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We generalize the action for point particle motion to a double field theory background. After deriving the
general equations of motion for these particle geodesics, we specialize to the case of a cosmological
background with vanishing antisymmetric tensor field. We then show that the geodesics can be extended to
infinity in both time directions once we define the appropriate physical clock. Following this prescription,
we also show the existence of a singularity-free cosmological solution.
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I. INTRODUCTION

If the fundamental building blocks of matter are elemen-
tary superstrings instead of point particles, the evolution of
the very early Universe will likely be very different than in
standard big bang cosmology. “String gas cosmology” is a
scenario for the very early stringy Universe which was
proposed some time ago [1] (see, e.g., [2] for some more
recent reviews). String gas cosmology is based on making
use of the key new degrees of freedom and symmetries
which distinguish string theories from point particle the-
ories. The existence of string oscillatory modes leads to a
maximal temperature for a gas of strings in thermal
equilibrium, the “Hagedorn temperature” TH [3].
Assuming that all spatial dimensions are toroidal with
radius R, the presence of string winding modes leads to a
duality,

R →
1

R
; ð1Þ

(in string units) in the spectrum of string states. This
comes about since the energy of winding modes is
quantized in units of R, whereas the energy of momentum
modes is quantized in units of 1=R. The symmetry (1)

is realized by interchanging momentum and winding
quantum numbers.1

As was argued in [1], in string gas cosmology the
temperature singularity of the big bang is automatically
resolved. If we imagine the radius RðtÞ decreasing from
some initially very large value (large compared to the string
length), and matter is taken to be a gas of superstrings, then
the temperature T will initially increase, since for large
values of R most of the energy of the system is in the light
modes, which are the momentum modes, and the energy of
these modes increases as R decreases. Before T reaches the
maximal temperature TH, the increase in T levels off since
the energy can now go into producing oscillatory modes.
For R < 1 (in string units) the energy will flow into the
winding modes, which are now the light modes. Hence,

TðRÞ ¼ T

�
1

R

�
: ð2Þ

A sketch of the temperature evolution as a function of R is
shown in Fig. 1. As a function of lnR, the curve is
symmetric as a reflection of the symmetry (1). The region
of R when the temperature is close to TH and the curve in
Fig. 1 is approximately horizontal is called the “Hagedorn
phase.” Its extent is determined by the total entropy of the
system [1].
In [1] it was furthermore argued that at the quantum level

there must be two position operators for every topological
direction, one operator X dual to the momentum number
(this is the usual position operator for point particle
theories) and a dual operator X̃ which is dual to the
winding number. The physically measured length lðRÞ
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will always be determined by the light modes of the system.
Hence, for large R it is determined by X, but for small R it is
determined by X̃. Thus,

lðRÞ ¼ R for R ≫ 1;

lðRÞ ¼ 1

R
for R ≪ 1: ð3Þ

More recently, a study of cosmological fluctuations in
string gas cosmology [5] showed that thermal fluctuations
in the Hagedorn phase of an expanding stringy Universe
will evolve into a scale-invariant spectrum of cosmological
perturbations on large scales today (see [6] for a review). If
the string scale is comparable to the scale of particle
physics grand unification, the predicted amplitude of the
fluctuations matches the observations well (see [7] for
recent observational results). The scenario also predicts a
slight red tilt to the scalar power spectrum. Hence, string
gas cosmology provides an alternative to cosmological
inflation as a theory for the origin of structure in the
Universe. String gas cosmology predicts [8] a slight blue
tilt in the spectrum of gravitational waves, a prediction by
means of which the scenario can be distinguished from
standard inflation (meaning inflation in Einstein gravity
driven by a matter field obeying the usual energy con-
ditions). A simple modeling of the transition between the
Hagedorn phase and the radiation phase leads to a running
of the spectrum which is parametrically larger than what is
obtained in simple inflationary models [9].
What is missing to date in string gas cosmology is an

action for the dynamics of space-time during the Hagedorn
phase. Einstein gravity is clearly inapplicable since it does
not have the key duality symmetry (1). In “pre-big-bang
cosmology” [10] it was suggested to use dilaton gravity as a
dynamical principle, since the T-duality symmetry yields a
scale factor duality symmetry. However, dilaton gravity

does not take into account enough of the stringy nature of
the Hagedorn phase.
“Double field theory” [11–14] (see, e.g., [15] for a

