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In this work, we first solve complex Morse flow equations for the simplest case of a bosonic harmonic
oscillator to discuss localization in the context of Picard-Lefschetz theory. We briefly touch on the exact
non-BPS solutions of the bosonized supersymmetric quantum mechanics on algebraic geometric grounds
and report that their complex phases can be accessed through the cohomology of WKB 1-form of the
underlying singular spectral curve subject to necessary cohomological corrections for nonzero genus.
Motivated by Picard-Lefschetz theory, we write down a general formula for the index ofN ¼ 4 quantum
mechanics with background R-symmetry gauge fields. We conjecture that certain symmetries of the
refined Witten index and singularities of the moduli space may be used to determine the correct
intersection coefficients. A few examples, where this conjecture holds, are shown in both linear and
closed quivers with rank-one quiver gauge groups. The R-anomaly removal along the “Morsified”
relative homology cycles also called “Lefschetz thimbles” is shown to lead to the appearance of Stokes
lines. We show that the Fayet-Iliopoulos parameters appear in the intersection coefficients for the relative
homology of the quiver quantum mechanics resulting from dimensional reduction of 2d N ¼ ð2; 2Þ
gauge theory on a circle and explicitly calculate integrals along the Lefschetz thimbles in N ¼ 4 CPk−1

model. The Stokes jumping of coefficients and its relation to wall crossing phenomena is briefly
discussed. We also find that the notion of “on-the-wall” index is related to the invariant Lefschetz
thimbles under Stokes phenomena. An implication of the Lefschetz thimbles in constructing knots from
quiver quantum mechanics is indicated.
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I. INTRODUCTION AND SUMMARY

Supersymmetric quantum mechanics is a very fruitful
tool for studying mathematical properties of manifolds and
algebraic curves. It also provides tractable prototypes to
discuss (algebraic) topological invariants that arise from
physical systems described by vacuum (e.g., zero-energy)
states of generic supersymmetric quantum field theories.
Therefore, at least from a topological standpoint, super-
symmetric quantum mechanics boils down to calculating
the ground states and their proper counting based on their
parity under the action of ð−1ÞF operator where F is the
fermion number operator. The result of this counting,
considering the parity for every solution, leads to the most
basic topological invariant protected by supersymmetry,
namely, Witten index [1]:

I ¼ trð−1ÞF: ð1Þ

I also gives the Euler characteristic for the target manifold
of the underlying field theory.
The study of (1) led to a seminal work [2] where the

de Rham cohomology of compact finite-dimensional
manifolds was computed using a deep relation between
Morse inequalities and supersymmetric quantum mechan-
ics. Two years later, Atiyah and Bott [3] showed that the
de Rham version of the localization theorems in the
context of equivariant cohomology are very closely
related to Witten’s result and gave a generalized exact
stationary phase formula. A Morse theoretic study of
Yang-Mills equations over Riemann surfaces (or alge-
braic curves) M was done in [4] that proved useful in
deriving the cohomology of the moduli spaces of stable
algebraic vector bundles over M. These efforts paved the
way for applying Morse theory to quantum field theories
as well.
The Picard-Lefschetz theory is a more recent attempt

to deliver a crucial understanding of complexified path
integrals and index technology by studying the topology
of path space via the critical points of the holomorphized
action. In this regard, a possible use of this theory in
calculating the Witten index of 2d gauge theories was
first addressed in 2d supersymmetric Landau-Ginzburg
models in [5]. Not long ago, Witten introduced this
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theory into an analytically continued version of the
Chern-Simons path integral with Wilson loop operator
insertions in an endeavor to recreate the Jones poly-
nomial of knots [6]. Another application was given in [7]
where it was shown that the complexified Liouville
theory produces correct DOZZ formula only when its
path integral is evaluated on integration cycles pieced
together of Lefschetz thimbles attached to multivalued
complex saddle solutions.
More recent applications were considered in the context

of N ¼ 1 and N ¼ 2 quantum mechanics [8,9] as well as
CPk−1 models [10] from a semiclassical point of view.
Analytic continuation of path integrals have been shown to
be a fundamental necessity of quantum theories to yield a
correct semiclassical analysis consistent with supersym-
metry [11]. What was shown to be of crucial importance,
was that no matter what real theories we are considering,
the axiom of holomorphization is a first step to set the stage
for understanding the path integrals. Above all else lies the
fact that when one applies Picard-Lefschetz theory to a
holomorphized theory, we would get so much than we
initially asked for: Complex configurations that were miss-
ing in the analysis of ground state properties of physical
theories seem to crack the puzzles of semiclassics wide
open. These mysterious puzzles including the vanishing of
gluon condensate in N ¼ 1 SYM theory and the positive
semidefiniteness of nonperturbative contributions to the
ground state energy of the bosonized N ¼ 1 supersym-
metric quantum mechanics were finally settled down using
the aforementioned ideas combined with a key data that
Picard-Lefschetz theory provides: hidden topological angle
(HTA) [12]. Each amplitude assigned to saddle point in the
stationary phase formula has to carry an extra topological
phase coming from the homology of the (relative) cycle to
which it is attached. This invariant phase along the cycle is
usually a sign in supersymmetric theories. If one breaks
supersymmetry, say takes the number of fermions to be real
in quantummechanics, “resurgence”would kick in because
of the fact that the complex phase changes the amount of the
saddle amplitudes [13–15]. There is an anomaly cancella-
tion argument given in Sec. III B that could also be used.
Furthermore, we already have a holomorphized action that
contains most of what we need.
In supersymmetric gauge theories, localization principle

provides an effective 1-loop function out of a complicated
path integral that needs to be integrated on 1d integration
cycles in a finite dimensional moduli space. The calculation
of path integral is then literally boiled down to picking the
right integration cycle around the poles of effective 1-loop
function. Localization was formally applied to a super-
symmetric quantum gauge theory in [16]. Here, we are
interested in the index of supersymmetric quantum
mechanics arising from the 2d Witten index refined by
external gauge fields, leading to a categorification of (1)
often called the refined Witten index, specifically, the 2d

index ofN ¼ ð2; 2Þ theory on a torus T2 known as “elliptic
genus” which was calculated by implementing the Jeffrey-
Kirwan (JK) residue operation in [17–20] and using matrix
models in [21]. Following these works, Ref. [22] computed
the refined index of the N ¼ 4 quantum mechanics
resulting from the dimensional reduction of elliptic genus
on a circle and Ref. [19] went through a thorough
examination of the 1d Witten index of gauged linear sigma
models with at least N ¼ 2 by considering the full path
integral, which is to date the most concrete account of 1d
Witten index.
We consider the same gauged quantum mechanical

theories with four real supercharges with only finitely
many vacua as in [22]. We partially address choosing
the correct integration cycles by going through a Picard-
Lefschetz analysis of the theory, and discuss whether the
wall crossing phenomena are resulted from deformation of
integration cycle away from the Stokes rays of the moduli
space of the solutions to BPS equations in the localized
theory, e.g., u-space, that is suitably noncompact in 1d. A
more explicit answer will need a regularization term in the
effective 1-loop determinant, as well as a Fayet-Iliopoulos
(FI) term in the original theory [23],

SFI ¼ ζ

Z
d2θd2θ̄V; ð2Þ

where V denotes the 4-supercharge vector superfield and ζ,
a.k.a. the FI parameter takes real values unless otherwise
stated. For a complete answer, that does not require the use
of regularization, we need to consider the Coulomb branch
of the full N ¼ ð2; 2Þ theory that will be done elsewhere
where explicit appearance of FI parameters in the effective
theory helps to put things into perspective in the Lefschetz
thimble construction.
The organization of this paper and summary of results is

in order. In Sec. II we use the elementary dynamics of a
bosonic harmonic oscillator by solving its Morse flow
equations to pave the way for understanding the idea of
localization to constant paths in the context of path
integrals. We first holomorphize (complexify) the configu-
ration space of the oscillator in question (where the
imaginary direction is analogous to the momentum in
the phase-space formulation of path integrals) and define
a conserved Hamiltonian flow which implies the localiza-
tion once the boundary conditions are correctly set. The
constant paths are the union of downward flows emanating
from the critical points, which are universally referred to as
Lefschetz thimbles that form a relative homology of non-
compact spaces. The study of Lefschetz thimbles falls
under the umbrella of complex Morse and Picard-Lefschetz
theories. The Hamiltonian flow then associates a topologi-
cal angle to Lefschetz thimbles that in supersymmetric
quantum theories would be necessary to fix their long-
standing semiclassical issues in a rather systematic way.
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The cohomology of singular algebraic curves corre-
sponding to the bosonized potential of the supersym-
metric quantum mechanics fixed at the ground state
energy level, will be considered in Sec. III to provide
a competing method of calculating the topological
invariants of the path space. We argue that for singular
algebraic curves of supersymmetric quantum mechanics
with nonzero genus, apart from higher order quantum
corrections, the (classical) WKB 1-form (namely, that of
WKB theory at zero order expansion in g) is not enough
to capture the complex phases of its saddle configurations
hidden in the topology of thimbles, so it needs to be
corrected by considering the sheaf of holomorphic 1-
forms. We compute these phases for the double- and
triple-well systems.
In Sec. IV, the refined Witten index formula of super-

symmetric quantum mechanics with four real super-
charges will be given by considering an integration
cycle γ that is along the noncompact directions of the
moduli space. In the vast literature of index calculations,
localization is the key feature of supersymmetric theories
that produces a meromorphic top-form-1-loop determi-
nant to be integrated over (more precisely the cover of)
moduli space along a given path to be determined [16]. We
point out a common feature of gauge theories that is in the
presence of a group action G; the saddle points will form
orbits of the group, rendering them nonisolated [6]. Thus,
it is appropriate to call such points “saddle rims” as they
happen to be the boundaries of the path space at infinite
imaginary directions. For a Uð1Þ gauge theory, the path
space is made of infinitely many copies of Cnf0g ≅
S1 ×R, where the noncompact direction corresponds to
the Lie algebra of the maximal torus of Uð1Þ gauge
symmetry that is the Coulomb branch of the 1d quiver
quantum mechanics [19]. Throughout this paper, for a
reason explained below, we will refer to this noncompact
direction in the path space as the “Stokes wall” on which
the integration cycle γ dwells. Using path homotopy
constraint, we form a set of Lefschetz thimbles that flow
out of the degenerate saddle rims. The elements of this set
form a basis for the relative homology upon Morsification
and therefore the contour will be written as γ ¼ P

anaJ a
for integer na. The index calculated on the Stokes wall will
then be interpreted as “on-the-wall” index that obviously
receives only contributions from thimble integrals
attached to saddle rims on the boundaries of the path
space. Exactness of saddle point approximation will come
in handy to avoid difficulties of taking these integrals in
general quiver theories.
We note that by the Stokes wall we really mean a

Stokes ray in the u-space, and it happens that the
integration cycle γ sits on this ray, which is slightly
different in general from the concept of the wall in the FI
parameter space (e.g., ζ-space). But the former should
depend on ζ that is possible and controllable in the

language of Picard-Lefschetz theory in the Coulomb
branch of the problem wherein the two concepts of wall
coincide.1 The Stokes ray connects distinct supersym-
metric vacua and upon regularization a computation of
the off-the-wall index yields naturally an index which is
basically the difference between Witten indices in two
chambers. In search of a way to connect ζ to the
integration contour in Picard-Lefschetz theory, we pro-
pose that a gauge-invariant ζ-dependent regularization
term would give rise to unique Stokes jumps as different
chambers in ζ-space are probed in the process. This
allows for a complex Morse function that subsequently
helps to construct Lefschetz thimbles explicitly. This is
done for the case of CPk−1 model. We study the index of
linear quiver systems of total gauge group G ¼ Uð1Þα in
Sec. V, and closed quivers in Sec. VI. We observe that
integration contour would be modified through this
addition explicitly at the expense of losing noncompact-
ness of the moduli space. In all the examples studied we
find that the proposed index formula exactly reproduces
the results of [19,22].
Section VII is intended to elaborate on the simple

example of 2-node quiver theory in detail. In Sec. VII A,
we solve the alternative condition on the thimbles;
namely, the imaginary part of effective action is constant
on the Lefschetz thimbles attached to the same saddle
rims. Sec. VII C shows the connection between inter-
section coefficients and FI parameters starting from the
2d theory. Being on a Stokes ray means that the effective
action should satisfy a certain condition as studied in [6].
It is then shown that this condition imposes a constraint
on the R-symmetry fugacity y that in turn gives rise to
the R-anomaly removal as is the case for the chiral
theories where only one type of fermion (left or right)
would couple to external gauge fields present in the
original N ¼ ð2; 2Þ theory. Section VIII is devoted to
structuring a paradigm in which the data concerning
integration cycles on the Stokes wall tells us about the
value of the index in all chambers as well as the jumping
of Lefschetz thimbles.
Finally, we discuss a possible future direction of research

in Sec. IX regarding knots. There, we make a connection
between the HOMFLY polynomial of an unknot and
refined Witten index of N ¼ 4 CPk−1 model and hint at
the possibility of projecting a mirror symmetric knotK onto
the path space of some N ¼ 4 quiver quantum mechanics
in such a way that good regions and Lefschetz thimbles are
identified with crossing points and line segments between
crossings of K, respectively.

1The advantage of doing the latter is that we totally understand
the structure of the contour in the JK residue operation in general
Uð1Þ and higher-rank theories without the need to consider the
individual poles which will be discussed elsewhere. There a
Stokes wall is unambiguously identical to the wall in ζ-space.
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II. REVIEW OF PICARD-LEFSCHETZ THEORY,
AXIOM OF HOLOMORPHIZATION

AND LOCALIZATION

In d dimensions, the Euclidean path integral of a (non)
relativistic field ϕ ≔ ϕðx; tÞ propagating from point xi to
xf reads

Z ¼
Z

Dϕe−S½ϕðx;tÞ�; ð3Þ

subject to the boundary conditions ϕðxi; tiÞ ¼ ϕi and
ϕðxf; tfÞ ¼ ϕf. Here x ≔ fxigd−1i¼1 . A natural Picard-
Lefschetz theory treatment of path integrals requires
holomorphization of fields and coordinates as ϕ → ϕ̂
and promoting the action to a holomorphic action func-
tional Ŝ½ϕ̂ðzÞ� such that Ŝ ¼ R

dtL̂≡ hþ iθ where h ¼
ℜðŜÞ is a “Morse function” (a real valued function with
nondegenerate critical points, that here is chosen to be real

part of a holomorphic action so should no dependence on ¯̂ϕ
exist), and ℑðŜÞ ¼ θ is a conserved quantity along the
“Morse flow,” also called steepest descent path. We will
refer to Ŝ as holomorphic action functional which will play
a significant role in constructing flow equations [24].
The paths are governed by the following set of equations,

sometimes referred to as complex Morse equations:

∂ϕ̂
∂τ ¼ δ ¯̂S

δ ¯̂ϕ
;

∂ ¯̂ϕ
∂τ ¼ δŜ

δϕ̂
: ð4Þ

It is important to note that the parameter τ is a flow
parameter that may be independent of time direction.
In general, we take τ ∈ R and therefore the infinite
dimensional complexified field space is defined to be
ΓC ≔ fϕ̂ðxðt; τÞÞjxðt; τÞ ∈ Rd−1g, which are subject to
the non-Cauchy boundary condition

lim
τ→−∞

ϕ̂ðxðt; τÞÞ ¼ ϕ̂crðxðtÞÞ; ð5Þ

where ϕ̂crðxðtÞÞ is the path over which the action Ŝ is
stationary. In 0þ 1-dim, the action functional in Euclidean
signature is written as

Ŝ½z� ¼
Z

dt

�
1

2
ż2 þ VðzÞ

�
; ð6Þ

where zðtÞ ¼ xðtÞ þ iyðtÞ and over-dot means derivative
with respect to time t. We note that z is a coordinate, i.e.,
our field ϕ̂ðt; τÞ, that takes values in ΓC ¼ C. The flow
equations (4) can be replaced by the heat equation [25]

∂z̄ðt; τÞ
∂τ ¼ ̈zðt; τÞ − dVðzÞ

dz
ð7Þ

and its complex conjugate.

