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In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of
the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle
analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading
order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern
the map from the field theory to the classical description. This result can be of use for phenomenological
studies of classical bodies in gravitational fields.
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I. INTRODUCTION

Effects from gravitational physics and quantum physics
are expected to be on an equal footing at the Planck scale,
which is a scenario that could induce minuscule violations
of Lorentz invariance. On the one hand, indications for such
violations exist in closed-string theories [1–5] and loop
quantum gravity [6,7]. On the other hand, models of
noncommutative spacetimes [8,9], spacetime foam models
[10–12], (chiral) field theories defined on spacetimes with
nontrivial topologies [13–16], and Hořava-Lifshitz gravity
[17] are based on the assumption that Lorentz invariance is
violated. For several decades, violations of this fundamen-
tal symmetry have been looked for where until the end of
the last millennium, these experimental searches had been
rather unsystematic. To be able to compare the results of
different experiments to each other and to make theoretical
predictions of possible experimental signals, the minimal
standard-model extension (SME) was established in
[18,19]. The minimal SME is a field-theory framework
parametrizing all power-counting renormalizable Lorentz-
violating contributions that are consistent with both coor-
dinate covariance and the gauge structure of the standard
model. Each contribution is decomposed into controlling
coefficients and a field operator suitably contracted to form
an observer Lorentz scalar. In gravity, Lorentz invariance is
a local concept and a parametrization of deviations from
local Lorentz invariance, local position invariance, and the

weak equivalence principle in terms of minimal operators
was provided in [20]. The nongravitational part of the SME
was extended in [21–23] to include all operators of arbitrary
mass dimension where this generalization is called the
nonminimal SME. It is important to recall thatCPT violation
implies Lorentz violation in effective field theory in
Minkowski spacetime [24], which is why all CPT-violating
operators are contained in the SME, as well.
Most experimental tests of gravity are performed with

classical test bodies, cf. [25] for a compilation of all current
constraints on controlling coefficients. General relativity is
a classical theory, after all. However, the field-theory
description of the SME is not entirely suitable to predict
effects of Lorentz violation within classical physics, which
is why it would be highly desirable to have a map from the
Lagrange density in field theory to the classical Lagrangian
of a relativistic, pointlike particle. A map that provides a
classical Lagrangian from the field-theory dispersion equa-
tion was constructed explicitly in [26]. Based on this
construction, the first classical Lagrangians for a wide
range of controlling coefficients within the minimal SME
were obtained in the same paper. These results are exact
and are composed of Lagrangians for a combination of a, c,
e, f coefficients, the full Lagrangian for the b coefficients,
and partial results for the d, H coefficients. This set of
Lagrangians was complemented by results for more
involved families of d, g coefficients given in [27,28].
Based on some of these findings, the motion of a charged,

classical particle under the influence of both a Lorentz-
violating background field and an electromagnetic field was
studied in [29]. In addition, the modified time evolution of a
semiclassical analog of spin was examined with the BMT
equation. In [30] it was demonstrated that the procedure of
finding Lagrangians from the field theory description can be
reversed at first order in Lorentz violation. Thus, it is possible
to reobtain parts of the SME Hamilton operator from a
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particular classical Lagrangian by the usual quantization
procedure. Finally, an approach was developed in [31] to
assign Finsler structures to the minimal SME photon sector.
This procedure is based on modified refractive indices and
the eikonal equation.
The first exact nonminimal Lagrangian was derived in

[32] for the isotropic operator m̂ð5Þ. However, the latter is
highly complicated, nontransparent and too unwieldy to be
used in applications. Therefore, subsequently it was found
to be more reasonable to obtain perturbative expansions of
such Lagrangians in the nonminimal SME. The method of
Gröbner bases, which is a generalization of Gauß’ algo-
rithm for nonlinear systems of equations, provides a
powerful technique to derive leading-order Lagrangians
for the lowest-dimensional contributions to the spin-
degenerate operators, i.e., for âð5Þ, ĉð6Þ, êð6Þ, f̂ð6Þ, and
m̂ð5Þ [33]. These Lagrangians are natural generalizations of
the first-order minimal ones with the controlling coeffi-
cients replaced by suitable contractions of the nonminimal
coefficients and the four-velocity. An additional scalar
parameter before the Lorentz-violating contribution
ensures that its mass dimension is consistent with that of
the standard term and that it is positively homogeneous of
degree one in the velocity. The latter is a reasonable
property to require, as it leads to an action that is invariant
under reparametrizations of the worldline.
It was shown in [34] that such classical Lagrangians can be

promoted to Finsler structures by a procedure that has
parallels to a Wick rotation. The Lagrangians for the a, c,
e, andf coefficientswere found tobe related towhat is known
as a Randers structure, whereas the Lagrangian for b was
demonstrated tobe linked to a hitherto unknownFinsler space
that is not of Randers type. The properties of this Finsler
space, which is referred to as b space, were investigated in the
latter article. Also, the Finsler structures associated with the
coefficients of the nonminimal SME studied in [33] were
found to be different from the Randers structure.
Since its discovery, b space has been subject to further

studies. Three-dimensional versions of it were demonstrated
to play a role in systems of classical mechanics and
magnetostatics [35]. Besides that, Finsler b space was
discovered to have singularities that can be removed with
a desingularization procedure [36] whose existence is based
on the famous Hironaka theorem for algebraic varieties. An
alternative to this procedure, which is related to the formal-
ism of extended Hamiltonians introduced by Dirac, was
presented in the recent work [37]. In principle, b space is a
special case of a more general type of Finsler structures that
are called bipartite and that are focused on in [38].
The objective of the current paper is to provide a

complete generalization of the results of [33] that covers
the whole SME at first order in Lorentz violation. Special
emphasis is put on the spin-nondegenerate operators b̂, d̂,
Ĥ, and ĝ that were not treated in the previous reference. The
paper is organized, as follows. At the beginning of Sec. II,

we recall the basics on how to obtain a classical Lagrangian
from the corresponding SME field theory. The five equa-
tions describing the map from the wave packet to a
classical, pointlike particle will be introduced. This section
is also dedicated to deriving such Lagrangians for both the
spin-degenerate and spin-nondegenerate operators includ-
ing a subsequent discussion of the results. Based on the
Lagrangians obtained to that point, in Sec. III we will be in
a position to state the first-order result covering the full
SME, which is the central result of the current article.
Finally, Sec. IV provides some concluding remarks on all
findings. In addition, it will be demonstrated analytically
that the five nonlinear equations are fulfilled at leading
order by the classical Lagrangians obtained. As these
proofs for the spin-nondegenerate operators are lengthy,
they can be found in Appendices A and B, respectively.
The paper rests on natural units with ℏ ¼ c ¼ 1.

II. CONSTRUCTION AND PROPERTIES
OF LAGRANGIANS

We consider the Lagrange density describing nonmini-
mal Lorentz violation in the fermion sector of the SME. Its
explicit form is stated in [23]. The map from the field-
theory description to the classical Lagrange function of a
relativistic, pointlike particle of massmψ moving with four-
velocity uμ is governed by the following set of five ordinary
nonlinear equations [26]:

RðpÞ ¼ 0; ð2:1aÞ

∂p0

∂pi
¼ −

ui

u0
; i ∈ f1; 2; 3g; ð2:1bÞ

L ¼ −pμuμ; pμ ¼ −
∂L
∂uμ ; ð2:1cÞ

where pμ ¼ i∂μ is the momentum that appears in the
Fourier decomposition of a wave packet into plane waves.
Equation (2.1a) depends on the momentum only and it is
simply the dispersion equation following from the deter-
minant of the modified Dirac operator. The set of three
equations (2.1b) identifies the group velocity of the
centroid of a quantum wave packet with the three-velocity
u/u0 of the classical particle. The convention is such that
the four-momentum components have lower indices
whereas the four-velocity components are supposed to
have upper ones. Hence, an additional sign must be taken
into account on the right-hand side. Furthermore, the
classical Lagrange function is supposed to be positively
homogeneous in the velocity, which means that LðλuÞ ¼
λLðuÞ for λ > 0. This property grants parametrization
invariance of the action, which is a must-have in physics,
as the action should only depend on the path, but not on the
way how it is parametrized. Equation (2.1c) is famous
Euler’s theorem that follows from exactly the latter
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characteristic of the Lagrangian. The canonical momentum
is defined with a minus sign to grant the correct sign for the
nonrelativistic kinetic energy.
Solving the five equations for pμ ¼ pμðuÞ and L ¼ LðuÞ

corresponds to an explicit construction of the map.
However, as the system is nonlinear, it is highly nontrivial
to solve it—even in the context of the minimal SME.
Gröbner bases provide a tool to treat Eqs. (2.1) system-
atically, which has proven extremely useful to derive
Lagrangians in the nonminimal SME [33]. In what follows,
classical Lagrangians will be obtained that fulfill Eqs. (2.1)
at leading order in Lorentz violation. The complete family
of nonminimal coefficients ought to be covered. We will
restrict our analysis to particles. Classical Lagrangians
corresponding to antiparticle dispersion relations can sim-
ply be obtained from the particle Lagrangians via the
substitution mψ ↦ −mψ , cf. [26,27].

