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In this paper the phase structure of dense quark matter has been investigated at zero temperature in the
presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3þ 1)-
dimensional Nambu–Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc

limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral
symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the
fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with
isotopic asymmetry.
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I. INTRODUCTION

In recent years great effort has been devoted to a problem
of mapping out the phase diagram of QCD as a function of
temperature and baryon chemical potential. However,
theoretical investigations of QCD encounter considerable
difficulties in the low-energy as well as low-temperature
and density region, where perturbative methods do not
work. The only possible first principle calculation in QCD
at low energies is a lattice approach to QCD. Unfortunately,
its main method (Monte Carlo simulations) cannot be
applied to investigations at finite baryon chemical potential
due to the sign problem (complex fermion determinant). In
order to study the phase diagram of QCD at nonzero
chemical potential one usually uses effective field theories
such as chiral perturbation theory (ChPT), quark-meson
model, etc. These theories are low energy approximations
to QCD. In this case, the crucial point is to make an
appropriate choice of degrees of freedom that are able to
capture the physics which is most important for the
problem at hand. For example, in ChPT one considers
hadrons as elementary excitation of strongly interacting
matter. And Lagrangian is obtained only from symmetry
breaking pattern, etc. One of the most widely used effective
theory is Nambu–Jona-Lasinio (NJL) model [1] (see for
review [2–4]). The degrees of freedom of this model are not

hadrons as in ChPT but quarks. They are self-interacting and
there are no gluons in considerations, they are integrated out.
The model is tractable and can be used as low energy
effective theory for QCD. The most attractive feature of NJL
models is the dynamical breaking of the chiral symmetry
(quarks acquire a relatively large mass) and hence it can be
used as a basis model for constituent quark model.
Besides the temperature and baryon density (nonzero

baryon chemical potential), there are additional parameters,
which may be relevant for a description of the QCD phase
diagram. These parameters are, in particular, an isotopic
chemical potential and chiral chemical potential. Isotopic
(isospin) chemical potential allows us to consider systems
with isospin imbalance (different numbers of u and d
quarks). In fact, nature provides us with systems at finite
isospin chemical potential in the form of isospin asym-
metric matter inside neutron stars. Moreover, in any heavy-
ion experiment there is, even if small but nonzero, isospin
asymmetry in the system of colliding ions. Also in the
fireball after heavy-ion collisions there may emerge another
very interesting phenomenon—phase with a chiral imbal-
ance of quarks, i.e., with different average numbers
between right-handed and left-handed quarks. This phe-
nomenon is a remarkable effect that stems from highly
nontrivial interplay of chiral symmetry of QCD, axial
anomaly, and the topology of gluon configurations, which
may possibly lead to the chiral magnetic effect [5] in heavy-
ion collisions. It might be realized also in compact stars or
condensed matter systems [6] (see also the review [7]).
Note also that phenomena, connected with a chiral imbal-
ance, are usually described in the framework of NJL
models with a chiral chemical potential [6,8].
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It was contemplated a long time ago that at high densities
there could be such a phenomenon as condensation of π0

mesons [9,10]. However, if there is an isospin imbalance,
then the charged pion condensation (PC) phase might be
realized in the system [11]. Charged PC has been also
considered in NJL-type models in [12–15]. But the
existence of the charged PC phase in dense baryon matter
is predicted in the framework of NJL models without
sufficient certainty. Indeed, for some values of model
parameters (coupling constant G, cutoff parameter Λ,
etc.) the charged PC phase with nonzero baryon density
is allowed by NJL models. However, it is forbidden in the
framework of NJL models for other physically interesting
values of G and Λ [12]. Moreover, if the electric charge
neutrality constraint is imposed, the charged PC phenome-
non depends strongly on the bare (current) quark mass
values. In particular, it turns out that in this case the charged
PC phase with nonzero baryonic density is forbidden in the
framework of NJL models, if the bare quark masses reach
the physically acceptable values of 5 ÷ 10 MeV (see
Refs. [15]). Due to these circumstances, the question arises
whether there exist factors promoting the appearance of
charged PC phenomenon in dense baryonic matter. A
positive answer to this question was obtained in the papers
[16–19], where it was shown that a charged PC phase might
be realized in dense baryonic system with finite size, or in
the case of a spatially inhomogeneous pion condensate, or
in the case of chiral imbalance in the system. These
conclusions are demonstrated in Refs. [16–19], using a
massless (1þ 1)-dimensional toy model with four-quark
interactions.
In this paper we study the phase diagram of QCD, and

the charged PC phenomenon in particular, in the framework
of (3þ 1)-dimensional NJL model with two quark flavors
and in the presence of the baryon (μB), isospin (μI) as well
as chiral isospin μI5 chemical potentials, i.e., under heavy-
ion experimental and/or compact star conditions. The
consideration is performed in the chiral limit. This study
is also inspired by exploration of the phase diagram of
QCD in the framework of (1þ 1)-dimensional massless
NJL model performed in Ref. [18] (for the case of
homogeneous ansatz for condensates) and Ref. [19] (in
inhomogeneous case) at nonzero μB, μI and μI5. It has been
shown in these papers that in (1þ 1)-dimensional NJL
model chiral isospin chemical potential generates charged
PC in the system, and there is a duality between charged
pion condensation and chiral symmetry breaking (CSB)
phenomena.1

Let us elaborate a little bit more on this duality. In the
present consideration it means that if at μI ¼ A and μI5 ¼ B
(at arbitrary fixed chemical potential μB), e.g., the CSB (or

the charged PC) phase is realized in the model, then at the
permuted values of these chemical potentials, i.e., at μI ¼ B
and μI5 ¼ A, the charged PC (or the CSB) phase is
arranged. So, it is enough to know the phase structure of
the model at μI < μI5, in order to establish the phase
structure at μI > μI5, and vice versa. Knowing condensates
and other dynamical and thermodynamical quantities of the
system, e.g., in the CSB phase, one can then obtain the
corresponding quantities in the dually conjugated charged
PC phase of the model, by simply performing there the
duality transformation, μI ↔ μI5.
In our case duality is between condensates and matter

content (chemical potentials). But generally, notion of
duality is more widespread and is a very powerful tool
and its use permeates all branches of physics. String theory,
condensed matter physics, etc. If one finds duality between
two theories and one theory is more thoroughly inves-
tigated than the other, duality can be used for applying
known solutions of one theory to the other. This can saves
the effort of the researchers. But dualities can be even more
powerful in a case when one theory cannot be solved by
existing methods (for example perturbation theory) and the
other could be. For example, there are strong-weak dual-
ities that connect weak coupling regime of one theory with
strong coupling regime of the other. Such a duality is
AdS=CFT (or gauge/gravity) duality [21], which relates
some strongly-coupled, four-dimensional gauge theories at
large Nc to tractable weakly-coupled string theories living
in ten dimensions. Now AdS=CFT conjecture is a subject
of very intense study.
A different notion (but one historically connected to

AdS=CFT) is that of strong-strong dualities, which usually
go by the name of large-Nc orbifold equivalences [22–25].
Orbifold equivalences connect gauge theories with differ-
ent gauge groups and matter content in the large-Nc limit.
Let us elaborate on why it could be important. As we
already said, the lattice technique is not available at finite
μB because of the sign problem. Still, there is a class of
QCD-like theories which are free from the sign problem.
These theories intensively studied so far include two-color
QCD with even numbers of fundamental flavors, any-color
SUðNcÞ QCD with adjoint fermions, and SUðNcÞ QCD at
finite isospin chemical potential μI [26]. There are also
other theories which are free from sign problem at finite μB,
for example, SOð2NcÞ and Spð2NcÞ gauge theories with
Nf fundamental Dirac fermions. In Ref. [23] it is argued
that the whole or the part of the phase diagrams of QCD and
SOð2NcÞ and Spð2NcÞ gauge QCD-like theories should be
universal in the large-Nc limit via the orbifold equivalence.
So if one can prove the equivalence of phase portraits of
two theories one of which has no sign problem, one can
explore the phase structure of the other one (which could
have sign problem) using lattice QCD. In the framework of
orbifold equivalence formalism in [23] there has been also
obtained a similar (to our) dualities between charged PC

