
 

The Sun as a sub-GeV dark matter accelerator
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Sub-GeV halo dark matter that enters the Sun can potentially scatter off hot solar nuclei and be ejected
much faster than its incoming velocity. We derive an expression for the rate and velocity distribution of
these reflected particles, taking into account the Sun’s temperature and opacity. We further demonstrate that
future direct-detection experiments could use these energetic reflected particles to probe light dark matter in
parameter space that cannot be accessed via ordinary halo dark matter.
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I. INTRODUCTION

Despite convincing astrophysical evidence for the exist-
ence of dark matter (DM) in the Universe, the numerous
direct-detection experiments set out to observe DM on
Earth have not yet succeeded, severely constraining the
classic weakly interacting massive particle (WIMP) para-
digm [1–3]. Many recent endeavors target the more elusive
sub-GeV DM parameter space [4–6], and various ideas
have been proposed on how to explore the possibility of
light DM [7–9].
Detectors with targets of mass mT and energy threshold

Eth can, in principle, probe DM masses down to
∼mT /ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTv2max/Eth

p
− 1Þ, where vmax is the maximum

speed of the considered DM population. Below this mass
the nuclear recoils caused by even the fastest DM particles
are too soft and fall below the experimental threshold,
making it impossible to detect DM regardless of exposure
and cross section. The two obvious ways to extend
sensitivity to lower masses are to use lighter targets and/
or to realize low-energy thresholds as achieved, e.g., by
CRESST-II [4]. In the standard halo model one usually
assumes vmax ¼ vgal þ vobs, the sum of the galactic escape
velocity and the velocity of the observer. This value may
increase if the standard halo model is extended, e.g., by the
inclusion of tidal DM streams from galactic mergers
[10,11]. However, in the case of sub-GeV DM there is
another possibility to generate faster DM particles in the

solar system, which has the advantage of being widely halo
model independent.
If a light DM particle scatters off a hot nucleus inside the

Sun, it will gain energy, and can exit the Sun with a speed
far exceeding its incoming speed. The velocity after this
reflection is no longer limited by the galactic escape
velocity. For this to occur at a significant rate, the DM-
nucleus interaction must be sufficiently strong, but not so
strong that the outer, colder layers of the Sun shield the hot,
dense core, which accelerates DM particles most effi-
ciently. Solar reflection becomes effective if the kinetic
energy of the infalling DM is smaller than the thermal
energy of solar nuclei. Hydrogen is the best sub-GeV DM
accelerator because scattering on the lightest solar nuclei
results in the largest energy transfers. Since the DM
velocity deep inside the Sun is dominated by the solar
escape velocity, the initial distribution of the incoming halo
DM has only a slight impact on the spectrum of the
reflected particles. These particles may be much faster than
any from the halo and allow high-exposure, low-threshold
direct-detection experiments to look for lighter DM than
naively expected—potentially setting new constraints on
sub-GeV DM, as we will show in this paper.
The idea to search for DM particles accelerated in the

Sun was first proposed by one of the authors [12], who
considered DM evaporating at high velocities after being
gravitationally captured and thermalized. In contrast to
evaporation, reflection does not require thermalization and
is thus well defined at an arbitrarily low DM mass.
In this paper, we derive an analytic expression for

the scattering and reflection rate. In doing so we
generalize the well-known framework by Gould [13–15]
beyond the transparent regime. In the first section we
establish the formalism to describe solar reflection. In the
second section we investigate the implications for direct
detection.
Throughout we use natural units, i.e., ℏ ¼ c ¼ kB ¼ 1.
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II. DARK MATTER SCATTERING IN THE SUN

In this section, we derive a formula for the differential
rate at which halo DM scatters to a final speed v in a
spherical shell of the Sun. This formula encapsulates both
the reflection and capture rate through single scatterings.
The scattering rate of DM in a particular spherical shell
consists of three pieces,

dS ¼ dΓ × dPscat × Pshell; ð1Þ

where dΓ is the rate at which free halo DM in an
infinitesimal phase-space volume would pass through a
spherical shell, dPscat is the probability of scattering off a
nucleus in the shell, and Pshell is the probability that the
particle reaches the shell without having scattered before-
hand. We follow in broad strokes the calculations of Press,
Spergel, and Gould [13,16] when evaluating the first two
pieces of Eq. (1). To describe the Sun’s interior structure we
use the Standard Solar Model [17].

