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A surprising connection between the weak gravity conjecture and cosmic censorship has recently been
proposed. In particular, it was argued that a promising class of counterexamples to cosmic censorship in
four-dimensional Einstein-Maxwell-A theory would be removed if charged particles (with sufficient
charge) were present. We test this idea and find that indeed if the weak gravity conjecture is true, one cannot
violate cosmic censorship this way. Remarkably, the minimum value of charge required to preserve cosmic
censorship appears to agree precisely with that proposed by the weak gravity conjecture.
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I. INTRODUCTION AND SUMMARY

The idea of cosmic censorship was proposed almost fifty
years ago [1]. By now there is ample evidence that it does
not hold in more than four dimensions. This is because
there are unstable black holes in higher dimensions [2—4],
and numerical evolution shows that the horizons pinch off
in finite time [5-7]. This produces regions of arbitrarily
large curvature generically from smooth initial data.
Moreover, the mechanism behind all of these violations
is essentially the same: the horizon develops a hierarchy of
scales, and wants to break in a manner conjectured by
Gregory and Laflamme in [2]. Recently, a promising class
of counterexamples to cosmic censorship in four dimen-
sions with asymptotically anti—de Sitter (AdS) boundary
conditions has been conjectured in [8] with ample numeri-
cal evidence in its favor provided in [9]. They are based on
coupling gravity to a Maxwell field (and A < 0).

A seemingly unrelated idea is the weak gravity con-
jecture [10] which was proposed about a decade ago. This
states that any consistent theory of quantum gravity must
have a stable particle with g/m > 1. It can be loosely
interpreted as saying that gravity should always be the
weakest force, since the gravitational attraction between
two such particles is always less than the electrostatic
repulsion. This also implies that extremal charged black
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holes are not stable, but can decay by Schwinger pair
creation even though the Hawking temperature vanishes.

It has been suggested [11] that these conjectures might
be related in the sense that assuming the weak gravity
conjecture might remove the new counterexamples and
preserve cosmic censorship. We will show that this is
indeed correct.

Since weak gravity is a conjecture about quantum gravity
and cosmic censorship is a conjecture about classical
general relativity, to relate them we take a classical limit
of the weak gravity conjecture. This means that we should
include a charged scalar field in any proposed counterex-
ample involving Maxwell fields."

As we review below, the counterexamples to cosmic
censorship involve situations where an electric field grows
in time without bound, producing arbitrarily large curvature
that is visible to infinity. It is intuitively clear that if a
charged scalar field is added with large enough charge, the
Einstein-Maxwell solution will become unstable to forming
a nonzero scalar field. This is directly analogous to the
instability of a charged black hole to form scalar “hair” in a
holographic superconductor [12,13]. It can be viewed as the
classical analog of pair creating a cloud of charged
particles. If the solution becomes unstable, the previous
counterexamples are no longer valid since it would require
fine-tuning to keep the scalar field zero. There remain two
key questions: (1) If the scalar field is nonzero, can one still
violate cosmic censorship? (2) How does the minimum
charge required for instability compare with the value
predicted by the weak gravity conjecture?

'We will assume the weak gravity conjecture is satisfied by a
charged scalar particle. If it is a fermion, one must do a more
complicated analysis involving quantum fields in curved space-
time to investigate its effect on cosmic censorship.
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We will show that with a charged scalar field added
(having sufficient charge) the previous Einstein-Maxwell
solutions do become unstable. We also numerically con-
struct the static solutions with scalar hair that they pre-
sumably settle down to and study their properties. We find
that the answer to (1) is no: with the scalar field present, the
electric field never becomes arbitrarily large and the
curvature remains bounded. This implies that one can no
longer construct a counterexample to cosmic censorship.
Surprisingly, we also find that the minimum charge
required to preserve cosmic censorship appears to agree
precisely with the weak gravity bound.” This shows a close
connection between these two seemingly unrelated con-
jectures. At the moment, this connection seems rather
mysterious and deserves further investigation.

However it seems clear that the weak gravity conjecture
will not always preserve cosmic censorship. Another class
of potential counterexamples in four dimensions with
asymptotically AdS boundary conditions has been pro-
posed which does not involve a Maxwell field. It is based
on the superradiant instability of Kerr-AdS black holes
[14,15] and would appear not to be affected by adding a
charged scalar field. We note, however, that the violation of
cosmic censorship likely to be exhibited by such classes of
counterexamples is very different from the ones proposed
in [8] and observed in [9]. In particular, the violations
where the weak gravity conjecture seems to play a role
exhibit large curvatures in large regions of spacetime,
whereas the ones with no Maxwell field are likely to lead
to arbitrarily large curvatures in an arbitrarily small region
of spacetime.

