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Applications of machine learning tools to problems of physical interest are often criticized for producing
sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for
identifying combinations of variables—aided by physical intuition—that can discriminate signal from
background. Weights are introduced to smooth away the features in a given variable(s). New networks are
then trained on this modified data. Observed decreases in sensitivity diagnose the variable’s discriminating
power. Planing also allows the investigation of the linear versus nonlinear nature of the boundaries between
signal and background. We demonstrate the efficacy of this approach using a toy example, followed
by an application to an idealized heavy resonance scenario at the Large Hadron Collider. By unpacking
the information being utilized by these algorithms, this method puts in context what it means for a machine
to learn.
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I. INTRODUCTION

A common argument against using machine learning for
physical applications is that they function as a black box:
send in some data and out comes a number. While this kind
of nonparametric estimation can be extremely useful, a
physicist often wants to understand what aspect of the input
data yields the discriminating power, in order to learn/
confirm the underlying physics or to account for their
systematics. A physical example studied below is the
Lorentz invariant combination of final state four-vectors,
which exhibit a Breit-Wigner peak in the presence of a
new heavy resonance. The simple example illustrated in
Fig. 1 exposes the subtlety inherent in extracting what the
machine has “learned.” The left panel shows red and blue
data, designed to be separated by a circular border. The
right panel shows the boundary between signal and back-
ground regions that the machine (a neural network with one
hidden layer composed of 10 nodes) has inferred. Under
certain assumptions, a deep neural network can approxi-
mate any function of the inputs, e.g., [1], and thus produces
a fit to the training data. While any good classifier would
find a “circular” boundary, simply due to the distribution of
the training data, one (without additional architecture) has
no mechanism of discovering it is a circle. In light of this,
our goal is to unpack the numerical discriminator into a set

of human-friendly variables that best characterize the
data. While we are not inverting the network to find its
functional form, we are providing a scheme for under-
standing classifiers.
For context, we acknowledge related studies within the

growing machine learning for particle physics literature.
The authors of [2–5] emphasized the ability of deep
learning to outperform physics inspired high-level varia-
bles. We use the “uniform phase space” scheme to flatten
discriminating variables, which was introduced in [6]
to quantify the information learned by deep neural net-
works. For other suggestions on testing what the machines
are learning, see [7–12]. A nice summary of these ideas
can be found in [13]. Additionally, progress has recently
been made in the related question of how the machine
learns [14,15].
Section II introduces a simple weighting scheme,

which we call “data planing.”1 Applications to a toy model
will be presented to illustrate the features of this approach.
As we demonstrate, it is possible to plane away all the
underlying discriminating characteristics of this toy by
utilizing combinations of linear and nonlinear variables.
This highlights another salient attribute of data planing:
by comparing the performance of linear and deep neural
networks, one can infer to what extent the encoded
information is a linear versus nonlinear function of the
inputs. Then in Sec. III we show that these features can be
realized in a more realistic particle physics setting. Finally,
Sec. IV concludes this paper with a discussion of future
investigations.
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II. DATA PLANING

Our starting assumption is that a sufficiently deep
network with ample training can take advantage of all
inherent information to discriminate signal from back-
ground; i.e., the network approximately attains Bayes
error [16,17], the lowest possible error rate. The approach
advocated here is to then remove information, where the
performance degradation of the new networks provides
diagnostic value (this procedure was first introduced in the
“uniform phase space” section of [6]). To plane the data, we
weight the events, which are labeled by i and characterized
by input variables x⃗i. After choosing a variable m, the
planing weights are computed using

½wðx⃗iÞ�−1 ¼ C
dσðx⃗iÞ
dm

���
m¼mi

; ð1Þ

where dσ=dm is the differential cross section (or more
generally the underlying distribution for the training
events), and a constant C is required by dimensional
analysis and should be common to signal and background
samples. In practice, we execute Eq. (1) by uniformly
binning the input events and inverting the histogram, which
introduces some finite bin effects as will be apparent below.
Note for a different purpose, the experimental collabora-
tions frequently weight events to match the transverse
momentum spectrum of different samples (e.g., [18–20]).
Next, we train a new network on the planed input

data. The performance drop yields a measurement of the
discriminating information contained in the variable m.
This procedure can be iterated, by choosing the next
variable to plane with, until the network is unable to
discriminate between the fully planed signal and back-
ground. This end point demonstrates that all of the
information available to distinguish signal from back-
ground is encoded in the planing variables, thereby
providing a procedure to concretely frame the question
posed by the title of this paper.
Planing is one of many different approaches to under-

standing a network’s discrimination power as mentioned in
the introduction and reviewed in [13]. In what follows,

as we study planing we will also utilize a technique (see
[2–5,11,12]) which we refer to as “saturation,” that com-
pares a network trained on only low-level inputs with
networks trained after adding higher-level variables.
Saturation provides a tool to ensure that our networks
are sufficiently deep, by checking that the new network’s
performance does not improve by much.2