A. Halo rate into the Sun

The rate at which DM reaches the Sun is given by [13]

dΓ ¼ πnxfhaloðuÞ
dudJ2

u
; ð2Þ

where nx is the DM number density in the halo, u and fhalo
are the DM speed and speed distribution in the Sun’s rest
frame asymptotically far away, and J is the angular
momentum per mass of DM with respect to the center
of the Sun. For a trajectory to cross the surface of
the Sun, the angular momentum must be smaller than
J < wðu; R⊙ÞR⊙; R⊙ is the solar radius, and wðu; rÞ is the
local blueshifted velocity of a DM particle entering
a spherical shell of radius r, which is wðu; rÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2escðrÞ

p
, with vescðrÞ being the local escape velocity

from the Sun. Equation (2) should be understood as an
average rate, since the Sun’s peculiar velocity in the
galactic rest frame introduces an anisotropy in the DM
flux across its surface.

B. Scattering rate inside a spherical shell

The next piece of Eq. (1) is given by

dPscat ¼
dl

wðu; rÞΩ½wðu; rÞ�; ð3Þ

where dl is the length traveled in the shell of radial
thickness dr, and dl/wðu; rÞ is thus the time the particle
spends in the shell. Note that ΩðwÞ is the total rate of DM
scattering off solar nuclei,

ΩðwÞ≡X
N

nNðrÞhσxNwrel;Ni; ð4Þ

where σxN is the total DM-nucleus scattering cross section,
nNðrÞ is the number density of nucleus N, wrel;N is the DM-
nucleus relative velocity, and h·i denotes the thermal
average. Note that for zero nuclear temperature, wrel;N ¼
w holds and Eq. (3) reduces to dPscat ¼ dl/λðrÞ, with λðrÞ
being the DM mean free path.1 Assuming a velocity-
independent cross section, the relevant thermal average
for temperature T is

hwrel;Ni ¼ ð1þ 2κ2w2Þ erfðκwÞ
2κ2w

þ e−κ
2w2

ffiffiffi
π

p
κ
; κ≡

ffiffiffiffiffiffiffi
mN

2T

r
:

ð5Þ

We now express dl in terms of the thickness of the shell dr
by conservation of angular momentum, i.e.,

dl
dr

¼
�
1 −

J2

w2ðu; rÞr2
�−1/2

: ð6Þ

Finally, we wish to find information about the spectrum of
scattered particles, and therefore we need the differential
scattering rate into final velocity v instead of the total
scattering rate Ω. This has been computed by Gould under
the assumption of isotropic scattering, which is a good
approximation, especially in the case of sub-GeV DM [14].
It is given by

dΩ
dv

ðw → vÞ ¼ 2ffiffiffi
π

p vdv
w

X
N

μ2þ
μ
σxNnNðrÞfχð�β−; βþÞ

× e−μκ
2ðv2−w2Þ þ χð�α−;αþÞg; ð7Þ

where the upper sign is for acceleration (w < v) and the
lower sign is for deceleration (w > v). We use Gould’s
notation,

μ≡mx

mN
; μ�≡μ�1

2
; χða;bÞ≡

ffiffiffi
π

p
2

ðerfb− erfaÞ;

α�≡ κðμþv�μ−wÞ; β�≡κðμ−v�μþwÞ; ð8Þ

with mx being the DM mass. By integrating over all final
velocities, one may explicitly verify that ΩðwÞ is given
by Eq. (4).

C. Survival probability of reaching a spherical shell

The survival probability when traveling a path in the Sun
is Psurv ¼ expð− R

path dPscatÞ, where dPscat is given by
Eq. (3). For a trajectory, the probability of not scattering
between radii rA and rBð> rAÞ is therefore

1Previous works [18–20] connected the transparent and opaque
regimes as well, where instead of Eq. (3) dPscat was taken to be
hσxNinNdl, and orbits were approximated as straight lines.
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PsurvðrA; rBÞ ¼ exp

�
−
Z

rB

rA

dr
dl
dr

Ω½wðu; rÞ�
wðu; rÞ

�
: ð9Þ

A free orbit inside the Sun crosses a spherical shell twice or
not at all, depending on whether the perihelion is smaller or
larger than the radius of the shell. The last term in Eq. (1)
is thus

Pshell ¼ Psurvðr; R⊙Þ½1þ P2
survðrperi; rÞ�θ½wðu; rÞr − J�;

ð10Þ
where rperi is the perihelion of the orbit and θðxÞ is the step
function. The first and second terms correspond to the
survival probabilities of reaching the spherical shell on the
first and second passings, respectively.

