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The field theoretic renormalization study of reduced quantum electrodynamics (QED) is performed up to
two loops. In the condensed matter context, reduced QED constitutes a very natural effective relativistic
field theory describing (planar) Dirac liquids, e.g., graphene and graphenelike materials, the surface states
of some topological insulators, and possibly half-filled fractional quantum Hall systems. From the field
theory point of view, the model involves an effective (reduced) gauge field propagating with a fractional
power of the d’Alembertian in marked contrast with usual QEDs. The use of the Bogoliubov-Parasiuk-
Hepp-Zimmermann prescription allows for a simple and clear understanding of the structure of the model.
In particular, in relation with the ultrarelativistic limit of graphene, we straightforwardly recover the results
for both the interaction correction to the optical conductivity C� ¼ ð92 − 9π2Þ=ð18πÞ and the anomalous
dimension of the fermion field γψ ðᾱ; ξÞ ¼ 2ᾱð1 − 3ξÞ=3 − 16ðζ2NF þ 4=27Þᾱ2 þ Oðᾱ3Þ, where ᾱ ¼
e2=ð4πÞ2 and ξ is the gauge-fixing parameter.

DOI: 10.1103/PhysRevD.97.074004

I. INTRODUCTION

It is well known that Dirac liquids possess an infrared
(IR) Lorentz-invariant fixed point [1]. This fact is actually
generic to systems with stable Fermi (or Dirac) points; see
the textbook [2]. In these systems, low-energy excitations
have a gapless linear, relativisticlike, spectrum as known
theoretically for a long time in graphene [3,4] and in the
so-called spin-liquid phases of high temperature super-
conductors [5,6]. Such low-energy Dirac-like energy dis-
persions are by now well observed experimentally in
various materials which are under active study, e.g.,
graphene [7], (artificial) graphenelike materials [8], surface
states of topological insulators [9], the so-called Dirac-
Weyl materials [10–15]; see the review [16] on these
three-dimensional analogues of graphene and, very
recently, half-filled fractional quantum Hall systems [17].
The IR Lorentz invariant fixed point arises from the long-

range Coulomb interaction among the Dirac fermions
which enforces the flow of the Fermi velocity, e.g., v ≈
c=300 at experimentally accessible scales for graphene, to
the velocity of light, c, in the IR with a corresponding flow

of the fine structure constant, e.g., αg ≈ e2=4πεℏv ≈ 2.2 for
graphene, to the usual fine structure constant, α ≈ 1=137, in
the IR. Moreover, in the case of planar systems such as
graphene, the electrons are confined to a three-dimensional
space-time, de ¼ 2þ 1, while interactions between them
are mediated by four-dimensional photons, dγ ¼ 3þ 1.
The Lorentz invariant fixed point may therefore be effec-
tively described by a massless relativistic quantum field
theory (QFT) model whereby de-dimensional fermions
interact via a dγ-dimensional Uð1Þ gauge field. Such a
model belongs to the class of reduced quantum electrody-
namics (QED) [18], reduced QEDdγ ;de or simply QEDdγ ;de,
also known as pseudo QED [19] and even more recently as
mixed-dimensional QED [20]. Notice that in the particular
case where gauge and fermion fields live in the same space-
time, dγ ¼ de ¼ d, reduced QEDs correspond to the usual
QEDd while in the reduced case de < dγ. Early motivations
for the study of reduced theories came from interest in
branes [18,21], dynamical chiral symmetry breaking on a
brane [18], conformal field theory [22] (and reference
therein), as well as potential applications to condensed
matter physics systems in relation with the quantum Hall
effect and high temperature superconductivity [19,23,24].
In Ref. [25], QEDdγ ;de was advocated as a minimal model to
study the infrared Lorentz invariant fixed point of Dirac
liquids with a special focus on QED4;3 relevant to intrinsic
(or undoped) disorder-free graphene and similar planar
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materials. In the past years, there has been an increasing
number of studies focusing on reduced QED and in parti-
cular QED4;3 in relation with, e.g., transport and spectral
properties [26–29]; see also the short review [30], optical
properties [31,32], quantum Hall effect [20,33,34], and
dynamical chiral symmetry breaking [35,36] in planar
systems. Moreover, QED4;3 was shown to be unitary
[37], its properties under the Landau-Khalatnikov-
Frandkin transformation were studied [38], its precise
relation to QED3 was understood [35], it was shown to
possess a strong-weak duality mapping the coupling con-
stant e to ẽ ¼ 8π=e with a self-dual point at e2 ¼ 8π
(or α ¼ 2) [39], and, even more recently, it has been studied
as an interacting boundary conformal field theory [40].
Though essentially of academic interest, a thorough

understanding of the IR fixed point is a necessary pre-
requisite to set on a firm ground the study of the physics
away from the fixed point which is closer to the exper-
imental reality but more difficult to study theoretically.
Indeed, in the nonrelativistic limit there is often no
definitive agreement on the precise value of important
quantities directly related to interaction effects; in relation
with graphene, let us for example mention two quantities
that have been the subject of extensive work during the past
decade: the value of the interaction correction to the optical
conductivity (see, e.g., Refs. [41–52]) and the value of the
critical coupling constant for dynamical gap generation
(see, e.g., Refs. [53–73]). It turns out that QED4;3 is an ideal
playground to compute both of these quantities; see
[25,26,28] (as well as [30] for a short review) and [35],
respectively. The reason is that all the powerful multiloop
machinery originally developed in particle physics and
statistical mechanics to compute (massless) Feynman dia-
grams (see, e.g., Refs. [74,75] and also the lectures [76])
can be applied to reduced QED in order to rigorously
understand the perturbative structure of the model as well
as some of its nonperturbative features. Interestingly, the
odd dimensionality of space-time together with the
(related) presence of Feynman diagrams with noninteger
indices brings a lot of novelties (as well as highly nontrivial
additional complications) with respect to what is usually
known from the study of (3þ 1)-dimensional theories; see
Refs. [26,28,30,77] for a systematic computation of non-
trivial master integrals in QED4;3 up to two loops. Besides
loop calculations, a nontrivial aspect of reduced QED is
related to the peculiar structure of its (sub)divergent graphs.
It is then the purpose of renormalization to give a
prescription on how to deal with these (sub)divergences.
In all previous references, the so-called conventional
renormalization has been used to achieve this purpose.
In this paper, we will focus on the field theoretic