II. REVIEW OF COUNTEREXAMPLES TO
COSMIC CENSORSHIP

Consider solutions to the bulk action
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where L is the AdS length scale, and F =dA is the
Maxwell field strength. With AdS boundary conditions,
one is free to specify the (conformal) boundary metric at
asymptotic infinity, as well as the asymptotic form of the
vector potential A,. We choose the boundary metric to be
flat (as in the standard Poincaré coordinates for AdS)

ds? = —di* 4 dr* + r’d¢?, (2.2)
and the potential to asymptotically have only a nonzero
time component,

*Since our work is numerical, we cannot establish this
rigorously. But the numerical data strongly suggests this is the
case.

Aly = a(t)p(r)dr, (2.3)
where a(7) is an amplitude and p(r) is a radial profile that
vanishes at large radius faster than 1/r. When a is
constant, static zero temperature solutions were found
in [16]. It was shown that these solutions all have a
standard Poincaré horizon in the interior.” One family of
such solutions describes static, self-gravitating electric
fields in AdS. This family extends from a = 0, where it
meets with pure Poincaré AdS, to a maximum amplitude
a = A,y Where a naked curvature singularity appears. In
[8], it was shown that this singularity extends for all
a > Apay-

The proposed counterexample to cosmic censorship [8]
involves the following dynamical scenario. Suppose a(¢)
is initially zero, and slowly increases to a constant value
larger than a,,,. If the amplitude is increased sufficiently
slowly, then the bulk solution is well approximated by a
slowly evolving family of static solutions. If the end point
of such an evolution is the singular static solution, then
cosmic censorship will be violated. In [9], the full time
dependent solution was found numerically [for the case
where p(r) falls off like 1/r] and it was shown that F?
does indeed grow as a power of time. This produces
increasing curvature not just near the axis of symmetry,
but everywhere along the horizon. Interestingly enough,
the intrinsic geometry of the horizon does not become
singular. It is derivatives off the horizon that became
large.

We emphasize that unlike previous examples of naked
singularities forming in four-dimensional spherical col-
lapse scenarios [17,18], our proposal is generic. The
function a(t) does not need to be finely tuned. However,
unlike those earlier examples, we do not expect that a naked
singularity will form in finite time, only that the curvature
will grow without bound.

Another branch of static solutions found in [16]
describes hovering black holes. These are extremal
spherical charged black holes which remain static since
the normal gravitational attraction toward the Poincaré
horizon is balanced by an electrostatic force toward
infinity. Hovering black holes can only exist if a is larger
than some critical value, but when they are present, there
is no violation of cosmic censorship: the solutions remain
nonsingular as a is increased and the hovering black hole
just becomes larger. This branch of solutions does not
affect the above counterexample to cosmic censorship
since one starts with AdS initially and under evolution
one can never form an extremal black hole since there is
no charged matter. This will change when we add the
charged scalar field and may provide another way to save
cosmic censorship.

*When p(r) falls off like 1/r or slower, this is no longer the
case.
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III. THE WEAK GRAVITY CONJECTURE IN ADS

Before proceeding, we will attempt to sharpen the weak
gravity conjecture in AdS. The weak gravity conjecture in
essence ensures that extremal charged black holes are
quantum mechanically unstable to Schwinger pair produc-
tion. In flat space, this is a purely quantum mechanical
instability, but in AdS it turns out to give rise to a classical
instability. This instability is the so-called charged super-
radiant instability [19,20] whose end point has been studied
over the past decade [21-27].

In AdS, the onset of this superradiant instability depends
on the size of the black hole. To stay as close as possible to
the original weak gravity conjecture, we will consider an
arbitrarily small black hole. The general spherically sym-
metric charged black hole is the Reissner-Nordstrom (RN)
black hole in AdS, which is a solution of the equations of
motion derived from (2.1) and takes the following simple
form:

2 n , dr 2102
ds* = —f(r)d? —Q—m—l—rdﬂ, Az,u(l——)dt
(3.1)

where dQ? is the metric on a unit round 2-sphere and

r? 2 o (12
—2+1+”r2+ +<++1+;4) (3.2)

f(r):L 12

The event horizon is a null hypersurface with r=r,,
where 7 is the largest positive real root of f(r). One can
show that the Hawking temperature of a RN black hole in
AdS is given by

L? - L2,u2 + 3ri

T =
1 4L%zr,

(3.3)

The event horizon becomes degenerate when Ty = 0,

which occurs for p = pg = /1 + 3r2/L%

Superradiant scattering for a scalar field of mass m and
charge ¢ occurs if [19,20]
0<® < qu, (3.4)
where @ is the frequency of the perturbation we are
considering. So we need to know what @ are allowed
for a small black hole, i.e. what the quasinormal mode
spectrum of a small extremal RN black hole looks like.
If the RN black holes are small, two decoupled sectors of
quasinormal mode excitations exist: one whose imaginary
part grows infinitely negative as the size of the hole
decreases, and another whose imaginary part drops to zero
as the black hole becomes smaller and whose real part
approaches the normal modes of AdS [28,29]. It is the latter
type that is of interest to us. In the approximation where the

extreme black hole is very small, the quasinormal mode
with the smallest real part will have ®L = A + O(r, /L)
where

(3.5)

Substituting in Eq. (3.4), and noting that small extremal
black holes have u = 1+ O(r3/L?), gives the following
lower bound on the scalar field charge g:

>

q>qy (3.6)

Z .
This is the bound that might prevent the violation of the
weak cosmic censorship presented in the previous section.