review) has recently been introduced as a field theory
which is consistent with the T-duality symmetry of string
theory. Given a topological space, in double field theory
(DFT) there are two position variables associated with
every direction of the topological space, which is compact.
Since DFT is based on the same stringy symmetries as
string gas cosmology, it is reasonable to expect DFT to
yield a reasonable prescription for the dynamics of string
gas cosmology.
On the other hand, even DFT will not yield an ideal

dynamical principle for string gas cosmology, since DFT
only contains the massless modes of the bosonic string
theory: the metric, the dilaton, and the antisymmetric tensor
field. We can try to include the other stringy degrees of
freedom through a matter action in the same way as in [1].
Hence, ultimately we would like to study the cosmological
equations of motion of DFT in the presence of string gas
matter. As a first step towards this goal, wewill in this paper
study point particle motion in DFT. Through this study we
can explore timelike and lightlike geodesics. We will argue
that (taking into account the appropriate definition of time)
these geodesics are complete. This yields further evidence
that string theory can lead to a nonsingular early Universe
cosmology. In particular, we also show that vacuum DFT
background equations of motion produce a singularity-free
cosmological solution when this new definition of time is
considered.

II. ESSENTIALS OF DOUBLE FIELD THEORY

DFT is a field theory which lives in a “doubled” space, in
which the number of all dimensions with stable string
windings is doubled. From the point of view of string
theory, this means having one spatial dimension dual to the
momentum and another one dual to the windings. We will
here consider a setup in which all spatial dimensions have
windings. Thus, our DFTwill live in (2D − 1) dimensions,
where (D − 1) is the number of spatial dimensions of the
underlying manifold. Note that under toroidal compactifi-
cations, the corresponding T-duality group is Oðn; nÞ,
where n corresponds to the number of spatial compact
dimensions. In DFT, the theory is covariantly formulated in
the double space, so that the underlying symmetry group is
Oðn; nÞ [15]. Thus, any scalar object should be invariant
under these group transformations. This will be relevant for
when we build the point particle action in DFT below. We
will denote the usual spatial coordinates by xi and the dual
coordinates by x̃i.
We consider a cosmological space-time in standard

general relativity, given by

ds2 ¼ −dt2 þ gijdxidxj; ð4Þ

T H

ln R

T

0
0

FIG. 1. T versus logR for type II superstrings. Different curves
are obtained for different entropy values, which are fixed. The
larger the entropy, the larger the plateau, given by the Hagedorn
temperature. For R ¼ 1 we have the self-dual point.
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where t is physical time and gij is the (D − 1)-dimensional
spatial metric. The coordinates i and j run over these
original spatial indices. In DFT the metric in doubled
space-time (all spatial dimensions doubled, but not time) is
written in terms of a generalized metricHMN , whereM and
N run over all (2D − 1) space-time indices:

dS2 ¼ HMNdXMdXN: ð5Þ

The generalized metric depends both on the original metric
and on the antisymmetric tensor field bij. In the case of a
cosmological background, we will usually separate out the
time component and write the line element as

dS2 ¼ −dt2 þHMNdXMdXN; ð6Þ

where now M and N run only over spatial indices. In DFT
all massless string states are considered. Hence, in addition
to the metric there is a dilaton ϕ and an antisymmetric
tensor field bij. The generalized metric is then given by

HMN ¼
�

gij −gikbkj
bikgkj gij − bikgklblj

�
; ð7Þ

where the indices are raised with the usual Riemannian
metric.
The DFT action is chosen to treat gij and bij in a unified

way and to reduce to the supergravity action if there is no
dependence on the dual coordinates. It is given by

S ¼
Z

dxdx̃e−2dR; ð8Þ

where d contains both the dilaton ϕ and the determinant of
the metric,

e−2d ¼ ffiffiffiffiffiffi
−g

p
e−2ϕ; ð9Þ

and where [16]

R ¼ 1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

þ 4HMN∂M∂Nd − ∂M∂NHMN − 4HMN∂Md∂Nd

þ 4∂MHMN∂Nd; ð10Þ

with the matrix ηMN being given by

ηMN ¼
�
0 δi

j

δij 0

�
; ð11Þ

and we are writing the doubled space coordinates as

XM ¼ ðx̃i; xiÞ: ð12Þ

Finally, note that since all the fields now depend on double
coordinates, in principle we have doubled the number of
degrees of freedom we had started with. In order to
eliminate these extra degrees of freedom, one usually
considers the section condition [15], which eliminates
the dual-coordinate dependence of all the fields.