Let us now focus on a simple harmonic potential VðzÞ ¼
1
2
ω2z2 in 0þ 1-dim where the path space is simply C. Also,

the motion begins at t ¼ 0 at the point ðx0; y0Þ, which we
set it to be (0,0), and is found to be at the point ðxT; yTÞ at
t ¼ T. Then (7) becomes

−∂τxðt; τÞ þ i∂τyðt; τÞ ¼ ðẍ − ω2xÞ þ iðÿ − ω2yÞ: ð8Þ

Since x, y are both real we can decouple this into two
equations

ð−∂τ − ∂2
t þ ω2Þxðt; τÞ ¼ 0;

ð∂τ − ∂2
t þ ω2Þyðt; τÞ ¼ 0: ð9Þ

Therefore, the solutions can be simply given as

xðt; τÞ ¼ xT
sinhðωtÞ
sinhðωTÞ −

X∞
n¼0

CnðτÞ sinhðωntÞ; ð10aÞ

yðt; τÞ ¼ yT
sinhðωtÞ
sinhðωTÞ −

X∞
n¼0

C0
nðτÞ sinhðωntÞ; ð10bÞ

where we have defined CnðτÞ ¼ cn exp½−ðω2
n − ω2Þτ� ≥ 0

and C0
nðτÞ ¼ cn exp½−ðω2 − ω2

nÞτ� ≥ 0. Here the mode
frequencies are ωn ¼ πn=T, where T is the period
of the motion. It can be seen that limτ→−∞ðxþ iyÞ ¼
ðxT þ iyTÞ sinhðωtÞ= sinhðωTÞ provided that there is a
separate bound on each sum over modes for the conver-
gence of both solutions simultaneously. Thus, there is an
integer n� such that ω2

n� is closest to ω2 from above, and
with which then one correctly reproduces the real-time
harmonic motion at the bottom of the well, x ¼ y ¼ 0,

zðt; τÞ ¼ CnðτÞ
�
−
Xn�−1
n¼1

sinhðωntÞ − i
X∞
n¼n�

sinhðωntÞ
�

þ ðxT þ iyTÞ
sinhðωtÞ
sinhðωTÞ ; ð11Þ

the only saddle point configuration present in the harmonic
oscillator. We denote the path with coordinates (11) by J .
Of course when calculating the path integral for an
oscillating system, the ultimate goal is to analytically
continue back to real time, t → itr. Doing this would result
in a product of μM ≡ n� − 1 factors of −i that coalesce to
create an overall phase of

e−iμMπ=2; ð12Þ

where μM is known as “Maslov index,” which plays an
important role in the classification of Lagrangian submani-
folds in symplectic topology [26] and WKB approxima-
tion. Here, its presence is explicitly justified by the
holomorphization of path space and flow equations where
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the role of symplectic structure dx ∧ dp in the phase space
is replaced by dxdy in the complexified configuration
space. This has been also noticed in the real-time analysis
of the same problem in [27]. With this factor included, the
measure boils down to the flow line attached to the saddle
configuration at z ¼ 0 and fluctuations around it, namely,Z

ΓC

Dz →
Z
J
Dz ∼ e−iμMπ=2

Z Y∞
n¼1

dCn: ð13Þ

The rest of the computation follows easily from here. We
emphasize that this equation shows that the path integral of
the harmonic oscillator is localized to a specific path
connected to a bosonic saddle point, which provides a
simple example of localization principle.
We note the solutions along x and y directions are not the

same and the complexified system is not equivalent to a pair
of coupled harmonic oscillators; they satisfy a set of distinct
heat equationswhere along one, the eigenvalues of the flow
Hamiltonian increase and they do the opposite along the
other but still keep their positive-definiteness. This has a
consequence in terms of dynamics of the motion which is
thoroughly discussed in [8] for more general 0þ 1-dim
systems.
In the real-time formalism of path integrals, the

Lagrangian becomes proportional to the Hamiltonian,
and one now has to worry about the implicit τ dependence
of x and y coordinates and ask to see if there is any
conserved quantity along the flow line J that is preserved
under time translation. The answer is in the affirmative
because using (4), it is evident that

dθ
dτ

∝
d½Ŝ − ¯̂S�

dτ
¼ δ ¯̂S

δ ¯̂ϕ

∂ ¯̂ϕ
∂τ −

δŜ

δϕ̂

∂ϕ̂
∂τ ¼ 0: ð14Þ

In the motion of a simple harmonic oscillator, this readily is
given by

θ ¼
Z

dtðẋðt; τÞẏðt; τÞ þ ω2xðt; τÞyðt; τÞÞ: ð15Þ

To simplify things, we notice that if the derivative is zero, it
is zero even at the saddle solution. Hence,

θ ¼ xTyTω2

sinh2ðωTÞ
Z

T

0

dtðcosh2ðωtÞ þ sinh2ðωtÞÞ

¼ xTyTω cothðωTÞ: ð16Þ

Technically speaking, the union of flow lines reached by
a critical point at τ → −∞ is called a “Lefschetz thimble”
which we already denoted by J . Lefschetz thimbles are
middle dimensional manifolds attached to a critical point
and flow down to good regions Ga. Here, “good” means
that the integral converges in these regions. There is a

homological interpretation of this idea that will come in
a bit.
However, the opposite scenario would have led to an

upward flow—also known as K-cycle over which
h → −∞. This is not good because a K-cycle always
flows in orthogonal directions to J -cycles and therefore the
integral always diverges on them. This orthogonality means
that in general, the intersection of a Ka-cycle and a J b-
cycle happens to give either one or zero. This in compact
notation is written as hKa;J bi ¼ δij. It may be worth
mentioning that a downward flow that starts at one critical
point cannot end at another critical point and will always
flow in the direction of h → ∞ unless we are on a “Stokes
ray” where flow lines “overlap,” that is to say that the paths
of steepest descent become one that connects two critical
points. By crossing a Stokes ray, a cycle may or may not
jump, but it is ill-defined exactly on the ray itself which
requires further work to be made sensible.
Given a (noncompact) manifold X of arbitrary dimen-

sion, if for some very large flow time τ < τ⋆, h > L with L
being really large, then Xτ⋆ denotes the union of good
regions Ga. So we can form a Z-valued relative real kth-
homology groupHkðX;Xτ⋆Þ and use a Morse function h on
X to determine an upper bound for the rank of each group.
It can be shown that if the differences between the Morse
indices (¼ number of negative eigenvalues of the Hessian
matrix at a given critical point) of distinct critical points of
h are different from �1, then the rank of m-dim homology
groups is equal to the number of critical points of Morse
indexm. In our trivial example, the Morse index of ρ ¼ 0 is
one so H1ðX;Xτ⋆Þ is of rank 1 and all other relative
homology groups vanish. In the context of supersymmetric
theories in physics, the invariant measured by this relative
homology is usually a Witten-type index, which by a clue
from the bosonic harmonic theory discussed above, roots
back to localization to Lefschetz thimbles attached to BPS
configurations.
In general, this holomorphization procedure for any path

integral over a field space ΓR yields an equivalent formu-
lation with a path integral over an integration cycle in the
complexified field space ΓC, such that we can write the path
integral as

Z ¼
Z
ΓR

Dϕe−S½ϕ� ≡X
a∈Σ

na

Z
J a

Dϕ̂e−Ŝ½ϕ̂�; ð17Þ

where na ∈ f�1; 0g and Σ is the set of all critical points of
Ŝ. This is what one means by Picard-Lefschetz theory. We
notice that the critical points must be nondegenerate and
isolated for (17) to follow through unambiguously.
As a last remark, we point out that in case the critical

points are degenerate such that their Morse index is ill-
defined, or equivalently if the real part of the (effective)
action is not a Morse function, the formula (17) is not well-
defined. Asking na to take values in Z, instead, we keep
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track of this degeneracy factor which is infinite since
1=HðpÞ ¼ �∞ where HðpÞ is the Hessian (determinant
of Hessian matrix) at the degenerate saddle point p,

H ¼ det

� ∂2h

∂ϕ̂a∂ϕ̂b

�
; ð18Þ

where ϕ̂a are the set of all real and imaginary parts of every
complexified field that the Morse function h depends on.
In supersymmetric quantum mechanics, the degeneracy

can be removed topologically by the path homotopy
equivalence of Lefschetz thimbles. In short, any two
Lefschetz thimbles attached to degenerate (and nonisolated
as in gauge theories) saddle points that belong to the
same homotopy class are deemed equivalent and should
be counted only once. Homologically, the J -cycles in
HkðX;Xτ⋆Þ must describe a basis for any generic cycle γ in
X with its boundaries lying in Xτ⋆ .
Even though in a theory with degenerate saddle points, a

Morse function is ill-defined (unless, as shown in Sec. V,
regularized in a way that degeneracy is lifted, or, the
Morsification process [28]), still we can distinguish
between saddle points and corresponding Lefschetz thim-
bles by path homotopy. This enables us to define the
irreducible J-set whose elements J a are (1) generators of
HkðF;Fτ⋆Þ and (2) form a homotopy class ½J a�π where ½:�π
means “modulo path homotopy.” This removes the degen-
eracy of saddle points in theory and renders a clear
interpretation of the homological quantum mechanics in
the presence of a gauge group action, provided that the
intersection coefficients be determined by the Witten index
check or other alternative checks discussed in Sec. V C. We
will concentrate on the imaginary phase of this effective
action at the saddle rims defining the elements of J-set in
our treatment of Picard-Lefschetz theory.

III. HIDDEN TOPOLOGICALANGLES, SPECTRAL
CURVES, AND NON-BPS OBJECTS

In this section we explain the connection between
degenerate (or singular) spectral curves and non-BPS
solutions to the integrable/quasiexact-solvable systems
related to them.

A. Complex and bions and singular spectral curves

In general, the topological invariants hidden in the
complexified space of all paths described by flow equa-
tions (4) are related to the phase shifts that occur by
crossing some turning points included in the trajectory of a
particle. These invariants are closely related to the action-
angle variables in the study of symplectic manifolds that
could describe the phase space of the very same particle.
These invariants are often angles that arise as a result of
holding action constant along a trajectory. For instance, the
well-known periodic trajectory of a harmonic oscillator in

the phase space classically gives the following action-angle
variable (in units of ℏ):

Ha ¼ i
I
γ
pdx ¼ 2iπka ⇒ θa ¼ 2πka; ð19Þ

for integer ka and γ being a circle of radius
ffiffiffiffiffiffi
2E

p
at energy

level E. Quantum mechanically, the Maslov correction adds
a phase shift of π that accounts for the 1=2 energy of the
ground state.
Yet another method to get the phases of saddle points

would be through studying algebraic geometry and (co)
homology theory of the potential curves. In (non)super-
symmetric theories with double-well superpotential W ¼
z3=3 − z [12], the only nonperturbative contribution to
ground state energy comes from a non-BPS exact complex
instanton-anti-instanton solution which starts at the true
vacuum of the system at zm and turns back from either the
complex turning point zT or its complex conjugate z̄T ,
completing the periodic motion with infinite periodicity.
This system is part of a bigger family of integrable systems
which are described by the singular spectral curves SaðCÞ
defined (in Euclidean signature) by

y2 ¼ ðW0ðzÞÞ2 þ kagW00ðzÞ þ 2Em
a ð20Þ

¼ðz2 − 1Þ2 þ 2kagzþ 2Em
a ; ð21Þ

where g ∈ R is a coupling constant, ka is the number of
fermionic degrees of freedom, and −Em

a is energy at the
global minimum of the potentials VaðzÞ ¼ 1

2
ðW0ðzÞÞ2 þ

ka
2
gW00ðzÞ with W0ðzÞ being of at least degree d ¼ 2. In

general, ka may be an integer but only for ka ¼ 1 (or ka ¼
−1 in certain cases) the theory is supersymmetric. For
double-well superpotential, the maps in (21) look like y2 ∼
ð12ðzma Þ2 − 4Þðz − zma Þ2 near zma ∈ R, so zma have multiplic-
ity 2 and hence they are simple ramification points of index
νzma ¼ 2. The first relative (co)homology group of the
spectral curves (21) with respect to the ramification divisor
D ¼ 2zma is nontrivial (for the supersymmetric case
ka ¼ �1), which is shown by computing the integral of
the 1-form

ffiffiffiffiffi
y2

p
dz over the branch cut C that connects a

complex conjugate pair of fixed points, e.g., turning points,
½zTa ; z̄Ta � of SaðCÞ at energy level Em

a :

Ha ¼
1

g

Z
zTa

z̄Ta

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Em

a þW0ðzÞ2 þ kagW00ðzÞ
q

; ð22Þ

which is literally nothing but the phase of WKB approxi-
mation at zero order in g-expansion. In the rest of this
section, we take ℑðzTaÞ > 0.
It is interesting to note that for the double-well system,

one has
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zma ℑðzTaÞ ¼ −gsignðkaÞ: ð23Þ

The integral (22) for a genus zero singular algebraic curve
is calculated to be Ha ¼ iπka up to a sign, giving what we
had called early on a hidden topological angle (HTA): θa ¼
πka [12]. A motivation for this name comes from the lack of
any input in flow equations (4) that includes a topological
term to produce a priori a phase for the saddle points. The
integral introduced in (22) may also be equally represented
by the residue formula

Ha ¼
1

2g

I
C⊙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 − 1Þ2 þ 2kagzþ 2Em

a

q
dz

¼ 1

2g

I
C⊙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − zma Þ2ðz − zTaÞðz − z̄TaÞ

q
dz

¼ 1

2g

I
C⊙

t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4zma

t
þ ðℑðzTaÞÞ2 þ 4ðzma Þ2

t2

s
dt

¼ 1

2g

I
C⊙

t2
�
1þ � � � − ℑðzTaÞzma

t3
þOðt−4Þ

�
dt

¼ iπkazma ℑðzTaÞ
¼ iπkasignðkaÞ; ð24Þ

where C⊙ is a contour enclosing the global minimum zma .
Here, use was made of the substitution z − zma ¼ t and
Eq. (23). It is clear that away from the roots of y2, the
1-form

ffiffiffiffiffi
y2

p
dz is holomorphic and the HTA is a measure of

the monodromy of this differential around the singular
(degeneration) point z ¼ zma since exactly there it fails to
be exact.
We now seek a set of appropriate transformations to

reduceEaðCÞwithW ¼ z3=3 − z to nodal cubic curves and
comment on the connection between singular points
and HTA.
Starting with the generic algebraic curve

y2 þ la1zyþ la3y − ðz3 þ la2z
2 þ la4zþ la6Þ ¼ 0; ð25Þ

where

la1 ¼
2kagffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Em

a
p ; la2 ¼ −2 −

k2ag2

1þ 2Em
a
;

la3 ¼ 0; la4 ¼ −4ð1þ 2Em
a Þ;

la6 ¼ 4k2ag2 þ 8ð1þ 2Em
a Þ;

we find that the set of transformations

z ¼ 1

u2
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Em

a

p
ðvþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Em

a

p
Þ þ 2kaguÞ

y ¼ 1

u3

�
4ð1þ 2Em

a Þðvþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Em

a

p
Þ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Em

a

p
ð2kaguþ cu2Þ − d2u2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Em

a
p

�
;

turn (25) into the quartic equation v2 ¼ 2Em
a þ 2kaguþ

ðu2 − 1Þ2 describing EaðCÞ in ðu; vÞ coordinates. Hence,
the algebraic curves,

y2 − z3 þ
�
2þ k2ag2

1þ 2Em
a

�
z2 þ z

�
4þ 8Em

a þ 2kagffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Em

a
p

�
− 8 − 16Em

a − 4g2k2a ¼ 0; ð26Þ

are the reduced spectral curves associated with degree 4
orbits at energy Em

a in the inverted double-well potential.
Introducing

ma
1 ¼ ðla1Þ2 þ 4la2;

ma
4 ¼ la1l

a
3 þ 2la4; ma

6 ¼ la3 þ 4la6;

and a change of variables y → 2y and z → z − la
2

12
, Eq. (26)

turns into

y2 − z3 þ
�
16

3
þ 8Em

a

�
z − 4k2ag2 −

32Em
a

3
−
128

27
¼ 0:

ð27Þ

Numerical analysis verifies that the discriminant of this
algebraic cubic curve is zero because of an ordinary double
point at zma :

Δ ¼ 64

�
16

3
þ 8Em

a

�
3

− 16ð108k2ag2 þ 288Em
a þ 128Þ

¼ 0; ð28Þ

from which one can also solve for the energy of complex
bion ½IĪ � correlated events. Same analysis indicates that
there is a simple turning point at z ¼ −2za0 which is a
branch point of the spectral curve (27), and a double turning
point at z ¼ za0, being in turn the ordinary double point of
EaðCÞ, see Fig. 1. Therefore, the final form of the algebraic
curve encoding complex bion can be written as the nodal
cubic curve

E0∶ y2 ¼ ðz − za0Þ2ðzþ 2za0Þ; ð29Þ

which defines a moduli space Mka;g for all possible non-
perturbative configurations contributing to the ground-state
of the tilted double-well system. The genus of this curve is
0 and over C it indeed is the Riemann sphere or complex
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projective space CP1 with the two poles z ¼ 0, ∞
identified. Technically, a torus with a complex structure
constant t, T2 ¼ C=ðZþ tZÞ becomes homeomorphic to a
nodal cubic curve at the limit t → i∞ as one cycle goes
away. There is a holomorphic map CP1 → CP2 defined by
ha∶w ↦ ½zaðwÞ; yaðwÞ; 1�, where

zaðwÞ ¼ za0 þ
12wza0
ðw − 1Þ2 ; and yaðwÞ ¼

4wðwþ 1Þð3za0Þ
3
2

ðw − 1Þ3 ;

ð30Þ
that maps CP1 onto nodal/singular curve E0 which is
injective away from the points 0;∞ ∈ CP1 at which the
double point singularity of E0, namely, ½za0; 0; 0� is reached
via ha.
The orbit seen in Fig. 1 is a homology cycle (a line

generated as a result of flow by steepest descent) attached to
the north pole (critical point) of S2, starting there at time
τ → −∞, and finally reaching the south pole at time τ ¼ τ⋆.
In spherical coordinates, this flow line is actually a semi
great circle ϕ ¼ ϕ0 with the conserved quantity being

circumference ¼ πka; ð31Þ

where ka is the scale of the Riemann sphere for Ea. This is
exactly equal to the HTA calculated using the integral
formula given in (22). Upon taking ka to be an integer, we
get a Bohr-Sommerfeld type quantization for the HTA and
no resurgence will take place in the sense of [13]. Thus, the
orbit in Fig. 1 clearly represents the circle of E0 ≅ S2∨S1
and ka in this sense is the scale of the S1. It is hence
expected that any quantum theory with E0 as its quantized

moduli space of classical vacua accepts a possible non-BPS
exact solution contributing nonperturbatively to the vac-
uum energy and breaking supersymmetry.
More insight in this regard is drawn from the thimble

analysis of near-supersymmetric CPk−1 quantum mechan-
ics in the quasi moduli space of kinks and antikinks [30].
There it is demonstrated using explicit calculations for
k ¼ 2 case that the theory does entail complex bion
solutions but they do not have a mod π HTA. We elucidate
this result in the context of the current section by mention-
ing that the length of every great circle of CP1 ≅ S2

corresponding to a nonperturbative solution in the super-
symmetric limit (i.e., ϵ ¼ 1 in [30]) is naturally equal to 2π
in units of ϵ with an integer winding number for higher
order (real) bions. Also, it is obvious that the spectral curve
y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðjzjÞ þ 2Em
p

does not develop a cusp singularity at
the energy level −Em associated with global minimum of
the potential VðjzjÞ because y only depends on jzj ≥ 0 (jzj
being the modulus of the inhomogeneous coordinate z)
contrary to EaðCÞ described by (21).
If we insist to know the Picard-Lefschetz theory of a

complex bion, it is apparent that the singularity in Fig. 1
is a setback. But it is a cusp catastrophe that could be
well examined using catastrophe theory, which is a
potentially powerful replacement for Picard-Lefschetz
theory [31].
A recent development concerning the spectral curves in

the A1 and AN−1 theories of class S in 4dN ¼ 2 theories is
the interesting concept of “BPS graph,” whose nodes
correspond to the roots of the spectral curve of the
Hitchin system related to the theory [32]. Therefore
it is believed on general grounds that the collision of roots
in the BPS graph associated with the potential curve y2 ¼
ðz − za0Þ2ðzþ 2za0Þ is related to complex bions. It would be
nice to understand what exactly this connection is, but we
leave that to future work.