Note that this is essentially the complement of the
Bogomol'nyi-Prasad-Sommertfield bound in AdS [30].

IV. ADDING CHARGE CARRIERS

To satisfy the weak gravity conjecture, we now augment
(2.1) by adding a minimally coupled charged scalar field ®.
The new action reads

d4x./_[ +£—F‘”’F},—4(Da¢>)(D“¢>)T

~ 162G
—4m2(I)<I)1}, (4.1)
where D, =V, —igA, is the gauge covariant derivative

with respect to A,, m is the charged scalar field mass and ¢
its charge. The following equations of motion can be
derived from (4.1):

3
Ra, + ﬁgab

—2( CF, — g“chded>

4
+2(D,®)(D,®)" +2(D,P)"(D,®)

+ 2m?g,, dP", (4.2a)

V,F%, = ig[(D,®)®" — (D,®) ®], (4.2b)

D, D'® = m*®. (4.2¢)

In order to find novel static solutions of (4.2) we are
going to use the DeTurck method. This method was first
introduced in [31], and was recently reviewed in great detail
in [32]. We deform (4.2a) and consider instead
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3
Ry + 72 9ab ~ V(aén)
-2 (FF,, - g%”chFCd> +2(D,®)(D,®)!

4 2(D,®) (Dy®) + 2m2 g, D, (4.3)

where & = [I'",(g) —T'*,(g)]g°? and T'¢_(g) is the Levi-
Civita connection associated with a metric g. g is a
reference metric which, as we shall see, controls our gauge
choice. In order for this method to work, g must have the
same asymptotic structure, including horizon location and
asymptotic infinity, as the metric we wish to find.

The advantage of solving (4.3) instead of (4.2a) is
tremendous: if we are interested in finding static solutions,
(4.3) comprises a system of elliptic equations which can be
readily relaxed using a Newton-like method. One might
worry whether solutions of (4.3) will necessarily be
solutions of (4.2a), that is to say, whether solutions of
(4.3) necessarily have £* = 0. Under certain circumstances
one can show that solutions of Eq. (4.3) with &4 # 0 cannot
exist [33,34]. However, this proof does not extend easily if
matter fields are included. The idea is to solve (4.3) and
check a posteriori if y = E%E, approaches zero in the
continuum limit.* Since the equations are elliptic, we know
that solutions are locally unique, therefore solutions with
x # 0 cannot be arbitrarily close to solutions with y = 0.

The reason why (4.2a) does not give rise to a well-
defined elliptic problem has to do with the fact that general
relativity is coordinate invariant. As such, a particular
gauge has to be chosen before a given problem is solved.
From the condition &% = 0, one can see that the DeTurck
method is simply a rewriting of the original Einstein
equation (4.2a) in generalized harmonic coordinates
Ax® =T, (g)g®. This in turn implies that the choice of
g is ultimately connected with a choice of gauge.

A. Review of Einstein-Maxwell solutions

For the moment we will focus on solutions with ® = 0,
and reconstruct the solutions presented in [16]. We are
going to use the coordinate system constructed in [16],
which is well adapted to zero temperature horizons. We
consider solutions whose conformal boundary metric
approaches Minkowski space (2.2). Furthermore, we are
interested in axisymmetric and static solutions, so we adapt
our coordinate system such that 9, and 0, are Killing fields.

To motivate the coordinate system used in [16], we start
with the metric corresponding to pure AdS in Poincaré
coordinates. Such line element reads

2

L
ds? = = [—d* +dr? + r2d¢? + dz?]. (4.4)
z

*Note that since we are interested in static solutions, one can
show that y is necessarily positive, so we do not need to check &*
component by component.

We regard the (r,z) coordinates as Cartesian coordinates,
and introduce polarlike coordinates in the following way:

_Yvem Yy 2_y2(1 - x?),

=y (4.5a)
2 — 2

r= y—Hx\/z — 2 (4.5b)
-y

The line element (4.4) written in (x,y) coordinates
becomes

di? L? (1—y?)2d? | 4dx?
§° = —
(I=x*)? [ y(2-y) 2-4
4dy?

s+ x2(2-x)dg?|.  (4.6)