III. POINT PARTICLE MOTION IN DOUBLE
FIELD THEORY

The action for the massive relativistic point particle with
world line coordinates xiðtÞ is given by

S ¼ −mc
Z

ds; ð13Þ

where the line element ds is given by (4). The natural
generalization of it, which corresponds to the action of a
point particle with a world line in doubled space given by
XMðtÞ in a DFT background, is written in the following
way:

S ¼ −mc
Z

dS; ð14Þ

where the generalized line element dS is given by (5). This
action has also been introduced in [17], although the
geodesic equations have not been worked out. Note that
this action is covariant under Oðn; nÞ transformations, as
expected. Moreover, if the section condition is imposed, it
recovers (13).
Before deriving the geodesic equations, a few comments

are in order. The generalized metric is a constrained object,
which satisfies

HηH ¼ η−1: ð15Þ
Therefore its variation is constrained as well, as shown in
[18], and it is given by

∂HðcÞ
MN

∂XP ¼ 1

4

�
ðηMQ þHMQÞ

∂HQR

∂XP ðηRN −HRNÞ

þðηMQ −HMQÞ
∂HQR

∂XP ðηRN þHRNÞ
�
; ð16Þ

where the index (c) specifies when we consider constrained
objects.
Varying the action with respect to the world sheet

coordinates XMðtÞ yields the following equations of
motion:

HMN
d2XN

dS2
þ ∂HðcÞ

MN

∂XP

dXP

dS
dXN

dS
−
1

2

∂HðcÞ
PN

∂XM

dXP

dS
dXN

dS
¼ 0:

ð17Þ

Then, the equation of motion for the dual coordinates
(M ¼ 1) is
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gij
d2x̃j
dS2

− gikbkj
d2xj

dS2
þ ð∂̃mginÞ dx̃n

dS
dx̃m
dS

þ ð∂mginÞ
dxm

dS
dx̃n
dS

þ ∂̃mðgikbknÞ
dx̃m
dS

dxn

dS
þ ∂mðgikbknÞ

dxm

dS
dxn

dS

−
1

2

�
ð∂̃igmnÞ dx̃m

dS
dx̃n
dS

− ∂̃iðgmkbknÞ
dx̃m
dS

dxn

dS
þ ∂̃iðbmkgknÞ

dxm

dS
dx̃n
dS

þ ∂̃iðgmn − bmkgkjbjnÞ
dxm

dS
dxn

dS

�
¼ 0; ð18Þ

whereas the equation of motion for the regular coordinates (M ¼ 2) is

ðgij − bikgklbljÞ
d2xj

dS2
þ ∂lðgin − bikgkjbjnÞ

dxn

dS
dxl

dS
−
1

2
∂iðgmn − bmkgkjbjnÞ

dxm

dS
dxn

dS

þ bikgkj
d2x̃j
dS2

þ ∂̃lðbikgknÞ
dx̃l
dS

dx̃n
dS

þ ∂jðbikgknÞ
dx̃n
dS

dxj

dS
þ ∂̃lðgin − bikgkjbjnÞ

dx̃l
dS

dxn

dS

−
1

2

�
∂igmn dx̃m

dS
dx̃n
dS

− ∂iðgmkbknÞ
dx̃m
dS

dxn

dS
þ ∂iðbmkgknÞ

dx̃n
dS

dxm

dS

�
¼ 0: ð19Þ

These are the most general equations for a point particle in
a DFT background with a metric and a two-form field.
From the first line of Eq. (19) it is easy to see that after
imposing the section condition and setting the two-form to
be zero, we are left with the geodesic equation of a
relativistic point particle.