renormalization study of reduced quantum electrodynamics
and in particular QED4;3. Wewill assume that all the needed
master integrals are known and proceed in renormalizing
the model and extracting anomalous dimensions and

renormalized correlation functions with the help of the
recursive subtraction scheme, the so-called R-operation, of
Bogoliubov and Parasiuk [78] and Hepp [79] or its solution
known as Zimmermann’s forest formula [80] (see also the
textbook Ref. [81] as well as [82]). The power of the
Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) pre-
scription, with respect to conventional renormalization,
lies in the fact that it applies diagram by diagram, gives
a very clear and unambiguous prescription on how to
subtract (sub)divergences, and is conveniently automated
[85,86]. We will apply such a prescription to computing the
interaction correction to the optical conductivity and the
anomalous dimension of the fermion field (which plays an
important role with respect to the critical coupling constant
for dynamical gap generation). As will be shown in detail in
the following, the obtained results are in complete agree-
ment with those obtained via conventional renormalization
thereby lifting any possible ambiguity as to their value at
the IR fixed point.
The paper is organized as follows. In Sec. II, we motivate

the study of reduced QED and set up the general notations
and conventions. In Sec. III, we recall the one-loop
structure of the model. In Secs. IV and V, we then focus
on the renormalization of the polarization operator and
the fermion self-energy, respectively. We conclude in
Sec. VI and define some basic master integrals appearing
in the text in Appendix. In the following, we work in units
where ℏ ¼ c ¼ 1.

II. GENERAL APPROACH AND MODEL

A. General approach

The most general low-energy effective action (model I)
describing a disorder-free intrinsic Dirac liquid reads (in
Minkowski space)

S ¼
Z

dtdDex

�
ψ̄σðiγ0∂t þ ivγ⃗ · ∇⃗Þψσ

− eψ̄σγ
0A0ψ

σ þ e
v
c
ψ̄ σγ⃗ · A⃗ψσ

�

þ
Z

dtdDγx

�
−
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2

�
; ð1Þ

where ψσ ≡ ψσðt; x⃗Þ is a four component spinor field of
spin index σ which varies from 1 to NF (NF ¼ 2 for
graphene), v is the Fermi velocity, c is the velocity of light
which is also implicitly contained in the gauge field action

through ∂μ ¼ ð1c ∂t; ∇⃗Þ, ξ is the gauge fixing parameter, and
γμ is a 4 × 4 Dirac matrix satisfying the usual algebra:
fγμ; γνg ¼ 2gμν where gμν ¼ diagð1;−1;−1;…;−1Þ is the
metric tensor in De þ 1 dimensions. The action (1)
describes the coupling of a fermion field in de ¼ De þ 1
dimensions with a Uð1Þ gauge field in dγ ¼ Dγ þ 1

dimensions. In the case of graphene, we have De ¼ 2
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and Dγ ¼ 3, i.e., fermions in the plane and gauge field in
the bulk. Because of the running of v all the way up to c,
any complete renormalization group analysis of Dirac
materials should in principle be based on (1). It turns
out that such a task is rather involved and, presently, very
few results are available; see e.g., Refs. [1,87].
In the literature, the overwhelming majority of works on

Dirac liquids focuses on the nonrelativistic limit where
v=c → 0 (instantaneous interactions). This is, of course, a
very realistic assumption given the smallness of the ratio,
e.g., v=c ≈ 1=300 for graphene, at the experimentally
accessible scales. In this limit, there is no coupling to
vector photons and Eq. (1) simplifies as (model II)

S ¼
Z

dtdDexψ̄σ½γ0ði∂t − eA0Þ þ ivγ⃗ · ∇⃗�ψσ

þ 1

2

Z
dtdDγxð∇⃗A0Þ2; ð2Þ

where the Coulomb gauge is used. Most of the theoretical
results derived on the basis of (2) are perturbative with
expansions in the (bare) coupling constant reaching two-
loop accuracy (some partial results are available at three-
loop [88]). Of course, given the strength of the interaction
in this limit, e.g., αg ≈ 2.2 for graphene, such expansions
may not be reliable and a nonperturbative treatment of the
interactions seems to be required. Such treatments are in
general limited to an random phase approximation-like
resummation or leading order (LO) in the 1=N expansion;
see Ref. [89] for an attempt to compute next-to-leading
order (NLO) corrections. Often, even LO results are
approximate (using the so-called static approximation,
neglecting Fermi velocity renormalization, etc.). So,
despite the fact that (2) is simpler than (1), calculations
are difficult to carry out in a rigorous way in this limit. This
often results in a rather confusing situation where even the
simplest quantities are subject to theoretical uncertainties as
mentioned in the Introduction; see, e.g., Refs. [35,49] for
examples and references therein.
In this paper, we will follow an alternative nonconven-

tional route initiated in Refs. [25,26,28]. We will study
interaction effects starting from the IR Lorentz invariant
fixed point where v=c → 1 and the interaction is fully
retarded. In this limit, Eq. (1) can be written in covariant
form as (model III)

S ¼
Z

ddexψ̄ σi=Dψσ þ
Z

ddγx

�
−
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2

�
;

ð3Þ
where Dμ ¼ ∂μ þ ieAμ is the covariant derivative. As
anticipated in the Introduction, we will refer to this
model as reduced QED [18] or QEDdγ ;de for short. For
de ¼ dγ ¼ d, Eq. (3) simply reduces to the usual QEDd.
The peculiar case of QED4;3 describes graphene, and other

planar Dirac liquids, at its Lorentz invariant fixed point.
In this respect, model II corresponds to a nonrelativistic
reduced QEDdγ ;de (NRQEDdγ ;de) while model III interpo-
lates between I and II. From the field theoretic point of
view, the model of Eq. (3) (and similarly for the two
previous ones) is characterized by an effective free gauge-
field action with fractional d’Alembertian [90,92]. The
latter can be derived from Eq. (3) by integrating out the
gauge degrees of freedom transverse to the de-dimensional
manifold. Including fermions, the Lagrangian density L
which is such that S ¼ R

ddexL, reads

L ¼ ψ̄σið=∂ þ ie=̃AÞψσ −
1

4
F̃μν ð4πÞεe

Γð1 − εeÞ½−□�εe F̃μν

þ 1

2ξ̃
Ãμ ð4πÞεe∂μ∂ν

Γð1 − εeÞ½−□�εe Ã
ν; ð4Þ

where we used the notation Ãμ to emphasize the fact that
it is a reduced gauge field (in de-dimensional space),
εe ¼ ðdγ − deÞ=2 and ξ̃ ¼ εe þ ð1 − εeÞξ; see Sec. II B for
more on notations. Though a priori mainly of academic
interest, the general motivation to consider reduced QED
models is that relativistic invariance allows for a rigorous
and systematic study of interaction effects as explained in
the Introduction. We will therefore focus on a field-
theoretic renormalization study of model III as a prerequi-
site to study model II and eventually model I [99].

