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In this paper, we compute the forward-backward asymmetry and the isospin asymmetry of the
B → K�μþμ− decay. The B → K� transition form factors (TFFs) are key components of the decay.
To achieve a more accurate QCD prediction, we adopt a chiral correlator for calculating the QCD light cone
sum rules for those TFFs with the purpose of suppressing the uncertain high-twist distribution amplitudes.
Our predictions show that the asymmetries under the standard model and the minimal supersymmetric
standard model with minimal flavor violation are close in shape for q2 ≥ 6 GeV2 and are consistent with
the Belle, LHCb, and CDF data within errors. When q2 < 2 GeV2, their predictions behave quite
differently. Thus, a careful study on the B → K�μþμ− decay within the small q2 region could be helpful for
searching new physics beyond the standard model. As a further application, we also apply the B → K� TFFs
to the branching ratio and longitudinal polarization fraction of the B → K�νν̄ decay within different models.
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I. INTRODUCTION

Processes involving flavor changing neutral current
(FCNC) provide important platforms for testing the stan-
dard model (SM) and for the searching of new physics
beyond the SM. Among them, the B-meson exclusive
decays, such as the B → K�μþμ− with the cascade decay
K� → Kπ, is important. This is because the measurements
of their four-body final state angular distributions provide
abundant information on probing and discriminating differ-
ent scenarios of new physics.
The B-meson exclusive decay requires a proper factori-

zation of the long-distance and the short-distance physics,
which could generally be distinguished by the heavy quark
mass mb emerged in the hadronic matrix elements. By
further taking the heavy-quark limit,mb → ∞, the hadronic
amplitudes arising from the hard gluon exchanges can be
factorized into the perturbative scattering kernels and the
nonperturbative but universal hadronic quantities. This
treatment has been successfully introduced in dealing with

the nonleptonic B-meson decays, the heavy-to-light tran-
sition form factors, and the radiativeB-meson decays [1–4].
In the paper, we shall focus on the forward-backward

and the isospin asymmetries of the B → K�μþμ− exclusive
decay, which are sensitive to the Wilson coefficients and
could be used to test the new physics scenario beyond
SM. The new physics part of Wilson coefficients are model
dependent, some discussions can be found in Refs. [5–7].
According to the minimal supersymmetric standard model
(MSSM) with minimal flavor violation (MFV), all flavor
transitions occur only in the charged-current sector and are
determined by the known CKMmixing angles. This idea is
also adopted by several theoretical schemes in which the
communication of the supersymmetry breaking to the
observable particles occurs via flavor-independent inter-
actions. In many of those schemes, the departure from the
MFV hypothesis is rather small [8]. To increase the
predictivity of the MSSM with MFV, one may follow
several restrictions which state that all supersymmetric
particles except for charginos, sneutrinos, and charged
Higgs fields are about 1 TeV; heavy particles shall be
integrated out, resulting in a “low-energy” effective theory
in terms of light SUSYand SM particles; the weak effective
Hamiltonian includes only the SM operators and the down-
squark sector including a flavor diagonal mass matrix [9].
In the paper, we shall adopt the Wilson coefficients under
the SUSY MFV model as an explanation of how the new
physics terms could affect the SM predictions.
Furthermore, large uncertainties in predicting the B →

K�μþμ− decay come from the nonperturbative quantities,
namely the B → K� transition form factors (TFFs).
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Those TFFs have been studied within various approaches
such as the relativistic quark model [10,11], the light cone
sum rules (LCSR) [12–17], the lattice QCD [18–20], and
etc. The LCSR predictions are reliable from the hard region
around the large recoil point to the soft contribution below
m2

b − 2mbχ (χ ∼ 500 MeV is the typical hadronic scale
of the decay); thus, it provides an important bridge for
connecting the results of various approaches and for
comparing with the data.
The LCSR is based on the operator product expansion

(OPE), which parametrizes the nonperturbative dynamics
into light cone distribution amplitudes (LCDAs). To com-
pare with that of the usually considered pseudoscalar
LCDA, the vector meson’s LCDA has more complex twist
structures. Even though the high-twist LCDAs are gen-
erally power suppressed, their contributions are sizable,
especially in specific kinematic region. The inaccurateness
of high-twist LCDAs then lead to important systematic
errors for the LCSR predictions. A practical way to
suppress the uncertainties from those uncertain high-twist
LCDAs is to take a proper LCSR correlator. For example,
the contributions from the high-twist LCDAs can be highly
suppressed by using chiral correlators [21–23]. As an
application of those more accurate TFFs, we shall recalcu-
late the forward-backward and isospin asymmetries of the
B → K�μþμ− decay and also the branching ratio and
longitudinal polarization fraction of the B → K�νν̄ decay.
The remaining parts of the paper are organized as

follows. In Sec. II, we describe our calculation technology
for deriving the forward-backward and isospin asymmetries.
In Sec. III, we present numerical results and discussions on
the TFFs and the asymmetries of the B → K�μþμ− decay
within the SMand the SUSYwithMFV.Andwe also present
the results for the branching ratio and longitudinal polari-
zation fraction of the B → K�νν̄ decay within different
models in Sec. III. Section IV is reserved for a summary.

II. CALCULATION TECHNOLOGY

Within the SM, the B → K�μþμ− decay is induced by a
set of operators Oi appearing in the weak effective
Hamiltonian [24],

Heff ¼
GFffiffiffi
2

p
�X2

i¼1

ðλuCiOu
i þ λcCiOc

i Þ − λt
X10
i¼3

CiOi

�
; ð1Þ

where λq ¼ V�
qsVqb, and the Wilson coefficients Ci are

perturbatively calculable, whose values shall be alternated
when new particles beyond the SM are included.