B. The sign of HTA

In general the question that one has to address regarding
the HTA is that its sign seems to be arbitrary. One way of
resolving this issue is to consider if anomalies would arise
because of a change in the Lefschetz thimble integrals.
We recall that the topological invariant here is merely a
relative homology, or, more suitably, a relative cohomology
H1ðΓC; GÞ, where ΓC is the path (field) space of the
quantum mechanics or quantum field theory and G ⊂ ΓC
is the union of all (disjoint) good regions. In Picard-
Lefschetz theory, upon changing the relative cycles J a
to J �

a in the expression

Z ¼
Z
ΓC

Dx̃e−Sðx̃Þ ¼
X
a

na

Z
J a

dx̃e−Sðx̃Þ ¼
X
a

naZa;

ð32Þ

FIG. 1. Graph of the reduced spectral curves EaðCÞ over the
char ¼ 0 field of complex numbers. The closed orbit here shows
an exact periodic non-BPS solution of equations of motion in the
tilted double-well potential known as complex bion ½IĪ �, that is a
complex configuration on a thimble attached to its critical point at
infinity [29]. There is an ordinary double point, i.e., node, at z0
originated from the singularity of the curves (21). Unlike smooth
elliptic Weierstrass curves, EaðCÞ have genus 0 in view of
Riemann-Hurwitz formula.
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Z� would make sense as long as θa ¼ θ�amod 2πZ since
Z�
a ¼ exp iðθa − θ�aÞZa. We then say that J a;J �

a subject
to the same boundary conditions are in the same relative
(co)homology class and therefore are path homotopic
J a ≅ J �

a.
Otherwise, this would imply that there is an anomaly

Anoa ¼ ðexp iðθa − θ�aÞ − 1ÞZa that must be removed by
introducing a boundary term in Sðx̃Þ that is anomalous in
retrospect. This generically requires the integration mani-
fold C ¼ P

aJ a to have a boundary, but if C is closed (thus
defining an ordinary homology as will be the case in the
upcoming sections), it is not clear how this would be fixed
(One cure might come from the insertion of punctures on
the boundary and possibly inside C.).
For integer values of ka there are no anomalies arising

from the sign of HTA. For all other values of ka, the
anomaly of Z�

a’s can be canceled by insertion of
appropriate terms at the boundary as discussed above.
The consequence of this breaking of supersymmetry
with the help of gauged linear sigma model formulation
of 2d (2,2) CPN−1 theory on S2 was explored in a recent
work [33] using ideas from resurgence theory. But to
our knowledge, there is no understanding of path integral
of the theory in the presence of supersymmetry-
breaking terms.

C. Holomorphic 1-forms and higher genus

Higher genus algebraic curves that develop complex
bions ½IĪ �n (n ≥ 1) are also obtained by generalizing
EaðCÞ to a higher degree (d > 2)—hyperelliptic—spectral
curves with singular points. Notice that for curves with
simply Em

a replaced by a generic Ea in (20), the genus
formula is given by

g ¼ d − 1; ð33Þ

which is equal to the dimension of space of holomorphic
1-forms, i.e., z

d−ndz
y for n ¼ 1;…g or the number of handles

on the corresponding Riemann surface SEa
ðCÞ. However,

EaðCÞ locally looks like y2 ∼ zd þ � � �, physically corre-
sponding to the famous “Argyres-Douglas” point in
Seiberg-Witten type theories, for which the genus formula
is then replaced by

gs ¼ d=2 − 1; for even d;

gs ¼ ðd − 1Þ=2; for odd d: ð34Þ

In such situations, ðd − 1Þ=2 for odd d [and (d=2) for even
d] of the sections of the fibers VEa

¼ H1ðSEa
ðCÞ;CÞ (with

Ea being the energy level) of the locally trivialized flat
bundle V over the Riemann surface of genus g vanish,
giving rise to g → gs. Because complex bions occur
exactly at the degeneration point Ea ¼ Em

a , one has to
come up with a suitable basis—a linear combination of

holomorphic 1-forms on SEa
ðCÞ—to integrate over along

the branch cuts, which can be given as

ωc ¼ 2
PðzÞdz

y
¼ 2

Xg
n¼1

cnzd−ndz
y

; ð35Þ

where cn are chosen such that Pðz − zamÞ ¼ 0, and the
factor 2 accounts for the fact that the motion is periodic so
integrating along the branch cut connecting two turning
points is worth half the actual amount of cohomological
correction.
Therefore for singular curves one has to keep in mind

that the cohomology classes of the (classical) “WKB”
1-form ω ∼ g−1

ffiffiffiffiffi
y2

p
dz in theories with gs > 0 should

receive extra (g-independent) corrections (modulo an over-
all sign factor), namely,

ω̃ ¼ ωþ ωc: ð36Þ

Upon specifying the 1-cycle, the integral of ω̃ should
produce the correct HTA. For ½IĪ �, as discussed above, this
cycle is taken to be the branch cut connecting a complex
conjugate pair of turning points. For a bound state of bions,
namely ½IĪ �n this cycle is split into the branch cuts
connecting each of n pairs of neighboring complex con-
jugate turning points.
Equation (36) suggests that the sections of sheaf of

holomorphic 1-forms is indeed what generates the complex
phases of bions. So the proper semiclassical treatment of
singular spectral curves should replace the cotangent
bundle by a richer object, cotangent sheaf. In fact, WKB
approximation fails to capture the full topology of algebraic
curves of higher genus in the presence of singular points
though it might explain some things via the information
hidden in the fixed points (turning points) of the WKB
1-form. This is however not the case for a smooth affine
curve, where topological recursion has been proven to
indeed reconstruct the WKB expansion of the quantum
spectral curve [34].

D. gs = 1 example: triple-well

With the superpotential W0ðzÞ ¼ 4z3 − 3z in Eq. (20)
and focused only on ka > 0, we make the case of a gs ¼ 1
curve that admits a complex bion given by

za½IĪ �ðτÞ ¼
ωa

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
a − 9

p
coshð2ωaτÞ

q ; ð37Þ

where ωa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12gka

p
is the natural frequency at the

global minimum of VðzÞ, i.e., z ¼ 0. Computing the action
of this solution, one finds
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Sa½IĪ � ¼
3ωa

8g
þ 3ka

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωa þ 3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωa − 3

p
�
þ 3ikaπ

4
: ð38Þ

The imaginary piece of this action should be equal to Ha
via the formula (22),

Ha ¼
1

g

Z
zTa

z̄Ta

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
az2 − 24z4 þ 16z6

q
; ð39Þ

and a quick computation proves this for a complex con-
jugate pair of turning points, say zTa ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2i

ffiffiffiffiffiffiffiffiffiffi
3gka

pp
.

Now, we form the ωc, that is just

ωc ¼ 2
z2dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
az2 − 24z4 þ 16z6

p : ð40Þ

We then compute thatZ
zTa

z̄Ta

ωc ¼ 2 ×
iπ
8
¼ iπ

4
: ð41Þ

Adding this correction to (39) one obtains the HTA as

θa ¼ πð3ka þ 1Þ=4; ð42Þ

that for a supersymmetric theory, ka ¼ 1, yields θ ¼ π as
expected.
For ka < 0, the potential has two global minima in

which we pick either one and take the complex turning
points in the immediate neighborhood and compute
Ha from (22), that gives −3iπka=2 that has to be cor-
rected. The only nontrivial cohomological correction
comes from

ωc ¼ 2
ðz2 − 1

4
ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4gka
p ÞÞdz
y

; ð43Þ

where once again it has been established that μM ¼ 2 and
y2 ¼ ð4z3 − 3zÞ2 þ 3gkað4z2 − 1Þ þ 2Em

a . Then the HTA
becomes

θa ¼ −πð3ka þ 1Þ=2; ð44Þ

which for ka ¼ −1 reproduces θ ¼ π as well.

IV. INDEX FORMULA FROM
PICARD-LEFSCHETZ THEORY:
N = 4 QUANTUM MECHANICS

Reminder: In the rest of this paper, we will adopt the
notation κ ¼ 2πi for simplicity. Our aim in this section is to
write down a formula like (17) that correctly computes the
refined (categorified) Witten index

Iðy; ζÞ ≔ trð−1ÞFe−βHyJ ð45Þ

for the supersymmetric quantum mechanics with four real
supercharges, and a Uð1Þ R-symmetry J that appears as a
left-moving Uð1Þ R-symmetry in the original theory that
will be taken to be 2d N ¼ ð2; 2Þ gauge theory. Excited
states will not be playing a role in the quasitopological
index we are seeking in what follows so there will not be
any dependence on β anywhere. The index depends on both
the R-charges of chiral fields and the Fayet-Iliopoulos (FI)
parameter ζ. The latter enters the index formula in view of a
Q-exact deformation term in the N ¼ ð2; 2Þ Lagrangian.
Hence, the Witten index is categorified in terms of the R-
symmetry gauge fugacity y defined by

y ¼ exp
1

2
κ

�I
S1
AR

�
≡ e

1
2
κz; ð46Þ

where AR ≔ z
2π is the Uð1ÞR gauge field.

This formalism will totally avoid the JK residue oper-
ation used in [22], since we are considering relative
homology cycles J i as constituent components of the
closed integration cycle γ and focus on the thimble
integrals within the fundamental domain of the moduli
space X—interchangeably called u-space from now on—
parametrized by

u ≔ −vτ þ iσ; ð47Þ

where we have set the circumference of the Euclidean circle
to 2π. vτ; σ are the constant gauge and real scalar fields
(of the vector multiplet) that parametrize the moduli space
of the supersymmetric (or BPS) configurations for the
N ¼ ð2; 2Þ gauge theory. We choose the topological sector
vτ ¼ 0 and rather follow a common exercise in Picard-
Lefschetz theory that requires complexification of σ such
that2

u → ũ≡ iσ1 − σ2 ∈ C; ð48Þ

where the complexified field is σ̃ ¼ σ1 þ iσ2 with σ1;2 ∈ R.
In what follows we drop the tilde and assume that σ2
direction is compact and σ2 ∼ σ2 þ 2π so that σ̃ still takes
values inC=Z. We can avoid this assumption at the expense
of changing the topology of the moduli space, but we are
going to enforce such a change by introducing a regulari-
zation anyways to have controllability over the modified
Lefschetz thimbles. We also remind the reader that the
antiholomorphic variables are washed away from the full
1-loop determinant after writing it as a total derivative term
in ū (see Eq. (3.20) of Ref. [18]).3

2We thank Danielle Dorigoni for pointing this out.
3This requires putting D ¼ 0 in the chiral 1-loop determinant

of (2,2) theory. In an upcoming work, we investigate holomorph-
izing σ inN ¼ 2 supersymmetric quantum mechanics that avoids
this condition and gives rise to a much refined analysis of
Lefschetz thimbles.
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The quantum mechanics in consideration has the total
gauge groupG ¼ Uð1Þα unless otherwise stated.4 Since the
chiral matter is chosen to be in the bifundamental repre-
sentation of G, allowing an overall Uð1Þ to be decoupled in
the process, arrows will indicate the bifundamentals in a
quiver graph and nodes will represent a Uð1Þ quiver
gauge group.
We now generalize the discussion of noncompact moduli

space of Uð1Þ gauge theory and its constituent Lefschetz
thimbles in Sec. I to some higher-rank gauge groups. The
general premise then is that only the saddle points of the
effective 1-loop determinant at imaginary-infinity will
contribute to the χy genus and thus to the corresponding
refined Witten index of the 1d gauged quiver system. From
Picard-Lefschetz theory, χy genus can be written down as5

Iðz; ζÞ ¼ 1

κα
X2α
j¼1

njðζÞ
Z
J j

Z1Ldu⃗

¼ 1

κα
X2α
j¼1

njðζÞ lim
u⃗→u⃗⋆j

Z1Lðy; u⃗Þ

≡ 1

κα
X2α
j¼1

njðζÞZjðyÞ; ð50Þ

where du⃗ ¼ Q
adua, α is the total number of Uð1Þ factors

in G of the quiver system, i.e., rank of G, 2α corresponds to
the total number of critical points distinguished by the
integration of Z1L over jth α-dim Lefschetz thimble, J j,
attached to the jth critical point at u⃗⋆j . The number of
Lefschetz thimbles is determined by the number of different
limits at imaginary infinity directions. For example, for
G ¼ Uð1Þ4, one finds u⃗⋆j ¼ iv⃗j∞ where v⃗j is a 4-vector
with components þ1 and/or −1, and correspondingly there
are 24 ¼ 16 4-dim J -cycles that construct the integration
cycle. The limits in (50) are exact and give the thimble

integrals that in turn measure a relative homology as
discussed in Sec. II.
On supersymmetric grounds, as in this paper, if the

moduli space M is compact, one can write a refined index
formula of the form

Iðy; ζÞ ¼
XD
p;q¼0

hMðp;qÞðζÞð−1Þp−qy2p−D: ð51Þ

Here, we are talking about a compact moduli space M of
complex dimension D endowed with a Kähler structure
that entails all we need about the ground state spectrum of
the underlying theory. The numbers hMðp;qÞ are the Hodge

numbers of the bigraded algebra corresponding the
Dolbeault cohomology groups. A closer look to our index
formula (50) suggests that it actually is similar in nature to
(51). In Picard-Lefschetz theory, the m-dim homology
cycles J are labeled “relative” that lift to HmðX;Xτ⋆Þ in
noncompact manifolds X which may contain singularities,6

whereas the cohomology ofM in (51) is global. So a direct
comparison might not be possible between hMðp;qÞ and

intersection numbers. However, we will see that a slight
modification of this last formula would make it feasible to
find a relation between the two.

V. LINEAR ABELIAN QUIVER QUANTUM
MECHANICS (DYON CHAINS)

Physically, quiver quantum mechanics appears as the
low energy theory of a set of wrapped D-branes which
encodes information on the dynamics of single and multi-
centered BPS black hole geometries in 4d N ¼ 2 super-
gravity. It also arises in 2d N ¼ ð2; 2Þ gauge theories. The
gauged quantum mechanics governs the low energy sector
of the full quantum field theory, which is then useful for
index calculations and understanding the dynamics of BPS
bound states. A famous example that has been studied
heavily in [36,37] is dyon chains that will be our focal point
in the rest of this paper.
2-node quiver: N ¼ 4CPk−1 model.—Let us study the

2-node linear supersymmetric quiver quantum mechanics
also known as CPk−1 derived from 4dN ¼ 2 SUð2Þ Yang-
Mills theory. It is a massive rank-one Abelian theory that
does not flow to a fixed point at IR and hence is not
superconformal. The left R-symmetry is anomalous unless
z ∈ Z=k for which the 1-loop determinant becomes single-
valued. We choose to keep z generic since R-anomaly
removal, as we shall see, causes the Stokes phenomenon to

4A generic group in the literature of gauged quiver quantum
mechanics happens to mostly be of the form G ¼ Q

iUðniÞ for
ni ∈ Zþ where ni are the coefficients for the contribution of
each elementary BPS state charge cQi present in the N ¼ 4
quiver quantum mechanics to the BPS charge of a one-particle 4d
N ¼ 2 system [35]:

c4d ¼
X
i

mic
Q
i : ð49Þ

The numbers mi determining the basis for the space of BPS
particles should coincide with the magnitude of relative inter-
section coefficients that is built out of Lefschetz thimbles
satisfying Eq. (4) with the effective 1-loop action of the
N ¼ 4 quiver system. In this work, we will proceed to verify
that the flow diagram in the u-space accurately captures the BPS
configuration contributing to the index with mi as given in (49).