B. Model and conventions

We now proceed with presenting the model and setting
up our conventions and notations; see also Refs. [25,28].
The Feynman rules for model III, Eq. (3), are summarized
in Fig. 1. The free massless fermion propagator and
fermion-photon vertex are the standard ones,

S0ðpÞ ¼
i
=p
; Γμ

0 ¼ γμ; ð5Þ

and the reduced gauge field propagator reads [see also
Eq. (4) where fractional powers appear explicitly at the
level of the action]

D̃μν
0 ðqÞ ¼ i

ð4πÞεe
Γð1 − εeÞ
ð−q2Þ1−εe

�
gμν − ð1 − ξ̃Þ q

μqν

q2

�
; ð6Þ

FIG. 1. Feynman rules for massless reduced QEDdγ ;de
(model III).
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where all components of momentum as well as the indices
take their values in the de-dimensional space. The gauge
fixing parameter of the reduced gauge field, ξ̃ ¼ 1 − η̃,
is related to the gauge fixing parameter of the four-
dimensional gauge field, ξ ¼ 1 − η, with the help of

ξ̃ ¼ εe þ ð1 − εeÞξ; η̃ ¼ ð1 − εeÞη: ð7Þ
The photon propagator, Eq. (6), can be separated in
longitudinal and transverse parts which read

d̃0kðq2Þ ¼
iξ̃

ð4πÞεe
Γð1 − εeÞ
ð−q2Þ1−εe ; ð8aÞ

d̃0⊥ðq2Þ ¼
i

ð4πÞεe
Γð1 − εeÞ
ð−q2Þ1−εe : ð8bÞ

In the case of QED4;3, εe ¼ 1=2 and the reduced propagator
has a square root branch cut, whereas for QED4;2, εe ¼ 1

and the reduced propagator is logarithmic. Notice that
the reduced QED4;2 models a one-dimensional system
where fermions interact via the long-range (fully retarded)
Coulomb interaction [18,22]. Another case is that of
QED4;1: εe ¼ 3=2 which corresponds to a pointlike particle
in a four-dimensional electromagnetic environment. In all
cases the reduced QFT is nonlocal.
Switching on interactions, the dressed fermion propa-

gator and fermion-photon vertex take the form

SðpÞ ¼ i
=p

1

1 − ΣVðp2Þ ; ð9aÞ

Γμðp; p0Þ ¼ γμ þ Λμðp; p0Þ; ð9bÞ

where ΣVðp2Þ is defined from the fermion self-energy,

ΣðpÞ ¼ =pΣVðp2Þ; ð10Þ

in a form appropriate to the massless case. As for the
photon propagator, only its transverse part is affected by
interactions as in the usual QED (with its precise form
depending on εe),

d̃kðq2Þ ¼ d̃0kðq2Þ; ð11aÞ

d̃⊥ðq2Þ ¼ d̃0⊥ðq2Þ
1

1 − iq2d̃0⊥ðq2ÞΠðq2Þ
; ð11bÞ

where Πðq2Þ is defined from the photon self-energy,

ΠμνðqÞ ¼ ðgμνq2 − qμqνÞΠðq2Þ: ð12Þ

For arbitrary de and dγ the dimensions of the fields and
coupling are given by

½ψ � ¼ de − 1

2
¼ 3

2
− εe − εγ; ½Aμ� ¼ dγ − 2

2
¼ 1 − εγ;

ð13aÞ

½e� ¼ 2 −
dγ
2
¼ εγ; ð13bÞ

where the parameters εγ and εe read

εγ ¼
4 − dγ

2
; εe ¼

dγ − de
2

: ð14Þ

Alternatively, the dimensions can be expressed as

dγ ¼ 4 − 2εγ; de ¼ 4 − 2εe − 2εγ: ð15Þ
Notice that, in momentum space, we have

½ÃμðkÞ� ¼ de
2
− ½Aμ� ¼ 1 − εe; ð16Þ

and εe therefore appears as an anomalous dimension for the
reduced gauge field in accordance with the form of the
reduced gauge propagator; see Fig. 1. Accordingly, gauge
fixing is nonlocal with the usual factor 1=q4 appearing in
the factor of ξ replaced by 1=ðq2Þ2−εe for arbitrary εe.
Hence, upon performing a gauge transformation, AμðxÞ →
AμðxÞ þ ∂μφðxÞ, the correlator of the φ-field, which is
proportional to the longitudinal part of the photon Green’s
function, also becomes anomalous. Formally, this amounts
to defining a nonlocal gauge transformation for the reduced
gauge field,

ÃμðxÞ → ÃμðxÞ þ ∂1þεe
μ φ̃ðxÞ; ð17Þ

where ∂1þεe
μ is a fractional derivative; see, e.g.,

Refs. [104,105].
Despite being nonlocal, all reduced models with a four-

dimensional gauge field (dγ ¼ 4) are renormalizable as
witnessed by the fact that the coupling constant is dimen-
sionless in QED4;de whatever space the fermion field lives
in; see Eq. (13b). This is in agreement with the counting of
ultraviolet (UV) divergences as the degree of divergence of
a diagram G, ωðGÞ, in QEDdγ ;de does not depend on the
number of vertices whatever value de takes [25,28].
Moreover, the most superficially divergent amplitudes in
QED4;des are the fermion self-energy and the fermion-
gauge vertex: ωðΣVÞ ¼ 0 and ωðΓÞ ¼ 0, respectively; i.e.,
they are logarithmically divergent as in QED4. On the other
hand, the degree of divergence of the photon self-energy is
lowered in reduced QEDs; while it is logarithmic in QED4,
ωðΠÞ ¼ 0, it is convergent in RQED4;3: ωðΠÞ ¼ −1, where
Π≡ Πðq2Þ; see Eq. (12). At this point, it is important to
note that, according to Weinberg’s theorem [106], a
Feynman graph G is absolutely convergent not only if
its degree of divergence, ωðGÞ, is negative but also if the
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degrees of divergence, ωðγÞ, associated with all of its
subgraphs γ are also negative. When considering multiloop
diagrams, one often encounters diagrams with divergent
subgraphs and dealing with these subdivergences is one of
the central aspects of renormalization theory. This will be
our focus in the following, with an extreme case in QED4;3