D. Final differential scattering rate

We are now in a position to combine Eqs. (2), (3), and
(10) with (1) to write the differential rate of scattering to
final velocity v in a spherical shell of radius r:

dS
dvdr

¼ πnx

Z
∞

0

du
Z

w2ðu;rÞr2

0

dJ2
fhaloðuÞ

u

× Psurvðr; R⊙Þ½1þ P2
survðrperi; rÞ�

×
dΩ
dv

½wðu; rÞ → v�
�
w2ðu; rÞ − J2

r2

�−1/2
: ð11Þ

This expression applies to both the opaque and trans-
parent regimes and smoothly connects the two. In general,
the integrals must be evaluated numerically. However, it
significantly simplifies in the transparent regime, since
Psurv ≈ 1 and the J2-integral can be evaluated analytically.
In this case we obtain an expression similar to the capture
rate originally derived by Gould in [14], i.e.,

dS
dvdr

≈ 4πr2
Z

∞

0

du
fhaloðuÞ

u
wðu; rÞ dΩ

dv
½wðu; rÞ → v�:

ð12Þ
In the completely opaque regime, the formula simplifies
again, sincePsurvðrperi;R⊙Þ≈0 andPsurvðr;R⊙Þ×Ω/wðu;rÞ×
dl/dr≈δðr−R⊙Þ.2 The total scattering rate can then be
evaluated to yield

S ≈ πR2⊙½hui þ v2escðR⊙Þhu−1i�; ð13Þ
which by inspection of Eq. (2) is the total rate of DM
particles entering the Sun from the halo. In other words, all
particles scatter at the surface. In this expression, huki ¼R
∞
0 ukfhaloðuÞdu.
Equation (11) describes the rate at which halo DM

scatters once and does not track subsequent scatterings. The

effect of multiple scatterings can be described using
Monte Carlo simulations, as was recently done in the
context of DM-electron scatterings [21].

E. Capture and reflection

A DM particle that scatters inside the Sun to a new
velocity below the local escape velocity vescðrÞ becomes
gravitationally bound and is captured. On the other hand,
for a particle to reflect out of the Sun after a single
scattering, not only does its final velocity need to exceed
vescðrÞ, but it also needs to reach the solar surface without
rescattering. We define two probabilities that separate the
scattering rate S into a captured and a reflected component,
C and R, respectively. The probability of capture is simply

Pstayðv; rÞ ¼ θ½vescðrÞ − v�; ð14aÞ

whereas the probability for reflection is

Pleaveðv; rÞ ¼
1

2
Psurvðr; R⊙Þ½1þ Psurvðr0peri; rÞ2�

× θ½v − vescðrÞ�: ð14bÞ

Note the similarity to Eq. (10). The differential capture and
reflection rates are then

dC
dvdr

¼ dS
dvdr

Pstayðv; rÞ; ð15aÞ

dR
dvdr

¼ dS
dvdr

hPleaveðv; rÞiJ02 ; ð15bÞ

where J0 is the angular momentum per mass after scatter-
ing. As in Eq. (7), we assume the scattering to be isotropic
when taking the average in the second equation. The
behavior of dS/dvdr is shown in Fig. 1 along with
hPleaveðv; rÞiJ02 . We allow scattering on the four largest
target nuclei, assuming spin-independent contact inter-
actions: H, 4He, 16O, and Fe. Adding further isotopes will
slightly increase the overall scattering rate but also slightly
shield the solar core.
Finally, we are interested in the spectrum of reflected

particles on Earth and therefore redshift the reflected
particles as

dR
du

¼
Z

R⊙

0

dr
dR
dvdr

dv
du

����
v¼wðu;rÞ

: ð16Þ

One might expect the single scattering reflection rate to
vanish in the opaque regime, but particles that backscatter
near the surface will always have a good chance of making
it out again.

2This can be seen using Eq. (9), since Psurvðr; R⊙Þ ×
Ω/wðu; rÞ × dl/dr is a probability density with respect to r.
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III. DIRECT DETECTION

The scattering rate per recoil energy in a detector with
NT target nuclei has a contribution from the solar reflected
DM as well as the standard contribution from the halo,

dR
dER

¼ NT

Z
∞

umin

du

�
1

4πl2

dR
du

þ nxfhaloðuÞu
�
dσxN
dER

: ð17Þ

Here l ¼ 1 A:U:, nx ¼ 0.3ðGeV/mxÞ cm−3, fhalo is the
standard isothermal Maxwellian distribution with v0 ¼
220 km/ sec, vobs ¼ 230 km/ sec, and vgal ¼ 544 km/ sec.