5In case of having # decoupling Uð1Þ’s, one has to set
α → α − #.

6The quality of being relative for a good cycle means that
for any cycle J ∈ X for some (punctured) noncompact manifold
X, we need to find its ends at large flow time limit τ → τ⋆ in good
regions Gi, Gj ∈ Xτ⋆ for i ≠ j where Xτ⋆ is defined to contain
all good regions relative to the whole of X accessible at large
flow time.
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kick in which leads to technical complications. Setting
z ¼ 0 is also dangerous as discussed in [17] where the
authors had to introduce flavor holonomies or an extra
chiral multiplet to make sense out of an ill-defined 1-loop
determinant.
There are k bifundamental chiral fields between the

nodes, represented by k-overlapping arrows in Fig. 2.

A. General strategy

Let Gi denote the ith zero ϵ-balls of radii ϵ ≪ 1 centered
at the zeros of the 1-loop determinant. The flow lines
reaching an ϵ-ball are guaranteed to be “stuck” at a zero of
the 1-loop determinant. We denote by hGijGji with i < j
any possible good cycle in the slightly extended domain
E ≔ fu ∈ Xj − 1 ≤ ℜðu − zÞ < 1g compared to the fun-
damental one, and aim to count the number of J -cycles
contributing to the integration cycle γ so that the χy genus
captures the correct spectrum of BPS states. Physically, the
Gi is the location of the ith fermion zeromode in the moduli
space at which the Lefschetz thimbles end.
In dealing with situations in which integration cycle γ is

closed, on the contrary to open integration cycles, one
needs to assemble a means of identifying orientations for
Lefschetz thimbles because they do not have natural
orientations. The result of this integral leads to an algebraic
invariant—here a polynomial in the fugacity of Uð1ÞR
gauge field, y—that measures the relative homology
H1ðX;Xτ⋆Þ on the space X ¼ C× ≅ Cnf0g ≅ C=Z where
≅means homeomorphic.7 The point u ¼ 0 coincides with a
fundamental pole of Z1L, and the Z is taken to be the
subgroup of translations by integer multiples of the
fundamental pole which will constitute the set of poles
of Z1L on the real u-direction. Computing this integral is
usually a burdensome task for even a simple space like R2,
let alone more complicated manifolds of higher dimen-
sions. But the key tool that allows us to do computations in
the current work is the exactness of saddle point approxi-
mation, thanks to localization and quiver decoupling for
higher-rank overall gauge groups. Above all else lies the
fact that there might be finite saddles that do not contribute
to the index, letting us only focus on those cycles that pass
through the rims at infinite imaginary directions of u-space.
Considering the fact that we know a priori that thimble
integrals would yield expressions that have the same overall

sign in terms of powers of y, we prescribe the rule pictured
in Fig. 3.
The starting point is to plot the solutions to flow

equation (4) for the following effective action:

Seffðu; yÞ ≔ − lnðZ1LÞ: ð52Þ

To do this, we first solve the flow line equations (4) and
count the possible number of good cycles in E. It turns out
that this number is 2 as seen in Fig. 4. We recall that the
Lefschetz thimbles J 1;2 seem to be the only ones contrib-
uting to the index (50), but indeed there are infinitely many
copies of the same thimbles each starting from a point at
imaginary-infinity with the initial values

lim
τ→−∞

uðτÞ ¼ r� i∞ ∈ saddle rims; ð53Þ

for real r, which by path homotopy we aim to refine such a
degeneracy.8 So in the complex u-plane, the saddle points
rij � i∞, attached to cycles hGijGji for ji − jj < 2, are
only distinguishable for infinite rij, which for a bounded E
is not feasible.9 Therefore, hG1jG2i and hG2jG3i, where
G3 ⊂ EnF are indeed copies of the same cycles unless
there is a pole or branch-cut in between. The minimal set of
all the independent cycles that can build the contour of
integration in the moduli space is dubbed from now on the
irreducible J-set, whose cardinality is 2α for a gauged
quantum mechanics with α being the rank of the gauge

FIG. 2. A CPk−1 model. These are 2-node linear quivers with
rank 1 Abelian gauge groups at each node. k, the number of
arrows, also shows the number of bifundamentals.

FIG. 3. To fix the orientation for each thimble we start from
one zero ϵ-ball and continue counter-clockwise toward the other
zero ϵ-ball until we come back to the initial zero ϵ-ball. In other
words, γ ¼ n1hG1jG2i þ n2hG2jG3i þ � � � þ nN−1hGN−1jGNiþ
nNhGN jG1i, where the sign of ni makes the orientation of
hGijGiþ1i≡ J i-cycle align that of γ. This is basically similar
to Kirchhoff’s loop rule for a given electric network.

7For a quantum mechanical quiver system of rank-α gauge
group G, the u-space is simply X ¼ ðC×Þα [22].

8A note is due to clear a possible misleading point here. The
relative homology cycles can happen to actually yield the same
invariant after thimble integration over them. Thus, two inde-
pendent J -cycles might in fact have an identical invariant and yet
be considered in the index formula. In general, the number of
independent J -cycles is 2α, where α is the rank of total pG or the
number of nodes because G ¼ Uð1Þα.

9We note that the boundedness of E along real direction is
necessary for the applicability of Picard-Lefschetz theory in this
situation. If one lifted the boundedness requirement, the Lef-
schetz integration would be undefined for ℜðuÞ → �∞.
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group. In other words, the Lefschetz thimble integrals over
J form a vector space of dimension 2α that consists of a
necessary and sufficient number of Lefschetz thimbles in
the fundamental domain F≔ fu∈C×j0≤ℜðu− zÞ< 1g,
where F ↪ E, i.e., F is only a retract of E. This is best
understood by examining the saddle points of the 2-node
quiver effective action (52), which, too, are those of the
1-loop determinant. We show this in Fig. 4.
Compared to the JK residue operation, a big advantage

comes into play when the location and number of poles
become immaterial. This, in fact, comes up in our analysis
naturally by just focusing on the hunt for an irreducible
J-set, which in the current case is J ¼ fJ 1;J 2g. The poles

are replaced by branch points of the effective action and the
branch cut is everywhere along ½z − 1; z�n½0; z�. This is
shown in Fig. 5.
It is possible to apply this technology to higher rank

gauge groups, but one should not integrate out D-field
and rather complexify σ in the gauge multiplet which
also removes the degeneracy of saddle points.10

For an Abelian 2-node quiver model with k bifunda-
mentals, we have the 1-loop meromorphic form

Z1Ldu ¼ −π sinðπzÞk−1ðcotðπzÞ − cotðπuÞÞkdu: ð54Þ

Since u⋆1 ¼ −i∞ and u⋆2 ¼ i∞, the thimble integrals over
J 1, J 2 may be given by the saddle point approximation as
(modulo a zero Hessian)

Z1ðyÞ ¼ lim
u→−i∞

−πðcotðπzÞ − cotðπuÞÞk
sinðπzÞ1−k ¼ κ

y−k

y−1 − y
;

Z2ðyÞ ¼ lim
u→i∞

−πðcotðπzÞ − cotðπuÞÞk
sinðπzÞ1−k ¼ κ

yk

y−1 − y
:

Therefore, the formula (50) produces the following index
for the 2-node quiver quantum mechanics:

Iðy; ζÞ ¼ n1ðζÞ
y−k

y−1 − y
þ n2ðζÞ

yk

y−1 − y
ð55aÞ

¼ ΘðζÞ y−k

y−1 − y
− ΘðζÞ yk

y−1 − y

¼
� y−k

y−1−y −
yk

y−1−y ≡ y1−k
P

k−1
i¼0 y

2i; if ζ > 0

0 if ζ < 0:

ð55bÞ

[Here, use was made of the formula (123). For more
information, the reader is encouraged to look at its
derivation in Sec. VII C.] The piecewise FI parameter
dependence of niðζÞ in general is just a direct consequence
of the fact that they do not show up inside the trace function
of (45) explicitly. It should be stated, however, that this
dependency is rather shown to be in a less clear way on the
contour of integration γ in the JK residue operation. The
Picard-Lefschetz theory does seemingly suggest that this
contour is of the form

γðζÞ ¼ n1ðζÞJ 1 þ n2ðζÞJ 2: ð56Þ

Vividly, any jump in the index is related immediately to the
jumps in niðζÞ caused by either Stokes phenomena or
moving through FI chambers or both. This latter one will be
apparent in the cases where the index in the other FI
chambers is nonzero such as the generalized XYZmodel. In

FIG. 4. The plot of Lefschetz thimbles for CP1 model. Here,
z ¼ 0.05. The red lines show the saddle rims at imaginary
infinity. The tails of Lefschetz thimbles end at the zero ϵ-balls
G1,G2 where the 1-loop determinant is guaranteed to vanish. The
cross signs label the intersection points, giving n1 ¼ −n2 ¼ 1.
The integration cycle is closed, which is in turn enforced by the
orientation of the J 1, J 2 in γ, and thus by the intersection
numbers.

FIG. 5. The imaginary part of SeffðuÞ for the linear Abelian 2-
node quiver with z ¼ 0.005. The branch cut is ½z − 1; z�n½0; z�.
Saddle rims on both −i∞; i∞ ends are shown with red lines. The
imaginary parts of SeffðuÞ over Lefschetz thimbles are �3.1
which tend to �π as z → 0. 10Work in progress.
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other words, it is possible that applying Lefschetz decom-
position may end up with an on-the-wall index and any
probable wall crossing phenomenon is lurking here (see
Sec. VIII).
This index is obviously invariant under z → −z or,

equivalently, y → y−1 exchange symmetry that can be
understood in terms of Lefschetz thimbles by noticing that
all it does is for the zero ϵ-balls to be flipped around an
imaginary axis in Fig. 4 without thimble integration
affected. Because the same pole is again encircled by
the thimbles at work here, the JK residue operation will
yield the same result as well.
Next, we should match this result with the formula (51)

for M ¼ CPk−1 with D ¼ k − 1. Let us first simplify
things further by noting the Hodge numbers in (51) can be
extracted from the Betti numbers in the following way:

Iðy; ζÞ ¼
Xk−1
p¼0

bpðζÞ
y2p−kþ1 − y2p−kþ3

1 − y2

¼
Xk−1
p¼0

Xk−1
q¼0

ð−1Þp−qhCPk−1

ðp;qÞ
y2p−kþ1 − y2p−kþ3

1 − y2
; ð57Þ

where the Betti numbers are

bpðζÞ ¼
Xk−1
q¼0

ð−1Þp−qhCPk−1

ðp;qÞ ðζÞ; ð58Þ

and are the Betti numbers of the cohomology of CPk−1.
Notice that for our later purposes, a slight manipulation in
the original form of (51) was made to cast it in a more
comparable form to the one derived using the Picard-
Lefschetz theory in (55a). Equating (57) with the index
formula obtained in (55a) imposes the condition

bCP
k−1ðζÞ ¼ n1ðζÞ ¼ −n2ðζÞ; ð59Þ

where b0 ¼ b1 ¼ … ¼ bk−1 ≡ bCP
k−1
.

Equation (59) is a very elegant correspondence between
Betti numbers of the Dolbeault cohomology groups over
the compact moduli space of the supersymmetric vacua in
the 2-node quiver and the intersection coefficients of the
J -cycles in the relative homology drawn from the function
Seff over a noncompact 2-manifold X ¼ C× which is the
u-space. This actually is a finite dimensional moduli space
of solutions to N ¼ 2 supersymmetric locus (BPS equa-
tions) drawn from the original infinite dimensional path
space of the 2d N ¼ ð2; 2Þ supersymmetric gauge theory
by localization. The power of this correspondence is that
even if one does not know the intersection numbers, which
happen to be so complicated to obtain, in more general
cases, the condition (59) determines the relation between
n1, n2. Mathematically, γ can be lifted to an element
of H1ðFÞ where H1ðFÞ is an “ordinary” homology of

F ⊂ C×, while the constituent cycles still fall into relative
homology groups. γ, a closed loop encircling one singu-
larity at u� ¼ 0, gives the Betti number b1 ¼ 1 for H1ðFÞ.
This is the statement that the Poincaré function for the
relative homology H1ðF;Fτ⋆Þ is in fact a Poincaré
series because the vector multiplet contribution to 1-loop
determinant is ∝ 1

1−y2. Finally, this correspondence is

H1ðFÞ ≅ H1ðCPk−1Þ, regardless of the value of k.11

The isomorphism H1ðFÞ ≅ H1ðCPk−1Þ needs a little bit
of explanation. In the path integral of the supersymmetric
gauge theory, the space to be integrated over is initially
infinite dimensional. Localization brings it down to a finite
dimensional integral over a specific contour, γ, in the space
of saddle points of the low-energy theory. These saddles are
simply the solutions to supersymmetric BPS conditions that
form a moduli space. γ is fixed by Picard-Lefschetz theory
to be (56), which is a middle-dimensional cycle—e.g., a
smooth 1-manifold in F for a quiver system of α ¼ 2
reduced by decoupling a Uð1Þ factor. Because the con-
stituent pieces of this contour are the thimbles extended
all the way to infinity along imaginary directions, γ could
be shrunk into a compact submanifold W ⊂ F with
fG1; G2g ∩ W ≠ ∅ by way of introducing a regulator. It
should be added that it is not possible to include any of zero
ϵ-balls in their entirety in W as they vary with respect to y
and may grow out ofW. This simply induces a deformation
retract W ↪ F and thus H1ðFÞ ≅ H1ðWÞ. The induction
by the regulator is not unique in the sense that the localized
path integral, that is, the refined Witten index Iðy; ζÞ, does
not depend on the choice of regulator as long as it does not
change the pole structure.
To fully compute the Betti numbers bp, one always

needs a generating function, which is also difficult to obtain
due to the topological complications of the moduli spaces.
In simple cases such as M ¼ CPk−1, or Grassmannians,
where closed loops are absent in the quiver, this problem
has been settled by Reineke in [38]. There, counting
supersymmetric ground states of quantum mechanics on
the moduli space of a 2-node quiver with k arrows, and
dimension vector ð1; nÞ associated with nodes of the quiver
is shown to be related to the cohomology of a
Grassmannian M ¼ Grðn; kÞ in an explicit way:

PðyÞ≡ Xnðk−nÞ
p¼0

bpy2p ¼
Q

k−1
j¼1ð1 − y2jÞQ

n
j¼1ð1 − y2jÞQk−n

j¼1ð1 − y2jÞ :

ð60Þ
Now multiplying all sides by y−kþ1 and putting n ¼ 1

yields the index for CPk−1 model. From this, we find

11Note that k appears in the exponent of the chiral multiplet
contribution in the 1-loop determinant. Hence, modulo the Uð1Þ
vector multiplet components that are not related to the saddle
points in u-space e.g., Eq. (96), Lefschetz thimbles are indepen-
dent of k.
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bCP
k−1 ¼ 1 which was expected from the analysis of

Lefschetz thimbles earlier. The ζ > 0 is a geometric phase
for N ¼ 4 and thus the CPk−1 model has a nonzero index
in this phase, whose space of supersymmetric ground states
is of dimension

hCP
k−1

ðp;qÞ ðζ > 0Þ ¼
�
1 if p ¼ q ¼ 0;…; k − 1

0 if otherwise
ð61Þ

[19]. Introducing this in (58) implies correctly the result
bCP

k−1 ¼ 1 and affirms the Picard-Lefschetz analysis.
If we were to follow things starting from the Picard-

Lefschetz theory side, we would have hit a snag to get the
cohomology of the moduli space. The reason for this is
straightforward to understand. Consider the expansion of
the integration cycle (56). Using saddle point approxima-
tion, the values of 1-loop determinant at saddles u⋆1 ; u⋆2 ,
i.e., Z1, Z2 give thimble integrals over J 1, J 2 (see
Sec. VII A for an explicit calculation). Z1, Z2 do not,
however, have any finite expansion in y because of the
divergence at y ¼ �1 caused by the singularities of the
vector multiplet contribution, but apparently the combi-
nation does have a Laurent expansion once n1 and n2 are
set to be þ1 and −1, respectively. Since the dependence
on ζ is piecewise, the intersection coefficients in the
relative homology of J -cycles must encode the cohomo-
logical data of the moduli space of supersymmetric quiver
vacua and their locations.
Still, we need to look for means of generating these

coefficients and clarifying what their link to FI parameters
is. In the following, we try to put the idea of the wall
crossing phenomenon and Stokes jumps into pers-
pective together to address these questions. For a detailed
mathematical account of these subjects, we guide the
reader to consult the beautiful text by Kontsevich and
Soibelman [39].