1Note that another kind of duality correspondence, the duality
between CSB and superconductivity, was demonstrated both in
(1þ 1)- and (2þ 1)-dimensional NJL models [20].
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and chiral symmetry breaking phenomena. Namely, it was
shown that the whole phase diagram of QCD at chiral
chemical potential must be identical to that of QCD at
isotopic chemical potential in the chiral limit, where the
charged pion condensation is replaced by the chiral con-
densate. The result has been shown only for a large number
of colors Nc, but it was argued that the universality may
work approximately even for Nc ¼ 3.
In the present paper we show that in the chiral limit the

main result of the (1þ 1)-dimensional NJL model consid-
eration that chiral isospin chemical potential generates
charged pion condensation holds in more realistic
(3þ 1)-dimensional NJL model as well. Moreover, in
(3þ 1)-dimensional NJL model with nonzero μB, μI and
μI5 in the chiral limit there is also a duality correspondence
between CSB and charged PC phenomena.
In our opinion, it is a very inspiring result that phase

diagram of a toy (1þ 1)-dimensional model for QCD and
more realistic effective (3þ 1)-dimensional NJL theory for
QCD looks very similar in the chiral limit and predicts the
emergence of charged PC phase in dense isotopically and
chirally asymmetric matter. This qualitative agreement
makes one believe that the common features of this model
phase diagram could be realized in real QCD as well.
The paper is organized as follows. First, in Sec. II

(3þ 1)-dimensional massless NJL model with two quark
flavors (u and d quarks) that also includes three kinds of
chemical potentials, μB, μI, μI5, is introduced. Furthermore,
the symmetries of the model are discussed and thermody-
namic potential (TDP) of the model under consideration is
presented in the leading order of the large-Nc expansion.
Here the duality (dual symmetry) of the model TDP is
established. The essence of duality is that TDP is invariant
under the simultaneous interchange of μI, μI5 chemical
potentials as well as chiral and charged pion condensates.
In Sec. III it is argued that there is no mixed phase in the
system (with nonzero chiral symmetry breaking M- and
charged pion Δ condensates, simultaneously) and expres-
sions for projections of TDP to the M- and Δ axes are
presented. Section IV contains the discussion on the phase
structure of the model under consideration and different
phase portraits of the model are depicted. In this section, the
fact that chiral isospin chemical potential generates charged
pion condensation in dense quark matter with isotopic
asymmetry is established. Moreover, here the role of
duality between chiral symmetry breaking and charged
pion condensation phenomena and its influence on the
phase diagram are explained. In Sec. V summary and
conclusions are given. Some technical details are relegated
to the Appendix.

II. THE MODEL AND ITS
THERMODYNAMIC POTENTIAL

We study a phase structure of the two flavored (3þ 1)-
dimensional massless NJL model with several chemical

potentials. Its Lagrangian, which is symmetrical under
global color SUðNcÞ group, has the form

L ¼ q̄

�
γνi∂ν þ

μB
3
γ0 þ μI

2
τ3γ

0 þ μI5
2

τ3γ
0γ5

�
q

þ G
Nc

½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2� ð1Þ

and describes dense baryonic matter with two massless
u and d quarks, i.e., q in (1) is the flavor doublet,
q ¼ ðqu; qdÞT , where qu and qd are four-component
Dirac spinors as well as color Nc-plets (the summation
in (1) over flavor, color, and spinor indices is implied); τk
(k ¼ 1, 2, 3) are Pauli matrices. The Lagrangian (1)
contains baryon μB-, isospin μI-, and chiral isospin μI5
chemical potentials. In other words, this model is able to
describe the properties of quark matter with nonzero baryon
nB-, isospin nI-, and chiral isospin nI5 densities which are
the quantities, thermodynamically conjugated to chemical
potentials μB, μI , and μI5, respectively.
The quantities nB, nI, and nI5 are densities of conserved

charges, which correspond to the invariance of Lagrangian
(1) with respect to the Abelian UBð1Þ, UI3ð1Þ, and UAI3ð1Þ
groups, where2

UBð1Þ∶ q → expðiα=3Þq; UI3ð1Þ∶ q → expðiατ3=2Þq;
UAI3ð1Þ∶ q → expðiαγ5τ3=2Þq: ð2Þ

So we have from (2) that nB ¼ q̄γ0q=3, nI ¼ q̄γ0τ3q=2,
and nI5 ¼ q̄γ0γ5τ3q=2. We would like also to remark that,
in addition to (2), Lagrangian (1) is invariant with respect to
the electromagnetic UQð1Þ group,

UQð1Þ∶ q → expðiQαÞq; ð3Þ

where Q ¼ diagð2=3;−1=3Þ. The ground state expectation
values of nB, nI and nI5 can be found by differentiating the
thermodynamic potential of the system (1) with respect to
the corresponding chemical potential. The goal of the
present paper is the investigation of the ground state
properties (or phase structure) of the system (1) and its
dependence on the chemical potentials μB, μI and μI5 (at
zero temperature).
To find the thermodynamic potential of the system, we

use a semibosonized version of the Lagrangian (1), which
contains composite bosonic fields σðxÞ and πaðxÞ (a ¼ 1,
2, 3) (in what follows, we use the notations μ≡ μB=3, ν≡
μI=2 and ν5 ≡ μI5=2):

2Recall for the following that expðiατ3Þ ¼ cos αþ iτ3 sin α,
expðiαγ5τ3Þ ¼ cos αþ iγ5τ3 sin α.
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L̃ ¼ q̄½γρi∂ρ þ μγ0 þ ντ3γ
0 þ ν5τ3γ

0γ5 − σ − iγ5πaτa�q
−
Nc

4G
½σσ þ πaπa�: ð4Þ

In (4) and below the summation over repeated indices is
implied. From the auxiliary Lagrangian (4) one gets the
equations for the bosonic fields

σðxÞ ¼ −2
G
Nc

ðq̄qÞ; πaðxÞ ¼ −2
G
Nc

ðq̄iγ5τaqÞ: ð5Þ

Note that the composite bosonic field π3ðxÞ can be
identified with the physical π0ðxÞ-meson field, whereas
the physical π�ðxÞ-meson fields are the following com-
binations of the composite fields, π�ðxÞ ¼ ðπ1ðxÞ ∓
iπ2ðxÞÞ=

ffiffiffi
2

p
. Obviously, the semibosonized Lagrangian L̃

is equivalent to the initial Lagrangian (1) when using the
Eq. (5). Furthermore, it is clear from Eq. (2) and footnote 2
that the composite bosonic fields (5) are transformed under
the isospin UI3ð1Þ and axial isospin UAI3ð1Þ groups in the
following manner:

UI3ð1Þ∶ σ → σ; π3 → π3; π1 → cosðαÞπ1 þ sinðαÞπ2; π2 → cosðαÞπ2 − sinðαÞπ1;
UAI3ð1Þ∶ π1 → π1; π2 → π2; σ → cosðαÞσ þ sinðαÞπ3; π3 → cosðαÞπ3 − sinðαÞσ: ð6Þ

