, we obtain

2
Re(—iZ,) = ?ﬂcpas(ﬂT)AVTzrz

2 r?
+WCF%(MT)T2 t5r (C1)
a,(m 4
r = -3c3)C 2 i AN o T,
(C2)
2
Im(—i%) = —5k (C3)

K=—

C r? 4¢)
?Fas(mD)Tm% <2}/E - logm—%— 1—4log2—2 )

(
8
—glogZNCCFag (ur)T3, (C4)

where pr = zT, mj, = 4ra,(ur)T*(N. + ng/2)/3, and
AV = N.ay(1/ay)/(2r); n; is the number of active mass-
less flavors (n; = 3 in the bottomonium case); and ¢ is the
Riemann zeta function. Note that the term r?y/2 in (C1) is
suppressed by a factor a,T with respect to the other terms;
we keep it nevertheless to maintain a closer analogy to the
discussion of Sec. V.

The thermal contributions to the octet potential have not
been calculated before. However, they can be easily
obtained from the expressions above by following the
same steps as in Appendix B 3. We obtain

Re(—i%,) = —%aS(MT)AVTer
n N2-2 r’N2-2
e T S () T? + =~ "2y (C5
rPN%2-2
Im(—i% L C6
m(-iz,) = =5 35 (c6)

The quantities 2y, =,,, and Z,, are obtained as particular
cases of (71)—(73), in which y and « take the values of (C2)
and (C4), respectively. In addition, the Lindblad operator
H is obtained from (79) by making the following
replacements,

2 2
hy = 5 Cra (k) AVTP 4 L Coa () T2, (CT)

h, — h,

NZ_2
~ T (up)AVT2R 4 2

ON 6M N as(.“T)Tz'

(C8)

It is not obvious that this regime applies to LHC
temperatures. In particular, the separation of scales between
T and mp does not seem to be large enough to guarantee a
positive k and hence a positive decay width. We can
nevertheless compute the quarkonium suppression just
due to screening, which amounts to computing R4, while
ignoring the imaginary part of the potential and all the =’s.
In Fig. 12, this suppression is computed from (17) in the
case of the 1.5 and 2§ bottomonium states. We can see that,
while screening alone is able to make Y(2S) disappear
almost completely, Y(1S) suppression is at most 10%.

1.0

N — 1S

0.81 N

0.6 N

RAA
7

0.4r N

0.2 ~

0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5

time(fm)

FIG. 12. R,y for T(1S) and YT(2S) due to screening only, in the
regime 1/ag > T > mp > E.
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APPENDIX D: ALTERNATIVE FORM OF THE
EVOLUTION EQUATIONS

We present here an alternative way of writing the self-

energies and the Z functions in the evolution equa-
tions (38)—(39), which makes the linear character of the
equations and the minimal set of operators that characterize
the interactions with the medium explicit:

Z,(1) = riA (o).

= N2 -1 riAiOﬁ.(t) +
c

= A Opo ()

+ rlp,(1:1)AY (1)),
Eos(ps(t:1),1) = AT (O)ps (6001 + ripy (1) A (1),

N2 —4

Ve "A.OOTI,
2NZ—1) (1)

Z,(1)

Eio(po(t:1). 1)

N2 -4 ,
= 51),1) = ——— (A2 (0)p, (t: 1)F
()()(p()( ) ) Z(N% _ 1)( 1 ( )p ( )r
+ rip, (1;1)AL(1)), (D1)
where
g2 t . . . .
A (1) = dtye(2=0) pi gihi(1=02) (E@:i (1, 0) E*(1,0)),
2N, Ji,

(D2)
with u, v = s, 0.

We can use Eq. (D1) to write the evolution equation in a
way similar to the Lindblad equation. Defining

_vT
H= <hs R 0 )
0 hy + 252

(D3)

=( ) oo i)
i = r, i = Ni—4 00 ’
01 0 A

( 0 maAY >
Avt o0 )

the evolution equation can be written as

~
~1
|
/N
- O
() p—
N———
\h-v
~
~w
|

dp 1
g noLmt __{pmin
7 l[H,pHnEm hnm<L,le SALTL ,p}>, (D6)

where 4, are the elements of the matrix

(D7)

o o = O
[
- O O O
S = O O

If i were a positive definite matrix, then it would always be
possible to redefine the operators L7 in such a way that the
evolution equation would be of the Lindblad form (46).
Since, however, / is not a positive definite matrix, the
Lindblad theorem [23] does not guarantee that Egs. (38)
and (39) may be brought into a Lindblad form. A special
case is the strongly coupled case studied in Sec. V. There
L! « LY and L} o L?, which allows us to set to zero, after a
redefinition of the operators L, the eigenvectors of h
associated to negative eigenvalues, eventually leading to an
evolution equation of the Lindblad form.
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