B. Regularization of infinite saddles using FI
parameters: Morsification

Even though matching the relative homology of the
J -cycles derived from the Picard-Lefschetz theory with the
cohomology of the moduli space of stable quiver repre-
sentations derived using algebraic topological tools is very
instructive as it stands, one may be concerned about the
saddle rims at infinity and whether or not studying the
Picard-Lefschetz theory is legitimate in such cases due to
the degeneracy of saddle points.
As a result we should seek out an off-the-wall inter-

pretation of the index which encodes data on the BPS
configuration inside of the FI chambers (Note: This is
different from the quiver invariants intrinsic to the wall of
marginal stability that will be referred to as on-the-wall
index here. See Sec. VIII.). Taking this as a fact, given that
γ is essentially sitting on a Stokes ray, going away from the

ray gives rise to Stokes jumps responsible for any possible
change in the relative homology of the J -cycles:

J i → J i þ
X
j≠i

σijJ j; ni → ni þ
X
j≠i

ηijnj; ð62Þ

where σij and ηij are integers. To guarantee a smooth
variation across the Stokes rays, these constants have to
satisfy the relation

σij þ ηji þ
X
l

ηliσlj ¼ 0; ð63Þ

for every i ≠ j. Fix a parameter μ that triggers (62) in a two-
chamber theory. Although we now have a homology cycle,
say Cμ off the Stokes line to the right of it ðμ → 0þÞ or else
ðμ → 0−Þ, that is locally constant as prescribed by σij and
ηij, globally the presence of poles would make a difference
in the homology of cycles. Stokes jumps are immediately
accompanied by a variation of FI parameters responsible
for building different chambers in the moduli space of
solutions to the BPS equations—u-space. Thus, the index
experiences contributions from a perhaps different BPS
configuration depending on how J i changes, so

γ ¼ nþðζÞCþ þ n−ðζÞC−; ð64Þ

where n�ðζÞ ¼ Θð�ζÞ are the intersection coefficients of
the regularized theory, which gives us two phases shown in
Fig. 6. This means that as soon as μ ¼ 0þ or ζ > 0, γ ¼ Cþ
which is a nonvanishing cycle as opposed to the other phase
in which ζ < 0 when γ ¼ C− is a vanishing cycle.
The jumps through the Stokes ray are hence the reason

for variations of contours C− ↔ Cþ in a locally homologi-
cally invariant way but globally distinct. The homology
cycles C� are associated with two chambers defined by the
conditions that coefficients n�ðζÞ hold onto. Nonetheless,
one still needs to clarify what μ is and how it is related to FI
parameters. This is precisely analogous to the Stokes jumps
across the singularity rays in the Borel plane and picking up
residues as Stokes rays are crossed [15].
In case D-field is first integrated out, the wall crossing

effects become highly nontrivial as critical points in terms
of u degenerate into saddle rims. This comes with the
caveat that the condition D ¼ 0 is enforced for holomor-
phicity of the function hðτ; z; u;DÞgðτ; z; u;DÞ of the (2,2)
theory [18]. There is however an escape route that allows
the thimble analysis to be done in a finite region more
systematically and could explain the μ-dependence of ni
explicitly with the help of μ. Assuming that γ is on a
Stokes ray, one can add an arbitrary smooth gauge-
invariant regulator of the form μðζ⃗ÞRðu⃗Þ to (52), where
Rðu⃗Þ vanishes at the singularities ofZ1L in X, and μðζ⃗Þ ¼ 0
characterizes the wall in ζ-space, forcing simultaneously
the condition for degeneracy to come back and thus for γ to
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lie on a Stokes ray in the u-space. Giving up gauge-
invariance in XnF, we can define the monomial

Rðu⃗Þ ¼
Y
i

ðHiðu⃗ÞÞ2; ð65Þ

where Hiðu⃗Þ ¼ 0 defines the poles or, in general, singu-
larity hyperplanes (higher-rank) in F. Thus, μðζ⃗Þ is a
regularization parameter for the u variables that allows the
effective action to have its nonisolated degenerate saddle
points reincarcerated as isolated nondegenerate ones within
a finite region. On Morse theory grounds [6], it means that
the effective action can be Morsified, meaning that the
regularized function h ≔ −ℜðlnZ1L

regÞ has finitely many
isolated nondegenerate critical points of Morse index 1, so
it is a perfect Morse function. Then, the rank ofH1ðF;Fτ⋆Þ
is exactly the number of critical points of h in F, equal to
the number of J -cycles in J-set and all these cycles are
middle dimensional.
For a 0þ 1-dim Uð1Þ supersymmetric quantum gauge

theory such as CP1, the Morsification results in the flow
lines depicted in Fig. 7 where the refined index follows as

Iðζ; yÞ ¼ κ−1
X
�
n�ðζÞ

Z
C�

e−μRðuÞ−SeffðuÞdu

≡ −κ−1
X
i

I
u¼uPi

e−S
reg
eff ðuÞdu;

where CμðζÞ is a closed μ-deformed integration cycle that
may or may not encircle the poles uPi depending on ζ. We
note that adding a regulator of the form (65) caps the
boundaries of the moduli space into a compactified space
that is topologically a sphere. The only effect of this
regularization from the relative homology point of view
is to remove the degeneracy so the Lefschetz thimbles in J
do not change as expected. However, the homology of γ
separates into two classes, defining the phase ζ > 0where a
pole is included in γ, and the phase ζ < 0 where γ is
homologous to a vanishing cycle.
What if we have more than two chambers? Then μ

should be analytically continued to the complex plane, i.e.,
μðζÞeiθ and by changing θ the cycle CμðζÞeiθ will be rotated
such that the integration cycle on the Stokes ray, γ, is
approached by C0eiθ. The 0 in the subscript is the bifurcation
or junction of all the segments of the wall and phase factor
eiθ allows a variation of the integration cycle around this
point that falls into different chambers in the corresponding
ζ-space. Therefore, we can take θ as describing a single
point in the ζ-space of FI parameters.

C. Intersection numbers in quiver
quantum mechanics

1. Witten index check

This method is based on the fact that a correct integration
cycle γ has to reproduce the Witten index [which is the

FIG. 7. The moduli space of the regularized CP1 model
following regularization of its effective action. Here, the regulator
is μ

2
u2 with μ ¼ 0.01 and z ¼ 0.05 so R-symmetry is anomalous.

c1 and c2 correspond to the critical points. The total gauge group
is G ¼ Uð1Þ2 and the FI term is ζðDÞ ¼ ζ1D1 þ ζ2D2. The
condition ζ1 þ ζ2 ¼ 0 decouples one Uð1Þ and amputates one
node. We take μ ¼ jζ2j ¼ j − ζ1j. The regularization term is not
invariant under u → uþ 1 so the regularized theory is not
replicated along the compact direction of u-space. Because of
this regularization, the model has a true Morse interpretation and
the superposition of J -cycles forms an ordinary homology—
inherited from a Morse homology—whose associated invariant
quantity is a nonvanishing index in the chamber ζ ≡ ζ2 > 0 and 0
otherwise. Rank of H1ðF;Fτ⋆Þ is, therefore, two.

FIG. 6. (a) Moduli space of the Uð1Þ gauge theory (b) The
Lefschetz thimbles of the compactified theory by adding a
gauge-invariant regularization term in the phase ζ > 0. (c) The
Lefschetz thimbles seen from the back of the sphere do not
encircle the pole so the index is zero. The saddle rims have been
reduced to fixed points of the action of G ¼ Uð1Þ on the sphere
[40]. Those are the nondegenerate isolated critical points of the
regularized effective action. A basis for homology cycles J i in
(a) is determined modulo path homotopy. The first ordinary
homology is seen to be of rank 2 upon regularization.

ALIREZA BEHTASH PHYS. REV. D 97, 065002 (2018)

065002-16



Euler characteristic of the target manifold in certain cases
such as CPk−1 and Grðn; kÞ theories], as a limiting case of
the refined index once all the fugacities of the gauge fields
are turned off [41]. Also, the index formula we are
advocating in this work still does not seem to give a solid
relation between the FI parameters and intersection num-
bers, and little is known about the relative homology
techniques that one may in practice employ to compute
these numbers, which in principle determine the degener-
acies of BPS states (see footnote 1). In this regard, the
theory of spectral networks has been successful in deter-
mining these degeneracies and the geometry governing
them in 4d N ¼ 2 theories [42].
The Picard-Lefschetz theory prescribes for general

thimble configurations, the following abstract formula:

ni ¼ hγjKii; ð66Þ

which, including the sign, actually counts the number of
K-cycles going through a specific pole encircled in γ and
crossing γ at ith J -cycle. Since the flow equations are
highly nonlinear in the examples we study, this formula is
of little practical use for α > 1 as plotting Lefschetz
thimbles of dimension ≥ 2 turns out to be beyond hope.
So in general we do not have a practical tool for under-
standing the Morse flows and so on.
The situation, however, is not as bad as it sounds. For

example, we might guess the coefficients ni by looking at
the Witten index. For this, we go back to the formula (55)
and check if the formula is finite once y → 1 or, equiv-
alently, z → 0. This gives

IðζÞ→
y→1

1

0
ðn1ðζÞ þ n2ðζÞÞ: ð67Þ

So upon choosing n1ðζÞ ¼ −n2ðζÞ, we get a speculative
Witten index, finite yet undetermined. Similarly, for a
generic Witten index, the constraint

X2α
i¼1

niðζÞ ¼ 0 ð68Þ

has to be fulfilled for finiteness. Moreover, for M with
a Kähler geometry of complex dimension D, the Witten
index derived from (51) is defined in the geometric phase
as [2]

I ¼
XD
p¼0

bp ¼ χðMÞ: ð69Þ

This already puts a strong constraint on what the coef-
ficients are. Since ni ¼ �1 for a convergent thimble
integral, our formula in the geometric phase gives

χðMÞ ¼ lim
y→1

1

κα
X2α
j¼1

njZjðyÞ: ð70Þ

The right-hand side must have a finite limit so the
coefficients nj only take certain values for satisfying this.
Given that we do not have prior knowledge of the Witten
index for some M, nj have to be unique up to an overall
sign for the index χðMÞ. We propose that the overall sign
should be consistent with that of each thimble integral once
written as a series in y. For example, the constraint (68)
forces n2 ¼ −n1 for theN ¼ 4 decoupling Abelian 2-node
quiver with k-bifundamentals and ζ > 0, so

χðCPk−1Þ ¼ n1k: ð71Þ

Taking into account the overall sign of each Lefschetz
thimble integrals (¼ y−kþ1

P∞
i¼0 y

2i and ¼ ykþ1
P∞

i¼0 y
2i),

namely, þ1, we conclude that n1 ¼ 1.
The downside of this check is that the divergence in

the vector multiplet contribution to 1-loop determinant
simply does not disappear from the index. Alternatively, the
vector multiplet determinant is derived from a twisted
chiral multiplet of axial R-charge 2 and vanishing vector
R-charge. Chiral multiplet of this (2,2) theory, i.e.,
Σðσ; λ; F12 þ iDÞ in the adjoint representation, entails an
auxiliary scalar fieldD that comes with the field strength in
a linear form. Taking the χy genus limit, trΣ2 is proportional
to [18]

y
1þ y2

; ð72Þ

which is divergent at y2 ¼ −1. For N ¼ ð2; 2Þ SUð2Þ
gauge theory with k fundamental chiral multiplets, this
contribution to the refined Witten index will cause the
index to be singular given an even k, leading to the failure
of the Witten index check.

2. An alternative check

If we go back to (66), we notice that K-cycles have their
boundaries lie at the singularities of the u-space X, which
combined with the fact that hKi;J ji ¼ δij provides the
best clue on how to obtain the intersection coefficients.
So tracking the K-cycles ending at the only singularity of
F ⊂ X made it possible in the simplest case of CPk−1

model to get n1 ¼ −n2 ¼ þ1:

hγ;K1i ¼ þ1; hγ;K2i ¼ −1:

As x ¼ eκu, this singularity at u ¼ 0 (mod Z due to
u∼uþ1) becomes the point x ¼ 1 in the x-parametrization
of u-space that will be used in what follows. The saddle
rims at ℑðuÞ ¼ �∞, or similarly jxj ¼ 0;∞, together with
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the only singularity point divide F into two regions D1 and
D2 such that K1;2 ⊂ D1;2 and x ¼ 1 ∈ D1 ∩ D2. The main
conclusion to draw was that signðn1Þ ¼ −signðn2Þ. The
same strategy will be generalized to closed quivers with
rank-one quiver gauge groups.
Let G be the total gauge group of the gauged quantum

mechanics with rank α. We will also assume that G is a
product of unitary groups with bifundamental representa-
tions and for simplicity take Uð1Þ quiver gauge groups at
every node in an N-node quiver. Then, every node is
labeled by 1, which means that the total gauge group is
G ¼ Uð1Þα where N ¼ α. In 4d SUðMÞ SYM, these N
nodes all together with kN−1 bifundamental fields deter-
mine the bound states of a collection of N ≤ M distinct
dyons. Here, we will only consider the quivers with rank-
one gauge groups at all nodes. The following approach
is a thimble-based geometrization of the quiver mutation/
reduction [35] that was used in [22] to compute the refined
Witten index.
We first decouple a Uð1Þ factor of the gauge

group, sitting at the lth node where there are a total of α
nodes. Now we have a linear chain of nodes exactly like
→ ○ → � � � with α − 1 nodes. Pick out, next, another node,
say the lþ l̃th, corresponding to the gauge holonomy, say
x, such that the total number of remaining distinct (bi)
fundamental chiral multiplets (arrows) on the reduced
quiver is at least α − 1. For instance, in closed quivers,
the lþ l̃th node might be the one in the immediate
neighborhood of the lth. On the contrary, in linear nodes,
this might be the last node appearing on the reduced quiver.
Then we calculate the asymptotic 1-loop functions

Z∞ðy; xiÞ ≔ lim
x→∞

Z1L;

Z0ðy; xiÞ ≔ lim
x→0

Z1L;

where i runs over 1;…; l̂;…; dlþ l̃;…; α12 with l̂
meaning that l is omitted. In a, now, α − 2 dimensional
path space X of gauge holonomies parametrized by
xi ¼ eκui , these functions determine a couple of α − 2
complex dimensional unbounded manifolds of codimen-
sion 2 defined by

F∞;0ðxi; yÞ ¼ Z∞;0ðxi; yÞ ↪ ðC×Þα−2:

Let us call F̃ðy; xiÞ the restriction of F to the submanifolds
parametrized by only the real part of xi. We now consider
the maps

{j∶ J j → F̃∞; {k∶ J k → F̃0; ð73Þ

with j ∈ J and k ∈ K, where {j; {k are inclusion maps by
restriction toℜðxiÞ ∈ ðX×Þα−2 with singularity insertions at
each bosonic zeromode of Z1L. The result of thimble
integrals are now just a real homologically invariant
function of y, Z̃j;kðyÞ ¼

R
J j;k

Z1Lðxi; yÞ
Q

α
a≠l;lþl̃

dxa. We

also bear in mind that the spectrum of Ramond sector
is invariant under charge conjugation and therefore
Iðζ; y−1Þ ¼ Iðζ; yÞ. In our current treatment, this simply
means that

y ↔ y−1 ⇔ F̃0 ↔ F̃∞: ð74Þ

Now we assume that signðnjÞ ¼ −signðnkÞ which is a
choice we make that could be reversed as well. The
important thing is that the sign change is based on a
simple observation that the difference in ℑðSeffÞ along
J -cycles flowing to either x → 0 or x → ∞ subspace of
the moduli space is mod 2π.
Then, in the context of quiver systems with the afore-

mentioned features, the following conjecture holds good:
Conjecture: J -cycles along the Stokes rays either on F̃∞

or F̃0 will have opposite intersection numbers as all the
singularity curves, surfaces or hypersurfaces are crossed.
Using (74), we have that if rankðGÞ ¼ α is odd, then
J -cycles along the Stokes rays on F̃∞ and F̃0 will have
opposite intersection numbers against one another, and the
same for even α regardless of the singularity content of
moduli space.
The remaining 2α−1 − jJj − jKj of intersection coeffi-

cients are immediately zero. Here, jJj is the cardinality of
the index set J.
We have all the pieces needed to determine the index

(modulo an overall sign). The refined Witten index in the
presence of R-symmetry fugacities is given by

κα−1Iðy; ζÞ ¼
XjJj
j¼1

Zjðy; ζÞ −
XjKj
k¼1

Zkðy; ζÞ; ð75Þ

where ζ dependence has been integrated with the thimble
integrals. For the overall sign, we will stick with the same
proposal prescribed below (70). As a quick consistency
check, we can see that for a 2-node quiver, this formula
correctly produces Iðy;ζÞ¼κ−1ðZ1−Z2Þ¼y−kþ1

P
k−1
i¼0 y

2i

for ζ > 0. Also, for ζ < 0 it produces a vanishing result
since there is no singularity contained in the shaded region
of Fig. 6(c) and the integral over J 1 cancels that of J 2,
meaning that γ is a vanishing cycle.
We conjecture that if jKj ¼ jJj, we can write the index

formula (75) for a quiver with total gauge groupG ≅ Uð1Þα
and an overall Uð1Þ factor decoupled as