A. Spin-degenerate operators

Let us start deriving the classical Lagrangians for the
spin-degenerate operators â, ĉ, ê, f̂, and m̂. Our approach
shall be exemplified by the a coefficients. The minimal a
coefficients constitute an observer four-vector and they are
contracted with a field operator of mass dimension 3. In the
nonminimal SME, the number of additional derivatives in
the field operator subsequently increases by twowhereupon
the number of indices of the controlling coefficients rises
by two and the mass dimension decreases by two. The
Lagrangian for d ¼ 3 was obtained in [26] where for d ¼ 5
it was found in [33] based on the method of Gröbner bases.
We recall both Lagrangians:

Lað3Þ ¼ −mψ

ffiffiffiffiffi
u2

p
− að3Þ� ;

að3Þ� ≡ að3Þμ uμ; ð2:2aÞ

Lâð5Þ ¼ −mψ

ffiffiffiffiffi
u2

p
−
m2

ψ

u2
âð5Þ� þ � � � ;

âð5Þ� ≡ að5Þμνϱuμuνuϱ: ð2:2bÞ

A hat is put on contractions associated with nonminimal
operators. The minimal result is exact and the nonminimal
one is valid at first order in Lorentz violation. Neglected
higher-order contributions will be indicated as ellipses.1

Due to observer Lorentz invariance, consistency of the
mass dimension, and positive homogeneity of degree 1 in
the velocity, the perturbative form of a Lagrangian is quite
restricted. The Lorentz-violating contribution must involve
the component coefficients. Suitable observer Lorentz

scalars âðdÞ� can be formed by contracting the latter

coefficients with the only four-vector available, which is
the four-velocity.2 The mass dimension is made consistent
with that of the standard term by introducing additional
powers of the fermion mass. Positive homogeneity of the
second term is restored by suitable powers of the Lorentz
scalar u2 in the denominator. These general arguments
enable us to propose an Ansatz for arbitrary odd d ≥ 3:

LâðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
− Â� þ � � � ; ð2:3aÞ

Â� ≡ Ξaâ�; Ξa ¼ ΞðdÞ
a ¼ md−3

ψ

ðu2Þðd−3Þ/2 ; ð2:3bÞ

â� ¼ âðdÞ� ≡ aðdÞμα1…αd−3u
μuα1…uαd−3 ; ð2:3cÞ

where this result is supposed to be valid at first order in the
controlling coefficients. It is convenient to define a second
Lorentz scalar Â� that corresponds to the product of the
consistency factor Ξa and the Lorentz scalar obtained by
contracting the controlling coefficientswith the four-velocity.
Note that Â� is homogeneous of degree 1 in contrast to â�, as
each of the d − 2 indices is contracted with a four-velocity to
be compensated by the factor ðu2Þðd−3Þ/2 in the denominator.
The usefulness of Â� will become clear belowwhen a general
proof of the validity of the Lagrangian at leading order in
Lorentz violation will be provided.
It can be checked that for d ¼ 3, 5 the Ansatz reproduces

the already known results of Eqs. (2.2). Note that in what
follows, the index indicating the mass dimension at various
quantities will be dropped to simplify the notation, i.e., it will
be mentioned only when necessary. A formal proof of the
validity of theLagrangian is feasible and it is demonstrated as
follows, i.e., we will show that the Lagrangian fulfills
Eqs. (2.1) at leading order in Lorentz violation. The starting
point is the covariant momentum as a function of the four-
velocity, which is obtained from the Lagrangian via

pμ ¼ −
∂LâðdÞ

∂uμ ¼ mψ
uμffiffiffiffiffi
u2

p þ ∂Â�
∂uμ ; ð2:4Þ

cf. Eq. (2.1c). Note that here it is already much more
convenient to express the Lagrangian in terms of Â�, as it
is not necessary to include the derivative of Ξa explicitly.
When the Lagrangian is correct, as it stands, this momentum
must obey the dispersion equation at first order in Lorentz
violation,which is quite simple to show for thea coefficients:

R ¼ ðp − âÞ2 −m2
ψ ¼ p2 − 2â · p −m2

ψ þ � � � ; ð2:5aÞ

âμ ¼ âðdÞμ ≡ aμα1…αd−3p
α1…pαd−3 : ð2:5bÞ

1Ellipses used in computations indicate terms discarded after a
certain step. This procedure makes it easier for the reader to keep
track of leading-order approximations.

2Throughout the article, an asterisk indicates controlling
coefficients suitably contracted with four-velocities. This nota-
tion was introduced in [33] and it will be adopted for consistency.

LEADING-ORDER CLASSICAL LAGRANGIANS FOR THE … PHYS. REV. D 97, 065019 (2018)

065019-3



Here, âμ is a four-vector formed from a suitable contraction
of the controlling coefficients with the four-momentum. At
leading order in Lorentz violation, it suffices to replace each
four-momentum by the standard expression mψuμ/

ffiffiffiffiffi
u2

p
producing âμ ≈ Ξaâ�μ. Inserting the momentum and the
latter approximate relationship into the dispersion equation
gives

R ¼ m2
ψ þ 2mψffiffiffiffiffi

u2
p uμ

∂Â�
∂uμ −

2mψffiffiffiffiffi
u2

p Â� −m2
ψ þ � � � ¼ 0: ð2:6Þ

It is very convenient to employ Euler’s theorem, which is
applicable, as Â� is positively homogeneous of degree 1 in
the four-velocity:

uμ
∂Â�
∂uμ ¼ Â�: ð2:7Þ

Hence, the dispersion equation is fulfilled when neglecting
higher-order contributions inLorentz violation. Thenext step
is to verify Eq. (2.1b). We do this by computing the first
implicit derivative of the dispersion equation with respect to
pi, replace ∂p0/∂pi by −ui/u0, and insert the canonical
momentum of Eq. (2.4):

∂R
∂pi

¼ 2p0

∂p0

∂pi
þ 2pi − 2

∂ðâ · pÞ
∂pi

þ � � �

¼ 2

�
mψ

u0ffiffiffiffiffi
u2

p þ ∂Â�
∂u0

��
−
ui

u0

�
þ 2

�
mψ

uiffiffiffiffiffi
u2

p −
∂Â�
∂ui

�

− 2
∂ðâ · pÞ
∂pi

¼ −2
�∂Â�
∂u0

ui

u0
þ ∂Â�

∂ui
�
− 2

∂ðâ · pÞ
∂pi

¼ 0; ð2:8Þ

where the derivative of â · p by the momentum was
expressed in terms of the derivative of Â� with respect to
the four-velocity components:

∂ðâ · pÞ
∂pi

¼ mψ
∂ðΞaâ�μuμ/

ffiffiffiffiffi
u2

p
Þ

∂uσ
∂uσ
∂pi

þ � � �

¼ mψ

�∂ðÂ�/
ffiffiffiffiffi
u2

p
Þ

∂u0
∂u0
∂pi

þ ∂ðÂ�/
ffiffiffiffiffi
u2

p
Þ

∂uj
∂uj
∂pi

�

¼ −
�∂Â�
∂u0

ui

u0
þ ∂Â�

∂ui
�
: ð2:9Þ

To do so, the zeroth-order correspondence between four-
velocity and four-momentum and the related derivatives are
needed

uμffiffiffiffiffi
u2

p ¼ pμffiffiffiffiffi
p2

p ¼ pμ

mψ
; ð2:10aÞ

1ffiffiffiffiffi
u2

p ∂u0
∂pi

¼ 1

mψ

pi

p0
¼ −

1

mψ

ui

u0
;

1ffiffiffiffiffi
u2

p ∂uj
∂pi

¼ −
1

mψ
δij;

ð2:10bÞ
in combination with the following property for a generic
function f ¼ fðu2Þ that depends on the four-velocity
squared only:

ui

u0
∂fðu2Þ
∂u0 þ∂fðu2Þ

∂ui ¼ ui

u0
∂f

∂ðu2Þ2u
0−

∂f
∂ðu2Þ2u

i¼0: ð2:11Þ

Thus, the term involving the derivative of 1/
ffiffiffiffiffi
u2

p
vanishes in

Eq. (2.9) whereupon the remaining result compensates the
first term in Eq. (2.8). As the Lagrangian is positively
homogeneous of degree 1 in the velocity, Eq. (2.1c) is
fulfilled automatically. Note that Eq. (2.10b) is valid for a
parametrization with constant u2. Due to parametrization
invariance of the setting, the result should also be valid for an
arbitrary parametrization.
To summarize, in contrast to the derivations of classical

Lagrangians in [33], which relied on the method of Gröbner
bases, the current Lagrangian was simply obtained by
making a suitable guess that is in accordance with observer
Lorentz invariance and positive homogeneity of first degree
in the velocity. Furthermore, it ought to reproduce the
already known results. The same procedure is now success-
fully employed to arrive at the classical Lagrangians for the
remaining spin-degenerate operators. The general result for
the classical Lagrangian at leading order in Lorentz
violation is reasonably expressed in the form

Lx̂ðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
− X̂� þ � � � ; X̂� ¼ Ξxx̂�: ð2:12Þ

Here x̂� ¼ x̂ðdÞ� is a total contraction of controlling coef-
ficients with an appropriate combination of four-velocities.