The minimum velocity is given by umin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNER/ð2μ2xNÞ

p
,

with μxN being the DM-nucleus reduced mass. For spin-
independent interactions the differential cross section is

dσSIxN
dER

¼ mNA2
Nσ

SI
xn

2μ2xnu2
F2
NðERÞ; ð18Þ

where n refers to nucleons, AN is the atomic number, and
FN is the nuclear form factor. For sub-GeV DM, we can
safely set FN ≈ 1 for all scatterings in both the Sun and the
detector.
The upcoming CRESST-III phase 2 run [22] will be able

to probe solar reflected DM. We model the detector
response of CRESST-III phase 2 with an expected exposure
of 1 ton · day according to [23]. We assume an energy
threshold of Eth ¼ 100 eV, a Gaussian energy convolution
GðER; E0

RÞ with resolution σres ¼ Eth/5, and efficiencies
εNðE0

RÞ provided by the CRESST Collaboration,

dR
dE0

R
¼

X
N

εNðE0
RÞ

Z
∞

ẼR

dER
dR
dER

GðER; E0
RÞ; ð19Þ

where N runs over O, Ca, and W, and ẼR ¼ Eth − 2σres.
In Fig. 2 we project CRESST-III constraints from solar

reflection and halo DM as shaded contours with solid lines
at a 90% confidence level [24]. The reflection constraints

are subdominant, but with larger exposure solar reflection
extends the detector’s sensitivity towards lower masses. For
a mock detector similar to CRESST-III with exposures 10
to 100 times larger and no additional background events, a
new part of the parameter space becomes accessible
(shaded areas with dashed and dotted lines). Using the
reflected DM population, a CRESST-III detector with a
higher exposure can probe parameter space that is inac-
cessible with standard halo DM. Furthermore, the reflected

FIG. 1. The color indicates the probability hPleaveðv; rÞiJ02 for a 200 MeV DM particle with speed v at radius r to exit the Sun without
rescattering. Below the escape velocity no particle escapes. In addition we superimpose contours of the scattering rate dS/dvdr, where
the dot denotes the maximum and contours correspond to 50%, 10%, and 1% of the maximal rate. As the Sun becomes more opaque,
scatterings peak in the outer colder layers, which can be seen by the maximummoving to higher r and lower v for the larger DM-nucleon
cross section σxn.

FIG. 2. The filled contours project constraints for a CRESST-
III-type detector with exposures of 1/10/100 ton · days (solid/
dashed/dotted). The free lines project constraints for an idealized
sapphire detector (perfect energy resolution and no background)
with 20 eV threshold and exposures of 10/100/1000 kg · days
(solid/dashed/dotted). As the exposure increases, halo constraints
improve towards lower cross sections only. In contrast, reflection
increases the sensitivity to lower masses as well.
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component is insensitive to the specifics of the velocity
distribution of halo DM, simply because the blueshift of
infalling DM and the subsequent scattering erase the
memory of the initial distribution. For experiments with
even lower thresholds, reflection can dominate at smaller
exposures. For example, in a sapphire detector with a
threshold of 20 eV (as demonstrated above ground by the
CRESST Collaboration in [25]), reflection beats halo DM
for exposures above Oð10Þ kg · days (see Fig. 2).
If sub-GeVDM is discovered in the future, solar reflection

may be distinguished from (heavier) halo DM in several
ways, given sufficient statistics: (1) the recoil spectrum will
have a non-Maxwellian tail extending towards high veloc-
ities, (2) signals in a directional detector would be pointing
towards the Sun, (3) the Earth is about as opaque as the Sun,
so onewould expect a daily modulation, (4) therewould be a
∼7% annual modulation due to the eccentricity of the Earth’s
orbit peak at the perihelion around January 3 (distinct from
halo modulation with a peak around June 2).

IV. CONCLUSIONS

In this paper we demonstrated that above a specific
exposure in low-threshold direct-search experiments, solar
reflection of sub-GeVDMcan set constraints in the lowmass
parameter space, whereas ordinary halo DM cannot. The
existence of an additional DMpopulation in the solar system
with a robust spectrum, insensitive to changes to the halo
model, is the central aspect of this work. Our projected

constraints are conservative, since our analytic approach
accounts only for single scatterings and underestimates the
total rate of reflection. Monte Carlo simulations could shed
light on the contribution ofmultiple scatterings.Nonetheless,
our formalism is valid in both the opaque and transparent
regimes and smoothly connects the two. As a by-product, we
improved Gould’s expression for the DM capture rate in
Eq. (15) by taking into account opacity and temperature.
The CRESST-III detector has already achieved thresh-

olds below 100 eV. Solar reflection may therefore be
probed by next-generation detectors, pushing the limits
of low-mass DM searches.
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Note added.—Recently, Ref. [21] appeared, which inves-
tigates the prospects of light DM detection via solar
reflection as well. It is complementary to this work,
since [21] focuses on DM-electron interactions using
Monte Carlo methods, whereas we focus on DM-nuclei
interactions using an entirely analytic approach.
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