Starting from the auxiliary Lagrangian (4), one obtains in the leading order of the large-Nc expansion (i.e., in the one-
fermion loop approximation) the following path integral expression for the effective action Seffðσ; πaÞ of the bosonic σðxÞ
and πaðxÞ fields:

expðiSeffðσ; πaÞÞ ¼ N0
Z

½dq̄�½dq� exp
�
i
Z

L̃d4x

�
;

where

SeffðσðxÞ; πaðxÞÞ ¼ −Nc

Z
d4x

�
σ2 þ π2a
4G

�
þ S̃eff ; ð7Þ

The quark contribution to the effective action, i.e., the term S̃eff in Eq. (7), is given by:

expðiS̃effÞ ¼ N0
Z

½dq̄�½dq� exp
�
i
Z

fq̄½γρi∂ρ þ μγ0 þ ντ3γ
0 þ ν5τ3γ

0γ5 − σ − iγ5πaτa�qgd4x
�

¼ ½DetD�Nc; ð8Þ

where N0 is a normalization constant. Moreover, in Eq. (8) we have introduced the notation D,

D≡ γνi∂ν þ μγ0 þ ντ3γ
0 þ ν5τ3γ

0γ5 − σðxÞ − iγ5πaðxÞτa; ð9Þ

for the Dirac operator, which acts in the flavor-, spinor- as well as coordinate spaces only. Using the general formula
DetD ¼ exp Tr lnD, one obtains for the effective action (7) the following expression

SeffðσðxÞ; πaðxÞÞ ¼ −Nc

Z
d2x

�
σ2ðxÞ þ π2aðxÞ

4G

�
− iNcTrsfx lnD; ð10Þ

where the Tr-operation stands for the trace in spinor- (s),
flavor- (f) as well as four-dimensional coordinate- (x)
spaces, respectively.
The ground state expectation values hσðxÞi and hπaðxÞi

of the composite bosonic fields are determined by the
saddle point equations,

δSeff

δσðxÞ ¼ 0;
δSeff

δπaðxÞ
¼ 0; ð11Þ

where a ¼ 1, 2, 3. Just the knowledge of hσðxÞi and
hπaðxÞi and, especially, of their behavior vs chemical
potentials supplies us with a phase structure of the model.
It is clear from Eq. (6) that if hσðxÞi ≠ 0 and/or
hπ3ðxÞi ≠ 0, then the axial isospin UAI3ð1Þ symmetry of
the model is spontaneously broken down, whereas at
hπ1ðxÞi ≠ 0 and/or hπ2ðxÞi ≠ 0 we have a spontaneous
breaking of the isospin UI3ð1Þ symmetry. Since in the last
case the ground state expectation values, or condensates,
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both of the field πþðxÞ and of the field π−ðxÞ are not zero,
this phase is usually called the charged pion condensation
(PC) phase. In addition, it is easy to see from Eq. (5) that
the nonzero condensates hπ1;2ðxÞi (or hπ�ðxÞi) are not
invariant with respect to the electromagnetic UQð1Þ trans-
formations (3) of the flavor quark doublet. Hence in the
charged PC phase the electromagnetic UQð1Þ invariance of
the model (1) is also broken spontaneously, and super-
conductivity is an unavoidable property of the charged
PC phase.
In the present paper we suppose that in the ground state

of the system, i.e., in the state of thermodynamic equilib-
rium, the ground state expectation values hσðxÞi and
hπaðxÞi do not depend on spacetime coordinates x,

hσðxÞi≡M; hπaðxÞi≡ πa; ð12Þ

where M and πa (a ¼ 1, 2, 3) are already constant
quantities. In fact, they are coordinates of the global
minimum point of the thermodynamic potential (TDP)
ΩðM; πaÞ. In the leading order of the large-Nc expansion it
is defined, using Eq. (12), by the following expression:
Z

d4xΩðM; πaÞ ¼ −
1

Nc
SeffðσðxÞ; πaðxÞÞjσðxÞ¼M;πaðxÞ¼πa

:

ð13Þ

In what follows we are going to investigate the μ; ν; ν5-
dependence of the global minimum point of the function
Ωðσ; πaÞ vs σ; πa. To simplify the task, let us note that due
to a UI3ð1Þ × UAI3ð1Þ invariance of the model, the TDP
(13) depends effectively only on the two combinations,
σ2 þ π23 and π

2
1 þ π22, of the bosonic fields, as is easily seen

from Eq. (6). In this case, without loss of generality, one
can put π2 ¼ π3 ¼ 0 in Eq. (13), and study the TDP as a
function of only two variables, M ≡ σ and Δ≡ π1. So,
throughout the paper we use the ansatz

hσðxÞi ¼ M; hπ1ðxÞi ¼ Δ; hπ2ðxÞi ¼ 0; hπ3ðxÞi ¼ 0:

ð14Þ

In this case the TDP (13) reads

ΩðM;ΔÞ ¼ M2 þ Δ2

4G
þ i

Trsfx lnDR
d4x

¼ M2 þ Δ2

4G
þ i

Z
d4p
ð2πÞ4 ln DetD̄ðpÞ; ð15Þ

where

D̄ðpÞ ¼ =pþ μγ0 þ ντ3γ
0 þ ν5τ3γ

0γ5 −M − iγ5Δτ1

≡
�
A; U

V; B

�
ð16Þ

is the momentum space representation of the Dirac operator
D (9) under the constraint (14). The quantities A, B,U, V in
Eq. (16) are really the following 4 × 4 matrices,

A ¼ =pþ μγ0 þ νγ0 þ ν5γ
0γ5 −M;

B ¼ =pþ μγ0 − νγ0 − ν5γ
0γ5 −M; U ¼ V ¼ −iγ5Δ;

ð17Þ

so the quantity D̄ðpÞ from Eq. (16) is indeed a 8 × 8matrix
whose determinant appears in the expression (15). Based
on the following general relations

DetD̄ðpÞ≡ det

�
A; U

V; B

�
¼ det½−VU þ VAV−1B�

¼ det½BA − BUB−1V� ð18Þ

and using any program of analytical calculations, one can
find from Eqs. (17) and (18)

DetD̄ðpÞ ¼ ðη4 − 2aη2 − bηþ cÞðη4 − 2aη2 þ bηþ cÞ
≡ P−ðp0ÞPþðp0Þ; ð19Þ

where η ¼ p0 þ μ, jp⃗j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2 þ p2
3

p
and

a ¼ M2 þ Δ2 þ jp⃗j2 þ ν2 þ ν25; b ¼ 8jp⃗jνν5;
c ¼ a2 − 4jp⃗j2ðν2 þ ν25Þ − 4M2ν2 − 4Δ2ν25 − 4ν2ν25: ð20Þ

It is evident from Eq. (20) that the TDP (15) is an even
function over each of the variables M and Δ, and param-
eters ν and ν5. In addition, it is invariant under the
transformation μ → −μ.3 Hence, without loss of generality
we can consider in the following only μ ≥ 0, ν ≥ 0, ν5 ≥ 0,
M ≥ 0, and Δ ≥ 0 values of these quantities. Moreover, the
TDP (15) is invariant with respect to the so-called duality
transformation,4

D∶ M ↔ Δ; ν ↔ ν5: ð21Þ

One can find roots of the polynomials (19) analytically, the
procedure is relegated to the Appendix. Four roots of PþðηÞ
have the following form

3Indeed, if simultaneously with μ → −μ we perform in the
integral (15) the p0 → −p0 change of variables, then one can
easily see that the expression (15) remains intact.