The parameterΞx ¼ ΞðdÞ
x only involves the particle mass and

a suitable power of the observer scalar u2. In the general case,

it is also convenient to define observer scalars X̂� ¼ X̂ðdÞ
� that

are positively homogeneous of degree 1 in the velocity.
The explicit expressions of these quantities for the complete
set of spin-degenerate operators are listed in Table I.
Several remarks on the classical Lagrangian of Eq. (2.12)

are in order. First, the Lagrangian is a sum of the standard
term L ¼ −mψ

ffiffiffiffiffi
u2

p
and a contribution that is linear in the

controlling coefficients. Second, it is formed from observer
Lorentz scalars to render it a Lorentz scalar, as expected.3

3Parametrizing the world line of the particle with proper time τ,
the four-velocity is defined by uμ ¼ γð1; vÞμ, as usual. The latter
is a four-vector that satisfies u2 ¼ 1. In this parametrization, a
point-particle Lagrangian is a Lorentz scalar. Due to parametri-
zation invariance of the action, different parametrizations with a
suitably chosen λ may be useful [26]. In such a case, u2 ¼
ðdτ/dλÞ2, i.e., uμ is not a four-vector anymore, rendering the
Lagrangian noninvariant under Lorentz transformations.
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Third, it has to be of mass dimension 1 where additional
powers of masses must be introduced in the Lorentz-
violating term such that its mass dimension corresponds
to the mass dimension of the standard term. Fourth,
additional powers of the four-velocity squared are needed
to make the nonstandard contribution homogeneous of
degree 1 in the velocity. Fifth, there is the correspondence
â� ↔ −mψ ê�, which is the generalization of aμ ↔ −mψeμ
found for the minimal SME [28]. Sixth, the dimensionless
number jX̂�j/ðmψ

ffiffiffiffiffi
u2

p
Þmust be≪1 such that the first-order

approximation is justified. This requirement translates into
the additional condition that u2 should not lie in the close
vicinity of u20. When we use a parametrization of the
particle trajectory such that u0 ¼ 1 and u ¼ v with the
three-velocity v, this condition means that the particle
should not travel with a velocity too close to the speed
of light. The condition jX̂�j/ðmψ

ffiffiffiffiffi
u2

p
Þ ≪ 1 can be solved for

one of the spatial velocity components on a case-by-case
basis. As an example, let us consider an observer frame with

the only nonzero coefficientað5Þ000. As this case is isotropic, the
inequality can even be solved for juj leading to

juj ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 − ðmψ ju30að5Þ000jÞ2/3

q
: ð2:13Þ

Inserting the numbers u0 ¼ 1 andmψa
ð5Þ
000 ¼ 10−10 produces

juj ≪ 1 − 10−7, i.e., the condition is already fulfilled for a β
factor of the particle that amounts to around 1–10−6. This
result demonstrates that the perturbation can bemuch smaller
than the standard term even for ultrarelativistic particles. It is
not a requirement that the particle moves nonrelativistically.
The analog statement in momentum space is that the energy
and momentum must be small enough, as the relevance of a
nonminimal contribution rises with increasing momentum.
For the remaining spin-degenerate operators, the proof

that Eq. (2.12) fulfills Eqs. (2.1) works completely

analogously when the corresponding expressions of
Table I are employed. Furthermore, it is now quite
convenient to generalize the Lagrangian of Eq. (2.12) to
the situation when operators of different mass dimensions
are added, e.g., âμ ↦

P
d≥3a

ðdÞ
μα1…αd−3p

α1…pαd−3 for the a
coefficients. We then simply have to replace the above

observer scalar X̂ðdÞ
� for a particular mass dimension d by a

sum, i.e., X̂ðdÞ
� ↦

P
dX̂

ðdÞ
� where d runs over suitable values

permitted for the operator x̂ðdÞ. As each individual sum-
mand of the introduced sum is positively homogeneous of
degree 1 in the velocity, the sum itself will have that
property, too. Hence, the proof of the validity of the
Lagrangian can be taken over entirely. Finally, the expan-
sion of Lorentz-violating operators in terms of momenta

leads to the additional requirement X̂ðdþ2Þ
� ≪ X̂ðdÞ

� such
that each contribution is suppressed compared to the
previous one.

B. Spin-nondegenerate operators

The base for obtaining classical Lagrangians for the
spin-degenerate operators was laid in [33], whereas spin-
nondegenerate operators were not considered in the latter
paper. Hence, not a single classical Lagrangian has been
derived for the nonminimal operators b̂, d̂, Ĥ, and ĝ until
now. However, at least a couple of minimal results are
known such as that for the b coefficients, cf. Eq. (12) of
[26] for að3Þμ ¼ 0:

Lbð3Þ ¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbð3Þ · uÞ2 − ðbð3ÞÞ2u2

q
; ð2:14Þ

where there are two distinct Lagrangians for particles
because of spin-nondegeneracy. When we assume that the
previously used technique also works for the spin-
nondegenerate operators, we could propose a proper
Ansatz that is in accordancewith observer Lorentz invariance

TABLE I. Parameters of the generic classical Lagrangian of Eq. (2.12). The first column states the observer scalar
employed in the Lagrangian where the entries in the second column give the corresponding explicit expressions. The
consistency factors are listed in the third column. The fourth column shows Euler’s theorem for each of the Lorentz
scalars defined in the first two columns. The fifth column states the leading-order results for the Lorentz-violating
operators in momentum space with each four-momentum expressed in terms of the four-velocity.

x̂� Explicit contraction Ξx Radial derivative Correspondence

â� aðdÞμα1…αd−3u
μuα1…uαd−3 md−3

ψ /ðu2Þðd−3Þ/2 uμ ∂â�∂uμ ¼ ðd − 2Þâ� âμ ≈ Ξaâ�μ
ĉ� cðdÞμα1…αd−3u

μuα1…uαd−3 −md−3
ψ /ðu2Þðd−3Þ/2 uμ ∂ĉ�∂uμ ¼ ðd − 2Þĉ� ĉμ ≈ −Ξcĉ�μ

ê� eðdÞα1…αd−3u
α1…uαd−3 −md−3

ψ /ðu2Þðd−4Þ/2 uμ ∂ê�∂uμ ¼ ðd − 3Þê� êμ ≈ − Ξe
mψ

ê�μ

f̂� fðdÞα1…αd−3u
α1…uαd−3 m2d−7

ψ /½2ðu2Þð2d−7Þ/2� uμ ∂f̂2�∂uμ ¼ 2ðd − 3Þf̂2� f̂μf̂ν ≈
2
ffiffiffiffi
u2

p
Ξf

mψ
f̂�μf̂�ν

m̂� mðdÞ
α1…αd−3u

α1…uαd−3 md−3
ψ /ðu2Þðd−4Þ/2 uμ ∂m̂�∂uμ ¼ ðd − 3Þm̂� m̂ ≈ Ξmffiffiffiffi

u2
p m̂�

Ŝ� SðdÞ
α1…αd−3u

α1…uαd−3 −md−3
ψ /ðu2Þðd−4Þ/2 uμ ∂Ŝ�∂uμ ¼ ðd − 3ÞŜ� Ŝ ≈ − ΞSffiffiffiffi

u2
p Ŝ�

V̂� VðdÞ
μα1…αd−3u

μuα1…uαd−3 −md−3
ψ /ðu2Þðd−3Þ/2 uμ ∂V̂�∂uμ ¼ ðd − 2ÞV̂� V̂μ ≈ −ΞVV̂�μ
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and positive homogeneity of degree 1 in the velocity.
Furthermore, it should reproduce the minimal result Lbð3Þ :

Lb̂ðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
∓ B̂� þ � � � ;

B̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂2� − ðB̂μ

�B̂�μÞu2
q

; ð2:15aÞ

B̂�μ ≡ Ξbb̂�μ; B̂� ≡ Ξbb̂�;

Ξb ¼ ΞðdÞ
b ¼ md−3

ψ

ðu2Þðd−3Þ/2 ; ð2:15bÞ

b̂�μ ¼ b̂ðdÞ�μ ≡ bðdÞμα1…αd−3u
α1…uαd−3 ;

b̂� ¼ b̂ðdÞ� ≡ b̂�μuμ: ð2:15cÞ

An analytical proof of the validity of the Lagrangian for
arbitrary odd d ≥ 3 is tedious but feasible. Readers who are
only interested in the results can skip the proof, which is why
it has been moved to Appendix A. In this context it is crucial
to recall that at the level of the dispersion equation, the b and
d coefficients contribute to the pseudovector operator Âμ.
Hence, the dispersion equation for d̂μν at leading order in
Lorentz violation follows from the dispersion equation of b̂μ

in replacing the latter by −d̂μνp̄ν where p̄μ ≡ ðE0;pÞμ with
the standard dispersion relation E0 ¼ ðp2 þm2

ψ Þ1/2. The
correspondence at the level of classical Lagrangians is then
simply b̂�μ ↔ −d̂�μνuν ¼ −d̂�μ at first order in Lorentz
violation. The analytical proof for the b coefficients can
literally be taken over to the d coefficients where the only
difference is that the mass dimension takes even values ≥4.
A similar procedure is applied to the Ĥ and ĝ operators.