The differential decay width of B → K�μþμ− over the
squared transition momentum (q2) and the angle (θ) takes
the form [2],

d2Γ
dq2d cos θ

¼ G2
FjV�

tsVtbj2
128π3

m3
Bλ

3/2ðq2Þ
�
αem
4π

�
2

×

�
2sð1þ cos2θÞξ⊥ðq2Þ2ðjCð0Þ⊥9 ðq2Þj2

þ jC10ðμbÞj2Þ þ ð1 − cos2θÞ
�
EK�ξkðq2Þ

mK�

�
2

× ðjCð0Þk9 ðq2Þj2 þ jC10ðμbÞj2Δkðq2Þ2Þ

− 8s cos θξ⊥ðq2Þ2ℜe½Cð0Þ⊥9 ðq2Þ�C10ðμbÞ
�
;

ð2Þ
where θ is the angle between the positively charged muon
and the B meson in the center-of-mass frame of the
muon pair. The phase-space factor λðq2Þ ¼ ð1 − sÞ2 −
2rð1þ sÞ þ r2 with s ¼ q2/m2

B and r ¼ m2
K� /m2

B. q2 is
the invariant mass of the muon pair and αem ¼ g2em/ð4πÞ is
the fine-structure constant. ξλðq2Þ with λ ¼ ðk;⊥Þ are
transverse and longitudinal B → K� TFFs. The first two
terms with angular dependence ð1� cos2 θÞ correspond to
the transversely and longitudinally polarized K� meson,
respectively. The third term generates the forward-
backward asymmetry with respect to the plane perpendicular
to the muon momentum in the center-of-mass frame of the
muon pair. The factor Δkðq2Þ takes the form

Δkðq2Þ ¼ 1þ 2CF

�
L − 1 −

π2mK�fBf
k
K�

N cmBE3
K�ξkðq2Þ

q2

× Λ−1
B;þðq2Þ

Z
1

0

dx
ϕk
2;K�ðxÞ
x̄

�
asðμbÞ; ð3Þ

where L¼−ðm2
b−q2Þlnð1−q2/m2

bÞ/q2, x̄¼1−x, asðμbÞ ¼
αsðμbÞ/ð4πÞ, and EK� ¼ ðm2

B − q2Þ/ð2mBÞ. Λ−1
B;þðq2Þ and

Λ−1
B;−ðq2Þ are inverse moments of the B-meson LCDAs.
Using Eq. (17), the differential forward-backward asym-

metry takes the form

dAFB

dq2
¼

R
1
0 d cos θ

d2Γ
dq2d cos θ −

R
0
−1 d cos θ

d2Γ
dq2d cos θ

dΓ/dq2
; ð4Þ

and the differential isospin asymmetry takes the form

dAIðq2Þ
dq2

¼ ℜe½b⊥d ðq2Þ − b⊥u ðq2Þ�jCð0Þ⊥9 ðq2Þj2
jC10ðμbÞj2 þ jCð0Þ⊥9 ðq2Þj2

�
1þ

E2
K�ℜe½bkdðq2Þ − bkuðq2Þ�jCð0Þk9 ðq2Þj2ξ2kðq2Þ

4sm2
K�ℜe½b⊥d ðq2Þ − b⊥u ðq2Þ�jCð0Þ⊥9 ðq2Þj2ξ2⊥ðq2Þ

�

×

�
1þ E2

K�

4sm2
K�

jCð0Þk9 ðq2Þj2 þ jC10ðμbÞj2
jCð0Þ⊥9 ðq2Þj2 þ jC10ðμbÞj2

ξ2kðq2Þ
ξ2⊥ðq2Þ

�−1
; ð5Þ
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where

b⊥q ðq2Þ ¼
24π2mBfBeq

q2ξ⊥ðq2ÞCð0Þ⊥9 ðq2Þ

�
f⊥K�

mb
K⊥

1 ðq2Þ þ
fkK�mK�

6s̄mB

× Λ−1
B;þðq2ÞK⊥

2 ðq2Þ
�

ð6Þ

and

bkqðq2Þ ¼ 8π2mK�fBf
k
K�eq

mBEK�ξkðq2ÞCð0Þk9 ðq2Þ
Λ−1
B;−ðq2ÞKk

1ðq2Þ: ð7Þ

Here, eq is the electric charge of the spectator quark, eu ¼
2/3 and ed ¼ −1/3. The SM Wilson coefficients Cð0Þλ

9 ðq2Þ
can be read from Refs. [9,25]. The expressions of K⊥

1;2 and

Kk
1 up to the subleading Λh/mB expansion can be found in

Refs. [2,3], whose effects are small for bkqðq2Þ but are

sizable for b⊥q ðq2Þ. As a cross-check, by taking the limit
q2 → 0, due to fact that the photon pole dominates the

Cð0Þ⊥
9 coefficient, we have AIð0Þ ¼ ℜe½b⊥d ð0Þ − b⊥u ð0Þ�,

which rightly equals to the isospin asymmetry of the
B → K�γ decay.
The expressions of the TFFs ξλðq2Þ can be related to the

usually defined B → K� TFFs A1;2ðq2Þ and T1ðq2Þ via the
following way [25]:

ξ⊥ðq2Þ ¼ T1ðq2Þ; ð8Þ

ξkðq2Þ ¼
mB þmK�

2EK�
A1ðq2Þ −

mB −mK�

mB
A2ðq2Þ: ð9Þ

As mentioned in the Introduction, we adopt the expressions
of the TFFs A1;2ðq2Þ and T1ðq2Þ that have been derived
under the LCSR approach by using a right-handed chiral
correlator [21,23] to get the final LCSRs for ξ⊥ðq2Þ and
ξkðq2Þ, which take the form