4Let us note that the duality is present only in the chiral limit
(zero current quark masses), in the real situation, when chiral
symmetry is only approximate due to nonzero quark masses in
the Lagrangian, duality will be only approximate as well. We will
discuss it in one of the future works.
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η1 ¼
1

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
− r

�
; η2 ¼

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
− r

�
;

η3 ¼
1

2

�
r −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p �
; η4 ¼

1

2

�
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p �
:

ð22Þ

The roots of P−ðηÞ can be obtained by changing b → −b
(changing b → −b is equivalent to q ↔ s),

η5 ¼
1

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p
− r

�
¼ −η4;

η6 ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p
− r

�
¼ −η3;

η7 ¼
1

2

�
r −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q �
¼ −η2;

η8 ¼
1

2
ðrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
Þ ¼ −η1: ð23Þ

where q ¼ 1
2
ð−2aþ r2 − b

rÞ, s ¼ 1
2
ð−2aþ r2 þ b

rÞ, and r
has quite complicated form, but could be always chosen as
a real one (all the details can be found in the Appendix). So,
it is evident from Eqs. (15) and (19) that for the TDP one
can obtain the following expression

ΩðM;ΔÞ ¼ M2 þ Δ2

4G
þ i

X8
i¼1

Z
d4p
ð2πÞ4 lnðp0 þ μ − ηiÞ:

ð24Þ

Then, taking in account a general formula

Z
∞

−∞
dp0 lnðp0 − KÞ ¼ iπjKj; ð25Þ

and using the fact that each root ηi of Eqs. (22) and (23) has
a counterpart with opposite sign and a relation
jμ − ηij þ jμþ ηij ¼ 2jηij þ 2θðμ − jηijÞðμ − jηijÞ, one
gets

ΩðM;ΔÞ ¼ M2 þ Δ2

4G
−
X4
i¼1

Z
d3p
ð2πÞ3

× ðjηij þ θðμ − jηijÞðμ − jηijÞÞ

¼ M2 þ Δ2

4G
−

1

2π2
X4
i¼1

Z
Λ

0

p2

× ðjηij þ θðμ − jηijÞðμ − jηijÞÞdp: ð26Þ

To obtain the second line of Eq. (26), where p≡ jp⃗j and Λ
is a three-momentum cutoff parameter, we have integrated
in the first line of it over angle variables. In the following
we will study the behavior of the global minimum point of
the TDP (26) vs chemical potentials μ, ν and ν5 for a special
set of the model parameters,

G ¼ 15.03 GeV−1; Λ ¼ 0.65 GeV:

In this case at μ ¼ 0, ν ¼ 0 and ν5 ¼ 0 one gets for
constituent quark mass the value M ¼ 301.58 MeV. The
same parameter set has been used, e.g., in Refs. [4,12].

III. CALCULATION OF THE TDP

A. Projections onto M and Δ axes

In the particular case when ν5 ¼ 0 the roots ηi (22) of
the polynomial PþðηÞ can be obtained in an explicit form
(see, e.g., in Ref. [12]), which is significantly simplifies
the investigation of the TDP. Note that in the most general
case when μ ≥ 0, ν ≥ 0, ν5 ≥ 0, M ≥ 0, and Δ ≥ 0 the
roots ηi can be found analytically as well (see the procedure
presented in the Appendix). However, the exact expressions
for the roots ηi and hence for the TDP have a rather cum-
bersome form, so we have not even show them in the paper,
but the behavior of the TDP can be studied using numerical
simulations. By this way it is possible to show that the TDP
(26) (as a function of M and Δ) can never has a global
minimum point (GMP) of the form ðM ≠ 0;Δ ≠ 0Þ. It
means that at arbitrary fixed values of chemical potentials
μ ≥ 0, ν ≥ 0 and ν5 ≥ 0 the phase with nonzero both chiral
and charged pion condensates cannot be realized in the
model. So the GMP of the TDP (26) lies either on the M
axis or on the Δ axis. Hence, in order to establish the phase
portrait of the model, it is enough to study the projections
F1ðMÞ≡ ΩðM;Δ ¼ 0Þ and F2ðΔÞ≡ΩðM ¼ 0;ΔÞ of the
TDP (26) on the M and Δ axes, correspondingly.
The roots of the polynomial PþðηÞ for the case ofM ≥ 0

and Δ ¼ 0 have the following form

η1;2M ≡ η1;2jΔ¼0 ¼ −ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðjp⃗j − ν5Þ2

q
;

η3;4M ≡ η3;4jΔ¼0 ¼ ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðjp⃗j þ ν5Þ2

q
: ð27Þ

The expressions (27) were obtained earlier in the paper
[18], where we have studied a (1þ 1)-dimensional variant
of the NJL model (1) also at μ ≠ 0, ν ≠ 0 and ν5 ≠ 0.
Substituting Eq. (27) into Eq. (26), one can find the
projection F1ðMÞ of the TDP (26) on the M axis,

F1ðMÞ ¼ ΩðM; 0Þ ¼ M2

4G
−

1

2π2
X4
i¼1

Z
Λ

0

p2

× ðjηiMj þ θðμ − jηiMjÞðμ − jηiMjÞÞdp: ð28Þ

The roots of PþðηÞ for the case of M ¼ 0 and Δ ≠ 0 have
the following form (for details, see also the paper [18])

η1;2Δ ≡ η1;2jM¼0 ¼ −ν5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðjp⃗j − νÞ2

q
;

η3;4Δ ≡ η3;4jM¼0 ¼ ν5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðjp⃗j þ νÞ2

q
: ð29Þ
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[Note that each root ηiM of Eq. (27) is conjugated to
corresponding root ηiΔ of Eq. (29) with respect to the
duality transformation (21).] Then, the projection of
thermodynamic potential to the axis Δ has the form

F2ðΔÞ ¼ Ωð0;ΔÞ ¼ Δ2

4G
−

1

2π2
X4
i¼1

Z
Λ

0

p2

× ðjηiΔj þ θðμ − jηiΔjÞðμ − jηiΔjÞÞdp: ð30Þ

The integration in Eqs. (28) and (30) can be carried out
analytically but the obtained expressions would be rather
involved. So it is still easier to use numerical calculations
for evaluation of the integrals.
As a result, we see that in order to find the GMP of the

whole TDP (26), one should compare the least values of
the functions F1ðMÞ and F2ðΔÞ. By this way, it is clear
that there can exist no more than three different phases
in the model (1). The first one is the symmetric phase,
which corresponds to the global minimum point ðM0;Δ0Þ
of the TDP (26) of the form ðM0 ¼ 0;Δ0 ¼ 0Þ. In the CSB
phase the TDP reaches the least value at the point
ðM0 ≠ 0;Δ0 ¼ 0Þ. Finally, in the charged PC phase the
global minimum point lies at the point ðM0 ¼ 0;Δ0 ≠ 0Þ.
(Notice, that in the most general case the coordinates
(condensates) M0 and Δ0 of the global minimum point
depend on chemical potentials.)

B. Quark number density

Since the main goal of the present paper is to prove the
possibility of the charged PC phenomenon in dense quark
matter [at least in the framework of the NJL model (1)], the
consideration of the physical quantity nq, called quark
number density, is now in order. This quantity is a very
important characteristic of the ground state. It is related to
the baryon number density as nq ¼ 3nB because μ ¼ μB=3.
Let us present here the ways how expressions for nq can be
found in different phases. Recall that in the general case this
quantity is defined by the relation

nq ¼ −
∂ΩðM0;Δ0Þ

∂μ ; ð31Þ

where M0 and Δ0 are coordinates of the GMP of
a thermodynamic potential. So in the chiral symmetry
breaking phase we have

nqðμ; ν; ν5ÞjCSB ¼ −
∂ΩðM0;Δ0 ¼ 0Þ

∂μ ¼ −
∂F1ðM0Þ

∂μ :

ð32Þ

Taking into account (28) it is not very difficult to get the
following expression

nqðμ; ν; ν5ÞjCSB ¼ 1

2π2
X4
i¼1

Z
Λ

0

dpp2θðμ − jηiM0
jÞ; ð33Þ

where ηiM0
is given by Eq. (27) at M ¼ M0.