Let X ≡Hð3Þ
μν Hð3Þμν/4 and Y ≡Hð3Þ

μν H̃ð3Þμν/4 with H̃ð3Þμν

corresponding to the dual of Hð3Þμν. The exact classical
Lagrangian of the minimal H coefficients for the configu-
ration characterized by Y ¼ 0 is given by Eq. (15) in [26]
and it reads

LHð3Þ jY¼0 ¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uνðHð3ÞÞμνHð3Þ

μϱ uϱ þ 2Xu2
q

¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðH̃ð3ÞÞμνuνH̃ð3Þ

μϱ uϱ
q

; ð2:16Þ

where we used

ðHð3ÞÞμνuνHð3Þ
μϱ uϱ ¼ ðH̃ð3ÞÞμνuνH̃ð3Þ

μϱ uϱ þ 2Xu2: ð2:17Þ

Note that this Lagrangian is exact in Lorentz violation.
Based on the same fundamental principles as before, we
can propose a suitable Ansatz to cover theH coefficients for
arbitrary mass dimension at first order in Lorentz violation:

LĤðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
∓ Ĥ� þ � � � ; Ĥ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂H

μ
�
˜̂H�μ

q
;

ð2:18aÞ

˜̂H�μ ≡ Ξh
˜̂h�μ; ΞH ¼ ΞðdÞ

H ¼ md−3
ψ

ðu2Þðd−3Þ/2 ; ð2:18bÞ

˜̂h�μ ¼ ˜̂h
ðdÞ
�μ ≡ H̃ðdÞ

μνα1…αd−3u
νuα1…uαd−3 : ð2:18cÞ

The latter reproduces the minimal result. In Appendix B,
the Lagrangian proposed is shown to obey Eqs. (2.1) at first
order in Lorentz violation. It is valid for all configurations
of H coefficients, as a restriction Y ¼ 0 generalized to HðdÞ

μν

is not used in the proof. When taking into account that both
the H and the g coefficients contribute to the two-tensor
operator T̂ μν in the modified Dirac Lagrange density, the
leading-order dispersion equation for ĝμνϱ follows from that
of Ĥμν in replacing Ĥμν by −ĝμνϱp̄ϱ. The proof of the
validity of the classical Lagrangian can then be adapted by
considering Ĥ�μν ↔ −ĝ�μνϱuϱ ¼ −ĝ�μν at first order in the
controlling coefficients. Note that the mass dimension is
even and ≥4 for ĝ.
Based on these findings, the general Lagrangian for a

spin-nondegenerate operator at leading order is expressed
as follows:

Lx̂ðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
∓ X̂�; ð2:19Þ

with the quantities listed in Table II. Several remarks are in
order. First, the standard Lagrangian is reproduced for
vanishing controlling coefficients, as expected. Second, each
Lorentz-violating coefficient is multiplied by a parameter Ξx
that only depends on the particle mass, the four-velocity
squared, and the mass dimension. This parameter has the
same form for each type of spin-nondegenerate operator.
However, note that the mass dimensions of the coefficients
can differ from each other. Third, Lorentz violation is
encoded in a square root of quadratic combinations of
coefficients, i.e., the correction is of first order in Lorentz
violation. Due to the square root dependence, the Lagrangian
is not differentiable in the limit of zero Lorentz violation,
though. Fourth, there are two Lagrangians for particles that
mirror the two distinct modified dispersion relations present
for spin-nondegenerate operators. Fifth, taking a closer look

at the Lagrangians reveals the correspondence ˜̂H�μ ↔ mψ d̂�μ
for a d̂μν that is antisymmetric in the first two indices (cf. [28]
for the analog in the minimal SME). Sixth, at first order in
Lorentz violation, the Lagrangians for b̂, d̂, Ĥ, and ĝ are all of
the following form:

Lx̂ðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uμsx̂μνuν

q
; ð2:20Þ

where sx̂μν ¼ sx̂μνðuÞ are 4 × 4 matrices that are listed in
Table IIb explicitly. In principle, Eq. (2.20) can be interpreted
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as a generalization of what is known as the bipartite structure
within the minimal SME [38]. However, in contrast to its
original definition, the matrix sx̂μν now depends on the four-
velocity explicitly. Note the formal similarities of these
matrices for all types of spin-nondegenerate operators when

taking into account that ˜̂H
μ
�uμ ¼ ˜̂gμ�uμ ¼ 0 because of the

antisymmetry of ˜̂H and ˜̂g. Seventh, the Lagrangians for the
first two types and the latter two types of operators can be
combined resulting in Lagrangians expressed in terms of an
observer pseudovector and a two-tensor that are defined in
analogy to the pseudovector operator Âμ and the dual tensor

operator ˜̂T
μν
:

LÂðdÞ jd≥3
odd

¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Â2

� − ðÂμ
�Â�μÞu2

q
; ð2:21aÞ

L
˜̂T
ðdÞ jd≥3

odd
¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂T

μ
�
˜̂T �μ

q
; ð2:21bÞ

ÂðdÞ
�μ ≡ ΞðdÞ

b

�
mψffiffiffiffiffi
u2

p d̂ðdþ1Þ
�μ − b̂ðdÞ�μ

�
;

˜̂T
ðdÞ
�μ ≡ ΞðdÞ

H

�
mψffiffiffiffiffi
u2

p ˜̂gðdþ1Þ
�μ − ˜̂H

ðdÞ
�μ

�
: ð2:21cÞ

Here, the index indicating the mass dimension of Â�μ,
˜̂T �μ is

again omittedwithin theLagrangians to simplify the notation.
The Lagrangians for b̂, d̂ follow from Eq. (2.21a) and those
for Ĥ, ĝ follow from Eq. (2.21b) for appropriate choices of
the coefficients, as expected. These new Lagrangians are of
bipartite form, as well.

C. Map between vector c and pseudoscalar
f coefficients

It is well-known that the minimal f coefficients can be
mapped onto the c coefficients by a spinor redefinition [39].
The structure of the map is such that it involves only bilinear
combinations off coefficients and at leading order, it is given

by cð4Þμν ≈ −fð4Þμ fð4Þν /2. Comparing the Lagrangians for the c
and f coefficients with each other, reveals the following
correspondence at leading order:

cðdÞ� ↔ −
md−4

ψ

2ðu2Þðd−4Þ/2 ðf
ðdÞ
� Þ2; ð2:22aÞ

cðdÞ�μν ↔ −
md−4

ψ

2ðu2Þðd−4Þ/2 f
ðdÞ
�μ f

ðdÞ
�ν : ð2:22bÞ

TABLE II. Ingredients necessary to formulate the classical Lagrangian of Eq. (2.19) for a specific spin-
nondegenerate operator. The first column of (a) states the basic observer scalars and vectors with their explicit
construction given in the second column. The third column lists the consistency factors and the fourth gives Euler’s
theorem for the quantities defined before. In the fifth column, the reader can find the leading-order correspondences
between the Lorentz-violating operators transformed to momentum space and the related parameters with each four-
momentum expressed in terms of the four-velocity. The first column of (b) specifies the functions X̂� that make up
the Lorentz-violating contribution of the Lagrangians. In the second column, the observer scalars and vectors
necessary to construct these functions can be found. The third column points out Euler’s theorem for each X̂� and in
the fourth column the explicit matrices of the generalized bipartite Lagrangian of Eq. (2.20) are listed.

(a)

x̂�; x̂�μ Explicit contraction Ξx Radial derivative Correspondence

b̂� bðdÞμα1…αd−3u
μuα1…uαd−3 md−3

ψ /ðu2Þðd−3Þ/2 uμ ∂b̂�∂uμ ¼ ðd − 2Þb̂� b̂μ ≈ Ξbb̂�μ

d̂� dðdÞμα1…αd−3u
μuα1…uαd−3 md−3

ψ /ðu2Þðd−3Þ/2 uμ ∂d̂�∂uμ ¼ ðd − 2Þd̂� d̂μ ≈ Ξdd̂�μ
˜̂h�μ H̃ðdÞ

μνα1…αd−3u
νuα1…uαd−3 md−3

ψ /ðu2Þðd−3Þ/2 uμ ∂ ˜̂h�ν∂uμ ¼ ðd − 2Þ ˜̂h�ν ˜̂Hμν ≈ ΞH
˜̂H�μν

˜̂g�μ g̃ðdÞμνα1…αd−3u
νuα1…uαd−3 md−3

ψ /ðu2Þðd−3Þ/2 uμ ∂ ˜̂g�ν∂uμ ¼ ðd − 2Þ ˜̂g�ν ˜̂gμν ≈ Ξg
˜̂g�μν

(b)