corresponding to an overall finite graph (the photon self-
energy) with divergent (fermion and fermion-gauge vertex)
subgraphs.
We are now in a position to introduce the renormalization

constants associated with a general model of QED4;de ,

ψ ¼ Z1=2
ψ ψ r; A ¼ Z1=2

A Ar; ð18aÞ

e ¼ Zeerμεγ ¼
ZΓ

ZψZ
1=2
A

erμεγ ; ξ ¼ Zξξr; ð18bÞ

where the subscript r denotes renormalized quantities and
the renormalization scale, μ, has been introduced in such a
way that er is dimensionless in dγ ¼ 4 − 2εγ dimensions.
The latter is related to the corresponding parameter μ̄ in
the modified minimal subtraction (M̄S) scheme with the
help of

μ̄2 ¼ 4πe−γEμ2; ð19Þ

where γE is Euler’s constant. The renormalization constants
also relate renormalized and bare propagators as follows:

Sðp; α; ξÞ ¼ ZψðαrÞSrðp;αr; ξr; μÞ; ð20aÞ

Dμνðq; α; ξÞ ¼ ZAðαrÞDμν
r ðq; αr; ξr; μÞ; ð20bÞ

Γμðp; p0; α; ξÞ ¼ Z−1
Γ ðαrÞΓμ

rðp; p0; αr; ξr; μÞ; ð20cÞ

where the bare propagators do not depend on μ. In the MS
scheme, these constants take the simple form

Zxðαr; ξrÞ ¼ 1þ δZxðαr; ξrÞ ¼ 1þ
X∞
l¼1

Xl

j¼1

Zðl;jÞ
x ðξrÞ

αlr
εjγ

;

ð21Þ

where x ∈ fψ ; A; e; ξ;Γg, αr ¼ e2r=ð4πÞ, and l runs over
the number of loops at which UV singularities are sub-
tracted. In the MS scheme the Zx do not depend on
momentum or mass; furthermore, the dependence on μ
is only through αr and/or ξr. So the Zx depend only on
αrðμÞ, εγ , and eventually ξrðμÞ.
From the renormalization constants, it is possible to

compute the β-function,

βðαrÞ ¼ μ
∂αr
∂μ

����
B

ðZα ¼ Z2
eÞ; ð22Þ

where the subscript B indicates that bare parameters, which
do not depend on μ, are fixed. Explicitly, it reads

βðαrÞ ¼ −2εγαr þ
X∞
l¼0

βlα
lþ2
r ; βl ¼ 2ðlþ 1ÞZðlþ1;1Þ

α ;

ð23Þ

where the coefficients βl are completely determined by the
simple 1=εγ poles in Zα. Similarly, one may compute the
field anomalous dimensions which are defined as

γxðαr; ξrÞ ¼ −μ
d logZxðαr; ξrÞ

dμ

����
B

ðx ∈ fψ ; AgÞ: ð24Þ

The radiatively generated photon anomalous dimension is
gauge invariant and reads

γAðαrÞ ¼
X∞
l¼0

γA;lα
lþ1
r ; γA;l ¼ 2ðlþ 1ÞZðlþ1;1Þ

A : ð25Þ

In the case of the fermion anomalous dimension, we have

γψðαr; ξrÞ ¼
X∞
l¼0

γψ ;lðξrÞαlþ1
r ;

γψ ;lðξrÞ ¼ 2ðlþ 1ÞZðlþ1;1Þ
ψ ðξrÞ: ð26Þ

As in usual QEDs, the renormalized constants are not all
independent. The gauge noninvariant gauge-fixing term is
not renormalized; hence, Zξ ¼ ZA. Moreover, the Ward
identity,

Zψ ¼ ZΓ; ð27Þ

holds [25] for arbitrary de implying that Ze ¼ Z−1=2
A .

Finally, the free gauge-field action is nonlocal in the
reduced case, and hence the gauge field is not renormalized
[107], ZA ¼ 1, which implies that Ze ¼ 1. As a conse-
quence, there is no radiatively generated photon anomalous
dimension and the β-function is zero which implies that the
coupling remains marginal to all orders in perturbation
theory,

βðαrÞ ¼ 0; de < 4; ð28Þ

a fact reminiscent of the (1þ 1)-dimensional Tomonaga-
Luttinger model [108,109]. Assuming that the coupling
constant is weak enough that no dynamical mass is
generated, the reduced QED of Refs. [18,35] is therefore
conformally invariant.
As anticipated in the Introduction, in order to compute

renormalization constants and renormalized correlators, we
will use the BPHZ prescription [78–80]
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RG ¼ ð1 −KÞR0G; ð29aÞ

R0G ¼ Gþ
X
Γ̄d≠∅

Y
γ∈Γ̄d

ð−KR0γÞ⋆G=Γ̄d; ð29bÞ

whereRG corresponds to the finite (renormalized) graphG
with all divergences (both subdivergences and overall
divergence) subtracted. In Eq. (29), R0 is the so-called
incomplete R-operation because it subtracts only the
subdivergences, Γ̄d is the set of all subdivergent graphs
which are disjoint (nested ones are not allowed), and the
operator K is defined as

K
� Xþ∞

n¼−∞

cn
εnγ

�
¼

Xþ∞

n¼1

cn
εnγ

: ð30Þ

Moreover, the notation G=Γ̄ means that the subdiagrams
contained in G are shrunk to a vertex and the ⋆ operation
amounts to substitute the counterterm in the integrand of
the shrunk diagram. In the case of (at most) logarithmic
graphs, the ⋆ operator reduces to simple multiplication and
we may identify the counterterm with the renormalization
constant, i.e., ZðγÞ ¼ KR0γ.