ξ⊥ðq2Þ ¼
m2

bm
2
K�f⊥K�

m2
BfB

�Z
1

0

du
u
e
m2
B
−sðuÞ
M2

�
1

m2
K�

Θðcðu; s0ÞÞϕ⊥
2;K� ðu; μÞ − m2

b

4u2M4
˜̃Θðcðu; s0ÞÞϕ⊥

4;K�ðuÞ − 2

uM2

× Θ̃ðcðu; s0ÞÞILðuÞ − Θ̃ðcðu; s0ÞÞ
H3ðuÞ
M2

�
þ
Z

Dαi

Z
1

0

dve
m2
B
−sðXÞ
M2

5

4X2M2
Θ̃ðcðX; s0ÞÞΨ⊥

4;K�ðαÞ
�
; ð10Þ

ξkðq2Þ ¼
mbm2

K�fkK�

mBfB

�Z
1

0

du
u
e
m2
B
−sðuÞ
M2

�
Cm4

B − ðCq2 þ uÞm2
B þ um2

K�

um2
Bm

2
K�

Θðcðu; s0ÞÞϕ⊥
2;K�ðuÞ þ

�
ðm2

B − q2ÞΘðcðu; s0ÞÞ

þm2
B −m2

K�

m2
BM

2
Θ̃ðcðu; s0ÞÞ

�
ψk
3;K� ðuÞ þ 1

4u

�
ðm2

B − q2ÞΘðcðu; s0ÞÞ þ
�
½u− ðm2

B − q2ÞðC− 2m2
bÞ�

1

uM2
−

m2
K�

m2
BM

2

�

× Θ̃ðcðu; s0ÞÞ þ
m2

b½uðm2
B −m2

K� Þ− Cm2
Bðm2

B − q2Þ�
u2m2

BM
4

˜̃Θðcðu; s0ÞÞ
�
ϕ⊥
4;K� ðuÞ þ 2

u

�
ðm2

B − q2ÞΘðcðu; s0ÞÞ

þ uðm2
B −m2

K� Þ− Cm2
Bðm2

B − q2Þ
um2

BM
2

Θ̃ðcðu; s0ÞÞ−
m2

B −m2
K�

um2
BM

4
ðC− 2m2

bÞ ˜̃Θðcðu; s0ÞÞ
�
ILðuÞ

−
�
ðm2

B − q2ÞΘðcðu; s0ÞÞ−
1

um2
BM

2
½uðm2

B −m2
K� Þ− 2m2

bm
2
Bðm2

B − q2Þ�Θ̃ðcðu; s0ÞÞ
�
H3ðuÞ

�

þ
Z

Dαi

Z
1

0

dve
m2
B
−sðXÞ
M2

1

2X2m2
BM

2

��
m2

B

X
ðm2

B − q2ÞðC−XM2Þ−m2
B þm2

K�

�

× ½ð4v− 1ÞΨ⊥
4;K� ðαÞ− Ψ̃⊥

4;K� ðαÞ�− ðm2
B −m2

K� Þ4vΦ⊥
3;K� ðαÞ

�
; ð11Þ

where C¼m2
bþu2m2

K� −q2, sðϱÞ¼ ½m2
b− ϱ̄ðq2−ϱm2

K� Þ�/ϱ
with ϱ ¼ ðu; XÞ, and X ¼ α1 þ α3, cðϱ; s0Þ ¼ ϱs0 −m2

b þ
ϱ̄q2 − ϱϱ̄m2

K� . Θðcðϱ; s0ÞÞ is the usual step function,

Θ̃ðcðϱ; s0ÞÞ and ˜̃Θðcðϱ; s0ÞÞ are step functions with surface
terms which are defined in Ref. [21].

Those two formulas show that the LCSRs for ξ⊥ðq2Þ and
ξkðq2Þ are free of contributions from most of the high-twist
LCDAs, and the remaining high-twist ones are generally
suppressed by δ2 ∼ ðm�

K/mbÞ2 ∼ 0.03 to compare with the
leading-twist terms; thus, uncertainties from the high-twist
LCDAs themselves are effectively suppressed, and a more
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accurate prediction for the TFFs ξ⊥ðq2Þ and ξkðq2Þ can be
achieved.

III. NUMERICAL RESULTS AND DISCUSSIONS

The K�-meson transverse decay constant f⊥K� and
the B-meson decay constant fB are taken as, f⊥K� ¼
0.185ð9Þ GeV and fkK� ¼ 0.220ð5Þ GeV [26] and fB ¼
0.160� 0.019 GeV [22]. We set the b-quark pole mass
mb ¼ 4.80� 0.05 GeV, the K�-meson mass mK� ¼
0.892 GeV, and the B-meson mass mB ¼ 5.279 GeV [27].