Saturation additionally suggests another method to
uncover what information a machine is utilizing. One
could consider training networks using only the high-level
variable(s) of interest as inputs, where in contrast to the
saturation technique, no low-level information is being
provided to the network. The diagnostic test would be to
compute if the resulting network can achieve performance
similar to that of a deep network that had been trained on
only the low-level inputs. If the metrics were comparable,
it would suggest that a machine can use the high-level
variables alone to classify the data. However, the planing
method has two advantages. First, the number of input
parameters would typically change when going from only
low-level to only high-level variables; unlike planing, this
requires altering the network architecture. This in turn can
impact the optimization of hyper-parameters, thereby
complicating the comparison. Furthermore, this method
suffers the same issue as saturation in that as the limit
towards ideal performance is achieved, one is forced to take
seriously small variations in the metrics. If there are not
enough training trials to adequately determine the errors,
these small variations could be incorrectly interpreted as
consistent with zero. This can again be contrasted with
planing in that our approach yields a qualitative drop in
performance and is more straightforward to interpret.
For all results presented below, we will distinguish the

performance of a linear versus deep network. This provides
a diagnostic tool as to what extent the remaining informa-
tion is a (non)linear function of the inputs. The machines
used here are neural networks implemented within the
Keras [21] package with the TensorFlow [22] backend. We
choose either zero or three hidden layers to define the linear
and deep networks, respectively; each hidden layer has 50
nodes. Note that a network with no hidden layer is
equivalent to standard logistic regression. The inputs to
each node are passed through the ReLu activation function,
except that the Sigmoid is applied to the output layer.
Training is done using the Adam optimizer [23]. For each
classification, 10% of the events are used as a test set, and
4.5% are used for validation. Our metrics are computed on
the test set using scikit-learn [24]. We provide the standard
metric for performance: the area under the receiver operat-
ing characteristic curve (AUC). We compute standard

FIG. 1. (Left panel) The machine is trained using rectilinear
coordinates to distinguish blue and red as defined by the
displayed training data. (Right panel) The classifier output ranges
from blue to red.

2Saturation can also be used to determine what high-level
variables provide information (e.g., [11,12]). Planing tests can be
easier to interpret, due to their larger dynamic range in perfor-
mance metrics.
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deviation of the AUC by using the output of ten networks
trained with randomly chosen initial conditions. This is
provided in the tables and gives a sense for the stability of
the minimization.
We will first demonstrate how to plane in a concrete toy

example. Assume the input data are given by three
coordinates x⃗ ¼ ðx; y; zÞ, and the signal is drawn from
the distribution

fðx⃗Þ ¼ ½Θðr0 − rÞ þ Cr� · ½z · Bz þ Cz�; ð2Þ

where ΘðxÞ is the step function, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, the Ci are

constants, r0 is the radius of a circular feature in the x-y
plane, and Bz is the slope of the z-component of the signal.
The background distribution is uniform in x, y, and z. This
toy model contains both linear (z) and nonlinear (x-y)
differences between signal and background, and it is also
factorized such that there are no correlations between r
and z.
The results of the study are presented in Table I. First,

note that when training the networks on only the low-level
inputs, the deep network is more powerful. This points to
the presence of a nonlinearity, a consequence of the
cylindrical shape of the underlying distribution. Next, in
the spirit of the saturation approach, we add the 2-D radius
r to the list of inputs and train another network. We see that
the linear and deep networks perform nearly identically to
the deep network trained only on the low-level inputs,
which implies the remaining discriminating power is a
linear function of the inputs, as it had to be from Eq. (2).
The third row shows the results when training on data
whose r-dependence has been planed away. All that
remains is the z-dependence, which is linear as demon-
strated by comparing the linear and deep outputs (see also
Fig. 3, left). Finally, we plane in r and z simultaneously.
The bottom row of the table shows the AUC approaching
1=2, signaling that all discriminating power is captured by r
and z.