IV. POINT PARTICLE MOTION IN A
COSMOLOGICAL BACKGROUND

Now we want to specialize the discussion to a homo-
geneous and isotropic cosmological background with
vanishing bij. We thus consider the cosmological metric:

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj þ a−2ðtÞδijdx̃idx̃j; ð20Þ

where aðtÞ is the scale factor. Setting the antisymmetric
tensor field to zero, the general equations of motion of the
previous section simplify to

d
dS

�
dx̃a
dS

1

a2

�
¼ 0 ð21Þ

d
dS

�
dxa

dS
a2
�

¼ 0: ð22Þ

These are the geodesic equations of point particle motion of
DFT in a cosmological background.
We will now argue that geodesics are complete in the

sense that they can be extended to arbitrarily large times
both in the future and in the past. This is true for all particle
geodesics except for the set of measure zero where either all
coordinates xi or all coordinates x̃i vanish. We will consider
a given monotonically increasing scale factor aðtÞ, like the
scale factor of standard big bang cosmology. Note that in
this parametrization, the coordinate t lies in the interval
between t ¼ 0 and t ¼ ∞.

Consider a trajectory at some initial time t0 with the
property that some xi and some x̃j are nonvanishing. Due to
Hubble friction, the velocity dxi=dt will decrease. On the
other hand, the dual velocity dx̃j=dt will approach the
speed of light. Hence, the proper distance ΔS in double
space between time t0 and some later time t2 will be

ΔS ¼
Z

t2

t0

γðtÞ−1ð1þ T2Þ1=2dt; ð23Þ

where T2 is the contribution from the dual which ceases to
increase at late times since the dual velocity goes at the
speed of light, and γðtÞ is the relativistic γ factor of the
motion in the xi direction (for simplicity we consider
motion only in one original direction and in one dual
direction). Hence, the geodesic can be extended to infinite
time in the future.
Now consider evolving this geodesic backwards in time

from t0 to some earlier time t1. Then it is the motion of the
dual coordinates which comes to rest. The proper distance
in double space is now

ΔS ¼
Z

t0

t1

γ̃ðtÞð1þ T1Þ1=2dt; ð24Þ

where γ̃ is the relativistic gamma factor for motion in the
dual space directions, and T1 is the contribution to the
proper distance which comes from the regular spatial
dimensions and is negligible at very early times since
the velocity in the regular directions approaches the speed
of light.
The expansion of the scale factor in the dual spatial

directions as time decreases is analogous to the expansion
in the regular directions as time increases. In line with T-
duality, we propose to view the dynamics of the dual spatial
dimensions as t decreases as expansion when the dual time,
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td ¼
1

t
; ð25Þ

increases. In fact, in analogy to the definition of physical
length lðRÞ in (3) [1], we can define a physical time tpðtÞ as

tpðtÞ ¼ t for t ≫ 1;

tpðtÞ ¼
1

t
for t ≪ 1: ð26Þ

With this definition, the geodesics studied in this paper are
geodesically complete in the sense that they can be
extended in both directions to infinite time.
We can also justify the above argument by dualizing both

space and time, i.e., by also introducing a dual time t̃which
is dual to “temporal winding modes” of the string [19]. This
concept can be made rigorous in Euclidean space-time
where time is taken to be compact. When the regular
Euclidean time domain shrinks in size, the dual time
domain increases. This is analogous to the dual space
domain increasing as 1=Rwhen the regular space domain R
is decreasing. From this point of view, the definition (26) is
simply the time component of (3). We can also write (26) as

tpðtÞ ¼ t for t ≫ 1;

tpðtÞ ¼ t̃ ¼ td for t ≪ 1: ð27Þ

At finite temperatures T, the string partition function
ZðTÞ is periodic in Euclidean time β ¼ 1=T, and—at least
for certain string theory setups—satisfies the temperature
duality:

ZðβÞ ¼ Z

�
1

β

�
; ð28Þ

which is a consequence of the T-duality symmetry. Based
on this symmetry it was argued [20] that these string theory
models correspond to bouncing cosmologies in which the
physical temperature is taken to be (always in string units)

TpðTÞ ¼ T for T ≪ 1;

TpðTÞ ¼
1

T
for T ≫ 1: ð29Þ

Note that two time formalisms based on ideas from string
theory were also discussed in [21,22].