TV
x is like an angular coordinate and y is like a radial
coordinate. Both take values in [0, 1]. The Poincaré horizon
is now located at y = 1, and the axis of rotation is located at
x = 0. The conformal boundary is located at x = 1, and
y = 0 denotes the intersection of the conformal boundary
with the axis of symmetry.
We want to consider a gauge potential that asymptoti-
cally, i.e. when approaching x = 1, has only a nonzero time
component:

dr
Ap=——3. (4.7)
(1+5)
Due to the underlying conformal invariance of the theory
deep in the UV, only the product a? is physically mean-
ingful. From here onwards we will set # = 1 without loss
of generality. In terms of the y coordinates the asymptotic
profiles (4.7) read
Ay = a(l —y?)"dr. (4.8)
We now wish to find the family of static solutions with
increasing a. Before presenting our results, let us mention
that when using the DeTurck method, one has to write
down the most general ansatz compatible with the sym-
metries of our problem. Given that we are interested in
solutions that are static and axisymmetric, this restricts our
ansatz to take the following form:
ds? L? (1 _yz)ledtz
57 = -
(1= »(2-y)
40, 05 2
+ dx + d
2—x2 < 1 —y? Y
40,dy*
(1= 2=y

+ 7 +x*(2 - xz)Qsddﬂ} :

(4.9a)
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TABLE I. Maximum amplitude for several values of n.

n 2 4 6 8 10

max 2.64 4.88 6.48 7.97 9.02
A = LQgdt, (4.9b)

where the Q;, with i € {1,...,6}, depend on x and y and
are the functions we intend to determine. For the reference
metric we take pure AdS written in x and y coordinates, that
is to say, we take the line element (4.6).

Finally, we discuss the issue of boundary conditions. At
the conformal boundary, located at x = 1, we impose

01 =0 =04=05=1, 0;=0, and
Q¢ = a(l —y?)". (4.10)
At the symmetry axis, located at x = 0, we find
901 00, 904 0Qs 9Q¢ _ 0
Ox Ox Ox Ox Ox '
Q4=0s, and Q3 =0. (4.11)

At the point y = 0 [corresponding in the original coor-
dinates of (4.4) to r = z = 0] we demand
01=0,=04=05=1,

Q3 = O, and Q6 = d.

(4.12)

In [16], it was observed that the IR, for n > 1, always has a
Poincaré horizon. This corresponds to setting at y = 1,
01=0,=04=05=1,

Q3 =0, and Q6 =0.

(4.13)

Our results are completely consistent with those of [16],
and are described there. In particular, we find that solutions
with a single connected horizon exist up to a maximum
amplitude a,,,,. This maximum amplitude strongly depends
on n (see Table I).

B. Stability

We now wish to test whether the solutions we have
constructed are unstable to forming a scalar field con-
densate using the mechanism proposed in [12,13]. In order
to do this, we will first search for zero modes following the
same strategy as in [35,36]. A static normalizable mode
usually marks the transition between stable and unstable
solutions. We thus consider Eq. (4.2¢) on the fixed back-
grounds constructed in Sec. IVA. Time independent
solutions of (4.2c) on a fixed background reduce to solving
the following linear partial differential equation:

8

=
<4 -2
g 4
<+ 6
-+ 8
-+ 10

FIG. 1. The minimum charge, g,,,, needed for a zero mode as a
function of the amplitude a, plotted for several different profiles.
From bottom to top we have n = 2, 4, 6, 8, 10, respectively. The
horizontal dashed line represents the weak gravity bound
dmin’qw = 1. These curves were determined for A = 2.

(V. V4 —m?)® = ¢g*A,AD. (4.14)
This equation takes the form of a generalized eigenvalue
problem, with eigenfunction ® and eigenvalue g. For each
profile constructed in the previous section and for each
value of m, we can determine the smallest eigenvalue which
we will denote ¢2, .

Our numerical method only allows us to study scalars
with A > 1. When A is small, one has a choice of boundary
conditions for ®. We will choose boundary conditions so
that @ is the holographic dual of a boundary operator with
conformal dimension A > 1 (3.5). This means keeping the
slower falloff behavior for 1 < A < 3/2 (sometimes called
“alternative quantization”) and requiring the faster falloff
for everything else. For comparison with the predictions
from the weak gravity conjecture, we will parametrize the
dependence on the mass using A instead of m.

To begin, we will take A =2 and compute ¢, for
several different profiles p(r) (4.7) labeled by n, and
several different amplitudes a. The results are displayed
in Fig. 1. As expected, for each profile g, is a decreasing
function of a because as we increase the amplitude, we
increase the electric field in the bulk which should make it
easier to trigger the scalar instability. To facilitate our later
comparison with the weak gravity bound, we plot qi./qw
on the vertical axis, and plot a horizontal line at
gmin’/qw = 1. These curves do not change qualitatively if
we change A. For example, Fig. 2 shows the results for
A =4

We next want to check whether these zero modes indeed
mark the boundary between stable and unstable solutions.
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8

- 2

-+ 6
-+« 8
-+ 10

FIG. 2. Similar to Fig. 1, but now for A = 4.