Iðy; ζÞ ¼ κ1−α
X2α−1
i¼1

ð−1Þti−1Ziðy; ζÞ; ð76Þ12The case α ¼ 2 is straightforwardly checked by plotting the
Lefschetz thimbles as we did for the CPk−1 model.
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where ti is the Thue-Morse sequence ti≥0 ¼
0110100110010…, and taken to be as the generating
function for the intersection coefficients ni in the theory.
Here, the order of y in the numerator of Zi is nondecreasing
with increasing i. Note that the magnitude of intersection
coefficients ð−1Þti−1 is one, being in accord with the
coefficients of expansion of a stable BPS bound state of
the quiver theory in terms of elementary BPS states [35].
One may continue such reductions by repeating the

procedure explained before (73) to produce hyper asymp-
totic 1-loop functions,

Z∞ðy; xlÞ ≔
Y
l̃≠l

lim
xl̃→∞

Z1L;

Z0ðy; xlÞ ≔
Y
l̃≠l

lim
xl̃→0

Z1L:

The role of these functions is simply to determine where
the thimbles contribute and where they possibly do not
have any contribution, and, as expected, the critical points
being at infinity and exactness of saddle point approxima-
tion nearly allows one to fully decompose the moduli space
M as

M ¼
Yα−1
i¼1

CPki−1; ð77Þ

which is the classical Higgs branch of supersymmetric
vacua in the quiver [36]. This means that in the relative
homology, the homological decomposition is carried out
like Z

γ

Yα
i¼2

dxi ¼
Z
γ2

dx2

Z
γ3

dx3 � � �
Z
γα

dxα; ð78Þ

once for instance l ¼ 1 and l̃ ¼ 2;…; α where

γ1 ¼ J 1 − J 2; γ2 ¼ J 3 − J 4;… ð79Þ

and the total number of J -cycles are 2α−1. It is significant
to point out that this decomposition is only allowed if
breaking the middle-dimensional ð¼ α − 1Þ relative homol-
ogy group HiðX;X⋆

τ Þ does not receive nontrivial contribu-
tions from rank ≠ 1 homologies. Therefore, if a quiver
reduction is possible then one may wish to form the original
integration cycle in terms of lower dimensional cycles
appearing in (79) which are 1d but notice that γ is α − 1
dimensional. Also, the number of þ1 and −1 signs is equal
as suggested in (76).
An example: 3-node quiver. Let us consider the 3-node

linear quiver with ki bifundamental chiral multiplets
between the ith and the iþ 1th nodes for i ¼ 1, 2
(Fig. 8). We decouple a Uð1Þ from the quiver in a way that
the 3-node Uð1Þ quiver model, the 1-loop determinant is
given by

Z1L ¼
κ2y−k1−k2þ2ðy2−x2

1−x2
Þk1ðx2y2−x3x2−x3

Þk2
ð1 − y2Þ2 : ð80Þ

The thimble integrals are given by

Z1ðyÞ ¼ lim
x2→∞
x3→∞

Z1L ¼ κ2y−k1−k2þ2ð1 − y2Þ−2;

Z2ðyÞ ¼ lim
x2→∞
x3→0

Z1L ¼ κ2y−k1þk2þ2ð1 − y2Þ−2;

Z3ðyÞ ¼ lim
x2→0
x3→∞

Z1L ¼ κ2yk1−k2þ2ð1 − y2Þ−2;

Z4ðyÞ ¼ lim
x2→0
x3→0

Z1L ¼ κ2yk1þk2þ2ð1 − y2Þ−2:

Now using the formulae

γðζÞ ¼
X4
i¼1

niðζÞJ iðyÞ; ð81aÞ

Iðy; ζÞ ¼ κ−2
X4
i¼1

niðζÞZiðyÞ; ð81bÞ

the Witten index constraint forces

Iðy; ζÞ ¼ −ðn2 þ n3 þ n4Þy−k1−k2þ2 þ n2y−k1þk2þ2

ð1 − y2Þ2

þ n3yk1−k2þ2 þ n4yk1þk2þ2

ð1 − y2Þ2

¼ y−k1−k2þ2

ð1 − y2Þ2 ð−n2 − n3 − n4 þ n2y2k2

þ n3y2k1 þ n4y2k1þ2k2Þ; ð82Þ

where we have dropped the ζ from the coefficients for
simplicity. For a finite Witten index, the numerator must
divide the denominator. The expression in the parenthesis
can be factorized as ðaþ n3y2k1Þðbþ n2y2k2Þ, where

−ab ¼ n2 þ n3 þ n4; n3n2 ¼ n4;

an2 ¼ n2; bn3 ¼ n3; ð83Þ

which in the nonvanishing chamber, immediately give

FIG. 8. A generalization of CPk−1 model. These are 3 nodes
that all together form a linear quiver with rank α ¼ 1 Abelian
gauge groups at each node. ki, the number of arrows, also shows
the number of bifundamentals.
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−1 ¼ n2 þ n3 þ n3n2:

Finally, under k1 ↔ k2 exchange, the index (82) remains
unchanged so n2 ¼ n3. Therefore, n2 ¼ n3 ¼ −1 and
n1 ¼ n4 ¼ 1 as shown in Fig. 9, giving the correct nonzero
index with the overall plus sign

IðyÞ ¼
�
y−k1þ1

Xk1−1
i¼0

y2i
��

y−k2þ1
Xk2−1
i¼0

y2i
�
: ð84Þ

One may check straightforwardly that the formula (76)
exactly produces this result, which is instantly general-
izable to any longer Abelian linear N-node quiver ðN > 3Þ.

VI. ORIENTED CLOSED QUIVERS

A. XYZ model

The triangular quiver with the superpotential W ¼
ðXYZÞk is depicted in Fig. 10 for a positive integer number
k. The R-charges satisfy

RX þ RY þ RZ ¼ 2=k: ð85Þ

Decoupling the first Uð1Þ, the 1-loop determinant is
given as

Z1L ¼ −κ2y−1ðy2 − x1yRXÞðx1y2 − x2yRY ÞðyRZ − x2y2Þ
ð1 − y2Þ2ð1 − x1yRXÞðx1 − x2yRY Þðx2 − yRZÞ :

ð86Þ

Calculating the thimble integrals, one finds

Z1ðyÞ ¼ lim
x2→0
x3→∞

Z1L ¼ κ2yð1 − y2Þ−2;

Z2ðyÞ ¼ lim
x2→0
x3→0

Z1L ¼ κ2yð1 − y2Þ−2;

Z3ðyÞ ¼ lim
x2→∞
x3→∞

Z1L ¼ κ2y3ð1 − y2Þ−2;

Z4ðyÞ ¼ lim
x2→∞
x3→0

Z1L ¼ κ2y3ð1 − y2Þ−2:

The Witten index check in determining the intersection
coefficients in this case is doomed as the degree of
polynomials in the denominators of Zi ’s is higher than
that of the polynomials in the numerators. Instead, for the
XYZ model and in general cases, we employ the alternative
method and verify that the formula (75) yields the correct
index only by imposing k ¼ 1 in (85).
Because in this model aUð1Þ factor of the gauge group is

decoupled, so as shown in Fig. 11 there are a total of four
J -cycles, J 1, J 4 coming with n ¼ þ1 and J 2, J 3 with
n ¼ −1. We already know J j and J k are nonhomologous
because J k ∈ F∞ and J j ∈ F0. The singularity ray
described by x23 ¼ yRZ will not allow J 2, J 3 to fall in
the same homology class and so will be the case with

FIG. 9. The real part of asymptotic 1-loop functions Z0, Z∞ for
the 3-node quiver model is exactly the real part of the 1-loop
determinant of CPk−1 for either k ¼ k1 or k ¼ k2 depending on
which node is to be mutated. Here we have set k2 ¼ 2k1 ¼ 4 and
x ¼ x2 ¼ eκu2 . All possible contributions to the refined index of
the 3-node model with z ¼ 0.05 come from integrals over J -
cycles whose intersection coefficients, ni, are given by
n1 ¼ −n2 ¼ þ1; n3 ¼ −n4 ¼ −1. The jump discontinuity takes
place at x2 ¼ 1.

FIG. 10. Triangular quiver has three rank-one quiver gauge
groups at each vertex and the bifundamentals are X, Y, Z.

FIG. 11. All four possible contributions of thimble integrals in
the refined index of XYZ model in the R-charge configuration
(0,0,1) or (0,1,0) where k ¼ 1. The asymptotic 1-loop functions
are overlapping and the relative sign makes the index vanish.
Here, the conjecture gives n1 ¼ −n2 ¼ þ1, n3 ¼ −n4 ¼ −1. The
jump discontinuity occurs at x ¼ x1 ¼ y−1.
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J 1, J 4. Putting a Uð1Þ aside, we have 22 ¼ 4 thimbles in
the irreducible J-set.
The integration cycle is given by

γ ¼ J 1 − J 2 − J 3 þ J 4: ð87Þ

This result is consistent with Eq. (4.26) of [22] for k ¼ 1:

IðyÞ ¼ lim
k→1

½yð1 − y2=kÞ−1 − y2=k−1ð1 − y2=kÞ−1�
¼ lim

k→1
½ðy − y2=kþ1Þ − ðy − y2=kþ1Þ�ð1 − y2=kÞ−2

¼ y
ð1 − y2Þ2 −

y
ð1 − y2Þ2 −

y3

ð1 − y2Þ2 þ
y3

ð1 − y2Þ2
¼ κ−2ðZ1 − Z2 − Z3 þ Z4Þ ¼ 0: ð88Þ

This verifies the authors’ hypothesis about the genericity
and quasihomogeneity of superpotential dictating the
relationship between Uð1ÞR charges of chiral fields in
models where holomorphic gauge-invariant monomials are
turned on in chiral fields.

B. 4d N = 2 SUð3Þ Yang-Mills

Finally, we want to examine a nontrivial example
concerning the BPS states of 4d N ¼ 2 SUð3Þ Yang-
Mills theory with rank-one quiver gauge groups depicted in
Fig. 12. The BPS particle is a W-boson just like Seiberg-
Witten which is stable, and ground states of the quiver
quantum mechanics exist at weak coupling regime of the
theory. Lefschetz thimble decomposition of γ is found to be

γ ¼
X8
i¼1

ð−1Þti−1J i: ð89Þ

The Refined Witten index of the theory in the non-
vanishing chamber is then

IðyÞ ¼ κ−3
X8
i¼1

ð−1Þti−1Zi

¼ κ−3ðZ1 − Z2 − Z3 þ Z4 − Z5 þ Z6 þ Z7 − Z8Þ
¼ ðy−1 − 2yþ y3 − y3 þ 2y5 − y7Þð1 − y2Þ−3
¼ yþ y−1: ð90Þ

There are four chambers in this theory; in two of which
the index is given by (90) and zero in the other two. In the
regularized scheme, there is a 4-way junction point in
u-space around which θ changes so we sweep all possible
chambers in the ζ-space:

γ ¼ ñ1ðζÞC0eiθ1 þ ñ2ðζÞC0eiθ2 þ ñ3ðζÞC0eiθ3 þ ñ4ðζÞC0eiθ4 ;
ð91Þ

where θ4 > θ3 > θ3 > θ1. ñ2ðζÞ and ñ4ðζÞ depend on
equations of the corresponding chambers in terms of
ΘðζÞ and all of them are normalized to 1.

VII. MORE ON N = 4CPk− 1 MODEL

In this section, we first elucidate how monodromies of
Uð1ÞR gauge arise as conserved quantities along Lefschetz
thimbles. It is then shown that the thimble integrals can be
calculated exactly by slightly going off the Stokes lines that
appear as the R-anomaly removal condition is imposed.
Finally, an implication in terms of wall crossing is given.

A. Monodromies, R-anomaly removal,
and Stokes lines

When the rank of the gauge group is one, instead of
solving flow equations which are highly nonlinear, we
focus on the alternative definition of Lefschetz thimbles
using the conservation of Hamiltonian flow governed by
the effective action Seffðu; yÞ along the thimble J i, namely,

ℑðSeffðu; yÞÞ ¼ ℑðSeffðu⋆i ; yÞÞ ¼ const; ð92Þ

where u⋆i ∈ J i is a critical point. Note that the auxiliary
field D has already been integrated out so that the effective
action does not contain the FI parameter, being now
carried over into the intersection coefficients niðζÞ (see
Sec. VII C). So, in this case, wall crossing phenomena
appear subtly as a result of thimbles coming together to
form homological cycles that are either vanishing closed
cycles or not.
For our example of an Abelian linear 2-node quiver with

k bifundamentals and rank-one gauge fields at each node,
one has

Seffðu; yÞ ≔ − lnðZ1Lðu; yÞÞ
¼ − ln ð−π sinðπzÞk−1ðcotðπzÞ − cotðπuÞÞkÞ:

ð93Þ

We want to calculate the integrals

Z1;2ðyÞ ¼
Z
J 1;2

Z1Lðx; yÞ dx
x

¼ κ

Z
J 1;2

Z1Lðu; yÞdu: ð94Þ

Starting first with J 1, we find that this Lefschetz thimble is
described by

fu ∈ F ⊂ C×jℑðln ð−π sinðπzÞk−1ðcotðπzÞ − cotðπuÞÞkÞ
¼ − arg ð−e−ikπz cscðπzÞÞg: ð95Þ

Here, we assume that J 1 is attached to the −i∞ saddle rim
in the u-plane. Now for generic positive, real, but small z
we have
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Seff jJ 1
≈ log zþ iπkz − iπ; ð96Þ

which is divergent at z ¼ 0. But the imaginary part of this
expansion to all orders is just iπkz − iπ, which defines the
monodromy of the Uð1ÞR around the compact direction
ℜðuÞ ¼ −σ2,

e−iℑðSeffÞjJ 1 ¼ −y−k: ð97Þ

Therefore, the condition (95) turns out for any generic real z
to be

− arg

�
− cscðπzÞ sin

kðπðiσ1 − σ2 − zÞÞ
sinkðπðiσ1 − σ2ÞÞ

�
¼ −πð1 − kzÞ;

ð98Þ

where u ¼ iσ1 − σ2 as in (48). It then immediately follows
that

Seff jJ 2
≈ log z − iπkzþ iπ; ð99Þ

which yields the equation for J 2:

− arg

�
− cscðπzÞ sin

kðπðiσ1 − σ2 − zÞÞ
sinkðπðiσ1 − σ2ÞÞ

�
¼ πð1 − kzÞ:

ð100Þ

This suggests that the relation

e−iℑðSeffÞjJ 2 ¼ −yk ð101Þ

holds, which is again a conserved quantity along J 2 that
describes the monodromy of the Uð1ÞR gauge field around
the compact direction ℜðuÞ ¼ −σ2.
Let us consider the elliptic genus for a Uð1Þ theory

with k chiral multiplets. One knows that on T2, there
are monodromies in the now D-independent function
gðt; z; uÞ ¼ ZVðt; zÞ

Q
jZΨ;Qj

ðt; z; uÞ because the left-
moving R-symmetry is anomalous. This is readily trans-
lated in the g-function as

gðt; z; uþ l1 þ l2tÞ ¼ e2πizl2kgðt; z; uÞ
≡ y2l2kgðt; z; uÞ; ð102Þ

for l1; l2 ∈ Z. So one has to set z ∈ Z=k to have a single-
valued gðt; z; uÞ. This requirement basically means
that y2k ¼ 1.
The analysis followed in the last subsection is valid for

any z except z ¼ 0 where the 1-loop determinant is ill-
defined. However, there is a gauge-invariant way to cure
this which requires turning on flavor holonomies [17].
Doing this does not change the index on flat manifolds
but renders R-symmetry unbroken, thus allowing z to be

arbitrary. Once this is achieved, we can analytically
continue to z ¼ 0 and proceed.
It is obvious from Eqs. (96) and (99) that the value z ¼

1=k on the principal branch of logarithm in the effective
action gives

ℑðSeffð−i∞; yÞÞ ¼ ℑðSeffði∞; yÞÞ ¼ 0; ð103Þ

and by going to other branches one obtains all values
of z allowed by the R-anomaly removal constraint.
Equation (103) is the condition for the appearance of a
Stokes line (ray) along which the integration cycle becomes
ambiguous.
Flow lines connected to saddle points along imaginary-

infinity rims are initiated to flow out of these regions
at τ → −∞, and, depending on which side of the pole they
are located, they lie on either ST1∶ℜðuÞ ¼ z − 1 or
ST2∶ℜðuÞ ¼ z, that happen to emerge in CPk−1 model
as soon as R-anomaly removal condition is imposed. Along
these rays (103) fixes y2k ¼ 1, the exact same condition
described under Eq. (102) obtained from single-valuedness
of the 1-loop determinant.