A. The B → K� TFFs ξλðq2Þ
The input parameters for the TFFs ξk;⊥ðq2Þ are taken to

be the same as the ones used by Refs. [21,23]. For example,
we adopt the same K�-meson leading-twist LCDA ϕλ

2;K� of
Refs. [21,23] to do the discussion,

ϕλ
2;K� ðx; μ0Þ

¼ Aλ
2;K�

ffiffiffiffiffiffiffiffi
3xx̄

p
Y

8π3/2f̃λK�bλ2;K�
½1þ Bλ

2;K�C3/2
1 ðξÞ

þ Cλ
2;K�C3/2

2 ðξÞ� exp
�
−bλ22;K�

x̄m2
s þ xm2

q − Y2

xx̄

�

×

�
Erf

�
bλ2;K�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ20 þ Y2

xx̄

r �
− Erf

�
bλ2;K�

ffiffiffiffiffiffi
Y2

xx̄

r ��
; ð12Þ

where μ0 ∼ 1 GeV is the factorization scale, ErfðxÞ ¼
2ffiffi
π

p
R
x
0 e

−t2dt, x̄ ¼ 1 − x, and Y ¼ x̄ms þ xmq. x is the

momentum fraction of the s quark over the K� meson.
The constituent quark masses are taken as mq ≃ 300 MeV
and ms ≃ 450 MeV. We adopt four constraints to set the
parameters of the LCDA, i.e., the normalization condition,
hk2⊥i1/22;K� ¼ 0.37ð2Þ GeV [21], and the two Gegenbauer

moments a⊥1 ¼ 0.04ð3Þ and a⊥2 ¼ 0.10ð8Þ [ak1 ¼ 0.03ð2Þ
and ak2 ¼ 0.11ð9Þ] [26].
We adopt the usual criteria to set the LCSR parameters,

the Borel window, and the continuum threshold s0, of the
B → K� TFFs: (I) The continuum contribution is required
to be less than 30% of the total LCSR, and all high-twist
DAs’ contributions are suppressed to be less than 15%
of the total LCSR; (II) The derivatives of the LCSRs
over ð−1/M2Þ give the LCSRs for mB, and for self-
consistency, we require all the predicted B-meson masses
to be fullfilled in comparing with the experimental one,
e.g. jmLCSR

B −mexp
B j/mexp

B ≤ 0.1%.
We present the B → K� TFFs at the large recoil point

q2 ¼ 0 GeV2 in Table I, where the LCSR predictions of
Refs. [13,25,28] are presented as a comparison. The LCSRs
of Refs. [13,28] are derived by using the usual correlator,
in which all twist-2, 3, 4 LCDAs are in the LCSRs.
Table I shows that the LCSRs under a different choice

of correlators are consistent with each other within errors,
indicating the LCSRs are independent to the choice of
correlators. A detailed discussion of the consistency of
the LCSRs under a different choice of correlators can be
found in Ref. [23]. The differences among different LCSRs
are mainly caused by a different choice of the dominant
leading-twist K� LCDA. For example, the use of AdS/QCD
holographic leading-twist LCDA leads to a much smaller
ξkð0Þ [25].
The contribution from the leading-twist LCDA ϕ⊥

2;K� has
been amplified by using the chiral correlator; thus, the
systematic errors from the ϕ⊥

2;K� parameters shall be
amplified. This leads to a slightly larger error than those
LCSRs for a usual correlator. By comparing with the data,
this fact can be inversely adopted to achieve a better
constraint on ϕ⊥

2;K� . The high-twist terms for the LCSRs
[13,28] follow the δ-power counting rule, which could be
large for δ1 twist-3 terms. By using the chiral correlator, the
high-twist LCDAs’ contributions are greatly suppressed
due to chiral suppression; thus, their own uncertainties to
the LCSR can be safely neglected, and the accuracy of
the LCSRs can be greatly improved. For example, we find

that the contributions from the twist-3 LCDA Φk
3;K� and the

twist-4 LCDA Ψ⊥
4;K� provide less than 0.1% of the total

LCSRs.
The LCSR approach is applicable in a large and

intermediate recoil region, 0 ≤ q2 ≤ 15 GeV2. We extrapo-
late its prediction to the physically allowed q2 region by
using a simplified series expansion [15,29], which is based
on a rapidly converging series over the parameter zðtÞ, i.e.,

zðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ; ð13Þ

where t� ¼ ðmB �mK� Þ2 and t0 ¼ tþð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−/tþ

p Þ.
The form factors are them expanded as

Fiðq2Þ ¼
1

1 − q2/m2
R;i

X
k¼0;1;2

aik½zðq2Þ − zð0Þ�k; ð14Þ

whereFi stand for theTFFs ξλðq2Þ, and the resonancemasses
mR;i can be found in Ref. [30]. The coefficients ai0 ¼ Fið0Þ.
The parameters ai1 and ai2 are determined by requiring the

TABLE I. The B → K� TFFs ξλðq2Þ at the large recoil point
q2 ¼ 0. The errors are squared average of all mentioned error
sources, where the LCSR predictions of Refs. [13,25,28] are
presented as a comparison.

ξkð0Þ ξ⊥ð0Þ
Our prediction 0.129þ0.006

−0.009 0.351þ0.036
−0.035

Ref. [13] 0.126(11) 0.333(28)
Ref. [28] 0.118(8) 0.266(32)
Ref. [25] 0.076 0.245
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“quality of fit (Δ)” to be less than one [13], which is defined
as Δ ¼ P

tjFiðtÞ − Ffit
i ðtÞj/

P
tjFiðtÞj × 100%, where t ∈

½0; 1
2
;…; 27

2
; 14� GeV2. The extrapolated B → K� TFFs

are presented in Fig. 1, in which the lattice QCD prediction
[20] have also been presented. Figure 1 shows that our
presentLCSRpredictions are consistentwith the latticeQCD
predictions within errors. In the following, we adopt the
extrapolated TFFs to study the forward-backward asymme-
try and the isospin asymmetry for the B → K�μþμ− decay.