III. APPLICATION TO PARTICLE PHYSICS

This section provides a planing application to a physical
scenario. We extend the Standard Model with a single
particle, a massive vector boson Z0 that decays to an
electron ðe−Þ positron ðeþÞ pair. This example was chosen

because the best discriminator against the smoothly falling
photon background is the invariant massm2¼ðpeþ þpe−Þ2,
a nonlinear combination of the input four-vectors p.
Furthermore, depending on how we choose the helicity
structure of the coupling between the Z0 and the Standard
Model particles, additional discriminating power beyond
invariant mass may be present.
We use a phenomenological parametrization:

L ⊃ Z0
μ

X

f

QfðgZ0;Lf̄γμPLf þ gZ0;Rf̄γμPRfÞ; ð3Þ

where f are the Standard Model fermions,Qf is the electric
charge, PLðRÞ are the left (right) projection operators, and
gZ0;LðRÞ is the strength of the coupling between the left
(right) handed fermions and the Z0. We take MZ0 ¼ 1 TeV
and the width ΓZ0 ¼ 10 GeV. This model is excluded by
Large Hadron Collider (LHC) data over a wide parameter
space; we present it here solely as an instructive tool.
We will focus our attention on two cases: Z0

V with vector
coupling, where gZ0L ¼ gZ0R (the same as the helicity
structure of the photon), and Z0

L with left couplings active
and gZ0R ¼ 0. Themodels are implemented using FeynRules
[25]. The Monte Carlo event generator MadGraph [26] is
used to simulate 106 proton-proton collisions with an
invariant mass between 500 and 1500 GeV for γ�, Z0

V ,
and Z0

L intermediate states. Using information contained in
pp → eþe− events, the goal is to distinguish the Z0 signal
models from the photon background.
We take the low-level training inputs to be the four-

vectors ðE; p⃗Þ of the e�. We know that the best discrimi-
nator between signal and background is the invariant mass.
This is the only distinguishing feature between the Z0

V and
the photon. However, due to the nontrivial helicity structure
of the Z0

L model, there are additional features in the high-
level variable rapidity, y≡ 1

2
log½ðEþ pzÞ=ðE − pzÞ�, that

distinguish it from the photon. The distributions of the
high-level variables are shown in the upper panels of Fig. 2.
The results of classifying the Z0

V against the photon are
shown in Table II. We train the linear and deep networks on
the low-level variables and again on the low-level variables
plus invariant mass. The deep network performance is very
similar with or without the invariant mass; following the
logic of the saturation approach, this shows that the low-
level deep network is a nearly ideal discriminator. For
comparison, the low-level linear network performance is far
below that of the deep network. We infer that nonlinear
combinations of the input variables are needed to optimally
classify the data. When invariant mass is added to the linear
network, the resulting performance significantly improves,
but it still does not match the power of the deep networks.
One is tempted to (falsely) conjecture that there is extra
discriminating power to uncover, and the top row of Fig. 2
seems to add support. It is also possible that the linear
network aided by m does not perform as well as the deep

TABLE I. The AUC output for a variety of input configurations
applied to toy signal data pulled from Eq. (2) and a flat
background. The variable r is the cylindrical radius.

ðx; y; zÞ r Planed Linear AUC Deep AUC

✓ ✗ ✗ 0.61275(01) 0.81243(45)
✓ ✓ ✗ 0.79672(01) 0.81388(23)
✓ ✗ r 0.61030(01) 0.61026(02)
✓ ✗ ðr; zÞ 0.5081(16) 0.49998(03)
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network, even though it contains all of the relevant
information, because it can only make a one-sided cut.
However, due to the vector nature of the photon

couplings (and the masslessness of the final state particles),
we know that the only difference between signal and
background should be captured by the invariant mass of
the electron positron pair. To determine the correct inter-
pretation, we plane signal and background in invariant mass
as shown in the lower row of Fig. 2. As expected, the
photon and the vector Z0 have nearly identical distributions
up to the noise induced by the histogramming procedure for
computing the weights.
In order to quantify if there is information hidden in any

of the other distributions, linear and deep networks are
trained on the planed inputs. The results are shown in the
lower section of Table II as measured on the planed test set.
Both networks have an AUC approaching 0.5, so no
noticeable discriminating power remains. Since the planing
process removed the invariant mass information, the net-
works cannot tell the difference between the massless and
massive vector boson propagators, showing that mass is in
fact the only discriminator.
Next, we explore the Z0