III. REDUCED QED AT ONE LOOP

We now proceed with reviewing the one-loop structure
of the model [25]. The one-loop fermion self-energy,
polarization operators, and fermion-gauge field vertex
(see Fig. 2) are defined as

iΠμν
1 ðqÞ ¼ −

Z
½ddek�Tr½ð−ieγμÞS0ðkÞð−ieγνÞ

× S0ðkþ qÞ�; ð31aÞ

− iΣ1ðpÞ ¼
Z

½ddek�ð−ieγμÞD̃0;μνðp − kÞS0ðkÞð−ieγνÞ;

ð31bÞ

−ieΛμ
1ðp; p0Þ ¼

Z
½ddek�D̃αβ

0 ðp − kÞð−ieγαÞS0ðkÞð−ieγμÞ

× S0ðkþ qÞð−ieγβÞ: ð31cÞ

The following parametrizations are useful:

Πðq2Þ ¼ −Πμ
μðqÞ

ðde − 1Þð−q2Þ ;

ΣVðp2Þ ¼ −1
4NFð−p2ÞTr½=pΣðpÞ�: ð32Þ

All calculations done (see Appendix for the master
integrals), the results read

Π1ðq2; ᾱÞ ¼ −4NFᾱ

�
4π

−q2

�
εe
�

μ̄2

−q2

�
εγ de − 2

2ðde − 1Þ
× eγEεγGðde; 1; 1Þ; ð33aÞ

Σ1Vðp2Þ ¼ ᾱ

�
μ̄2

−p2

�
εγ
Γð1 − εeÞ

de − 2

2

�
εe

de − 2þ εe
− ξ

�

× eγEεγGðde; 1; 1 − εeÞ;
ð33bÞ

Λμ
1ðp ¼ p0 ¼ 0Þ ¼ ᾱγμ

�
μ̄2

m2

�
εγ
� ðde − 2Þ2
deð1 − εeÞ

− ð1 − ξÞ
�

× eγEεγ
Γð1þ εγÞ

εγ
; ð33cÞ

where ᾱ ¼ α=ð4πÞ, we have used the fact that ð1 − ξ̃Þ ¼
ð1 − εeÞð1 − ξÞ, and the vertex has been computed at
p ¼ p0 ¼ 0 with a small mass regulating an IR singularity.
For later purposes, let us recall that the photon propagator
(internal line in Σ1) has a longitudinal and a transverse part;
see Eq. (8). Then, Eq. (33b) shows that a similar decom-
position holds for the one-loop fermion self-energy,

Σ1Vðp2Þ ¼ ΣðkÞ
1V ðp2Þ þ Σð⊥Þ

1V ðp2Þ; ð34aÞ

ΣðkÞ
1V ðp2Þ ¼ −ξᾱ

�
μ̄2

−p2

�
εγ
Γð1 − εeÞ

de − 2

2

× eγEεγGðde; 1; 1 − εeÞ; ð34bÞ

Σð⊥Þ
1V ðp2Þ ¼ εeᾱ

�
μ̄2

−p2

�
εγ
Γð1 − εeÞ

de − 2

2ðde − 2þ εeÞ
× eγEεγGðde; 1; 1 − εeÞ; ð34cÞ

where the transverse part is nonzero only in the reduced
case.

(a) (b)

(c)

FIG. 2. One-loop diagrams: (a) gauge field self-energy,
(b) fermion self-energy, and (c) fermion-gauge field vertex.
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Focusing on QED4;de , the singular part of these self-
energies allows one to extract the one-loop counterterms
which read

ð35aÞ

ð35bÞ

ð35cÞ

where the Lorentz structure of the graphs displayed in the
brackets has been projected out. As anticipated in the last
section, the Ward identity Eq. (27) is satisfied for all de. In
graphical form, the latter reads at one-loop

ð36Þ

Explicitly, in the specific case of reduced QED4;3
(εe ¼ 1=2 and εγ → 0) the εγ-expansion of Eqs. (33a)
and (33b) reads

Π1ðq2; ᾱÞ ¼ −NFᾱ
2π2ffiffiffiffiffiffiffiffi
−q2

p
× ½1 − ðLq − log 4þ 1Þεγ þ Oðε2γÞ�; ð37aÞ

Σ1Vðp2; ᾱ; ξÞ ¼ ᾱ

�
1 − 3ξ

3εγ
−
1 − 3ξ

3
L̃p − 2ξþ 10

9

þ
�
1 − 3ξ

6
ðL̃2

p − 7ζ2Þ þ 2

�
ξ −

5

9

�
L̃p

− 8ξþ 112

27

�
εγ þ Oðε2γÞ

�
; ð37bÞ

where L̃x ¼ Lx þ log 4. As a trivial application of the
BPHZ prescription, by combining Eqs. (29) and (37),
the renormalized one-loop self-energies read

Π1rðq2Þ ¼ −
NFe2

8
ffiffiffiffiffiffiffiffi
−q2

p ; ð38aÞ

Σ1Vrðp2Þ ¼ −ᾱr
�
1 − 3ξr

3
L̃p þ 2ξr −

10

9

�
: ð38bÞ

IV. TWO-LOOP POLARIZATION OPERATOR

We now go on to two-loop order and first focus on the
polarization operator. The total two-loop photon self-
energy can be decomposed as follows:

Πμν
2 ðqÞ ¼ 2Πμν

2aðqÞ þ Πμν
2bðqÞ; ð39Þ

where the diagrams are displayed in Fig. 3. The latter are
defined as

iΠμν
2aðqÞ ¼ −

Z
½ddek�Tr½ð−ieγμÞS0ðkþ qÞð−ieγνÞ

× S0ðkÞð−i=kΣ1VðkÞÞS0ðkÞ�; ð40aÞ

iΠμν
2bðqÞ ¼ −

Z
½ddek�Tr½ð−ieγνÞS0ðkþ qÞð−ieΛμ

1ðk; qÞÞ

× S0ðkÞ�; ð40bÞ

where the one-loop fermion self-energy and fermion-
photon vertex were defined in Eq. (31). Because ΠμνðqÞ
is gauge independent, all calculations can be carried out in a
specific gauge. In the following we shall work in the
Feynman gauge, ξ ¼ 1.
All calculations done, the general expression for the two-

loop photon self-energy diagrams of QEDdγ ;de read

Π2aðq2Þ ¼ 4NFᾱ
2

�
4π

−q2

�
εe
�

μ̄2

−q2

�
2εγ
Γð1 − εeÞ

×
ðde − 2Þ4

2ðde − 1Þðde − 2þ εeÞðdγ − 4Þ
× e2γEεγGðde; 1; 1 − εeÞGðde; 1; εγÞ; ð41aÞ

(a)

(b)

FIG. 3. Two-loop photon self-energy diagrams (k12 ¼ k1 − k2).
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Π2bðq2Þ¼−4NFᾱ
2