To do this we include harmonic time dependence e~ in
the scalar perturbation and compute the lowest quasinormal
mode frequency for each a. We take A = 4, and set g = gy,
since larger g are more likely to induce instabilities. Since
the zero mode has w = 0, as we change a at fixed charge,
both the real and imaginary parts of the lowest quasinormal
mode frequency must pass through zero. If Im@ becomes
positive, the mode becomes unstable. As Fig. 3 shows, this
is exactly what we find. The location of the zero mode is
shown as a black dot, and Imw changes sign there. Since
Imw is small near the zero mode, the instability sets in

0.5}

0.4}

0.3}

0.2}

Re w

0.1}

0.0t

~0.1}

-0.2%

6.0 6.5 7.0 75
a

FIG. 3.

slowly. We believe that the instability will set in faster for
larger values of q.

Returning to Figs. 1 and 2, this shows that for each
profile, the original Einstein-Maxwell solutions are stable
below the curve, but unstable above it. The curves end at
amax and the solutions (with @ = 0) are singular for larger
a. The fact that all the curves in Figs. 1 and 2 cross the line
dmin/gw = 1 means that if we assume the weak gravity
conjecture, the counterexamples to cosmic censorship
proposed in [8,9] must be reexamined. If we start with
any ¢ > qw, and slowly increase the amplitude a, the
Einstein-Maxwell solution becomes unstable before it
becomes singular. So the previous singular solution is no
longer applicable, and one must study the solutions with
nonzero scalar field included.

Before we do so, we first ask if this holds for all values of
the mass of the scalar field. To answer this, we repeated the
calculation of the zero-mode charge ¢,,;, for many values of
A. Since the lowest value of g, always occurs for a = a,,,.,
we keep a = ap,, and compute g,;, for various A for the
n = 8 profile. The results are plotted in Fig. 4. The fact that
qmin/qw 1s always less than one means that the situation is
always qualitatively the same as the previous cases. If we
assume the weak gravity conjecture, the previous counter-
examples to cosmic censorship are no longer valid and we
must study solutions with nonzero scalar field to see what
happens. This is what we turn to next.

C. Nonlinear charged scalar hair

In this section we will construct the nonlinear solutions
with scalar hair that branch from the zero modes

0.000} ]
~0.005}
3
£ -0.010}
~0.015}
6.0 6.5 7.0 7.5
-0.020+ a
6.0 6.5 7.0 7.5

a

The lowest quasinormal mode frequency for n = 8, A =4, and ¢ = qy. The black dot denotes the zero mode computed

directly from Eq. (4.14). The red dots have the opposite sign of @ from the blue dots. The insert on the right plots the data on a
logarithmic scale, clearly showing that Imw becomes positive after the zero mode, so the solution without the scalar field becomes

unstable.
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0.8¢

0.7+

qmin/qw

0.6f

0.5+

A

FIG. 4.  gmin/gw as a function of A > 1 plotted for n = 8 and
a = ap,,- The orange region indicates the region of moduli space
where we used alternative boundary conditions.

constructed previously. For concreteness we will present
results for n = 8 and A = 2, but other values of n and A
have similar conclusions. The choice A = 2 is convenient
for the particular numerical method we use in our integra-
tion scheme. Irrational values of A > 1 would produce an
asymptotic decay close to the conformal boundary with
irrational powers. This in turn would lead to weak con-
vergence for spectral collocation methods. To bypass this,
we will take A = 2, corresponding to a scalar field with
mass m> = —2/L? and requiring the standard (faster falloff)
boundary conditions.’
The metric and gauge field anséitze will remain as in
Eq. (4.9), and for the scalar field we take
@ = (1-x)%*(2-y%)0, (4.15)
where the powers of x and y were chosen to make Q;(y, 1)
directly proportional to the expectation value of the
operator dual to ®, which we coin (O,).°
To preserve cosmic censorship, we must show that if
q > qw and a is increased, a smooth scalar field condenses
and exists for arbitrarily large values a. We will take
q = qy, since that is the most difficult case to condense.
We find that solutions with ® # 0 indeed exist for all
amplitudes larger than the zero mode shown in Fig. 1. In
Fig. 5 we show the expectation value for the operator dual
to @ as a function of the boundary radial coordinate r, for
several values of a. The scalar condensate is clearly largest

>Other values of A are compatible with exponential conver-
gence, for instance 2A = Z.
°It turns out that the precise relation is (O,) = (1 —y?)?

07(y, 1).

20F"

00 02 04 06 08 10 12 14
r

FIG.5. (O,) as afunction of r, for several values of ¢ and with
n = §; from top to bottom we have a = 10, 9.0, 8.0, 7.0, 6.27.

at the origin, r =0, and falls off for larger r. These
solutions can thus be viewed as localized holographic
superconductors. Increasing the amplitude increases the
maximum of the condensate. To see this more clearly, in
Fig. 6 we present (O,) at r = 0 as a function of a, and to
help guide the eye we also show two vertical lines,
corresponding to the onset of the scalar condensate
deduced in the previous section (blue dashed line) and a =
Anax (red dotted line), both for n = 8. Recall that when
® = 0, a,,, 1 the amplitude at which the solution becomes

20F
15
510
S}
5k
[ ) : ) 1
6 7 8 9 10
a
FIG. 6. (O,) at r =0 plotted as a function of a for profile

n = 8, with the vertical dashed blue line representing the onset
computed in the previous section and the vertical red dotted line
corresponding to @ = -
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2500