X̂� Explicit expression X̂� Radial derivative Generalized bipartite matrix sx̂μν

B̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂2� − ðB̂μ

�B̂�μÞu2
q

B̂� ¼ Ξbb� uμ ∂B̂�∂uμ ¼ B̂� B̂�μB̂�ν − ðB̂ϱ
�B̂�ϱÞημν

D̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̂2� − ðD̂μ

�D̂�μÞu2
q

D̂� ¼ Ξdd� uμ ∂D̂�∂uμ ¼ D̂� D̂�μD̂�ν − ðD̂ϱ
�D̂�ϱÞημν

Ĥ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂H

μ
�
˜̂H�μ

q
˜̂H�μ ¼ ΞH

˜̂h�μ uμ ∂Ĥ�∂uμ ¼ Ĥ� − ˜̂H
ϱ
�
˜̂H�ϱημν/u2

Ĝ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂G

μ
�
˜̂G�μ

q
˜̂G�μ ¼ Ξg

˜̂g�μ uμ ∂Ĝ�∂uμ ¼ Ĝ� − ˜̂G
ϱ
�
˜̂G�ϱημν/u2
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In the second correspondence, the tensor structure on both
sides has been extracted. At leading order, the part of the
c coefficients that is symmetric in the first two indices
contributes to the Lagrangian only. The known map within
the minimal SME is reproduced for d ¼ 4. However, note
that Eqs. (2.22) do not provide a direct map between
the controlling coefficients, but just between certain con-
tractions of the c and f coefficients with the four-velocity.
Indeed, there exists the alternative possibility of mapping
controlling coefficients directly to eachother according to the
following rule:

cðdÞμνα2…αd−3 ↔ −
1

2
fðd/2þ2Þ
μα2…αd/2−1f

ðd/2þ2Þ
ναd/2þ1…αd−2 : ð2:23Þ

It can be deduced immediately that this generalization
contains the correspondence within the minimal SME.
Furthermore, counting the number of indices on each side
produces d − 2, i.e., the map is consistent in this respect. We
obtain the Lagrangian for f̂ðdÞ by inserting the latter map into
the Lagrangian for ĉðdÞ and adapting the mass dimension
appropriately:

LĉðdÞ ¼−mψ

ffiffiffiffiffi
u2

p
−ΞðdÞ

c ĉðdÞ� ↔−mψ

ffiffiffiffiffi
u2

p
þΞðdÞ

c

2
ðf̂ðd/2þ2Þ

� Þ2

¼−mψ

ffiffiffiffiffi
u2

p
þΞð2d0−4Þ

c

2
ðf̂ðd0Þ� Þ2

¼−mψ

ffiffiffiffiffi
u2

p
þΞðd0Þ

f ðf̂ðd0Þ� Þ2 ¼Lf̂ðd
0Þ
: ð2:24Þ

There is one caveat, though. In principle, d ¼ 4þ 2n with
n ∈ N0 can be chosen for the c coefficients, which directly

produces a product of two fð4þnÞ
μα2…αnþ1

on the right-hand side of
Eq. (2.23). This counting would permit arbitrary mass
dimensions for f as long as they are ≥4. In analogy to
the c coefficients, the mass dimension of the f coefficients
only takes values d ¼ 4þ 2n, i.e., there is a contradiction.

The latter is resolved when restricting the map to cð4nþ4Þ
μνα2…α4nþ1

.

For n ¼ 1 this means that fð6Þμα1α2 can only be mapped to

cð8Þμνα2…α5 where the case n ¼ 2 describes a mapping between

fð8Þμα1…α4 and cð12Þμνα2…α9 , etc. Therefore, only a subset of
c coefficients has a direct connection to f coefficients,

whereas the cð6Þμνα2α3 , cð10Þμνα2…α7 , etc. do not have an f
counterpart.

D. Effective coefficients

At first order in Lorentz violation, suitable field rede-
finitions allow for combining controlling coefficients of
different mass dimension such that new coefficients can be
defined that are known as effective, cf. Eqs. (27) of [23].
Based on this observation, it is possible to define effective
observer scalars â�;eff , ĉ�;eff . Generically,

X̂ðdÞ
�;eff ≡ ΞðdÞ

x x̂ðdÞ�;eff ;

x̂ðdÞ�;eff ≡ xðdÞeff;μα1…αd−3
uμuα1…uαd−3 : ð2:25Þ

Hence, in the classical description, each momentum must
simply be replaced by the four-velocity. Now, the effective
observer scalar linked to the operator â can be expressed
via Â� and Ê� of different dimensionalities:

ÂðdÞ
�;eff ≡ ΞðdÞ

a aðdÞeff;μα1…αd−3
uμuα1…uαd−3

¼ ΞðdÞ
a

�
aðdÞμα1…αd−3 −

1

mψ
ημα1e

ðd−1Þ
α2…αd−3

�
uμuα1…uαd−3

¼ ΞðdÞ
a âðdÞ� −

md−4
ψ

ðu2Þðd−5Þ/2 e
ðd−1Þ
α2…αd−3u

α2…uαd−3

¼ ΞðdÞ
a âðdÞ� − Ξðd−1Þ

e êðd−1Þ� ¼ ÂðdÞ
� − Êðd−1Þ

� ; ð2:26Þ

which is consistent with the parameters listed in Table I. An
analog correspondence can be derived for the effective
observer scalar related to ĉ:

ĈðdÞ
�;eff ¼ ĈðdÞ

� − M̂ðd−1Þ
� : ð2:27Þ

Such connections enable Lagrangians to be associated with
effective coefficients and at first order in Lorentz violation
they are given by

LâðdÞeff ¼ −mψ

ffiffiffiffiffi
u2

p
− ÂðdÞ

� þ Êðd−1Þ
� ; ð2:28aÞ

LĉðdÞeff ¼ −mψ

ffiffiffiffiffi
u2

p
− ĈðdÞ

� þ M̂ðd−1Þ
� : ð2:28bÞ

These results already demonstrate how at leading order
in Lorentz violation, Lagrangians for different component
coefficients can be composed to obtain new results for
combinations of coefficients. A similar procedure can be
carried out for the effective coefficients associated with the
spin-nondegenerate operators:

L ˜̂gðdÞeff jd≥4
even

¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂G

μ
�
˜̂G�μ þ

2ffiffiffiffiffi
u2

p ½ ˜̂G�B̂� − ð ˜̂Gμ
�B̂�μÞu2� þ B̂2� − ðB̂μ

�B̂�μÞu2
s

¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂G

μ
eff;�

˜̂Geff;�μ

q
; ð2:29aÞ
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L
˜̂H
ðdÞ
eff jd≥3

odd
¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂H

μ
�
˜̂H�μ þ

2ffiffiffiffiffi
u2

p ½ ˜̂H�D̂� − ð ˜̂Hμ
�D̂�μÞu2� þ D̂2� − ðD̂μ

�D̂�μÞu2
s

¼ −mψ

ffiffiffiffiffi
u2

p
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂H

μ
eff;�

˜̂Heff;�μ

q
; ð2:29bÞ

˜̂G
ðdÞ
�μ;eff ≡ ΞðdÞ

g ˜̂gðdÞ�μ;eff ; ˜̂gðdÞ�μ;eff ≡ g̃ðdÞeff;μνα1…αd−3
uνuα1…uαd−3 ; ð2:29cÞ

˜̂H
ðdÞ
�μ;eff ≡ ΞðdÞ

H
˜̂h
ðdÞ
�μ;eff ;

˜̂h
ðdÞ
�μ;eff ≡ H̃ðdÞ

eff;μνα1…αd−3
uνuα1…uαd−3 : ð2:29dÞ

In Eqs. (2.29a), (2.29b) the mass dimension of the
effective coefficients has again been omitted for brevity.
The Lagrangians for the b̂, ĝ operators are contained in
Eq. (2.29a) as special cases where those for d̂, Ĥ follow
from Eq. (2.29b) by setting suitable coefficients to zero.
Note that the pairs of coefficients even mix in the
Lagrangians of this form.
Finally, the proofs for the operators b̂, Ĥ shown in

Appendices A, B can be taken over literally to the situation
when operators of different mass dimensions are summed
over. The argument is the same as that presented for the
spin-degenerate operators. The only thing to do is to replace

X̂ðdÞ
� by a suitable sum, i.e., X̂ðdÞ

� ↦
P

dX̂
ðdÞ
� where the

summation runs over all d permitted. The latter sum is then
still positively homogeneous of degree 1 in the velocity, as
the individual contributions are. Note that X̂� depends on
bilinear combinations of X̂�, i.e., summations over the mass
dimension are carried out under the square root and not in
front of it. By doing so, coefficients of different mass
dimensions may mix.