B. The forward-backward and the isospin
asymmetries of the B → K�μ+ μ− decay

The Wilson coefficients are scale dependent, whose
values at the lower scales, such as the typical momentum
flow of the B-meson decay, μb ∼mb, or the hadronic scale,
μh ¼

ffiffiffiffiffiffiffiffiffiffi
Λhμb

p
[25], can be derived from the values at the

weak scale μW ¼ OðMWÞ via the renormalization group
equation. At the electroweak scale, the Wilson coefficients
can be written as

CiðμWÞ ¼ CiðμWÞSM þ δCiðμWÞH þ δCiðμWÞSUSY
¼ Cð0Þ

i ðμWÞSM þ δCð0Þ
i ðμWÞH þ δCð0Þ

i ðμWÞSUSY
þ αsðμWÞ

4π
½Cð1Þ

i ðμWÞSM þ δCð1Þ
i ðμWÞH

þ δCð1Þ
i ðμWÞSUSY�; ð15Þ

where i ¼ ð1;…; 10Þ. The expression of Cð0Þ
i and Cð1Þ

i can

be found in Ref. [31], and those of δCð0;1Þ
7;8 can be found in

Ref. [32]. Up to the NLO level, the first six Wilson
coefficients C̄iðμÞ can be rewritten as

C̄iðμÞ ¼ CiðμÞ þ
αsðμÞ
4π

TijCjðμÞ i ∈ f1; 2;…; 6g; ð16Þ

in which Tij is the transformation matrix [2]. The SUSY
contributions to C9 and C10 have been calculated in
Refs. [33,34]. The interactions among the charged Higgs
and the up-type quarks, which are from the SUSY model or
the SM models with two Higgs doublet, may have sizable
contributions; those terms are represented by a subscript H.
Because the NLO SUSY contribution to the four-quark

penguin operators are also sizable, we treat it as δCð1Þ
i ðμWÞH

[35]. The central values of NLL Wilson coefficients at a
scale μb ¼ 4.6 GeV and μh ¼ 1.52 GeV are presented in
Table II, where as suggested by Ref. [2], we take
Ceff
7 ¼ C7 − ð4C̄3 − C̄5Þ/9 − ð4C̄ − C̄6Þ/3 and Ceff

8 ¼ C8þ
ð4C̄3 − C̄5Þ/3.
We adopt MSSM with MFVas a typical SUSY model to

probe the possible new physics effect. The basic input for
the SUSY parameters is the ratio of the vacuum expectation
values of the Higgs doublet, i.e., tan β, and we take tan β ∈
½2; 40� to do the discussion. A larger tan β could lead to a
flip of sign for Ceff

7;8 [36], which arouses people’s great
interest. The behaviors of the two ranges as a function of
the free parameters are quite different, we call the model for
tan β ∈ ½2; 10� as MFV-I and the model for tan β ¼ 40 as
MFV-II. The mechanisms that enhance the SUSY contri-
bution to Ceff

7 at a large tan β are not working for C9;10

[33,34]. For instance, the charged Higgs contribution
dominant for Ceff

7 at a large tan β is suppressed for C9;10,
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FIG. 1. The extrapolated B → K� TFFs ξλðq2Þ based on the
present LCSR predictions. The shaded bands stand for the
theoretical errors. The lattice QCD [20] prediction has also been
presented.

TABLE II. Central values of the Wilson coefficients at the
next-to-leading log accuracy at the scale μb ¼ 4.60 GeV and
μh ¼ 1.52 GeV, respectively.

C̄1 C̄2 C̄3 C̄4 C̄5 C̄6

μb −0.148 1.060 0.012 −0.035 0.010 −0.039
μh −0.342 1.158 0.022 −0.063 0.018 −0.091

Ceff
7 Ceff

8
C9 C10

μb −0.307 −0.169 4.238 −4.641
μh −0.359 −0.211 4.502 −4.641
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and the modifications for the forward-backward and the
isospin asymmetries shall be mainly due to the new physics
contributions to Ceff

7;8. In allowable parameter space, the
ranges of the new physics part of Ceff

7;8 at the scales μb and
μh are

δCI
7ðμbÞ ∈ ½−0.028; 0.168�; δCI

7ðμhÞ ∈ ½−0.033; 0.196�;
δCI

8ðμbÞ ∈ ½−0.256; 0.043�; δCI
8ðμhÞ ∈ ½−0.320; 0.053�;

δCII
7 ðμhÞ ∈ ½0.963; 2.023�; δCII

7 ðμbÞ ∈ ½0.825; 1.733�;
δCII

8 ðμbÞ ∈ ½0.284; 0.810�; δCII
8 ðμhÞ ∈ ½0.355; 1.011�;

where I corresponds to the MFV-I and II corresponds to the
MFV-II, respectively.
By using the parameters in the SM and the MSSMMFV

scenarios allowed from the constraints discussed above,
we give our prediction on the forward-backward and the
isospin asymmetries of the B → K�μþμ− decay in the
following paragraphs.
The differential distributions for the forward-backward

asymmetry are presented in Fig. 2, where the measurements
from the Belle [37], the CDF [38], the LHCb [39], and the
CMS [40] Collaborations have been presented. Figure 2
shows that

(i) In a large q2 region, q2 ∈ ½6; 19� GeV2, three curves
behave closely, all of which increase monotonously
with the increment of q2. The magnitude of the
MSSM MFV-I terms generally decreases with the
increment of q2, i.e., its portion to the corresponding
SM error becomes 34%, 11%, 4%, and ≤ 1% for
q2 ¼ 6 GeV2, 8 GeV2, 10 GeV2, and 20 GeV2,
respectively. The magnitude of the MSSM MFV-II
terms shall first increase and then decreases with the
increment of q2, i.e., its portion to the corresponding
SM error becomes 2%, 14%, 13%, 5%, and ≤ 1%

for q2 ¼ 6 GeV2, 8 GeV2, 10 GeV2, 12 GeV2, and
20 GeV2, respectively.
Such a smaller effect to the SM prediction at the

large-q2 region indicates that one can not distinguish
those MSSM MFV models with the SM one in the

large q2 region. In the large q2 region, the predicted
forward-backward asymmetry agrees with the Belle
[37] and the CDF [38] measurements within errors.
However, even by including the MSSM MFV-I or
MFV-II terms, we still cannot explain the trends of a
smaller forward-backward asymmetry around
q2 > 16 GeV2 as indicated by the LHCb [39] and
the CMS [40] measurements. Thus, we need new
SUSYmodels to explain this discrepancy, or we need
more data to confirm those measurements.