2000¢

1500+

max K

1000+

500+

0.98 0.99 1.00

a/qw

0.96 0.97

FIG. 7. Maximum of Kretschmann scalar over our integration
domain as a function of g/qy, for fixed a = 8.5 > a,,,, withn =8
and A = 2.

singular. Clearly, solutions with scalar hair exist for much
larger amplitudes and seem to exist for arbitrarily large
values of a. Thus if we assume the weak gravity conjecture,
there will be a field with ¢ = gy and one cannot violate
cosmic censorship by slowly increasing the amplitude on
the boundary by any finite amount. For any final value of a,
there is a static nonsingular bulk solution for the geometry
to settle down to.

To investigate the connection between cosmic censorship
and the weak gravity conjecture more quantitatively, we

4
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1’ \
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FIG. 8.

now ask if we could lower g below gy and still preserve
cosmic censorship. From Figs. 1, 2 and 4 it would appear
that the answer is yes: one can indeed lower the charge
slightly below the weak gravity bound and still have the
scalar field condense before reaching a singularity.
However, this does not take into account the possibility
that naked singularities can still form even with the scalar
field nonzero.

To explore this possibility, we ask what happens to the
full nonlinear solutions with @ # 0 if we lower g keeping
a > an, We take for instance a solution with n = 8§, at
fixed a = 8.5 > a,,,, and lower ¢ as much as we can,
while monitoring a curvature invariant such as the
Kretschmann scalar, defined here as K = L*R,,.4R*““.
Our findings are plotted in Fig. 7, where we see that the
maximum of Kretschmann scalar outside the Poincaré
horizon seems to blow up at some critical value of
q = q. < qw- In order to find the precise value at which
maxpK diverges, we monitor (maxpK)~! and use linear
extrapolation.

One can repeat this exercise for several values of a.
Remarkably, the singularity in the solutions with @ # 0
appears to approach the weak gravity bound as a increases.
This is shown in Fig. 8, where we have added the minimum
charge for the ® # 0 solutions with a > a,,, to our earlier
plot of the minimum charge for a < a,,,. It is difficult to
push the numerics to larger values of the amplitude, but at
a = 10.0 the singularity appears when the charge is just
half a percent lower than gy, and this difference is clearly
decreasing with a. This means that if we take g below gy,
and slowly increase the amplitude, even though our
previous Einstein-Maxwell solutions become unstable

1.1
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0.9+

qmin/QW

0.8t

0.7+

0.6
5

a

Phase diagram of solutions for n = 8 and A = 2. The dashed vertical line denotes a = a,,,,. Solutions with @ # 0 exist above

the (blue and yellow) line connecting the dots, and @ — 0 along this line for a < a,,,,, but develops singularities along the line for
a > dp,. The right panel shows a blowup of part of the left panel.

066005-8



TESTING THE WEAK GRAVITY-COSMIC CENSORSHIP ...

PHYS. REV. D 97, 066005 (2018)

and the scalar field turns on, it will still become singular at a
finite value of a. So one can still violate cosmic censorship
this way. Thus the bound on the charge to preserve cosmic
censorship appears to be precisely the weak gravity bound.

V. FINAL COMMENTS

Motivated by the weak gravity conjecture, we have
added a charged scalar field to our earlier counterexamples
to cosmic censorship in AdS. We have presented strong
evidence that the weak gravity conjecture bound on the
charge is both necessary and sufficient to preserve cosmic
censorship for this class of examples. We find this con-
nection to be remarkable and clearly deserves further
investigation.

Perhaps one step toward understanding this connection is
the following. In the solutions with @ # 0 and a > a,,..,
when we lower the charge and the curvature becomes large,
the scalar field also becomes large at the same location.
This produces a large localized charge density with a
geometry perhaps similar to that outside a small charged
black hole. But if the charge is below the weak gravity
bound, a small charged black hole cannot have smooth
scalar hair. The scalar field necessarily diverges at the
horizon. This might help explain why we are obtaining the
same bound on the charge.

As in [8], our arguments about the validity of cosmic
censorship are based on the structure of the space of static
solutions. This is reasonable since one can imagine slowly
increasing the amplitude a on the boundary, and the bulk is

expected to remain close to the static solutions (whenever
they are nonsingular). However we have not yet done the
complete time dependent evolution (analogous to [9]), and
there is value in doing so. As mentioned in Sec. II, the
original FEinstein-Maxwell theory has another branch of
solutions describing hovering charged black holes. These
do not affect the original proposed counterexample to
cosmic censorship since they are not present initially
and cannot form under evolution since there is no charged
matter. Since we have now added a charged scalar field, one
should ask if hovering black holes could form as we slowly
increase the amplitude on the boundary. This might be
possible for g < gy near the amplitude where the static
solution becomes singular. If so, the weak gravity con-
jecture would still preserve cosmic censorship, but it might
also be preserved for some g < gy. One needs to do a
complete time dependent evolution to see if this is the case.