�
4π

−q2

�
εe
�

μ̄2

−q2

�
2εγ
Γð1−εeÞ

×
de−2

2ðde−1Þe
2γEεγ

�
2Gðde;1;1−εeÞGðde;1;εγÞ:

×

�
de−4þ2ðde−2Þ3

deðdγ−4Þ−
4ðde−2Þ
deþdγ−6

−
4ðde−2Þ2

ðdeþdγ−4Þ2

þðde−2Þðd2e−8Þ
deðdeþdγ−4Þ

�
−Gðde;1;1;1;1;1−εeÞ

×

�
de−4þ 4ðde−2Þ

deþdγ−6
−
deðde−2Þ
deþdγ−4

��
; ð41bÞ

where the two-loop master integral Gðde; 1; 1; 1; 1; αÞ with
index α ¼ 1 − εe appears; see Appendix. In order to
compute the renormalized self-energies, we apply the
BPHZ prescription Eq. (29). Graphically, the renormaliza-
tion constants associated with each two-loop diagram read

ð42aÞ

ð42bÞ

where, as in Eq. (35c), it is understood that the Lorentz
structure of the diagrams in argument of K has been
projected out. Because all graphs are at most logarithmic,
the ⋆ operation reduces to a simple multiplication and will
be omitted in the following. Upon computing the total
renormalization constant, we see that the last terms in
Eqs. (42a) and (42b) cancel each other thanks to the Ward
identity (36). The total two-loop renormalization constant
therefore reduces to

ð43Þ
where δZ2A ¼ 2δZ2aA þ δZ2bA. Similar to the case of the
usual QED [110], this simplification implies that, even
though the individual diagrams have subdivergent graphs,
the contributions of the latter cancel each other thanks to
the Ward identity and their subtraction, which therefore
does not affect the final result [111].

We now apply the above formulas to the case of QED4;3
(εe ¼ 1=2 and εγ → 0). From Eqs. (41a) and (41b), this
leads to

Π2aðq2Þ ¼
NFα

2ffiffiffiffiffiffiffiffi
−q2

p
�

1

12εγ
−
Lq

6
þ 1

9
þ OðεγÞ

�
; ð44aÞ

Π2bðq2Þ ¼
NFα

2ffiffiffiffiffiffiffiffi
−q2

p
�
−

1

6εγ
þ Lq

3
þ π2

4
−
25

9
þ OðεγÞ

�
:

ð44bÞ

While the individual contributions are divergent (with
only simple poles arising from divergent subgraphs; see
below), the total two-loop polarization operator is finite
[δZ2AðαrÞ ¼ 0] and reads

Π2ðq2Þ ¼ Π2rðq2Þ ¼ −NF
α2rffiffiffiffiffiffiffiffi
−q2

p 92 − 9π2

36
: ð45Þ

These results can also be recovered from the computation
of individual counterterms in the Feynman gauge (ξ ¼ 1),

δZ2aAðαrÞ ¼ KR0½Π2aðq2Þ�
¼ K½Π2aðq2Þ� −K½K½Σ1VðαrÞ�Π1ðq2Þ�
¼ 0; ð46aÞ

δZ2bAðαrÞ ¼KR0½Π2bðq2;αrÞ�
¼K½Π2bðq2;αrÞ�− 2K½K½Λμ

1ðαrÞ=γμ�Π1ðq2;αrÞ�
¼ 0; ð46bÞ

which vanish in accordance with the fact that the singularity
of each two-loop photon self-energy graph in QED4;3 arises
solely from its divergent subgraph. Hence, the renormalized
diagrams read (for ξ ¼ 1)

Π2arðq2;αrÞ
¼ Π2aðq2; αrÞ −K½Σ1VðαrÞ�Π1ðq2; αrÞ − δZ2aAðαrÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

¼ α2ffiffiffiffiffiffiffiffi
−q2

p
�
−
L̃q

12
þ 1

9
þ 1

12

�
; ð47aÞ

Π2brðq2;αrÞ
¼ Π2bðq2; αrÞ − 2K½Λμ

1ðαrÞ=γμ�Π1ðq2; αrÞ − δZ2bAðαrÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

¼ α2ffiffiffiffiffiffiffiffi
−q2

p
�
L̃q

6
þ π2

4
−
25

9
−
1

6

�
; ð47bÞ

where again L̃q ¼ Lq þ logð4Þ. Upon taking the sum of
the individual contributions, Eq. (45) is straightforwardly
recovered.
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Finally, from the one-loop (38) and two-loop (45)
results, the total renormalized polarization operator up to
two loops can be written as

Πrðq2Þ ¼ Π1rðq2Þð1þ αrC� þ Oðα2rÞÞ; C� ¼ 92 − 9π2

18π
;

ð48Þ

where we recover the interaction correction coefficient C�
[25,26,30,113]. Combining Eqs. (48) and (8b), the trans-
verse photon propagator up to two loops then reads

dr⊥ðq2Þ ¼
i

2
ffiffiffiffiffiffiffiffi
−q2

p 1

1þ NF
αrπ
4
ð1þ αrC�Þ

; ð49Þ

and essentially remains free.

V. TWO-LOOP FERMION SELF-ENERGY

We may proceed in a similar way for the two-loop
fermion self-energy,

Σ2ðpÞ ¼ Σ2aðpÞ þ Σ2bðpÞ þ Σ2cðpÞ; ð50Þ

where the diagrams are represented in Fig. 4. The latter are
defined as

−iΣ2aðpÞ ¼
Z

½ddek�ð−ieγαÞS0ðpþ kÞð−ieγβÞ

× D̃0αμðkÞðiΠμν
1 ðkÞÞD̃0νβðkÞ; ð51aÞ

−iΣ2bðpÞ ¼
Z

½ddek�ð−ieγμÞS0ðpþ kÞð−iΣ1ðpþ kÞÞ

× S0ðpþ kÞð−ieγνÞD̃0μνðkÞ; ð51bÞ

−iΣ2cðpÞ ¼
Z

½ddek�ð−ieγμÞS0ðkÞð−ieΛμ
1ðk; pÞÞ

× D̃0βμðkþ pÞ; ð51cÞ

with the one-loop polarization operator, fermion self-
energy, and fermion-photon vertex defined in Eq. (31).
All calculations done, the general expression for the two-