In a similar way, the particle density in the charged pion
condensation phase looks like

nqðμ; ν; ν5ÞjPC ¼ −
∂ΩðM0 ¼ 0;Δ0Þ

∂μ ¼ −
∂F2ðΔ0Þ

∂μ : ð34Þ

Since the quantity F2ðΔ0Þ is defined by Eq. (30) atΔ ¼ Δ0,
one can get

nqðμ; ν; ν5ÞjPC ¼ 1

2π2
X4
i¼1

Z
Λ

0

dpp2θðμ − jηiΔ0
jÞ; ð35Þ

where ηiΔ0
is defined by Eq. (29) at Δ ¼ Δ0.

IV. PHASE DIAGRAM

A. Duality between chiral symmetry breaking
and charged pion condensation

In order to get phase structure of the model one has to
find GMP ðM0;Δ0Þ of the thermodynamic potential (26). It
has been already said earlier that there is no mixed phase,
which corresponds to both M0 ≠ 0 and Δ0 ≠ 0, and one
can use projections F1ðMÞ (28) and F2ðΔÞ (30) of this TDP
to the axes M and Δ, respectively. So it is necessary to
determine the GMPs of these projections with respect toM
and Δ. Then, one should compare the minimum values of
these functions, the result is the GMP of the whole TDP
(26). In a physical sense, one should determine which of the
minima is a real vacuum of the system and which is a
metastable state. After this, using numerical calculations, it
is necessary to study the behavior of the TDP global
minimum point ðM0;Δ0Þ vs chemical potentials. The result
is the most general ðμ; ν; ν5Þ-phase portrait of the model,
i.e., the one-to-one correspondence between any point
ðν; ν5; μÞ of the three-dimensional space of chemical
potentials and possible model phases (CSB, charged PC
and symmetric phase). However, in order to obtain a more
deep understanding of the phase diagram as well as to get a
greater visibility of it, it is very convenient to consider
different cross-sections of this general ðμ; ν; ν5Þ-phase
portrait by the planes of the form ν ¼ const, ν5 ¼ const
and μ ¼ const.
In the next subsections these different cross-sections of

the most general phase portrait will be presented. In
addition, we will compare our results with corresponding
phase diagrams of NJL2 model. But before that, let us
discuss the role and influence of the duality invariance (21)
of the model on the phase structure and demonstrate the
ways how one can use it to obtain some phase portraits
from the others without having to calculate anything.
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Suppose that at some fixed particular values of chemi-
cal potentials μ, ν ¼ A, and ν5 ¼ B the global minimum
of the TDP (26) lies at the point, e.g., ðM ¼ M0 ≠
0;Δ ¼ 0Þ. It means that for such fixed values of the
chemical potentials the chiral symmetry breaking (CSB)
phase is realized in the model. Then it follows from
the invariance of the TDP with respect to the duality
transformationD (21) that at permuted chemical potential
values (i.e., at ν ¼ B and ν5 ¼ A and intact value of μ)
the global minimum of the TDP ΩðM;ΔÞ is arranged at
the point ðM ¼ 0;Δ ¼ M0Þ, which corresponds to the
charged PC phase (and vice versa). This is the so-called
duality correspondence between CSB and charged PC
phases in the framework of the model under consider-
ation. Hence, the knowledge of a phase of the model (1)
at some fixed values of external free model parameters
μ; ν; ν5 is sufficient to understand what a phase (we call
it a dually conjugated) is realized at rearranged values
of external parameters, ν ↔ ν5, at fixed μ. Moreover,
different physical parameters such as condensates,
densities, etc, which characterize both the initial phase
and the dually conjugated one, are connected by the
duality transformation D. For example, the chiral
condensate of the initial CSB phase at some fixed
μ; ν; ν5 is equal to the charged-pion condensate of the
dually conjugated charged PC phase, in which one
should perform the replacement ν ↔ ν5. Knowing the
particle density nqðν; ν5Þ of the initial CSB phase as a
function of chemical potentials ν; ν5, one can find the
particle density in the dually conjugated charged PC
phase by interchanging ν and ν5 in the expression
nqðν; ν5Þ, etc.
The duality transformation D of the TDP can also be

applied to an arbitrary phase portrait of the model. In
particular, it is clear that if we have a most general
ðν; ν5; μÞ-phase portrait, then under the duality transforma-
tion (which is now understood as a renaming both of the
diagram axes, i.e., ν ↔ ν5, and phases, i.e., CSB ↔
charged PC) this phase portrait is mapped to itself, i.e.,
the most general ðν; ν5; μÞ-phase portrait is self-dual.
Furthermore, the self-duality of the ðν; ν5; μÞ-phase portrait
means that in the three-dimensional ðν; ν5; μÞ space the
regions of the CSB and charged PC phases are arranged
mirror-symmetrically with respect to the plane ν ¼ ν5 of
this space.

B. ðν;ν5Þ-phase diagrams

First, let us consider μ ¼ const cross-sections of the
general ðν; ν5; μÞ-phase diagram. The result is different
ðν; ν5Þ-phase diagrams at several typical values of the
chemical potential μ. They are depicted in Figs. 1–8. We
hope that from these plots it is possible to comprehend the
behavior of the general phase diagram at all possible values
of the quark number chemical potential μ.

At zero μ the phase portrait is depicted in Fig. 1. It has
charged PC phase which is arranged alone the ν axis at not
very large ν5 values. Moreover, it is clear that there is also
the CSB phase (at rather small values of ν), which is

FIG. 1. ðν; ν5Þ-phase diagram at μ ¼ 0 GeV. The notations
CSB and PC mean, respectively, the chiral symmetry breaking
and charged pion condensation phase with zero baryon density.
The notation “sym” stands for the symmetric phase, where all
symmetries are restored.

FIG. 2. ðν; ν5Þ-phase diagram at μ ¼ 0.195 GeV. In addition to
the notations of Fig. 1, here PCd and CSBd mean, respectively,
the charged pion condensation and chiral symmetry breaking
phase with nonzero baryon density.

KHUNJUA, KLIMENKO, and ZHOKHOV PHYS. REV. D 97, 054036 (2018)

054036-8



arranged mirror-symmetrically to the charged PC phase
with respect to the line ν ¼ ν5. Note that at μ ¼ 0 baryon
density nB ≡ nq=3 is zero in both phases. Let us recall that
NJL model is not renormalizable and hence is an effective
theory, which depends on a cutoff parameter Λ (recall that
in our case Λ ¼ 0.65 GeV). Therefore, transitions to the
symmetric phase at rather large ν and ν5 in Fig. 1, and also
on other similar drawings, can be considered as an artifact
of the cutoff theory. Clearly, this phase portrait supports the
result of the papers [8] obtained in lattice simulations that

chiral imbalance generates chiral symmetry breaking in the
system.5

When μ changes in the interval 0 < μ ≲ 0.3 GeV, then
some hollow appears in charged PC phase (see in Figs. 2
and 3). Above the hollow one can see the charged PCd

FIG. 3. ðν; ν5Þ-phase diagram at μ ¼ 0.23 GeV. All the nota-
tions are the same as in Fig. 2.