L signal model where we expect
additional discriminants to be present. Networks are trained
to distinguish the Z0

L from the photon, with results shown in
Table III. Initially, we see a pattern similar to that in the
previous examples. Note that now the AUCs are slightly
closer to unity as compared to the Z0

V model, again
indicating the presence of information beyond the invariant

mass. An inspection of the distributions that have been
planed using m, which are plotted in the lower panels of
Fig. 2, reveals the source of this additional discriminating
power. The Z0

L clearly manifests differences in the rap-
idities for the electron and positron, where the magnitude of
the electron rapidity is usually larger than the magnitude
of the positron rapidity for the Z0

L. This results from the
choice of chiral couplings and the shape of the parton
distribution functions. This suggests that a variable Δjyj≡
jyðe−Þj − jyðeþÞj should be a useful discriminator (the
more traditional approach is to utilize asymmetry observ-
ables, e.g., the reviews [27,28]). This can be further
quantified by computing the correlation between the linear
network response (before the Sigmoid activation) and Δjyj,
as shown in the right panel of Fig. 3. A correlation of 0.90 is
observed, implying that much of the remaining information
is contained in Δjyj. As a comparison, we also show the
equivalent result derived for the toy model of Sec. II in the
left panel of Fig. 3. Since the signal was linear in z by
construction, a perfect correlation is expected and demon-
strated. Performing this test on any new variables is a
powerful and quick method to assess their performance and
test their linearity.
Next, we plane the inputs using the full m-Δjyj depend-

ence and train new networks. The results are provided in
the last row of Table III. We see that an AUC approaching
1=2 is achieved for both the linear and deep networks. The
remaining bits of discriminating power could be resolved

FIG. 2. Histograms of the constructed variables normalized to unity. The top (bottom) panels are before (after) planing the input events
using the invariant mass m. The rapidity of the electron (positron) is specified by yðe−Þ (yðeþÞ).

TABLE II. The AUC output for a variety of input configura-
tions applied to the Z0

V model and the photon background.

ðE; p⃗Þ m Planed Linear AUC Deep AUC

✓ ✗ ✗ 0.746221(01) 0.988510(98)
✓ ✓ ✗ 0.938967(01) 0.989007(03)
✓ ✗ m 0.50550(29) 0.4942(48)

TABLE III. The AUC output for a variety of input configura-
tions applied to the Z0

L model and the photon background.
The variable Δjyj≡ jyðe−Þj − jyðeþÞj.
ðE; p⃗Þ m Planed Linear AUC Deep AUC

✓ ✗ ✗ 0.763280(05) 0.989353(59)
✓ ✓ ✗ 0.942004(02) 0.989826(10)
✓ ✗ m 0.626648(28) 0.6258(24)
✓ ✗ ðm;ΔjyjÞ 0.52421(15) 0.5320(25)
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by planing in 3D: ðm; yðeþÞ; yðe−ÞÞ. This would determine
to what extent it is due to physics as opposed to noise from
the histogramming procedure.

IV. OUTLOOK

We explored data planing, a probe of machine learning
algorithms designed to remove features in a given variable;
see also [6]. By iteratively planing training data, it is
possible to remove the machine’s ability to classify. As a
by-product, the planed variables determine combinations of
input variables that explain the machine’s discriminating
power. This procedure can be explored systematically but is
most efficient in tandem with physics intuition.

In the future, it would be interesting to examine this
procedure with more realistic training data that include
initial/final state radiation and detector effects. The appli-
cation to more complicated signals should also be tested.
With exotic signals, planing may need to be done in many
dimensions; perhaps a kernel smoothing procedure should
be applied, or a network can be trained to compute the
weights directly, which can then be utilized when training
the planed network. Choosing which variables to plane will
be increasingly challenging in higher dimensional phase
space, as highlighted in the example of jet images [6].
Careful treatment of correlations will also be relevant; see
[29,30] for related ideas.
One interesting extension would be to systematically test

a large set of Lorentz invariants in order to find the
combination that yields the largest performance drop.
This could reveal new variables for traditional searches.
Finally, what information is contained in jets could be
explored with planing to complement the existing satu-
ration analyses [11,12]. We intend to investigate many of
these applications in future studies.
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