Finally, as we mentioned earlier, the smooth solutions we
have constructed with ® # 0 can be viewed as localized
holographic superconductors. It might be interesting to
study their critical temperatures and some of their transport
properties.

ACKNOWLEDGMENTS

G. H. was supported in part by NSF Grant No. PHY-
1504541. T.C. was supported by an STFC studentship.
J.E.S. was supported in part by STFC Grants No. PHY-
1504541 and No. ST/P000681/1.

[1] R. Penrose, Gravitational collapse: The role of general
relativity, Nuovo Cimento 1, 252 (1969); Gen. Relativ.
Gravit. 34, 1141 (2002).

[2] R. Gregory and R. Laflamme, Black Strings and p-Branes
are Unstable, Phys. Rev. Lett. 70, 2837 (1993).

[3] V.E. Hubeny and M. Rangamani, Unstable horizons, J. High
Energy Phys. 05 (2002) 027.

[4] J.E. Santos and B. Way, Neutral Black Rings in Five
Dimensions are Unstable, Phys. Rev. Lett. 114, 221101
(2015).

[5] L. Lehner and F. Pretorius, Black Strings, Low Viscosity
Fluids, and Violation of Cosmic Censorship, Phys. Rev.
Lett. 105, 101102 (2010).

[6] P. Figueras, M. Kunesch, and S. Tunyasuvunakool, End
Point of Black Ring Instabilities and the Weak Cosmic
Censorship Conjecture, Phys. Rev. Lett. 116, 071102
(2016).

[7] P.Figueras, M. Kunesch, L. Lehner, and S. Tunyasuvunakool,
End Point of the Ultraspinning Instability and Violation
of Cosmic Censorship, Phys. Rev. Lett. 118, 151103
(2017).

[8] G.T. Horowitz, J. E. Santos, and B. Way, Evidence for an
electrifying violation of cosmic censorship, Classical Quan-
tum Gravity 33, 195007 (2016).

[9] T. Crisford and J. E. Santos, Violating the Weak Cosmic
Censorship Conjecture in Four-Dimensional Anti—de Sitter
Space, Phys. Rev. Lett. 118, 181101 (2017).

[10] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, The
String landscape, black holes and gravity as the weakest
force, J. High Energy Phys. 06 (2007) 060.

[11] C. Vafa (private communication).

[12] S.S. Gubser, Breaking an Abelian gauge symmetry near a
black hole horizon, Phys. Rev. D 78, 065034 (2008).

[13] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Building a
Holographic Superconductor, Phys. Rev. Lett. 101, 031601
(2008).

[14] O.J.C. Dias, J. E. Santos, and B. Way, Black holes with a
single Killing vector field: Black resonators, J. High Energy
Phys. 12 (2015) 171.

[15] B. E. Niehoff, J. E. Santos, and B. Way, Towards a violation
of cosmic censorship, Classical Quantum Gravity 33,
185012 (2016).

066005-9


https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1103/PhysRevLett.70.2837
https://doi.org/10.1088/1126-6708/2002/05/027
https://doi.org/10.1088/1126-6708/2002/05/027
https://doi.org/10.1103/PhysRevLett.114.221101
https://doi.org/10.1103/PhysRevLett.114.221101
https://doi.org/10.1103/PhysRevLett.105.101102
https://doi.org/10.1103/PhysRevLett.105.101102
https://doi.org/10.1103/PhysRevLett.116.071102
https://doi.org/10.1103/PhysRevLett.116.071102
https://doi.org/10.1103/PhysRevLett.118.151103
https://doi.org/10.1103/PhysRevLett.118.151103
https://doi.org/10.1088/0264-9381/33/19/195007
https://doi.org/10.1088/0264-9381/33/19/195007
https://doi.org/10.1103/PhysRevLett.118.181101
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1007/JHEP12(2015)171
https://doi.org/10.1007/JHEP12(2015)171
https://doi.org/10.1088/0264-9381/33/18/185012
https://doi.org/10.1088/0264-9381/33/18/185012

CRISFORD, HOROWITZ, and SANTOS

PHYS. REV. D 97, 066005 (2018)

[16] G.T. Horowitz, N. Igbal, J. E. Santos, and B. Way, Hovering
black holes from charged defects, Classical Quantum
Gravity 32, 105001 (2015).

[17] M. W. Choptuik, Universality and Scaling in Gravitational
Collapse of a Massless Scalar Field, Phys. Rev. Lett. 70, 9
(1993).

[18] P. Bizon and A. Rostworowski, On Weakly Turbulent
Instability of Anti—de Sitter space, Phys. Rev. Lett. 107,
031102 (2011).

[19] A. A. Starobinskil and S.M. Churilov, Amplification of
electromagnetic and gravitational waves scattered by a
rotating “black hole”, Sov. Phys. JETP 65, 1 (1974).

[20] G. W. Gibbons, Vacuum polarization and the spontaneous
loss of charge by black holes, Commun. Math. Phys. 44,
245 (1975).