FIG. 4. ðν; ν5Þ-phase diagram at μ ¼ 0.24 GeV. All the nota-
tions are the same as in Fig. 2.

FIG. 5. ðν; ν5Þ-phase diagram at μ ¼ 0.26 GeV. All the nota-
tions are the same as in Fig. 2.

FIG. 6. ðν; ν5Þ-phase diagram at μ ¼ 0.4 GeV. All the notations
are the same as in Fig. 2.

5Strictly speaking, in Refs. [8] different systems with nonzero
chiral μ5 chemical potential were studied, whereas we deal with
chiral isospin chemical potential μ5I [see Eq. (1)].
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phase with nonzero baryon density (subscript d means that
baryon density is nonzero in the phase), whereas at the
values of ν5 corresponding to a hollow there is still charged
PC phase with zero baryon density. It means that at rather
small values of μ the model predicts the charged PC
phenomenon both in medium with nB ¼ 0 (it might,
e.g., consists of charged pions, etc) and in dense quark
matter with nB ≠ 0, depending on the ν5 values. According
to the duality symmetry (21) of the model, in these figures

the CSB phases (with nB ¼ 0 and nB ≠ 0) are arranged on
the other side (mirror-symmetrically) of a straight line ν ¼
ν5 as well.
Next, with an increase of μ (see Figs. 4–8) the hollow

goes into the charged PC phase and PC phase with zero
baryon density decreases. It can be noted that charged PCd
and CSBd phases of these figures take the form of soles of
boots that look towards each other and points at values of
ν5 ¼ μ and ν ¼ μ, correspondingly. Moreover, with an
increase of μ charged PCd phase and CSBd phase move to
the region of larger ν5 and ν, correspondingly. Throughout
the movement these two phases go through each other
(see Figs. 4–7), then separate and run away from each
other (Fig. 8).
So one can claim that nonzero ν5 generates the charged

pion condensation phase in dense, nB ≠ 0, quark matter. It
is the main result of the paper. Moreover, some phase
diagrams of NJL4 model under consideration look quali-
tatively very similar to the corresponding phase diagrams of
NJL2 model (compare Fig. 3(d) in [18] and Fig. 8 of the
present paper). In (1þ 1)-dimensional case the charged
PCd phase also goes to higher values of ν5 with increase of
μ but this phase starts at zero values of ν (see Fig. 3(d) in
[18]), whereas in (3þ 1)-dimensional case the phase starts
at some nonzero value of ν around 0.1 GeV (see Fig. 8). So
in order to realize the charged PCd phase in NJL4 model,
besides chiral imbalance there has to be the isotopic
imbalance in the system (isospin chemical potential should
be nonzero but it does not have to and actually should not
be too large either). In that respect one can say that charged
PCd phase is generated by both isospin and chiral isospin
chemical potentials. This is a new feature that exists only in
the NJL4 model, in the NJL2 model charged pion con-
densate phase with nonzero baryon density could be
realized just by chiral isospin chemical potential even at
ν ¼ 0 (see Fig. 2(a) in Ref. [18]).
One can make sure just by looking at the presented

diagrams that (as duality dictates at arbitrary fixed μ) the
ðν; ν5Þ-phase diagrams of the model are self-dual, i.e., its
CSB and charged PC phases (and CSBd and charged PCd
phases) lie mirror-symmetrically with respect to the
line ν ¼ ν5.

C. ðν;μÞ- and ðν5;μÞ-phase diagrams

For a better understanding of the most general ðμ; ν; ν5Þ-
phase diagram of the model, here we consider two other
cross-sections of the general diagram, by the planes of ν ¼
const and ν5 ¼ const.
The ðν; μÞ-phase diagrams of the model at different

typical values of ν5 are presented in Figs. 9–11. In
particular, the phase portrait of the model at zero value
of ν5 (see Fig. 9) was first studied in Ref. [12]. It has been
shown that at ν5 ¼ 0 there is charged PC phase in the
region that spreads along the ν axis. But the most of this
region is the charged PC phase with zero baryon density.

FIG. 7. ðν; ν5Þ-phase diagram at μ ¼ 0.55 GeV. All the nota-
tions are the same as in Fig. 2.

FIG. 8. ðν; ν5Þ-phase diagram at μ ¼ 0.8 GeV. All the notations
are the same as in Fig. 2.
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Besides, there is a rather small region of charged PC phase
with nB ≠ 0 at small ν and μ around 0.3 GeV.
One can consider the phase diagram in Fig. 9 compatible

with the one obtained by lattice QCD technique [27,28], if
take into account the following two remarks. First, the fact
that at rather large values of isotopic chemical potential ν
there is no charged PC phase in Fig. 9 (there is a transition
from PC to symmetric phase), which seems to be in
contradiction with lattice QCD results, in reality cannot
be considered as a contradiction due to the quite obvious
observation that NJL4 model is only effective model (low-
energy approximation) and can be considered only for
chemical potential ν less than cutoff parameter. Actually, in
NJL2 model that is renormalizable and can be used for
arbitrary high values of ν there is no transition from the
charged PC phase to symmetric one at high isospin
imbalance. So this transition could be seen as an artifact
of the effective NJL4 model. Second, charged PC phase in
lattice QCD phase diagram starts only from isotopic
chemical potential ν greater than half of pion mass. But

our consideration is performed in the chiral limit (zero
current quark masses), corresponding to zero pion mass.
So, all this makes the phase diagram of Fig. 9 qualitatively
the same to the one obtained by lattice QCD simulations
(ignoring the fact that on the lattice one cannot go to the
zero temperature, as it is in our considerations).
At bigger values of ν5, CSB phase starts to appear from

zero values of ν, and the phase transition from it to the
charged PC phase takes place at ν ¼ ν5 (see Fig. 10). As a
result, the charged PCd phase is shifted to greater values of
ν as one increase ν5. Also, there appears a bar of CSB phase
that starts from PC phase and goes along the line μ ¼ ν.
This looks very similar to the corresponding phase diagram
of the NJL2 model (see Fig. 1(a) from Ref. [18]). Then, at
even larger values of ν5 the bar of CSB phase disappears
and charged PCd phase shifts to the region of larger μ (see
Fig. 11). In this region of ν5 the shape of the charged PCd
phase resembles again (as in the case of ðν; ν5Þ-phase
diagram in Fig. 8) a sole of a boot and points towards the
value of μ ¼ ν5.
Such an evolution of the ðν; μÞ-phase portraits vs ν5 (and,

in particular, of the charged PCd phase) in the NJL4 model
looks very similar to its corresponding behavior in the NJL2

model. For example see Figs. 1(a,d) in [18] and compare
them with Figs. 10, 11 of the present paper, respectively.
The difference is that in NJL4 model the charged PCd phase
is realized only for nonzero values of ν, whereas in NJL2

model it takes place even for ν ¼ 0 (see Fig. 2(a) in [18]).
But qualitative behavior is the same. So one can say that in
both models chiral imbalance generates charged PC phase
in dense (nB ≠ 0) quark matter.
Up to now we have presented two types of cross sections

of the general ðν; ν5; μÞ-phase diagram, i.e., at μ ¼ const
and ν5 ¼ const. Fortunately, there is no need to perform a

FIG. 9. ðμ; νÞ-phase diagram at ν5 ¼ 0 GeV. All the notations
are the same as in Fig. 2.

FIG. 10. ðμ; νÞ-phase diagram at ν5 ¼ 0.17 GeV. All the
notations are the same as in Fig. 2.