(ii) Main differences among the various models lie in
the low q2 region, e.g., q2 ≤ 6 GeV2, indicating
the MSSM effects could be important and sizable.
The SM prediction has a crossover around
q2 ∼ 3.2 GeV2, which shifts to a smaller value for
MSSM MFV-I. The forward-backward asymmetries
of SM and MSSM MFV-I behave closely in shape,
both of which are negative for the small q2 region and
are consistentwith themeasurements.Meanwhile, the
forward-backward asymmetries of MSSM MFV-II
are always positive in the low q2 region, which is due
to the flip of the sign forCeff

7;8 at a large tan β and is out
of the LHCb and CMS measurements. Thus, the
present data prefer a smaller tan β, i.e.,MSSMMFV-I.
Because of different behaviors of the forward-back-
ward asymmetries under MSSMMFV-I and MFV-II,
the more precise measurements in the low q2 region
shall be helpful for constraining a more reliable range
for the key MSSM parameter tan β.

Next, we present the integrated forward-backward asym-
metry for q2 ∈ ½1; 6� GeV2 in Table III. Here, the first
uncertainty is the SM error, which is mainly from the LCSR
predictions, and the second one is the MSSM MFV-I or
MFV-II error, which is dominated by the possible choices
of Ceff

7;8. In Table III, we also present the Belle [37], the
CMS [40], and the ATLAS [41] data as a comparison.
Table III confirms our above observation that the MSSM
MFV-I gives a SM-like prediction, both of which are
consistent with the measurements within errors, while,
the MSSM MFV-II prefers a quite large asymmetry AFB.
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FIG. 2. The forward-backward asymmetries, where the shaded bands stand for the theoretical errors. The measurements from the Belle
[37], the CDF [38], the LHCb [39], and the CMS [40] Collaborations have also been presented.
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Finally, we present the differential distribution for the
isospin asymmetry of the B → K�μþμ− decay in Fig. 3.
The first inset of Fig. 3 is the SM prediction, where the
uncertainties are squared averages of all SM uncertainties
which are dominated by the LCSR prediction of the TFFs.
The SM prediction by using the AdS/QCD-LCDA for q2 ≤
8 GeV2 [25] is presented as a comparison. It shows that
even though the AdS/QCD-LCDA is quite different from
our present choice of LCDA, leading to different TFFs,
the isospin asymmetries behave closely, which are about
0.5–0.6 for q2 → 0 and tend to zero for the larger q2 region.
The second and third subfigures are for the SMþMSSM
MFV-I and SMþMSSM MFV-II scenarios, in which the
uncertainties are the combined ones of SM and MSSM
input parameters. The Belle [37] and the LHCb [39]
measurements are included in those figures.
The narrow error bands for the isospin asymmetries

under the SM, the MSSM MFV-I, and the MSSM MFV-II
are due to the fact that the isospin asymmetry is dominated
by the penguin coefficients C3–6, which are only slightly
affected by both the SM and MSSM MFV input param-
eters. Because the measurements are still of large errors,
all the predictions are consistent with the data. More
subtly, the SM and MSSM MFV-I isospins are positive for
q2 ∈ ½0; 1.4� GeV2 and negative for q2 ∈ ½1.5; 2.9� GeV2,

agreeing with the LHCb trends; the MSSM MFV-II also
leads to a smaller flip of the sign of the isospin asymmetry,
which is negative at q2 ∈ ½0; 1.4� GeV2.

C. Branching ratio and longitudinal polarization
fraction for B → K�νν̄

The B → K�νν̄ decay has the virtue that the angular
distribution of the K� decay products allows us to extract
information on the K� polarization, similar to the
B → K�μþμ− decays. The longitudinal and transverse
differential distributions versus q2, the square of the
invariant mass of the νν̄ pair, is given as [42–44]

dΓL

dq2
¼ NjH0ðq2Þj2;

dΓT

dq2
¼ N½jH⊥ðq2Þj2 þ jHkðq2Þj2� ð17Þ

with the coefficient N ¼ G2
FjVtbV�

tsj2α2em
256π5mB

λ1/2ðq2Þq2. The had-

ronic transversity amplitudes H⊥;k;0ðq2Þ are

H⊥ðq2Þ ¼
ffiffiffi
2

p ðCL þ CRÞm2
Bλ

1/2ðq2Þ
mB þmK�

Vðq2Þ;

Hkðq2Þ ¼
ffiffiffi
2

p
ðCL − CRÞðmB þmK� ÞA1ðq2Þ;

H0ðq2Þ ¼ −
1

2mK�
ffiffiffiffiffi
q2

p ðCL − CRÞ
�
ðmB þmK�Þ

× ðm2
B −m2

K� − q2ÞA1ðq2Þ

−
m4

Bλðq2Þ
mB þmK�

A2ðq2Þ
�
: ð18Þ

The total differential decay width dΓ/q2 ¼ dΓL/q2 þ
dΓT /q2. To calculate the branching ratios, we use the
average value from the B� lifetime τBþ and the B0 lifetime
τB0 for B → K�νν̄ decay. Meanwhile, the K�-meson
longitudinal and transverse polarization fraction FL;T are
defined as
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FIG. 3. The isospin asymmetry of the B → K�μþμ− decay. The SM prediction by using the AdS/QCD LCDA [25] is presented in the
first diagram as a comparison. The measurements from the Belle [37] and the LHCb [39] Collaborations are also presented.