III. GENERAL FIRST-ORDER LAGRANGIAN
OF SME FERMION SECTOR

Comparing the previously obtained Lagrangians to the
corresponding first-order dispersion relations reveals plenty
of similarities. Therefore, we found that there exists a direct
map from the dispersion relation Eð�Þ to the associated
classical Lagrangians Lð�Þ at first order in Lorentz viola-
tion. Consider the first-order dispersion relation of the
nonminimal SME that is known to be of the form

Eð�Þ ¼ E0 −
1

E0

ðp · V̂eff ∓ ϒÞ; ð3:1aÞ

ϒ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pμð ˜̂T effÞμϱð ˜̂T effÞϱνpν

q
; ð3:1bÞ

with the effective operators transformed to momentum
space

V̂μ
eff ≡ V̂μþ 1

mψ
pμŜ; ˜̂T

μν
eff ≡ ˜̂T

μνþ 1

mψ
p½μÂν�; ð3:1cÞ

cf. Eq. (43) in [23]. The map leading directly from the
dispersion relation to the classical Lagrangian involves
the following steps. First, perform the replacement E0 ↦
−mψ

ffiffiffiffiffi
u2

p
. Second, carry out pμ ↦ mψuμ/

ffiffiffiffiffi
u2

p
in the

Lorentz-violating term.Third,multiply theLorentz-violating
contribution by u2 to ensure positive homogeneity of first
degree in the velocity. An analog map was found in [30]
within theminimal SMEwhere its validitywas demonstrated
to second order in the velocity and momentum only. The
procedure previously described is a generalization that is
valid in the nonminimal SME and at all orders in the velocity
andmomentum. Applying this map to the dispersion relation
of Eq. (3.1), produces the first-order classical “master”
Lagrangian including all operators of the nonminimal SME:

Lð�Þ
master ¼ −mψ

ffiffiffiffiffi
u2

p
þ V̂�;eff ∓ ϒ�; ð3:2aÞ

ϒ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð ˜̂T �;effÞμð ˜̂T �;effÞμ

q
; ð3:2bÞ

with a slew of observer scalars and (pseudo)vectors that
correspond to the effective operators considered:

V̂�;eff ≡ V̂� þ
ffiffiffiffiffi
u2

p
Ŝ�; ð3:2cÞ

˜̂T
μ
�;eff ≡ ˜̂T

μ
� þ

uμffiffiffiffiffi
u2

p Â� −
ffiffiffiffiffi
u2

p
Âμ

�; ð3:2dÞ

Ŝ� ≡
X

d≥4;even
ΞðdÞ
V

�
êðdÞ� −

mψffiffiffiffiffi
u2

p m̂ðdþ1Þ
�

�
; ð3:2eÞ

V̂�μ ≡
X

d≥3;odd
ΞðdÞ
V

�
mψffiffiffiffiffi
u2

p ĉðdþ1Þ
�μ − âðdÞ�μ

�
;

V̂� ≡ V̂�μuμ; ΞðdÞ
V ¼ md−3

ψ

ðu2Þðd−3Þ/2 ; ð3:2fÞ

Â�μ ≡
X

d≥3;odd
ΞðdÞ
A

�
mψffiffiffiffiffi
u2

p d̂ðdþ1Þ
�μ − b̂ðdÞ�μ

�
;

Â� ≡ Â�μuμ; ΞðdÞ
A ¼ md−3

ψ

ðu2Þðd−3Þ/2 ; ð3:2gÞ

˜̂T �μ ≡
X

d≥3;odd
ΞðdÞ
A

�
mψffiffiffiffiffi
u2

p ˜̂gðdþ1Þ
�μ − ˜̂H

ðdÞ
�μ

�
: ð3:2hÞ
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Several remarks are in order. First, the Lagrangians asso-
ciated with the spin-degenerate operators are completely
governed by V̂�;eff, whereas the spin-nondegenerate results

are described by ˜̂T �;eff. Second, all Lagrangians found
previously are contained in the latter general result. Third,
the two signs before the spin-nondegenerate contribution are
switched when comparing the dispersion relations to the
Lagrangians. Fourth, the only Lagrangian that is not directly
contained in this general result is that for the f coefficients.
Since the Lagrangian, as it stands, is valid at first order in
Lorentz violation only, we do not intend to add the
Lagrangian for f̂, as the latter coefficients do not provide

a linear contribution. However, recall that fðdÞ� squared can

just be mapped onto cðdÞ� , cf. Eqs. (2.22).
The proof that the latter Lagrangian fulfills Eqs. (2.1) can

be put together from the proofs previously carried out. The
Lagrangian for ˜̂T �;eff ¼ 0 is that of the spin-degenerate
operators making the corresponding proof of Sec. II appli-
cable. For V̂�;eff ¼ 0 we can take over the proof for Ĥ of
Appendix B, as the Lagrangian for the H coefficients is
exactly of this form. Each contribution is of first order in
Lorentz violation,which iswhy both proofs can be combined.
The spin-degenerate and spin-nondegenerate operators do not
mix with each other at this level of approximation, after all.

IV. CONCLUSIONS

In the current paper, we derived the leading-order
classical Lagrangian covering all operators of the non-
minimal SME fermion sector. The result for a particular
operator can be obtained from this master Lagrangian by
setting all other coefficients to zero. The Lagrangian for
each operator was found to be a natural generalization of
the already known minimal results where the minimal
coefficients are replaced by the infinite sum over all
nonminimal coefficients appropriately contracted with
four-velocities. Furthermore, each Lorentz-violating con-
tribution is multiplied by a factor ensuring both consistency
of the mass dimension and positive homogeneity of first
degree in the velocity. The first-order Lagrangian shares a
lot of similarities with the corresponding dispersion rela-
tions. The modified terms for the spin-degenerate operators
are directly proportional to sums of the coefficients suitably
contracted with four-velocities. In contrast, the Lorentz-
violating terms linked to the spin-nondegenerate operators
involve a square root of a bilinear combination of control-
ling coefficients and four-velocities. Terms of these shapes
can be considered as generalizations of structures that are
known as bipartite in the literature.
With the master Lagrangian at hand, the description of

Lorentz violation for classical systems should now be
feasible for any kind of Lorentz-violating operator. The only
caveat is that the Lagrangian obtained is the leading-order
result only. However, as Lorentz violation is perturbative, the

result should at least be sufficient for phenomenological
studies. Terms of higher order in the perturbative expansion
are supposedly much more involved, as suitable observer
scalars can now be formed from component coefficients of
different type and mass dimension. In future works, we
intend to investigate whether the Lagrangians found can be
promoted to Finsler structures. If this turns out to be possible,
the properties of these Finsler structureswill be an interesting
topic to investigate both for physicists and mathematicians.
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APPENDIX A: ANALYTICAL PROOF FOR
THE b COEFFICIENTS

In this part of the Appendix, we would like to demon-
strate that the first-order classical Lagrangian of Eq. (2.15)
satisfies the defining Eqs. (2.1) of the map from the field-
theory description to the classical point-particle analog.
The calculation will be carried out by analytical means
where higher-order terms will be discarded. The Lorentz-
violating contribution is positively homogeneous of first
degree in the velocity, which will turn out to be very
helpful. Before starting with the proof, recall the classical
Lagrangian found for the b coefficients:

Lb̂ðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
∓ B̂�; ðA1aÞ

B̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂2� − ðB̂μ

�B̂�μÞu2
q

: ðA1bÞ

1. Dispersion equation

The first and undoubtedly easier task is to check the
validity of Eq. (2.1a) for the canonical momentum. The
latter can be cast into the form

pμ ¼ −
∂Lb̂ðdÞ

∂uμ ¼ mψ
uμffiffiffiffiffi
u2

p � ∂B̂�
∂uμ : ðA2Þ

In the Lorentz-violating operator it suffices to replace each
momentum by the leading-order term of the previous
expression such that b̂μ ≈ Ξbb̂�μ. The left-hand side of
the general dispersion equation has the form

R ¼ ðp2 −m2
ψ Þ2 þ 4½b̂2m2

ψ − ðb̂ · pÞ2� þ � � � : ðA3Þ
The leading-order Lorentz-violating terms in the dispersion
equation are of second order, which is why these contri-
butions have to cancel each other when the classical
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Lagrangian is supposed to be valid. Hence, all expressions
must be computed at second order in Lorentz violation and
higher-order terms are discarded. The square of the
canonical momentum is given by

p2 ¼ m2
ψ � 2mψffiffiffiffiffi

u2
p uμ

∂B̂�
∂uμ þ

�∂B̂�
∂u

�2

¼ m2
ψ � 2mψffiffiffiffiffi

u2
p B̂� þ

�∂B̂�
∂u

�2

; ðA4Þ

where we used Euler’s theorem for B̂� in the form

uμ
∂B̂�
∂uμ ¼ B̂�: ðA5Þ

The remaining terms in the dispersion equation at second
order in Lorentz violation are written as follows:

b̂ · p ¼ mψ
B̂�ffiffiffiffiffi
u2

p � B̂μ
�
∂B̂�
∂uμ þ � � � ; ðA6aÞ

ðb̂ · pÞ2 ¼ m2
ψ
B̂2�
u2

þ � � � : ðA6bÞ

Inserting these results into the dispersion equation, all of
the second-order terms in Lorentz violation compensate
each other:

R ¼
�
� 2mψffiffiffiffiffi

u2
p B̂�

�
2

þ 4

�
b̂2m2

ψ −m2
ψ
B̂2�
u2

�
þ � � �

¼ 4m2
ψ

u2
B̂2
� þ 4m2

ψ

�
B̂μ
�B̂�μ −

B̂2�
u2

�
¼ 0; ðA7Þ

according to Eq. (A1b). This outcome demonstrates that the
canonical momentum based on the classical Lagrangian
satisfies the dispersion equation at the order desired.