FIG. 11. ðμ; νÞ-phase diagram at ν5 ¼ 0.8 GeV. All the nota-
tions are the same as in Fig. 2.
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detailed numerical calculations in order to find ðν5; μÞ-
phase diagrams of the model at some fixed values of ν.
In this case there is a simpler way, which is based on the
duality invariance (21) of the TDP. So one can apply the
duality transformation D (21) to the ðν; μÞ-phase diagram
at arbitrary fixed ν5 ¼ A, in order to obtain the dually
conjugated phase diagram, which is nothing more than a
ðν5; μÞ-phase diagram at fixed ν ¼ A. Hence, to find,
e.g., the ðν5; μÞ-phase diagram at ν ¼ 0.17 GeV, we
should start from the corresponding ðν; μÞ-phase diagram
at fixed ν5 ¼ 0.17 GeV of Fig. 10 and make the simplest
replacement of the notations in this figure: ν ↔ ν5,
PCd ↔ CSBd and PC ↔ CSB (note, the symmetric
phase is intact under the dual transformation). The result
is the ðν5; μÞ-phase portrait of the model at ν ¼ 0.17 GeV
(see Fig. 12).

D. Qualitative arguments in favor
of the charged PCd phase

In the present subsection we would like to demonstrate,
using some qualitative condensed matter physics argu-
ments, the principle possibility of the charged pion con-
densation phenomenon in dense quark medium. The
system is characterized by several chemical potentials,
including the chiral chemical potential responsible for
the chiral imbalance of quark matter. In this case there
are different densities for the left- and right-handed quarks.
So, in the energy-momentum space left- and right-handed
particles occupy unequal regions (Fermi seas). As a result,
the Fermi surfaces (which can be identified with corre-
sponding particle number chemical potentials) are different
for left- and right-handed quarks. In general, we have
studied the phase structure of the initial NJL model (1) in
terms of μ; ν; ν5 chemical potentials. However, sometimes
it is convenient to perform the consideration in terms of
the quantities μuR; μuL; μdR; μdL which are the chemical

potentials for right- and left-handed u and d quarks,
respectively. To find these chemical potentials, we should
introduce the left- and right-handed u, d-quark fields,

quR ¼ 1þ γ5

2
qu; quL ¼ 1 − γ5

2
qu;

qdR ¼ 1þ γ5

2
qd; qdL ¼ 1 − γ5

2
qd: ð36Þ

Then, using Eq. (36), the chemical potential term of
Eqs. (1) and (4) can be presented in the following form

q̄½μγ0 þ ντ3γ
0 þ ν5τ3γ

0γ5�q
¼ q̄uRγ0quRðμþ νþ ν5Þ þ q̄uLγ0quLðμþ ν − ν5Þ
þ q̄dRγ0qdRðμ − ν − ν5Þ þ q̄dLγ0qdLðμ − νþ ν5Þ:

ð37Þ

It is clear from Eq. (37) that particle number chemical
potentials of the left- and right-handed u, d-quark fields
quR; quL; qdR; qdL are the following,

μuR ¼ μþ νþ ν5; μuL ¼ μþ ν − ν5;

μdR ¼ μ − ν − ν5; μdL ¼ μ − νþ ν5; ð38Þ

respectively. In addition, one can present the auxiliary
scalar fields of Eq. (5) in terms of left- and right-handed u,
d-quark fields,

q̄q ∼ q̄uRquL þ q̄uLquR þ ðu ↔ dÞ;
πþ ∼ q̄dLquR − q̄dRquL;… ð39Þ

Here we are going to present two qualitative quark-
antiquark pairing mechanisms, leading to the isospin
UI3ð1Þ symmetry breaking and to the charged PC phe-
nomenon in dense quark matter described by massless
Lagrangian (1). Our consideration is a generalization to the
case of several chemical potentials of the approach of the
paper [29], where a qualitative analysis of possible con-
densed phenomena in a dense quark medium was carried
out. For simplicity, we suppose that isospin asymmetry of
dense (μ ≠ 0) weakly interacting quark matter is very
small, ν ≪ μ; ν5 and, in addition, μ≳ ν5.
In the first mechanism of isospin symmetry breaking

only the excitations around the Fermi surfaces (chemical
potentials) of the quL and qdR quarks are involved. By
assumption, we see that μuL ≈ μdR ≈ μ − ν5 ≈ 0 [see
Eq. (38)]. (But the chemical potentials of the quR and
qdL quarks, i.e., μuR ≈ μdL ≈ μþ ν5, are rather large in this
case.) Then under the influence of external weak effects,
the quL and qdR quarks with momentum p⃗ can appear just
above the Fermi surface, which corresponds to the Fermi
energy ϵF ¼ μ − ν5. In this case below this Fermi surface
two holes appear, which are the antiparticles q̄uL and q̄dR

FIG. 12. ðμ; ν5Þ-phase diagram at ν ¼ 0.17 GeV. All the
notations are the same as in Fig. 2.
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with momenta −p⃗.6 The relative momentum between the
quark quL and the hole q̄dR is a rather small quantity (since
jp⃗j ≈ 0), so they can easily form, due to the weak attractive
interaction in the particle-hole pair having the same
quantum numbers with those of pions, q̄dRquL ∼ πþ [see
Eq. (39)], with zero net momentum. The condensation of
these πþ pairs rearranges initial ground state of the system
in favor of the new ground state in which both isospin
UI3ð1Þ symmetry [see Eq. (2)] and spatial parity P are
spontaneously broken. Moreover, this condensate is a
spatially homogeneous one. Since the quark number
chemical potential μ is a rather large quantity correspond-
ing to nonzero quark number density, we obtain in this case
the realization of the charged PC phase in dense quark
matter.
Similar arguments can help us to establish that a

condensation of the q̄q pairs is forbidden in this case
(i.e., at ν ≪ μ; ν5 and μ ≳ ν5) by kinematic reason. Indeed,
the right-handed quR quark can also be born just above its
Fermi surface μuR ≈ μþ ν5 with some momentum p⃗0 such
that jp⃗0j ≈ μþ ν5. However, the relative momentum p⃗0 þ p⃗
between this quR quark and the corresponding left-handed
q̄uL-quark excitation with momentum −p⃗ has a rather
large absolute value, jp⃗0 þ p⃗j ∼ μuR − μuL ≈ 2μ5 ∼ μ. So
the probability for creation of the q̄q ∼ q̄uLquR pair [see
Eq. (39)] is very small (due to a large relative momentum,
quarks will not have enough time for pairing). Hence in this
case the appearance of the chiral condensate is suppressed.
The above qualitative arguments in favor of the charged