B. Lefschetz thimbles and relation to the
Hori-Kim-Yi wall crossing formula

In a seminal paper by Hori-Kim-Yi on the 1d Witten
index [19], the authors gave a prescription for wall crossing
under the name “simple wall crossing” that refers to the
change of index across the phase boundary supporting a
mixed branch of rank one. The Uð1Þ case, e.g., N ¼ 4

CPk−1 theory has the simple form

ΔI ¼ 1

κ

�I
x→0

−
I
x→∞

�
gðx; yÞ dx

x
; ð104Þ

where gðx; yÞ is the product of all one-loop determinants in
N ¼ 2 supersymmetric quantum mechanics.
In our setup, first we add a small real number δ ≪ 1 to

1=k to avoid hitting the Stokes lines. A solution of (95) is
written as the union (more technically, path composition in
2d) of two flow lines J 1 ¼ J−∞1 ∪ J−∞2 , where�

τ → −∞∶ ∂J−∞1 ¼ ∂J−∞2 ¼ −i∞
τ > −∞∶ ℜðJ−∞1 Þ ¼ z;ℜðJ−∞2 Þ ¼ z − 1:

ð105Þ

Since the real part of u is left untouched at τ → −∞, there is
an action of Uð1Þ on the infinity-boundary of J 1 described
by x ¼ ∞eκℜðuÞ, where z − 1 ≤ ℜðuÞ ≤ z and this does
precisely correspond to the “big-circle” boundary of the
u-space in x-parametrization illustrated as a contributing
element of the simple wall crossing formula in (104).
Similarly, J 2 is described as a union of two flow lines

J 2 ¼ J∞1 ∪ J∞2 , where
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�
τ → −∞∶ ∂J∞1 ¼ ∂J∞2 ¼ i∞
τ > −∞∶ ℜðJ∞1 Þ ¼ z;ℜðJ∞2 Þ ¼ z − 1:

ð106Þ

Again, there is an action of Uð1Þ on the infinity-boundary
of J 2 described by x ¼ 0eκℜðuÞ, where z − 1 ≤ ℜðuÞ ≤ z
and this does precisely correspond to the “small-circle”
boundary of the u-space in x-parametrization illustrated as
the first element of the simple wall crossing formula
in (104).
The associated K-cycles are given as

K1 ¼ fu∶ℑðuðτ → −∞ÞÞ ¼ ∞;ℜðuÞ ¼ 0g
K2 ¼ fu∶ℑðuðτ → −∞ÞÞ ¼ −∞;ℜðuÞ ¼ 0g; ð107Þ

where τ changes from −∞ to τ⋆.
Both J 1 and J 2 are codimension 1 submanifolds of C×,

which are unions of all the possible solutions to the flow
equations with non-Cauchy initial values, and at τ → −∞
they start at the saddle rims and flow to zero ϵ-balls at τ⋆.
On J 1, (94) can be rewritten as

Z̃1ðyÞ ¼
Z
J 1

ðx0 − y2 þ 1Þk
ðx0 þ 1Þx0k dx0

¼
Z
J 1

ð1þ 1−y2
x0 Þk

x0 þ 1
dx0

¼ κ
X∞
n¼0

�
k

n

�
ð1 − y2Þn

Z
J 1

du
ðeκu − 1Þn ; ð108Þ

where Z̃1ðyÞ ¼ yk−1ð1 − y2ÞZ1ðyÞ and use was made of the
binomial expansion since obviously jx0j ¼ jx − 1j >
j1 − y2j. Because only the n ¼ 0 term survives in (108),
one is left with

Z1ðyÞ ¼ κ
y1−k

1 − y2
: ð109Þ

Similarly, on J 2 (94) is easily calculated to be

Z̃2ðyÞ ¼ κ

Z
J 2

ðeκu − y2Þk
ðeκu − 1Þk du

¼ κy2k
Z

zþ1

z

ð1 − ϵeκry−2Þk
ð1 − ϵeκrÞk dr

¼ κy2k

P∞
n¼0

�
k

n

�
ðϵy−2kÞn

P∞
n¼0

�
k

n

�
ϵn

¼ϵ→0
κy2k; ð110Þ

and finally

Z2ðyÞ ¼ κ
y1þk

1 − y2
: ð111Þ

Therefore, apart from having to determine a couple of
coefficients, the index takes the preliminary form of

Iðy; ζÞ ¼ n1ðζÞ
y1−k

1 − y2
þ n2ðζÞ

y1þk

1 − y2
: ð112Þ

The simplification that comes with a deviation from the
anomaly removal condition with a small δ ≪ 1 is that
one can explicitly form the flow lines with non-Cauchy
initial values and calculate the thimble integrals, as we
did, which receive only contributions from the boundaries
x ¼ 0eκℜðuÞ;∞eκℜðuÞ, and the integrals along imaginary
directions cancel out between J−∞1;2 and J∞1;2. Hence, in the
index calculations using Picard-Lefschetz theory, there
seems to be a natural way of avoiding the complications
of thimble integrals by implementing smooth local defor-
mation of the Lefschetz thimbles off the Stokes lines whose
well-studied counterpart in the context of JK residue
operation (at least for the class of theories considered in
this paper) lies, for example, where some flavor gauge
fields are turned on.

C. Piecewise FI parameter dependence

But how do we know FI parameter dependence e.g.,
ζ-dependency, of intersection coefficients? We will only
focus on the rank-one gauge group G that applies to the
present case.
Localization helps the infinite-dimensional path integral

of the field theory to reduce to an integral of the 1-loop
determinant over the finite-dimensional moduli space of
supersymmetric configurations, M, which inherits the
same topological structure as that of the spacetime torus
T2 for elliptic genus, which is a complex torus C=ðZþ tZÞ
(modulo group automorphisms). It is of real dimension 2
or, equivalently, a 1d complex torus. Taking the limit
t → i∞ reduces M to the u-space X ¼ C=Z with a
noncompact imaginary direction. The 1-loop determinant
is basically a meromorphic top-form on M, and therefore
considering the poles of the N ¼ ð2; 2Þ chiral and vector
multiplet contribution to the full 1-loop determinant, which
are present in localization locus, elliptic genus is given by

IT2 ¼ lim
e→0

Z
Γ

dD
κD

e
−D2

2e2
−ζD

I
−γ
gðt; z; u;DÞdu; ð113Þ

with gðt; z; u;DÞ being a holomorphic function in u
expressed as the product of vector and chiral 1-loop
determinants,

gðτ; z; u;DÞ ¼ ZVðq; yÞ
Y
j

ZΨ;Qj
ðt; z; u;D; ζÞ; ð114Þ
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and again u takes values in M. The poles of the function
g form a subset Msing ⊂ M. Residues at the poles uPj ∈
Msing as instructed by JK residue operation will enter the
index formula through a correct choice of integration
cycle γ. However, there are also poles in the D-plane that
entirely lie on the imaginary axis. It is shown in [17–19]
by a relatively straightforward computation that in the D-
plane, there is only a pole DP

j for each chiral multiplet of
charge Qj that approaches the real axis as u → uPj at a
rate of ϵ2, where ϵ shows the radius of an infinitesimally
small closed loop going around every pole in u-plane.
The rest of these poles stay far away from the real axis in
D-plane. Thus, picking a deformed contour Γ for the D-
integral that avoids singularities of Msing and DP

j at the
same time away from the point D ¼ 0 is feasible but
subject to taking the localization limit e → 0 in (113)
after the limit ϵ → 0 is performed. This, therefore, will
necessitate a choice of some Cartan subalgebra-valued
“displacement vector” δ ∈ hC where hC is the complexi-
fied D-plane, such that

Γ∶ ℜðDÞ ¼ R; ℑðDÞ ¼ δ: ð115Þ

The final result of JK residue operation will not depend
on this vector anyways.
Now at this stage, before integrating outD and taking the

localization limit, we modify the FI term using an analyti-
cally continued version of “Higgs scaling” [19]:

IT2 ¼ lim
e→0

Z
Γ

dD0

κD0 e
−D02
2e2

− 1

e2
ζ0D0

I
γ
gðt; z; u;D0Þdu

¼ lim
e→0

e−
1

2e2
jζ0j2

Z
Γ0

dD0

κðD0 þ ζ0Þ e
−D02
2e2

×
I
γ
gðt; z; u;D0 þ ζ0Þdu;

where ζ0 ¼ ζe2 is held fixed andD → D0. Here, ζ0 is a pure
imaginary number, and thus it is assumed that ζ0 ∈ t with t
being the Lie algebra of the maximal torus ofG. For brevity
we will drop the primes in the following.
Now everything said in the paragraph before (115)

remains equally valid except the contour deformation in
hC is done away from the point D ¼ −ζ, so

Γ0∶ ℜðDÞ ¼ R; ℑðDÞ ¼ δ − ζ: ð116Þ

Taking the limit ϵ → 0will move the very close polesDP
j to

the point D ¼ −ζ, and therefore the normalized elliptic
genus (116) may be equally computed by

IT2 ¼ lim
e→0

e−
1

2e2
jζj2

Z
Γ0

dD
κðDþ ζÞ e

−D2

2e2

I
γ
gðt; z; uÞdu: ð117Þ

For a theory with a total Uð1Þ gauge group, we can simply
take δ to be some small positive number so theD-integral in
(116) will produce a factor

iπ − iπerfðζ=
ffiffiffiffiffiffiffi
2e2

p
Þ; ð118Þ

which upon taking localization limit e → 0, yields

κΘðζÞ; ð119Þ

where ΘðζÞ is the Heaviside step function, equal to 1 if
ζ ≥ 0 along imaginary direction and zero otherwise. The
appearance of ΘðζÞ is in line with the expectation that the
index should depend on FI parameter in a discontinuous
fashion. So taking ζ to be pure imaginary or real will not
change the result of index. This suggests that analytic
continuation of ζ to pure imaginary numbers, does indeed
keep the index intact and therefore FI chambers will stay
the same. Elliptic genus is then given as

IT2 ¼ ΘðζÞ
I
γ
gðt; z; uÞdu; ð120Þ

which is a special case of formula (3.62) in [17].
Translating (120) into relative homology language, one
immediately finds

IT2 ¼
X
i

niðζÞ
Z
J i

gðt; z; uÞdu: ð121Þ

This equation is gist of the correspondence between
Lefschetz thimbles in the present work and the JK residue
operation in [17,18]. We observe that, as expected, the only
dependence of the index on ζ is via the intersection
coefficients niðζÞ not the thimble integrals.
On the contrary to 1d, in 2d theories with a compact

target space one can turn on a theta term which, for
instance, may lead the elliptic genus at θ ¼ 0 to differ
from that for θ ≠ 0 at ζ ≠ 0, where in the latter there would
be no jump in the index [43]. Making a noncompact
direction in moduli space M is essentially done by
considering the dimensional reduction of the elliptic genus
on a circle known as “χy genus”, which in our formalism
results in

I ¼
X
i

niðζÞ
Z
J i

lim
t→i∞

gðt; z; uÞdu; ð122Þ

where J i are 1-manifolds in X ¼ C×. We note that first the
limit is applied and then thimble integrations are carried
out. χy genus enjoys phase transitions as ni may jump by
varying ζ.
In the case of a 2-node quiver with total quiver gauge

group Uð1Þ2, there are two domains or “phases” separated
by a wall at ζ2 ¼ −ζ1 ¼ 0 in t ¼ h (Abelian) which allows
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us to set δ ¼ ζ2 ≡ ζ located on the imaginary line iR ⊂ t.
So the intersection coefficients jump at ζ ¼ 0, motivating
us to write

niðζÞ ≔ niΘðζÞ; ni ∈ Z: ð123Þ

This is the simplest example of wall crossing in 1d rank-
one supersymmetric quantum theories.

VIII. JUMPING ON AND OFF THE WALL:
GENERALIZED XYZ MODEL

The main lesson we will be learning in this section is that
the integration cycle formula

γ ¼
XJ
i¼1

niðζÞJ i; ð124Þ

where J shows the cardinality of J-set, can also define a
moduli space analogue of the wall of marginal stability. It
means that when γ lies on a Stokes ray, then the refined
Witten index computation gets in some sense carried out on
the wall. If the index takes only an identical nonvanishing
function of y in some chamber(s) and zero in the remaining
chambers, as in all examples covered in Sec. IV, an off-the-
wall computation will tell about the index in those non-
vanishing chambers, and there is nothing special about this.
For example, in the 2-node quiver system expounded at
length in the present paper with the total quiver group
G ¼ Uð1Þ2, the wall given by ζ2 ¼ −ζ1 ¼ 0 is seen as
if it distributes a nonvanishing contribution to the ζ2 > 0
chamber (off-the-wall index) and zero to the ζ2 < 0
chamber (check the explanation under Fig. 7).
The Stokes lines connect two vacua to each other, and

therefore integration over them after an appropriate
Morsification would result in a Witten index that is merely
the difference between the indices in the two chambers in
which the vacua live. Indeed all supersymmetric wave
functions have support on the Stokes lines before
Morsification. In [19] the careful examination of general
1d N ¼ 2 supersymmetric quantum systems with Uð1Þ
gauge group in the Coulomb branch has shown that for
large values of ℑðuÞ ¼ σ, there is a normalizable super-
symmetric ground state supported around either jσj ∼
1=ζ ≫ 0 for ζ > 0. Since we are so close to the wall,
ζ ¼ 0þ, the ground states run away to infinity, i.e., the
boundaries of the wall. The σ > 0 and σ < 0 correspond to
the Coulomb branches, the union of which (σ line) is a
Stokes line connecting the vacua at imaginary-infinity rims.
We note that in studying the Coulomb branch, the large
σ-approximation of the supersymmetric theory leads to a
nonholomorphic σ dependence that yields two effective
theories. This fact, which is exactly the main assertion of
[19] in regards with the wall crossing formula, completely
agrees with the result obtained in Sec. VII B.

On the other hand, jumping back on the wall is special.
There are some key remarks due:

(i) Treating the index on the walls of marginal stability
was basically done in [44,45] in four-dimensional
field theories on R3;1 with N ¼ 2 supersymmetry.
The authors’ proposed index is smooth across the
walls of marginal stability and hence also applies
on the wall as well. This index along with the
concept of quiver invariants [37,46] or similarly
single-centered indices [47] are different from the
index on the Stokes wall here unless in the Coulomb
branch where the wall is basically the Coulomb
branch itself [19,48]. In that case, the intersection of
all Stokes lines happen to coincide at imaginary-
infinity critical points, that within the context of
current approach, are degenerate and located on the
boundaries of the moduli space of BPS configura-
tions. The rigorous thimble construction out of these
saddle rims requires regularization of the effective
action as explained in Sec. V B. It should be stressed
that by putting D ¼ 0 in the g-function (113) and
considering the effective theory in terms of u (e.g.,
all the resulting quantum mechanical systems upon
dimensional reduction), one proves that the entire
set of saddle points runs away to the imaginary-
infinity rims.

(ii) When all the FI parameters vanish simultaneously,
there might exist some square-normalizable wave
functions at the intersection of all marginal stability
walls that make up the quiver invariant. Equiva-
lently, the intersection of Stokes lines always
contains a critical point in the Lefschetz thimble
construction, but whether or not it contributes to the
index and/or quiver invariant is not clear. Since such
a critical point is at infinity, and is obviously
degenerate, the on-the-wall index in higher-rank
quivers will be very complicated to compute. None-
theless, at the intersection point, going off the wall
leaves out possibly a set of critical points with their
Lefschetz thimbles that do not undergo Stokes
phenomena. This set of thimbles is specific to the
wall and integrating over them defines the analogue
of the quiver invariant. Notice that after Morsifica-
tion, they might contribute to the Witten indices.
However, it is expected that exactly on the Stokes
line/surface such a contribution exists but has a
different value.

We want to briefly weigh in on the most curious example
of a closed quiver that is a generalization of the XYZ model
in Sec. VI A with a cubic superpotential [22] that will put
this idea into perspective. Since the index is nonzero in at
least two FI chambers, studying this case can shed more
light on the interpretation of γ and what it means to make
sense out of an ill-defined homology cycle. The quiver is
made of a total of 2pþ 2 chiral multiplets with field
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content of ½X;Y;Z� in the bifundamental representation of
the gauge group for p ≥ 1:

X ¼ ðX1; X2ÞY ¼ ðY1;…; YpÞZ ¼ ðZ1;…; ZpÞ: ð125Þ

A cubic superpotential requires RX þ RY þ RZ ¼ 2 where
Ri stands for the R-charge of each field and all chiral fields
in the same multiplet carry the same charge assigned to
them. The 1-loop determinant is given as

Z1L ¼
κ2y4þ2pð1 − x1yRX−2Þ2ðx2−yRZ−2

x2−yRZ
x1−x2yRY−2

x1−x2yRY
Þp

ð1 − y2Þ2ð1 − x1yRZÞ2 : ð126Þ

The integration cycle is

γ ¼
X4
i¼1

niðζÞJ i ≡ J 1 − J 2 − J 3 þ J 4: ð127Þ

Therefore, one finds by calculating the thimble integrals

Z1ðyÞ ¼ lim
x1→0
x2→0

Z1L ¼ κ2y4−2pð1 − y2Þ−2;

Z2ðyÞ ¼ lim
x1→∞
x2→∞

Z1L ¼ κ2ð1 − y2Þ−2;

Z3ðyÞ ¼ lim
x1→0
x2→∞

Z1L ¼ κ2y4ð1 − y2Þ−2;

Z4ðyÞ ¼ lim
x1→∞
x2→0

Z1L ¼ κ2y2pð1 − y2Þ−2;

that off-the-wall index is

I ¼ y−2pð1 − y2Þ−2ðy4 − y2p − y4þ2p þ y4pÞ

¼
Xp
j¼1

ðj − 1Þðy−2ðp−jÞ þ y2ðp−jÞÞ − p: ð128Þ

Comparing this result to that of [22], we find that, as
expected, it is made out of the superposition of BPS
configurations of the quiver theory in two chambers sharing
the same wall γ. This is because the boundaries of the J
cycles lie in different chambers so technically by integrat-
ing over these thimbles we are interpolating between two
vacua. For one thing, it is insightful to cast (128) into the
form

I ¼ y−2pðy4 − y2p − y2pþ4 þ y4pÞ
ð1 − y2Þ2 þ p − p

¼ ð1 − y2Þ−2½y4−2p þ ðp − 1Þ þ ðp − 1Þy4 þ y2p − 2py2

− ðpþ py4 − 2py2Þ�: ð129Þ

The appearance of a self-dual term cannot be an artifact
of adding a regularization term in the effective action
because of gauge-invariance at least in the fundamental

domain. However, it perhaps is best understood once
C× × C× is regarded as a topological complex group (or
a product space), and the integration cycle C̃ is then
constructed, off the Stokes rays, in the form of

C̃ ¼
X
i;j

nijJ̃ i × J̃ j: ð130Þ

This is similar to the isomorphism between the complex
group H and the product H ×H in the context of analytic
continuation of gauge theories with compact gauge groups
or simply defining an integration cycle over a product
space. We just add that the action of the closed subgroup G
readily factorizes over C× × C×. Here, we have defined the
J̃ -cycles in such a way that the thimble integrals are
rescaled according to Z̃i

2 ¼ ðy − y−1Þ2Zi, which defines
the index to be [6]

IðζÞ ¼ κ−2ðy − y−1Þ−2
X
i;j

nijðζÞZ̃i × Z̃j: ð131Þ

We note that ½Z̃i; Z̃j� ¼ ½J̃ i; J̃ j� ¼ 0 for all i, j, and the
overall factor is just the vector multiplet contribution which
is Uð1Þ × Uð1Þ-invariant as well.
We know that a decomposition of middle homology into

all possible homologies may be done via the relative
homology version of the Künneth formula as

H2ðX̃i × X̃j; X̃τ⋆
i × X̃j ∪ X̃i × X̃τ⋆

j Þ
≅ H2ðX̃i; X̃τ⋆

i Þ ⊗ H0ðX̃j; X̃τ⋆
j Þ

⊕ H1ðX̃i; X̃τ⋆
i Þ ⊗ H1ðX̃j; X̃τ⋆

j Þ
⊕ H0ðX̃i; X̃τ⋆

i Þ ⊗ H2ðX̃j; X̃τ⋆
j Þ þ � � � : ð132Þ

It is very difficult to compute these homologies and
one needs handle decomposition techniques in general.
Nonetheless, assuming a regularized effective action, one
can immediately get a perfect Morse function with only
critical points of index one, following the regularization
(65), that trivializes this problem in the sense that the
only nontrivial group that contributes to the middle
relative homology is actually H1ðX̃i; X̃τ⋆

i Þ ⊗ H1ðX̃j; X̃τ⋆
j Þ.