[21] P.Basu, J. Bhattacharya, S. Bhattacharyya, R. Loganayagam,
S. Minwalla, and V. Umesh, Small hairy black holes in global
AdS spacetime, J. High Energy Phys. 10 (2010) 045.

[22] S. Bhattacharyya, S. Minwalla, and K. Papadodimas, Small
hairy black holes in AdSsxS>, J. High Energy Phys. 11
(2011) 035.

[23] O.J.C. Dias, P. Figueras, S. Minwalla, P. Mitra, R.
Monteiro, and J. E. Santos, Hairy black holes and solitons
in global AdSs, J. High Energy Phys. 08 (2012) 117.

[24] S. A. Gentle, M. Rangamani, and B. Withers, A soliton
menagerie in AdS, J. High Energy Phys. 05 (2012) 106.

[25] J. Markeviciute and J. E. Santos, Hairy black holes in AdS;
S°, J. High Energy Phys. 06 (2016) 096.

[26] P. Bosch, S.R. Green, and L. Lehner, Nonlinear Evolution
and Final Fate of Charged Anti-de Sitter Black Hole
Superradiant Instability, Phys. Rev. Lett. 116, 141102
(2016).

[27] O.].C. Dias and R. Masachs, Hairy black holes and the end
point of AdS, charged superradiance, J. High Energy Phys.
02 (2017) 128.

[28] E. Berti and K.D. Kokkotas, Quasinormal modes of
Reissner—Nordstrom—anti—de Sitter black holes: Scalar,
electromagnetic and gravitational perturbations, Phys.
Rev. D 67, 064020 (2003).

[29] N. Uchikata and S. Yoshida, Quasinormal modes of a
massless charged scalar field on a small Reissner—
Nordstrom—anti—de Sitter black hole, Phys. Rev. D 83,
064020 (2011).

[30] F. Denef and S. A. Hartnoll, Landscape of superconducting
membranes, Phys. Rev. D 79, 126008 (2009).

[31] M. Headrick, S. Kitchen, and T. Wiseman, A new approach
to static numerical relativity, and its application to Kaluza-
Klein black holes, Classical Quantum Gravity 27, 035002
(2010).

[32] 0.J.C. Dias, J. E. Santos, and B. Way, Numerical methods
for finding stationary gravitational solutions, Classical
Quantum Gravity 33, 133001 (2016).

[33] P. Figueras and T. Wiseman, On the existence of stationary
Ricci solitons, Classical Quantum Gravity 34, 145007
(2017).

[34] P. Figueras, J. Lucietti, and T. Wiseman, Ricci solitons,
Ricci flow, and strongly coupled CFT in the Schwarzschild
Unruh or Boulware vacua, Classical Quantum Gravity 28,
215018 (2011).

[35] G.T. Horowitz and J. E. Santos, General relativity and the
cuprates, J. High Energy Phys. 06 (2013) 087.

[36] M. S. Costa, L. Greenspan, J. Penedones, and J. E. Santos,
Polarized black holes in ABJM, J. High Energy Phys. 06
(2017) 024.

066005-10


https://doi.org/10.1088/0264-9381/32/10/105001
https://doi.org/10.1088/0264-9381/32/10/105001
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.107.031102
https://doi.org/10.1103/PhysRevLett.107.031102
https://doi.org/10.1007/BF01609829
https://doi.org/10.1007/BF01609829
https://doi.org/10.1007/JHEP10(2010)045
https://doi.org/10.1007/JHEP11(2011)035
https://doi.org/10.1007/JHEP11(2011)035
https://doi.org/10.1007/JHEP08(2012)117
https://doi.org/10.1007/JHEP05(2012)106
https://doi.org/10.1007/JHEP06(2016)096
https://doi.org/10.1103/PhysRevLett.116.141102
https://doi.org/10.1103/PhysRevLett.116.141102
https://doi.org/10.1007/JHEP02(2017)128
https://doi.org/10.1007/JHEP02(2017)128
https://doi.org/10.1103/PhysRevD.67.064020
https://doi.org/10.1103/PhysRevD.67.064020
https://doi.org/10.1103/PhysRevD.83.064020
https://doi.org/10.1103/PhysRevD.83.064020
https://doi.org/10.1103/PhysRevD.79.126008
https://doi.org/10.1088/0264-9381/27/3/035002
https://doi.org/10.1088/0264-9381/27/3/035002
https://doi.org/10.1088/0264-9381/33/13/133001
https://doi.org/10.1088/0264-9381/33/13/133001
https://doi.org/10.1088/1361-6382/aa764a
https://doi.org/10.1088/1361-6382/aa764a
https://doi.org/10.1088/0264-9381/28/21/215018
https://doi.org/10.1088/0264-9381/28/21/215018
https://doi.org/10.1007/JHEP06(2013)087
https://doi.org/10.1007/JHEP06(2017)024
https://doi.org/10.1007/JHEP06(2017)024