TABLE III. Integrated forward-backward asymmetries for q2 ∈
½1; 6� GeV2 under the SM, the MSSM MFV-I, and the MFV-II,
respectively. The results for the, the Belle [37], the CMS [40], and
ATLAS [41] measurements are also presented.

AFBðq2 ∈ ½1; 6� GeV2Þ
SM 0.121þ0.212

−0.357

SMþMFV-I 0.425þ0.225þ0.395
−0.369−0.424

SMþMFV-II 1.297þ0.203þ0.227
−0.189−0.213

Belle [37] 0.26þ0.27
−0.30 � 0.07

CMS [40] −0.05� 0.03

ATLAS [41] 0.07� 0.20� 0.07
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FL;T ¼ dΓL;T /dq2

dΓ/dq2
; ð19Þ

which satisfy FL þ FT ¼ 1. The TFFs A1;2ðq2Þ and Vðq2Þ
have also been calculated by using a right-handed chiral
correlator under the LCSR approach [21,23].
Principally, the Wilson coefficients CL and CR are

complex. One usually defines two real parameters,

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCLj2 þ jCRj2

p
jCSM

L j2 ; η ¼ −
ReðCLC�

RÞ
jCLj2 þ jCRj2

; ð20Þ

and the differential decay branching ratio and longitudinal
polarization fraction can be expressed as

dBðB → K�νν̄Þ
dq2

¼ dBSMðB → K�νν̄Þ
dq2

ð1þ 1.31ηÞϵ2

FLðB → K�νν̄Þ ¼ FSM
L ðB → K�νν̄Þ 1þ 2η

1þ 1.31η
: ð21Þ

The Wilson coefficient CSM
R for the SM is negligibly small,

leading to ηSM ≃ 0. The Wilson coefficient CSM
L for the SM

has been calculated at the next-to-leading order QCD
corrections [45,46], which gives CSM

L ¼ −XðxtÞ/ sin2 θW ,
where xt ¼ m2

t /m2
W and XðxiÞ is the corresponding loop

function, which gives CSM
L ¼ −6.38ð6Þ [47].

Different to the above considered case of two leptons in a
final state which uses MSSM with MFV to deal with the
new physics effect, as suggested by Ref. [47], we adopt the
MSSM with a generic flavor violating (GFV) to deal with
the two Wilson coefficients CL and CR for the present case
of two neutrinos in the final state. In this model, the MSSM
contributions to CR turn out to be very small, which implies
that η ≃ 0, thus leads to a SM-like prediction on FLðq2Þ, i.e.
FLðq2Þ ≃ FSM

L ðq2Þ. Thus, one cannot use the observable
FLðq2Þ along to probe the MSSM.
We present our prediction of the K�-meson longitudinal

polarization fraction FSM
L in Fig. 4. As a comparison we

also present the QM result [48] and the other two LCSR
predictions, i.e., LCSR-I [28] and LCSR-II [13] in the
figure. Figure 4 shows our results are consistent with
LCSR-II and QM results within reasonable errors in the
whole q2 region, while the LCSR-I has a larger FLðq2Þ in
the intermediate and large q2 region, such as 6 GeV2 <
q2 < ðmB −m�

KÞ2. We present a comparison of the SM
differential branching ratio of the B → K�νν̄ decay under
various approaches in Fig. 5. It shows that different TFFs
lead to different behaviors, the LCSR-I and QM results
agree with our differential branching ratio within errors,
while the LCSR-II agrees with our prediction only for the
small q2 region, e.g., 0 < q2 < 10 GeV2. Thus, a more
accurate prediction on the B → K� TFF shall be helpful for
a more accurate SM prediction.

The possible visible MSSM effects in CL are generated
by chargino contributions through a large ðδRLu Þ32 mass
insertion. Because those chargino contributions are not
sensitive to the choice of tan β, we choose to work in the
low tan β regime, i.e., tan β ¼ 5. The necessary inputs for
the MSSM with GFV can be found in Ref. [47], in which
there are two typical sets of parameters, and we call them
MSSM GFV-I and GFV-II, respectively.
By using the parameters in the SM and the MSSM with

GFV scenarios allowed from the constraints discussed
above, we give our prediction on the differential branching
ratio in Fig. 6. The SM plus MSSM GFV-I and GFV-II
predictions are consistent with the SM prediction in the
low q2 region, but are different at the high q2 region,
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FIG. 4. TheK�-meson longitudinal polarization fraction FSM
L of

the B → K�νν̄ decay within the SM. The solid line together with
the shaded band is our present prediction with the uncertainties
from the TFFs A1;2 and V. The dashed, the dash-dot, and the
dotted lines are for the LCSR-I result [28], LCSR-II result [13],
and the QM result [48], respectively.
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FIG. 5. A comparison of the SM differential branching ratio of
the B → K�νν̄ decay under various approaches, in which the
shaded band stands for the uncertainties of our prediction from
the TFFs A1;2 and V and the Wilson coefficient CL.
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e.g., q2 > 7 GeV2. Thus, a careful measurement at the high
q2 region could be helpful to clarify whether there is new
physics, and which one, MSSM GFV-I or MSSM GFV-II,
is more preferable.
To have a clear look at the differences among different

models and approaches, we integrate the momentum trans-
fer in the whole physical region 0 < q2 < ðmB −m�

KÞ2 to
get the total branching ratio and the q2-integrated form of
FL, which is define as

hFLi ¼
ΓL

Γ
; ð22Þ

where

ΓðLÞ ¼
Z ðmB−m�

KÞ2

0

dq2
dΓðLÞ
dq2

: ð23Þ

We present the results for the branching ratio B and the
longitudinal polarization fraction hFLi of B → K�νν̄ in
Table IV. As a comparison, we also present the 2017 Belle

Collaboration measurements [49], the results of Ref. [47]
(ABSW), and the SM prediction of Ref. [50] (NWA) in
Table IV. As mentioned above, the MSSM effect to FL is
negligibly small due to η → 0, and the predicted values of
hFLi within the SM are listed in the second series at
Table IV, which shows that our prediction is close to the
NWA one. Table IV shows by including the new physics
effect, the branching ratio shall be suppressed by ∼22%
and increased by ∼28% for MSSM GFV-I and GFV-II,
respectively. Our SM prediction of the branching ratio B
are consistent with the ABSW SM and NWA predic-
tions within errors, all of which agree with the newest
upper limit predicted by Belle Collaboration in 2017
ðBBelle < 18 × 10−6Þ. Thus, we still need more accurate
data to draw definite conclusions.

IV. SUMMARY

In the paper, we recalculate the B → K� TFFs ξ⊥;kðq2Þ
by using the LCSR approach, in which a chiral correlator
has been adopted to suppress the large uncertainties from
the twist-2 and twist-3 structures at the δ1 order. For each
LCSR, except the dominate twist-2 contribution which is
proportional to ϕ⊥

2;K� , the remaining nonzero twist-3 and
twist-4 terms as shown by Eqs. (10), (11) shall be at least δ2

suppressed, which in total only provides less than a 10%
contribution to the LCSRs. Thus, the resultant LCSRs
are more accurate than the previous ones derived in the
literature. The extrapolated B → K� TFFs as shown in
Fig. 1 are consistent with the lattice QCD predictions
within errors. This new achievement helps for probing new
physics beyond the SM.
Based on the definitions of the forward-backward and

the isospin asymmetries, we calculate their differential
distributions over q2 under three models and present our
results in Figs. 2 and 3. The SM and the SMþMSSM
MFV-I predictions are consistent with each other, while
the SMþMSSM MFV-II prediction shows quite different
behavior, especially in the low q2 region. Thus, a careful
comparing with data could be helpful for judging whether
we need a new physics scenario for those observables or
which new physics scenario is more credible:

(i) For the forward-backward asymmetry AFB, the
MSSM MFV-I only slightly changes the SM predic-
tion and does not change its arising trends, both of
which agree with the Belle, the CDF, and the CMS
measurements in the low q2 region. On the contrary,
due to the flip of the sign forCeff

7;8, theMSSMMFV-II
gives large corrections to the SMprediction in the low
q2 region, leading to a positive AFB in the whole q2

region. These differences make it possible to draw the
conclusion of whetherMFV-I orMFV-II is preferable
by using more accurate data measured in the low q2

region. Table III prefers a small tan β for the MSSM
MFV model.
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FIG. 6. The differential branching ratio of the B → K�νν̄
decay under various models, in which the shaded band stands
for the uncertainties from the TFFs A1;2 and V and the Wilson
coefficient CL.

TABLE IV. The branching ratio B (in unit 10−6) and the
longitudinal polarization fraction hFLi of B → K�νν̄. The errors
are the squared average of all mentioned error sources. The
predictions of the Belle Collaboration [49], the ABSW [47],
and NWA [50] are presented as a comparison.

B × 106 hFLi
SM 7.60þ2.16

−1.70 0.49þ0.09
−0.10

SMþ GFV-I 5.92þ1.68
−1.33 � � �

SMþ GFV-II 9.72þ2.76
−2.18 � � �

Belle [49] <18 � � �
ABSW [47] (SM) 6.8þ1.0

−1.1 0.54(1)

ABSW [47] (GFV-I) 5.3 � � �
ABSW [47] (GFV-II) 8.7 � � �
NWA(SM) [50] 9.49(101) 0.49(4)
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(ii) For the forward-backward asymmetry AFB at the
large q2 region, we have found that the new physics
effect shall be suppressed by 1/q4 to compare with
the SM prediction. Figures 2 and 3 show that even
by including the MSSMMFV-I or MFV-II terms, we
still cannot explain the trends of the smaller forward-
backward asymmetry around q2 > 16 GeV2 as in-
dicated by the present LHCb [39] and the CMS [40]
measurements. Thus, we may need new SUSY
models to explain this large q2 discrepancy, or we
need more measurements to confirm those data in
the large q2 region.

(iii) As shown by Fig. 3, the flip of the sign for the
Wilson coefficients Ceff

7;8 also makes the isospin
asymmetry of MSSM MFV-II a little different from
the SM prediction in the low q2 region. The LHCb
data prefer a positive isospin asymmetry for q2 → 0
which could be explained by the SM and the MSSM
MFV-I models. However, the LHCb data is still of
large errors; thus at present, we can not draw definite
conclusions on which scenario is preferable via
using the present isospin asymmetry data.

Thus, we think the forward-backward and the isospin
asymmetries of the B → K�μþμ− decay are interesting
observables to probe possible new physics beyond the SM.
More accurate data, especially those in the low q2 region, at
the LHCb or the future super B factory are important for
clarifying this point.
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