Therefore, it is in this latter sense that the integration cycles
over the product space take the form

C̃0eiθ2 ¼ J̃ 1
2 þ ðp − 1ÞJ̃ 2

2

þ ðp − 1ÞJ̃ 3
2 þ J̃ 4

2 − 2pJ̃ 2 × J̃ 3;

C̃0eiθ3 ¼ pJ̃ 2
2 þ pJ̃ 3

2 − 2pJ̃ 2 × J̃ 3 ≡ C̃0eiθ1 ;

where in light of the prescription (64) we have defined

γ ¼ ñ1ðζÞC̃0eiθ1 þ ñ2ðζÞC̃0eiθ2 þ ñ3ðζÞC̃0eiθ3 ; ð133Þ
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with ñi being in general a function of ΘðζÞ in the ith
chamber of ζ-space described by

ñ1 ¼ Θðζ1 þ ζ2ÞΘðζ2Þ; ñ2 ¼ Θð−ζ1 − ζ2ÞΘð−ζ1Þ;
ñ3 ¼ Θð−ζ2ÞΘðζ1Þ:

There are a total of three chambers. The jumping of cycles
in transitioning from chamber 2 to 3 is then given by the
relations

J̃ 1
2 → J̃ 1

2 − J̃ 4
2 þ J̃ 2

2; J̃ 4
2 → J̃ 4

2 − J̃ 1
2 þ J̃ 3

2

J̃ 2
2 → J̃ 2

2; J̃ 3
2 → J̃ 3

2: ð134Þ

Similarly, the only jumps happening when going from the
chamber 2 to 1, are

J̃ 1
2 → J̃ 1

2 − J̃ 4
2 þ J̃ 3

2; J̃ 4
2 → J̃ 4

2 − J̃ 1
2 þ J̃ 2

2

J̃ 2
2 → J̃ 2

2; J̃ 3
2 → J̃ 3

2: ð135Þ

There are no jumps when one enters the chamber 1 coming
from 3 or vice versa.
The fact that the two cycles C̃0eiθ1 , C̃0eiθ3 are identical tells

us that setting

C̃0eiθ1 ∼ ðJ̃ 2 − J̃ 3Þ2 ≡ C̃0eiθ3 ð136Þ

causes a smooth transition between the associated cham-
bers, thus contributing to the off-the-wall 1d Witten index
identically, which is already implied by the form of (128).
But what about when θ ¼ 0 (exactly ζ ¼ 0)? As is clear
from Eqs. (134)–(135), the Lefschetz thimbles J̃ 2; J̃ 3 do
not undergo a jump when crossing the Stokes lines and,
consequently, neither does the combination (136) on the
product space. This suggests that on the Stokes wall one
has a general cycle of the form

Wðθ¼ 0Þ≔
XjWj

l¼1

mlC̃l; C̃l¼
�X2α

i¼1

nlið0ÞJ̃ i

�α

; ð137Þ

on a product space ðC×Þα, where jWj is the total number
of different repeated Witten indices in FI chambers and ml
are intersection numbers. Then the ΩS intimately measures
the on-wall-index, a.k.a. quiver invariant, as explained in
the beginning of this section via the integration over the
cycle (137),

ΩS ¼
XjWj

l¼1

ml

Z
C̃l

Yα
i¼1

duiZ1Lðu⃗Þ: ð138Þ

This observation is consistent with the computation of
the quiver invariants for ðN; 1; 1Þ quivers in [46] where
a nonzero invariant is always accompanied by having at
least two identical Witten indices in some chambers. In

general, if both identical indices are an integer, then
jWj ¼ 1 and ΩS ¼ m1, where integration over C̃1 equals
one. In the present case, C̃1 ¼ðJ̃ 2− J̃ 3Þ2, and ΩS ¼ p − 1

[46]. Unlike the coefficients nlið0Þ, which can be computed
using the smoothness of the cycles C̃l under the Stokes
phenomena, we do not know how to obtain the intersection
numbers ml, and in general whether or not they should
be considered as just input data as in the Kontsevich-
Soibelman wall-crossing formulas [39] is not yet known.
In higher dimensional gauge theories, it would also be

interesting to study the on-the-wall index from the view-
point of domain walls and their intersections [49,50].

IX. KNOTS AND LEFSCHETZ THIMBLES

A possible interesting feature of supersymmetric the-
ories is their relation to knot homologies and more
recently Khovanov homology [24,51–56]. In math liter-
ature, it is known from a classic work by Ozsvath and
Szabo [57] that any null-homologous knot K in S3 (or in
general any closed, oriented three-manifold) can be given
a Floer-homology description where, roughly speaking,
homology cycles are flow lines of the Morse function
over the three-manifold. Knot invariants in the form of a
categorification of Alexander polynomials are then
obtained by calculating the knot Floer homology groups
of the three-manifold by applying different surgeries
along the knot such as crossing resolutions and connected
sums. Floer homology is an infinite-dimensional analog
of finite-dimensional Morse homology, which is best
suitable for studying invariants of 3d quantum field
theories [58].
A knot is a circle embedded in a three dimensional

space. Higher dimensions give a lot of freedom to deform
knots. On the other hand, a codimension 1 knot turns out
to be very restricting. However, taking knots in a 3d
space and projecting them onto a 2d space seems to
provide a crucial link between Lefschetz thimbles and the
flow dynamics of quiver quantum mechanics in the
following sense.
Let G be a gauge group that is either a unitary group or

product of them. The dimensional reduction of elliptic
genus on S1 produces a moduli space for all supersym-
metric configurations to which the path integral localizes.
Call this moduli space Σ and observe that it is of complex
dimension α ¼ rankðGÞ. To be specific, suppose for
instance, Σ is the u-space of an N ¼ 4 quiver theory with
total gauge group G ¼ Uð1Þα and bifundamental matter
where an overall Uð1Þ factor is decoupled so that
α̃ ¼ α − 1. Then Σ has certain singularities that periodically
happen so we will instead take ΣF ⊂ Σ, the fundamental
domain in Σ. The zero ϵ-balls are centered at the fermion
zeromodes. Take an alternating mirror symmetric knot K in
R3 such that π1ðR3nKÞ ≅ Z. Suppose the α̃th relative
homology Hα̃ðΣF;ΣF

τ⋆Þ is defined and J i are α̃-cycles with
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homologies Hα̃ðΣF;ΣF
τ⋆Þ. Again, ΣF

τ⋆ is a zero ϵ-ball to be
reached at τ > τ⋆ by Lefschetz thimbles J i ⊂ ΣF. We
define the effective action Seff ¼ − lnðZ1LÞ, in which
Z1Lðx1;…; l̂;…xαÞ corresponds to the 1-loop determinant
of the gauged quiver quantum theory with lth node
removed. The complex Morse function is hC ¼ Sregeff with
the usual regularization in effect.
Identify zero ϵ-balls in ΣF by the crossings of K and

Lefschetz thimbles described by

dūj

dτ
¼ gij̄

∂hC
∂ui ;

dui

dτ
¼ gij̄

∂h̄C
∂ūj ð139Þ

(gij̄ is a suitable metric on u-space), by the line segments
connecting these crossings. A Lefschetz thimble contrib-
uting to the knot invariant always connects two zero ϵ-balls
which correspond to either þ− or −þ crossings for the
connecting segment. Then we have defined a projection of
the knot K onto the space ΣF, called PK. (See Fig. 13 to
check what a projected trefoil knot looks like in this setup).
Then, inspired by (76) the knot PK is conjectured to be
given by

PK ¼
X2α̃
i¼1

ð−1Þti−1J i; ð140Þ

where there are 2α̃ distinct types of saddle rims in ΣF.
The HOMFLY polynomial corresponding to an unknot

is given as

fðλ; yÞðunknotÞ ¼ ðλ−1 − λÞðy−1 − yÞ−1: ð141Þ

This leads to the slðkÞ knot invariant of the unknot if we
put λ ¼ yk. But note that this exactly corresponds to the
refined Witten index of the Abelian 2-node quiver -N ¼ 4

CPk−1 model—discussed at full length in Secs. V and VII,
where unknot is topologically equivalent to the super-
position of two Lefschetz thimbles:

unknot ¼ J 1 − J 2: ð142Þ

So one may conjecture that the invariant (76) may detect
the alternating mirror symmetric knots upon the under-
standing of Reidemeister moves and crossing resolutions.
The best candidate is the Alexander polynomial ΔKðtÞ,
which can be drawn from the HOMFLY polynomial. It is a
knot invariant that could be obtained from (140) once y is
identified with an appropriate function of t due to the
symmetry ΔKðtÞ ¼ ΔKðt−1Þ. In a way, this sort of visuali-
zation of knots suggests what geometric sense we can draw
from, e.g., ΔKðtÞ by relating every term in it directly to a
specific cycle in the moduli space of a quantum system with
a Hamiltonian that is conserved along every one of these
cycles.

X. CONCLUSIONS AND DISCUSSION

In this paper, we have considered the upgraded version
of Morse theory, known Picard-Lefschetz theory in the
context of supersymmetric quiver quantum mechanics. We
first explained how localization principle may naturally
arise by collapsing the path integral of bosonic harmonic
oscillator onto the solution space of the holomorphized
Morse flow equations associated with its action in the
Euclidean signature. The analytic continuation to real

FIG. 12. Intersection coefficients of the quiver quantum me-
chanics mimicking the BPS states of 4d N ¼ 2 SUð3Þ SYM for
all Lefschetz thimbles in the J-set. The duality y → y−1 amounts
to a rotation of coefficients around x1 ≡ x-axis by 180°. Self-dual
saddle contributions ∝ �y3 will cancel out because rank of the
reduced quiver is 3. As expected, the coefficients in each row
have opposite signs (along Stokes curves parallel to x3 axis).

FIG. 13. A possible planar thimble decomposition for trefoil
knot in a regularized gauged quantum mechanics A. Zero ϵ-balls
are shown to be at the crossings and J cycles are the directed
curves, and red crosses are the singularities in the moduli space of
some quiver theory. Red lines symbolize K cycles that intersect
the Lefschetz thimbles orthogonally and flow to infinity along
imaginary directions, consistent with the structure of thimbles in
Fig. 7. The green circles represent the saddle points. Therefore,
PK ¼ P

6
i¼1ð−1Þti−1J i, such that J i is lifted up to the relative

homology Hα̃ðΣF;ΣF
τ⋆Þ for Σ being the u-space of A. The knot

formula (140) will not obviously detect trefoil knot so we must
consider a different higher-rank gauge group G.
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time then realized the Maslov index as the counting of
Fourier modes appearing in the imaginary direction of the
Lefschetz thimble.
We then digressed to the computation of phases of

Lefschetz thimbles in supersymmetric quantum theories
from their singular algebraic curves and discussed how the
recently proposed hidden topological angles of the exact
complex non-BPS solutions may be related to the sheaf
cohomology of holomorphic 1-forms, which aims to
properly assemble a semiclassical means of understanding
the topological invariants of singular spectral curves by
replacing the cotangent bundle by cotangent sheaf. The
phases of the nonperturbative solutions contributing to the
ground states then indicate a close link to the topological
phase of the path integral.
A similar idea exploiting refined holomorphic anomaly

equations around singular points of algebraic curves
borrowed from topological string theory has recently been
proposed to also work for generic quantum mechanical
systems [59]. It would likewise be apt to understand how
correction terms in complex phases discussed in this paper
arise from anomaly equations.
These observations set the stage for building a passway

to the study of integration cycles of the localized theory in
the moduli space of BPS configurations in terms of
Lefschetz thimbles that solve complex Morse equations
in the presence of a gauge group action which in turn
produces degeneracies in the critical points. We observed
this in the Higgs branch moduli spaces of simple Abelian
linear quivers and some oriented loops with bifundamental
matter that could be decoupled. To lift up the flat directions
and isolate the degenerate fixed points, one has to consider
the full theory in the Coulomb branch. Then a proper
perfect Morse function could be defined not only for the
rank-one supersymmetric gauge theories but also generic
non-Abelian ones, which is the subject of an ongoing work.
In the class of quantum mechanical theories derived from
N ¼ ð2; 2Þ on a flat torus, after setting D ¼ 0 in the g
function (114), the supersymmetric vacua in the u-space
become degenerate as shown in many examples before,
leading to J -cycles having to be Morsified to obtain a
proper Picard-Lefschetz theory interpretation. Yet, it turns
out that the degeneracy would not be an issue, and, at least
on a qualitative level, the cycles of the Morsified (regu-
larized) theory mimic similar patterns seen in those of the
original theory.
We used the path homotopy of degenerate Lefschetz

thimbles to successfully build the basis of the relative
homology in terms of J - or similarly K- cycles and
calculated the of 2-node quiver, a.k.a.N ¼ 4CPk−1 model,
by doing the integrals exactly along the thimbles. The two
phases of the theory were found to be related to the FI
dependence of the intersection coefficients and different
ways the Lefschetz thimbles may combine in the Morsified
theory to piece together the integration cycle γ. We also

discussed that the decoupling of nodes in the studied
quivers, together with the identification of boundaries of
the bad cycles as the singularities in the u-space of Cartan
directions, would make it possible to slice up the higher
dimensional thimbles for higher-rank quivers for better
understanding of Picard-Lefschetz decomposition. This is
especially useful for treating the non-Abelian quivers but
becomes harder as the number of Cartan directions
increases, and we do not have a clear understanding of
this at the moment.
The monodromies of the R-symmetry background field

were proved to be the conserved charges of the Hamiltonian
flow along the thimbles and the R-anomaly removal
condition on T2 was shown to force the J -cycles to lie
on Stokes lines that connect different vacua. Thus an
integration over the Stokes line basically provides an index
which is merely a difference between two chambers.
Exactly for the values of the Uð1ÞR parameter allowed
by this condition, the index was interpreted as being on-the-
wall and the analysis of the generalized XYZmodel showed
that the Stokes jumps in the Lefschetz thimbles and their
coefficients could correctly recreate the index in every
chamber. Thereby, at least in some easy cases, we com-
bined the usual wall crossing phenomenon via the dis-
continuities introduced by FI parameters, such as the
Hori-Kim-Yi simple wall crossing formula of [19], with
the concept of Stokes phenomena. We showed that in
Picard-Lefschetz theory an on-the-wall index would come
up as part of the noninvariant thimbles under Stokes
phenomena which are intrinsic to the wall, and integration
over a cycle made out of them yields this index, which in
the context of quiver quantum mechanics is alternatively
called the quiver invariant.
We should reiterate that in this paper we kept ζ separate

from the moduli space of BPS configurations, being a
reason for why only intersection coefficients are affected by
it. In the analysis of the index in Coulomb branch, FI
parameters ζ appear in the effective potentials obtained by
integrating out the matter chiral multiplets and are thus
intertwined with the moduli space, and therefore J i’s
explicitly would depend on ζ. This is the subject of an
ongoing work.
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