V. SINGULARITY-FREE COSMOLOGICAL
BACKGROUND

In this section, we study a geometrical approach to
formalize the idea of the physical clock introduced in the
last section and conclude that upon considering this
definition of time, the vacuum solutions of the DFT
background equations are singularity free. The DFT

cosmological background equations of motion in the
presence of a hydrodynamical fluid will be discussed
in [23].
We start off considering the following ansatz:

dS2 ¼ −dt2 − dt̃2 þ a2ðt; t̃Þ
XD−1

i¼1

dxidxi

þ a−2ðt; t̃Þ
XD−1

j¼1

dx̃jdx̃j; ð30Þ

in the DFT equations of motion, resulting in [24]

½4∂ t̃∂ t̃d − 4ð∂ t̃dÞ2 − ðD − 1ÞH̃2�
þ ½4∂t∂td − 4ð∂tdÞ2 − ðD − 1ÞH2� ¼ 0 ð31Þ

½−ðD − 1ÞH2 þ 2∂t∂td� − ½−ðD − 1ÞH̃2 þ 2∂ t̃∂ t̃d� ¼ 0

ð32Þ

½ _̃H − 2H̃∂ t̃d� þ ½ _H − 2H∂td� ¼ 0; ð33Þ

where H ¼ a−1da=dt and H̃ ¼ a−1da=dt̃.
The solutions to these equations are given by

a�ðt̃; tÞ ¼
���� tt̃
����
�1=

ffiffiffiffiffiffiffi
D−1

p

; dðt; t̃Þ ¼ −
1

2
ln jtt̃j ð34Þ

a�ðt̃; tÞ ¼ jtt̃j�1=
ffiffiffiffiffiffiffi
D−1

p
; dðt; t̃Þ ¼ −

1

2
ln jtt̃j: ð35Þ

However, so far there was no clear interpretation of these
equations and solutions given the presence of the extra time
coordinate, t̃.
Within the prescription we have introduced in the last

section, we can interpret this extra time coordinate as the
geometrical clock associated to the winding modes.2 In
particular, we have provided arguments that this clock,
when seen from the momentum perspective, should cor-
respond to

t̃ ¼ 1

t
: ð36Þ

Thus, the above ansatz can be seen as a way to implement
the ideas we have introduced at a geometrical level. By
doing so, the effective line element becomes

2We will discuss this prescription further in [23].
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dS2 ¼ −
�
1þ 1

t4

�
dt2 þ a2ðtÞ

XD−1

i¼1

dxidxi

þ a−2ðtÞ
XD−1

j¼1

dx̃jdx̃j: ð37Þ

The solutions of the DFT equations of motion become

a�ðtÞ ¼ jtj�2
ffiffiffiffiffiffiffi
D−1

p
; dðtÞ ¼ const: ð38Þ

a�ðtÞ ¼ const:; dðtÞ ¼ const: ð39Þ
Now, using instead the physical clock, we can rewrite the

line element by considering the following:

dtp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t4

r
dt; ð40Þ

so that we recover a Friedman-Robertson-Walker (FRW)-like
metric in the standard form, meaning g00 ¼ −1. It is clear that
the physical clock reduces to the momentum one for large t.
In fact, its functional form in terms of t is very complicated,
but its plot, given in Fig. 2, is easy to understand.
The nontrivial solution for the scale factor (39) in terms

of the physical clock is plotted in Fig. 3 (we considerD ¼ 4
for simplicity).
Finally, the metric looks like

ds2 ¼ −dt2p þ a2ðtpÞ
XD−1

i¼1

dxidxi þ a−2ðtpÞ
XD−1

j¼1

dx̃jdx̃j;

ð41Þ
as expected. It is important to realize that this effective
(2D − 1)-dimensional geometry reduces effectively to a D-
dimensional one for large tp, the momentum sector, and
analogously for large negative tp, the winding sector. We
also observe that there should be aD-dimensional slice that
has its volume bounded from below for all tp. This slice is
the physical geometry where we live and which is acces-
sible by physical rulers and clocks (which are always given
by the corresponding light modes).

VI. CONCLUSIONS AND DISCUSSION

We have studied the geodesics corresponding to point
particle motion in double field theory. We derived the
general equations of motion, and then we considered the
special case of a cosmological background with a vanishing
antisymmetric tensor field. We argued that in this context
the geodesics of point particle motion are complete,
provided we measure the motion in terms of a physical
time which reflects the T-duality symmetry of the setup.
Our result provides further support for the expectation that
cosmological singularities are resolved in superstring
cosmology. Then, we also considered a geometrization
of this prescription within the framework of DFT, resulting
in a cosmological solution which is singularity free.
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