2. Velocity correspondence

In this paragraph we would like to demonstrate the
validity of Eq. (2.1b) for the classical Lagrangian under
consideration. As the general formula for the dispersion
relation may be complicated, we compute the first
(implicit) derivative of the dispersion equation and replace
each ∂p0/∂pi by −ui/u0. For the classical Lagrangian to be
valid, all contributions at second order in Lorentz violation
have to compensate each other. It is reasonable to split the
implicit derivative into three parts as follows:

∂R
∂pi

¼
X

l¼1…3

∂R
∂pi

����ðlÞ; ðA8aÞ

∂R
∂pi

����ð1Þ ¼ −4ðp2 −m2
ψÞ
�
ui

u0
p0 þ pi

�
; ðA8bÞ

∂R
∂pi

����ð2Þ ¼ 8ðb̂ · pÞ
�
ui

u0
b̂0 þ b̂i

�
; ðA8cÞ

∂R
∂pi

����ð3Þ ¼ 8m2
ψ b̂

ν ∂b̂ν
∂pi

− 8ðb̂ · pÞpν ∂b̂ν
∂pi

: ðA8dÞ

The third contribution takes into account a possible
momentum dependence of the controlling coefficients that
arises for nonminimal frameworks. For the minimal b
coefficients, this term just vanishes. We start computing the
first part:

∂R
∂pi

����ð1Þ ¼ −
8mψffiffiffiffiffi
u2

p B̂�

�
ui

u0
∂B̂�
∂u0 þ

∂B̂�
∂ui

�
þ � � � : ðA9Þ

The second part of the implicit derivative can be obtained
quickly, as well:

∂R
∂pi

����ð2Þ ¼ 8mψffiffiffiffiffi
u2

p ðb̂ · uÞ
�
ui

u0
b̂0 þ b̂i

�
þ � � �

¼ 8mψffiffiffiffiffi
u2

p B̂�

�
ui

u0
B̂�0 þ B̂�i

�
: ðA10Þ

Summing the two contributions obtained leads to

X
l¼1…2

∂R
∂pi

����ðlÞ ¼ 8mψffiffiffiffiffi
u2

p
�
B̂�

�
ui

u0
B̂�0 þ B̂�i

�

− B̂�

�
ui

u0
∂B̂�
∂u0 þ

∂B̂�
∂ui

��
þ � � �

¼ 8mψffiffiffiffiffi
u2

p
�
B̂�

�
ui

u0
B̂�0 þ B̂�i

�

−
�
ui

u0

�
B̂�

∂B̂�
∂u0 − u2B̂ν�

∂B̂�ν
∂u0

�

þ B̂�
∂B̂�
∂ui − u2B̂ν�

∂B̂�ν
∂ui

�	
; ðA11Þ

where we used

∂B̂�
∂uμ ¼ 1

B̂�

�
B̂�

∂B̂�
∂uμ − B̂ν�B̂�νuμ − u2B̂ν�

∂B̂�ν
∂uμ

�
: ðA12Þ

Finally, the third part provides

∂R
∂pi

����ð3Þ ¼ 8m2
ψ

�
B̂ν� −

B̂�uν

u2

� ∂b̂ν
∂pi

þ � � � : ðA13Þ

At this point we express the derivative of the controlling
coefficients with respect to the momentum as a derivative
with respect to the velocity:

∂b̂μ
∂pi

¼ ∂b̂μ
∂uν

∂uν
∂pi

¼ −
ffiffiffiffiffi
u2

p

mψ

�
ui

u0
∂B̂�μ
∂u0 þ ∂B̂�μ

∂ui
�
; ðA14Þ

where we employed Eqs. (2.10), (2.11). All second-order
terms in Lorentz violation compensate each other in the
implicit derivative:
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∂R
∂pi

¼ 8mψffiffiffiffiffi
u2

p
�
B̂�

�
ui

u0
B̂�0 þ B̂�i

�
− B̂�

�
ui

u0
∂B̂�
∂u0 þ

∂B̂�
∂ui

�

þ u2
�
ui

u0
B̂ν�

∂B̂�ν
∂u0 þ B̂ν�

∂B̂�ν
∂ui

�

− ðB̂ν�u2 − B̂�uνÞ
�
ui

u0
∂B̂�ν
∂u0 þ ∂B̂�ν

∂ui
��

þ � � � ¼ 0:

ðA15Þ
To arrive at this result, we additionally inserted

∂B̂�
∂u0 ¼ ∂ðuνB̂�νÞ

∂u0 ¼ B̂0� þ uν
∂B̂�ν
∂u0 ; ðA16aÞ

∂B̂�
∂ui ¼

∂ðuνB̂�νÞ
∂ui ¼ B̂�i þ uν

∂B̂�ν
∂ui : ðA16bÞ

APPENDIX B: ANALYTICAL PROOF FOR
THE H COEFFICIENTS

Here we would like to carry out a proof analog to that for
the b coefficients. As a reminder, the classical Lagrangian
found for the operator Ĥ is given by

LĤðdÞ ¼ −mψ

ffiffiffiffiffi
u2

p
∓ Ĥ�; ðB1aÞ

Ĥ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ˜̂H

μ
�
˜̂H�μ

q
: ðB1bÞ

1. Dispersion equation

First of all, it must be shown that the canonical
momentum satisfies Eq. (2.1a). Its form is completely
analog to that for the b coefficients:

pμ ¼ −
∂LĤðdÞ

∂uμ ¼ mψ
uμffiffiffiffiffi
u2

p � ∂Ĥ�
∂uμ : ðB2Þ

Replacing each momentum component contracted with the
H coefficients by the standard term mψuμ/u2 produces
Ĥμν ≈ ΞHĤ�μν. Neglecting all Lorentz-violating contribu-
tions beyond the second order, the dispersion equation can
be expressed in the form

R ¼ p4 − 2m2
ψp2 þm4

ψ −m2
ψ Ĥ

μνĤμν

− 2pμðĤμν − i ˜̂H
μνÞðĤνϱ þ i ˜̂HνϱÞpϱ þ � � �

¼ ðp2 −m2
ψ Þ2 þ ðp2 −m2

ψÞĤμνĤμν

− 4pμ ˜̂Hμϱ
˜̂H
ϱ
νpν þ � � �

¼ ðp2 −m2
ψ Þ2 − 4pμ ˜̂Hμϱ

˜̂H
ϱ
νpν þ � � � . ðB3Þ

because of the helpful relationship

pμðĤμν − i ˜̂H
μνÞðĤνϱ þ i ˜̂HνϱÞpϱ

¼ 2pμ ˜̂Hμϱ
˜̂H
ϱ
νpν −

1

2
p2ĤμνĤμν: ðB4Þ

The four-momentum squared reads

p2 ¼ m2
ψ � 2mψffiffiffiffiffi

u2
p uμ

∂Ĥ�
∂uμ þ

�∂Ĥ�
∂u

�2

¼ m2
ψ � 2mψffiffiffiffiffi

u2
p Ĥ� þ

�∂Ĥ�
∂u

�2

; ðB5Þ

where we exploited Euler’s theorem applied to the char-
acteristic quantity Ĥ�:

uμ
∂Ĥ�
∂uμ ¼ Ĥ�: ðB6Þ

All of the ingredients are inserted into the dispersion
equation showing that the second-order terms in Lorentz
violation cancel each other:

R ¼
�
� 2mψffiffiffiffiffi

u2
p Ĥ�

�
2

−
4m2

ψ

u2
Ĥ2

� þ � � � ¼ 0: ðB7Þ

2. Velocity correspondence

Now we demonstrate the validity of Eq. (2.1b). The first
derivative of the dispersion equation is calculated implic-
itly with each ∂p0/∂pi replaced by −ui/u0. Due to the
similarities of the dispersion equations for the b and H
coefficients, we again split the derivative into three parts.
The first two of these are obtained in total analogy to those
for the b coefficients:

∂R
∂pi

����ð1Þ ≡ ∂p4

∂pi
¼ −

8mψffiffiffiffiffi
u2

p Ĥ�

�
ui

u0
∂Ĥ�
∂u0 þ ∂Ĥ�

∂ui
�
þ � � � ;

ðB8Þ
∂R
∂pi

����ð2Þ ≡ 8ð ˜̂HϱμpμÞ ˜̂Hϱν ∂pν

∂pi

¼ 8mψffiffiffiffiffi
u2

p ˜̂Hϱμuμ
�
−
ui

u0
˜̂H
ϱ
0 −

˜̂H
ϱ
i

�

¼ −
8mψffiffiffiffiffi
u2

p ˜̂H�ϱ

�
ui

u0
˜̂H
ϱ
�0 þ ˜̂H

ϱ
�i

�
þ � � � : ðB9Þ

Summing the latter contributions producesX
l¼1…2

∂R
∂pi

����ðlÞ ¼ −
8mψffiffiffiffiffi
u2

p
�
˜̂H�ϱ

�
ui

u0
˜̂H
ϱ
�0 þ ˜̂H

ϱ
�i

�

þ Ĥ�

�
ui

u0
∂Ĥ�
∂u0 þ ∂Ĥ�

∂ui
��

¼ 8mψffiffiffiffiffi
u2

p ˜̂H�ϱ

�
ui

u0

�∂ ˜̂H
ϱ
�

∂u0 − ˜̂H
ϱ
�0

�
þ ∂ ˜̂H

ϱ
�

∂ui −
˜̂H
ϱ
�i

�
þ � � � ; ðB10Þ

where the derivative of the quantity Ĥ� was used:

∂Ĥ�
∂uμ ¼ −

1

Ĥ�

∂ ˜̂H
ν
�

∂uμ
˜̂H�ν: ðB11Þ
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The third part, which vanishes within the minimal SME fermion sector, contains derivatives of the Lorentz-
violating operators with respect to the momentum:

∂R
∂pi

����ð3Þ ¼ −4pμ
∂ ˜̂Hμ

ϱ ˜̂Hϱν

∂pi
pν

¼ −4
�
pμ

∂ ˜̂Hμ
ϱ

∂pi

˜̂Hϱνpν þ pμ ˜̂Hμϱ
∂ ˜̂H

ϱ
ν

∂pi
pν

�

¼ 4

�∂ ˜̂H
ϱ

∂pi
˜̂Hϱ −

�
˜̂H
ϱ
0

�
−
ui

u0

�
− ˜̂H

ϱ
i

�
˜̂Hϱ þ ˜̂Hϱ

∂ ˜̂H
ϱ

∂pi −
˜̂Hϱ

�
˜̂H
ϱ
0

�
−
ui

u0

�
− ˜̂H

ϱ
i

�	

¼ 8 ˜̂Hϱ

�∂ ˜̂H
ϱ

∂pi þ
ui

u0
˜̂H
ϱ
0 þ ˜̂H

ϱ
i

�

¼ 8mψffiffiffiffiffi
u2

p ˜̂H�ϱ

�
ui

u0

�
˜̂H
ϱ
�0 −

∂ ˜̂H
ϱ
�

∂u0
�
þ ˜̂H

ϱ
�i −

∂ ˜̂H
ϱ
�

∂ui
�
þ � � � : ðB12Þ

In the final step, the derivative by the momentum was again expressed as a derivative with respect to the four-velocity:

∂ ˜̂Hμ

∂pi
¼ ∂ ˜̂Hμ

∂uσ
∂uσ
∂pi

¼ −
�
ui

u0
∂ ˜̂H�μ
∂u0 þ ∂ ˜̂H�μ

∂ui
�
: ðB13Þ

In addition, Eqs. (2.10), (2.11) were employed. Now we see quickly that the sum of the first two parts equals the negative of
the third, which makes all second-order terms in Lorentz violation cancel each other.
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[17] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[18] D. Colladay and V. A. Kostelecký, CPT violation and the
standard model, Phys. Rev. D 55, 6760 (1997).

LEADING-ORDER CLASSICAL LAGRANGIANS FOR THE … PHYS. REV. D 97, 065019 (2018)

065019-13

https://doi.org/10.1103/PhysRevD.39.683
https://doi.org/10.1103/PhysRevD.39.683
https://doi.org/10.1103/PhysRevLett.63.224
https://doi.org/10.1103/PhysRevD.40.1886
https://doi.org/10.1103/PhysRevD.40.1886
https://doi.org/10.1016/0550-3213(91)90071-5
https://doi.org/10.1016/0550-3213(91)90071-5
https://doi.org/10.1103/PhysRevD.51.3923
https://doi.org/10.1103/PhysRevD.59.124021
https://doi.org/10.1103/PhysRevD.71.084012
https://doi.org/10.1142/S0217751X00002779
https://doi.org/10.1142/S0217751X00002779
https://doi.org/10.1103/PhysRevLett.87.141601
https://doi.org/10.1103/PhysRevD.70.045020
https://doi.org/10.1103/PhysRevD.70.045020
https://doi.org/10.1103/PhysRevD.75.024028
https://doi.org/10.1103/PhysRevD.75.024028
https://doi.org/10.1155/2014/950672
https://doi.org/10.1016/S0550-3213(98)00637-3
https://doi.org/10.1016/S0550-3213(98)00637-3
https://doi.org/10.1016/S0550-3213(00)00117-6
https://doi.org/10.1016/S0550-3213(00)00117-6
https://doi.org/10.1016/S0550-3213(02)00543-6
https://doi.org/10.1016/S0550-3213(02)00543-6
https://doi.org/10.1016/j.nuclphysb.2017.11.010
https://doi.org/10.1016/j.nuclphysb.2017.11.010
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.55.6760


[19] D. Colladay and V. A. Kostelecký, Lorentz-violating exten-
sion of the standard model, Phys. Rev. D 58, 116002 (1998).

[20] V. A. Kostelecký, Gravity, Lorentz violation, and the stan-
dard model, Phys. Rev. D 69, 105009 (2004).

[21] V. A. Kostelecký and M. Mewes, Electrodynamics with
Lorentz-violating operators of arbitrary dimension, Phys.
Rev. D 80, 015020 (2009).

[22] V. A. Kostelecký and M. Mewes, Neutrinos with Lorentz-
violating operators of arbitrary dimension, Phys. Rev. D 85,
096005 (2012).

[23] V. A. Kostelecký and M. Mewes, Fermions with Lorentz-
violating operators of arbitrary dimension, Phys. Rev. D 88,
096006 (2013).

[24] O.W. Greenberg, CPT Violation Implies Violation of
Lorentz Invariance, Phys. Rev. Lett. 89, 231602 (2002).

[25] V. A. Kostelecký and N. Russell, Data tables for Lorentz and
CPT violation, Rev. Mod. Phys. 83, 11 (2011).

[26] V. A. Kostelecký and N. Russell, Classical kinematics for
Lorentz violation, Phys. Lett. B 693, 443 (2010).

[27] D. Colladay and P. McDonald, Classical Lagrangians for
momentum dependent Lorentz violation, Phys. Rev. D 85,
044042 (2012).

[28] N. Russell, Finsler-like structures from Lorentz-breaking
classical particles, Phys. Rev. D 91, 045008 (2015).

[29] M. Schreck, Classical kinematics for isotropic, minimal
Lorentz-violating fermion operators, Phys. Rev. D 91,
105001 (2015).

[30] M. Schreck, From classical Lagrangians to Hamilton
operators in the standard model extension, Phys. Rev. D
94, 025019 (2016).

[31] M. Schreck, Eikonal approximation, Finsler structures,
and implications for Lorentz-violating photons in
weak gravitational fields, Phys. Rev. D 92, 125032
(2015).

[32] M. Schreck, Classical kinematics and Finsler structures for
nonminimal Lorentz-violating fermions, Eur. Phys. J. C 75,
187 (2015).

[33] M. Schreck, Classical Lagrangians and Finsler structures for
the nonminimal fermion sector of the standard model
extension, Phys. Rev. D 93, 105017 (2016).

[34] V. A. Kostelecký, Riemann-Finsler geometry and Lorentz-
violating kinematics, Phys. Lett. B 701, 137 (2011).

[35] J. Foster and R. Lehnert, Classical-physics applications for
Finsler b space, Phys. Lett. B 746, 164 (2015).

[36] D. Colladay and P. McDonald, Singular Lorentz-violating
Lagrangians and associated Finsler structures, Phys. Rev. D
92, 085031 (2015).

[37] D. Colladay, Extended hamiltonian formalism and Lorentz-
violating lagrangians, Phys. Lett. B 772, 694 (2017).

[38] V. A. Kostelecký, N. Russell, and R. Tso, Bipartite
Riemann-Finsler geometry and Lorentz violation, Phys.
Lett. B 716, 470 (2012).

[39] B. Altschul, Eliminating the CPT-odd f coefficient from the
Lorentz-violating standard model extension, J. Phys. A 39,
13757 (2006).

J. A. A. S. REIS and M. SCHRECK PHYS. REV. D 97, 065019 (2018)

065019-14

https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/PhysRevD.69.105009
https://doi.org/10.1103/PhysRevD.80.015020
https://doi.org/10.1103/PhysRevD.80.015020
https://doi.org/10.1103/PhysRevD.85.096005
https://doi.org/10.1103/PhysRevD.85.096005
https://doi.org/10.1103/PhysRevD.88.096006
https://doi.org/10.1103/PhysRevD.88.096006
https://doi.org/10.1103/PhysRevLett.89.231602
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1016/j.physletb.2010.08.069
https://doi.org/10.1103/PhysRevD.85.044042
https://doi.org/10.1103/PhysRevD.85.044042
https://doi.org/10.1103/PhysRevD.91.045008
https://doi.org/10.1103/PhysRevD.91.105001
https://doi.org/10.1103/PhysRevD.91.105001
https://doi.org/10.1103/PhysRevD.94.025019
https://doi.org/10.1103/PhysRevD.94.025019
https://doi.org/10.1103/PhysRevD.92.125032
https://doi.org/10.1103/PhysRevD.92.125032
https://doi.org/10.1140/epjc/s10052-015-3403-z
https://doi.org/10.1140/epjc/s10052-015-3403-z
https://doi.org/10.1103/PhysRevD.93.105017
https://doi.org/10.1016/j.physletb.2011.05.041
https://doi.org/10.1016/j.physletb.2015.04.047
https://doi.org/10.1103/PhysRevD.92.085031
https://doi.org/10.1103/PhysRevD.92.085031
https://doi.org/10.1016/j.physletb.2017.07.027
https://doi.org/10.1016/j.physletb.2012.09.002
https://doi.org/10.1016/j.physletb.2012.09.002
https://doi.org/10.1088/0305-4470/39/44/010
https://doi.org/10.1088/0305-4470/39/44/010