loop photon self-energy diagrams of QEDdγ ;de read

ΣV2aðp2Þ ¼ 4NFᾱ
2

�
μ̄2

−p2

�
2εγ
Γ2ð1 − εeÞ

ðde − 2Þ2
2ð2dγ − de − 6Þ e

2γEεγGðde; 1; 1ÞGðde; 1; εγ − εeÞ; ð52aÞ

ΣV2bðp2Þ ¼ ᾱ2
�

μ̄2

−p2

�
2εγ
Γ2ð1 − εeÞ

ðde − 2Þðdγ − 3Þðdγ þ de − 4Þ
2ðdγ − 4Þ

�
ξ −

dγ − de
dγ þ de − 4

�
2

× e2γEεγGðde; 1; 1 − εeÞGðde; 1 − εe; εγÞ; ð52bÞ

ΣV2cðp2Þ ¼ −ᾱ2
�

μ̄2

−p2

�
2εγ
Γ2ð1 − εeÞ

de − 2

2
e2γEεγ

×

	�
de − 4þ ðde − 2Þðdγ − 3de þ 4Þ

2ðdγ þ de − 4Þ −
ðdγ þ de − 6Þðdγðde − 4Þ þ 8Þ
ð2dγ þ de − 10Þð2dγ þ de − 8Þ

−
4ðdγ − deÞ
dγ þ de − 4

−
dγ − de

2dγ þ de − 8

�
de − 8 − 4

dγ þ de − 6

dγ þ de − 4

�

− ξ
ðde − 2Þðdγ − deÞ

dγ þ de − 4
þ ξ2

de − 2

2

�
G2ðde; 1; 1 − εeÞ

(a) (b) (c)

FIG. 4. Two-loop fermion self-energy diagrams (k12 ¼ k1 − k2).
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þ
�
2de − dγ − 1þ 4ðde − 2Þðdγ − 1Þ

dγ þ de − 4
þ 8ðdγ − 1Þ

dγ − 4
þ 2ðde − 8Þðdγ − deÞ

dγ þ de − 6
−

4ðdγ − 2Þðdγ − deÞ
ðdγ − 4Þðdγ þ de − 4Þ

þ 2ξ
ðdγ − 3Þðdγ − deÞ

dγ þ de − 4
− ξ2ðdγ − 3Þ

�
Gðde; 1; 1 − εeÞGð1 − εe; εγÞ

−
ðdγ − 4Þðdγðde − 4Þ þ 8Þ

ð2dγ þ de − 8Þð2dγ þ de − 10ÞGðde; 1 − εe; 1; 1 − εe; 1; 1Þ


; ð52cÞ

where, in the last term, the complicated (UV convergent) diagram (see Appendix) comes with a factor dγ − 4 and will
therefore not contribute in the case of QED4;de .
On the basis of these results, the computation of the renormalized fermion self-energies can be conveniently carried out

using the BPHZ prescription Eq. (29). Graphically, the renormalization constants associated with the individual two-loop
diagrams read

ð53aÞ

ð53bÞ

ð53cÞ

Notice that in Eq. (53a) the contraction of the one-loop polarization operator subgraph (which is transverse due to current
conservation) resulted in the appearance of the transverse part of the one-loop fermion self-energy Eq. (34c). This is an
example well known in the literature (see, e.g., Ref. [117]) of the sensitivity of the contraction procedure to the Lorentz
structure of subdiagrams. Interestingly, the transverse part is nonzero only in the reduced case (εe > 0). However, in this
case the photon self-energy is finite. It therefore vanishes in QED4;de for all values of de. Taking this into account and
summing all individual contributions, the total two-loop fermion renormalization constant reads

ð54Þ
where we have used the Ward identity Eq. (36). In contrast to the case of the polarization operator, Eq. (54) shows that
subdivergent graphs do contribute to the renormalization of the fermion self-energy (via the last term).
We now apply the above formulas to specific cases of QED4;3 (εe ¼ 1=2 and εγ → 0). From Eqs. (52a), (52b), and (52c),

this leads to

Σ2aVðp2; ᾱ; ξÞ ¼ −
2π2NFᾱ

2

3

�
1

εγ
− 2Lp þ OðεγÞ

�
; ð55aÞ

Σ2bVðp2; ᾱ; ξÞ ¼ ᾱ2
�ð1 − 3ξÞ2

18ε2γ
þ 1 − 3ξ

εγ

�
11

27
−
7ξ

9
−
1 − 3ξ

9
L̃p

�
þ ð1 − 3ξÞ2

9

�
L̃2
p −

9

2
ζ2

�

−
2ð11þ 9ξð7ξ − 6ÞÞ

27
L̃p þ

2ð103þ 81ξð7ξ − 6ÞÞ
81

þ OðεγÞ
�
; ð55bÞ
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Σ2cVðp2; ᾱ; ξÞ ¼ ᾱ2
�
−
ð1 − 3ξÞ2

9ε2γ
þ 1

εγ

�
2ð1 − 3ξÞ2

9
L̃p þ

ð34 − 39ξÞξ
9

−
37

27

�
−
2ð1 − 3ξÞ2

9
L̃2
p

þ 2ð37þ 3ξð39ξ − 34ÞÞ
27

L̃p þ
71þ 21ξð3ξ − 2Þ

9
ζ2 −

2ð695 − 798ξþ 891ξ2Þ
81

þ OðεγÞ
�
; ð55cÞ

which are valid for an arbitrary gauge fixing parameter ξ. Combining Eq. (55) with Eq. (53), the individual counterterms
read

δZ2aψ ðᾱrÞ ¼ K½Σ2aVðp2; ᾱrÞ� −K½K½Π1ðq2; ᾱr; ξrÞ�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

Σð⊥Þ
1V ðp2; ᾱr; ξrÞ�

¼ −
2π2NFᾱ

2
r

3εγ
; ð56aÞ

δZ2bψðᾱr; ξrÞ ¼ K½Σ2bVðp2; ᾱr; ξrÞ� −K½KðΣ1Vðp2; ᾱr; ξrÞÞΣ1Vðp2; ᾱr; ξrÞ�

¼ −
ð1 − 3ξrÞ2ᾱ2r

18

�
1

ε2γ
−

2

3εγ

�
; ð56bÞ

δZ2cψ ðᾱr; ξrÞ ¼ K½Σ2cVðp2; ᾱr; ξrÞ� þ 2K½KðΣ1Vðp2; ᾱr; ξrÞÞΣ1Vðp2; ᾱr; ξrÞ�

¼ ᾱ2r

�ð1 − 3ξrÞ2
9ε2γ

−
17 − 6ξr þ 9ξ2r

27εγ

�
; ð56cÞ

where, in the first line, we have used the fact thatΠ1ðq2Þ is finite in QED4;3. The sum of Eq. (56) yields the total counterterm
at two-loop order,

δZ2ψ ¼ −
4ᾱ2r
εγ

�
ζ2NF þ 4

27

�
þ ð1 − 3ξrÞ2ᾱ2r

18ε2
: ð57Þ

The individual renormalized diagrams are also straightforward to compute and read

Σ2aVrðp2; ᾱrÞ ¼ Σ2aVðp2; ᾱrÞ −K½Π1ðq2; ᾱr; ξrÞ�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

Σð⊥Þ
1V ðp2; ᾱr; ξrÞ − δZ2aψ ðᾱrÞ

¼ 8NFζ2ᾱ
2
rLp; ð58aÞ

Σ2bVrðp2; ᾱr; ξrÞ ¼ Σ2bVðp2; ᾱr; ξrÞ −K½Σ1Vðp2; ᾱr; ξrÞ�Σ1Vðp2; ᾱr; ξrÞ − δZ2bψðᾱr; ξrÞ

¼ ᾱ2
�ð1 − 3ξrÞ2

18
ðL̃2

p − 2ζ2Þ −
4ð1þ ξrð6ξr − 5ÞÞ

9
L̃p þ

2ð47 − 210ξr þ 243ξ2rÞ
81

�
; ð58bÞ

Σ2cVrðp2; ᾱr; ξrÞ ¼ Σ2cVrðp2; ᾱr; ξrÞ þ 2K½Σ1Vðp2; ᾱr; ξrÞ�Σ1Vðp2; ᾱr; ξrÞ − δZ2cψðᾱr; ξrÞ

¼ ᾱ2
�
−
ð1 − 3ξrÞ2

9
L̃2
p þ

64

9
ζ2 þ

2ð3þ ξrð7ξr − 6ÞÞ
3

L̃p þ
2ξrð82 − 81ξrÞ

27
−
1166

81

�
; ð58cÞ

where L̃p ¼ Lp þ log 4. The sum of Eq. (58) yields the total two-loop renormalized fermion self-energy,

Σ2Vrðp2; ᾱr; ξrÞ ¼ ᾱ2r

�
8NFζ2Lp −

ð1 − 3ξrÞ2
18

L̃2
p þ

64 − ð1 − 3ξrÞ2
9

ζ2 þ
2ð7þ ξrð9ξr − 8ÞÞ

9
L̃p −

8ð134 − 9ξrÞ
81

�
: ð59Þ

Combining the above two-loop results with the one-loop ones derived in the previous paragraphs, we recover the
expression of the anomalous dimension of the fermion field up to two loops [28,118],
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γψðᾱr; ξrÞ ¼ 2ᾱr
1 − 3ξr

3
− 16

�
ζ2NF þ 4

27

�
ᾱ2r þ Oðᾱ3rÞ;

ð60Þ
where the two-loop contribution is gauge invariant.
Combining (60) and (9a), the expansion of the renormal-
ized fermion propagator up to two loops reads

−i=pSrðpÞ ¼ 1þ ᾱr

�
10

9
− 2ξr −

1 − 3ξr
3

L̃p

�

þ ᾱ2r

�
8NFζ2Lp þ

ð1 − 3ξrÞ2
18

L̃2
p

þ 2ð11þ 3ξrð8 − 9ξrÞÞ
27

L̃p

−
4ð27þ ξrð8 − 9ξrÞÞ

9

þ ζ2

�
7þ 2ξr

3
− ξ2r

��
þ Oðᾱ3rÞ: ð61Þ

VI. CONCLUSION

To conclude this paper, we have provided a detailed field
theoretic renormalization analysis of reduced QED up to two
loops. The main focus was on reduced QED4;3 (graphene at
the IR Lorentz invariant fixed point) which is somehow
intermediate between QED4 and QED3: it is renormalizable
similar to QED4 with UV divergent fermion self-energy but
has a finite photon self-energy similar to QED3. Using the
BPHZ prescription, we have provided a simple and clear
renormalization of the photon and fermion self-energies. We
have straightforwardly recovered the results, previously
derived via conventional renormalization, for both the
interaction correction to the optical conductivity, Eq. (48),
and the anomalous dimension of the fermion field, Eq. (60),
thereby lifting any possible ambiguity as to their value at the
IR fixed point. This constitutes a necessary prerequisite in
order to extend our formalism to higher orders and/or to
other models such as model II, Eq. (2), that we will consider
in our next investigation [112].
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APPENDIX: MASTER INTEGRALS

In this appendix, we recall some of the basic master
integrals appearing in the main text.
The one-loop (scalar) propagator-type massless integral

is defined as

JðD;p; α; βÞ ¼
Z ½dDk�

k2αðp − kÞ2β ; ðA1Þ

where ½dDk� ¼ dDk=ð2πÞD, p is the external momentum,
and α and β are arbitrary indices. In Eq. (A1), the momen-
tum dependence is easily extracted from dimensional
analysis which allows one to write it in the following form:

JðD;p; α; βÞ ¼ ðp2ÞD=2−α−β

ð4πÞD=2 GðD; α; βÞ; ðA2Þ

where GðD; α; βÞ is the (dimensionless) coefficient func-
tion of the diagram,

GðD; α; βÞ ¼ aðαÞaðβÞ
aðαþ β −D=2Þ ; aðαÞ ¼ ΓðD=2 − αÞ

ΓðαÞ :

ðA3Þ
The massless two-loop propagator-type diagram is

defined as

JðD;p; α1;α2; α3; α4; α5Þ

¼
Z ½dDk�½dDq�

ðk − pÞ2α1ðq − pÞ2α2q2α3k2α4ðk − qÞ2α5 ; ðA4Þ

where the αi (i ¼ 1–5) are five arbitrary indices. Similar to
the one-loop case, the momentum dependence of Eq. (A4)
follows from dimensional analysis which allows one to
write this diagram in the form:

JðD;p; fαigÞ ¼
ðp2ÞD−

P
5

i¼1
αi

ð4πÞD GðD; fαigÞ; ðA5Þ

where GðD; fαigÞ is the (dimensionless) coefficient func-
tion of the diagram. The expression of GðD; 1; 1; 1; 1; αÞ
for arbitrary α can be found in Ref. [75] and that of
GðD; α; 1; β; 1; 1Þ for arbitrary α and β can be found in
Ref. [28].
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