PCd phase are well illustrated by the phase portrait of
Fig. 12, where in the region fν ≪ μ; ν5; μ ≈ ν5g just the
PCd phase is arranged. In addition, the arguments are quite
suited for a qualitative explanation of the phase diagrams
Figs. 1(d) and 2(a) of Ref. [18] in the case of the NJL2

model, as well.
Since the model under consideration is invariant under

the duality transformation (21), we can use the same
qualitative arguments in order to explain why in the dually
conjugated region fν5 ≪ μ; ν; μ ≈ νg the CSBd phase is
realized (see Fig. 10).
Let us now discuss the second way (mechanism) of the

isospin symmetry breaking, in which already the excita-
tions around the Fermi surfaces of the quR and qdL quarks
play a decisive role. As before, we suppose that ν ≪ μ; ν5
and μ≳ ν5, so the Fermi surfaces (chemical potentials) of
these quarks are approximately equal, μuR ≈ μdL ≈ μþ ν5
[see Eq. (38)]. Then arbitrary small external excitements
can cause the appearance of the quR quark with momentum
p⃗ and the qdL quark with momentum −p⃗ just above the
Fermi surface εF ¼ μþ ν5. In this case below the Fermi

surface εF two holes appear, which are the antiparticles q̄uR
and q̄dL with momenta −p⃗ and p⃗, respectively. Since the
relative momentum between the quR quark and q̄dL
antiquark is zero, they can easily form, due to a weak
attractive interaction in the quark-antiquark channel, the
πþ ∼ q̄dLquR pair [see Eq. (39)]. The condensation of
these πþ pairs also results in the spontaneous isospin
UI3ð1Þ symmetry breaking and appearing of the PC phase
in dense quark matter. However, because of the nonzero
net momentum 2p⃗ of this πþ ∼ q̄dLquR pair, where
jp⃗j ∼ μþ μ5, the πþ condensation is a spatially inhomo-
geneous in this case (for details see Ref. [29]).
Recall, in the present paper we investigate the phase

structure of the initial NJL model, supposing that all
condensates are spatially homogeneous, i.e., we ignore
the second (inhomogeneous) way for quark pairing.
However, in future we are going to study the competition
of these mechanisms and take into account the possibility
of inhomogeneous both CSB and PC condensates in the
framework of this model.
At the end of this section we would like, based on the

latest both theoretical and experimental studies, to discuss
in more details the modern status of the charged PCd phase.
Earlier, in the Introduction we have already noticed that this
phase is not predicted in electrically neutral dense quark
matter within the framework of ordinary NJL4 model (with
nonzero bare quark mass) without chiral imbalance [15].
This conclusion is also supported by Ref. [30], where it
was shown that s-wave (i.e., homogeneous) charged pion
condensation is suppressed in neutron stars with hyperons.7

On the other hand, if an external magnetic field as well as
the rotation of a dense medium are taken into account, then
the charged PC phase can be observed both in neutron stars
and in heavy-ion collisions [32]. Our present results are not
directly applicable to neutron stars (since in our consid-
eration the condition of the electric neutrality of the
medium is absent and quarks have zero bare mass), but
predict the possibility of the parityP- or CP-breaking phase
(in our case it is the PCd phase) of the quark-matter fireball
in heavy-ion collision. The similar conclusion is obtained
in some recent papers (see, e.g., in Ref. [33]), when chiral
imbalance of quark matter is taken into account.

V. SUMMARY AND CONCLUSIONS

In this paper the influence of isotopic and chiral
imbalance on phase structure of dense quark matter
has been investigated in the framework of the (3þ 1)-
dimensional NJL model with two quark flavors in the
large-Nc limit (Nc is the number of colors). Dense matter
means that our consideration has been performed at non-
zero baryon μB chemical potential. Isotopic and chiral

6Since in our consideration all quL- and qdR-quark excitations
are massless and their energies are near the Fermi surface ϵF by
assumption, we have jp⃗j ¼ ϵF ¼ μ − ν5 ≈ 0 for all such quL and
qdR excitations.

7The study of the in-medium pion properties in this paper is
based, in particular, on experimental observations of deeply
bound atomic states of π mesons in some isotopes [31].
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imbalance in the system were accounted for by introducing
isospin μI and chiral isospin μI5 chemical potentials [see
Lagrangian (1)]. All the results are obtained in the
chiral limit.
Earlier, analogous phase structure was considered in the

framework of massless NJL2 model in Refs. [18,19], where
it was shown that μI5 promotes charged PC phase with
nonzero baryon density (in Refs. [18,19] and in the present
consideration this phase is denoted as charged PCd phase).
Although the NJL2 model captures the main features of
QCD and can be used as a toy model for the qualitative
description of specific properties of QCD, it is not in any
sense guaranteed that it will succeed in every case. So we
study the more realistic QCD effective field theory in order
to put our NJL2 results on a more solid basis. It appears that
the phase diagrams of the two models are very similar and
the main result that chiral isospin chemical potential
generates charged PC phenomenon in dense quark matter
holds both in the NJL2 and NJL4 models.
Studies in the framework of NJL2 and more realistic

(3þ 1)-dimensional NJL model in a sense complement
each other. For example, NJL4 model predicts that at rather
large isotopic chemical potential (actually outside of the
scope of validity of NJL4 model) there is a phase transition
back to a symmetric phase. But we know that there is no
such transition in the lattice simulations of QCD. In
contrast, the NJL2 model does not predict such a transition.
So in the region, where NJL4 is not a reliable theory and
gives wrong results, one can use predictions of the NJL2

model. Or one can see that in the NJL4 model at high values
of baryon chemical potential μB the charged PCd phase
shifts up to higher values of chiral isospin chemical
potential μI and at some μB it goes outside of a region
of validity of NJL4 model. But a similar result has been
obtained in the NJL2 model as well, where there are no
constraints on chemical potential values, i.e., one can
consider the NJL2 model at arbitrary high values of
chemical potentials. So one can think that it is possible
to go beyond the scope of validity of the NJL4 model and
trust the result in this case. However, as it has been said
earlier, the NJL4 model is a more realistic theory for QCD
and in the region of validity its results are more trustworthy
and corroborate the ones of the NJL2 model. Furthermore,
in the case of zero baryon chemical potential our results
resemble the ones obtained in the lattice simulations for
real QCD. Namely, chiral imbalance promotes the chiral
symmetry breaking phenomenon.
Let us summarize the most essential results of our paper

obtained in the chiral limit.
(1) Chiral isospin chemical potential generates charged

pion condensation in dense quark matter in the
framework of (3þ 1)-dimensional NJL model. So
this phenomenon is predicted in two models, in
NJL4 and NJL2, and might be the property of
real QCD.

(2) It has been also demonstrated that in the framework
of the NJL4 model duality correspondence between
CSB and charged PC phenomena takes place in the
leading order of the large-Nc approximation as in
NJL2 model.

(3) In contrast to NJL2 model, where the generation of
the PCd phase occurs even at very small values
of isospin chemical potential ν, the generation of the
PCd phase in NJL4 model requires not very large
but nonzero isospin chemical potential. So charged
pion condensation phenomenon cannot occur in the
absence of isotopic imbalance in the system and in
order to generate PCd phase one needs to have both
nonzero isospin μI and chiral isospin μI5 chemical
potentials.

As we discussed in the Introduction the dualities akin
to ours was obtained in the framework of universality
principle (large Nc orbifold equivalence) of phase diagrams
in QCD and QCD-like theories in the limit of large Nc
[22–26]. So several methods (NJL model considerations
and orbifold equivalence) point to the similar dualities of
the phase portrait of QCD. Are there such dualities in the
lattice QCD? It has been mentioned earlier that introducing
isotopic chemical potential or chiral chemical potential
does not lead to the sign problem. And we believe that
our results can be supported by lattice QCD investigations
at least in the case of a zero baryon chemical potential (and
nonzero isotopic or chiral isotopic chemical potential).
Moreover, we hope that our results might shed new light
on phase structure of dense quark matter with isotopic and
chiral imbalance and hence could be of importance for
describing physics in the heavy ion collision experi-
ments. Since dense quark matter with isotopic and chiral
imbalance can be created in the fireball after a collision of
heavy nuclei.

APPENDIX: CALCULATION
OF ROOTS OF P�ðηÞ

In this Appendix it will be shown how to get roots of the
following quartic equation (general quartic equation could
be reduced to the one of this form)

PþðηÞ≡ η4 − 2aη2 þ bηþ c ¼ 0: ðA1Þ

The coefficients a, b, c in Eq. (A1) are given by the
relations (20). First, we represent the polynomial on the
left-hand side of this equation as the product of two
quadratic polynomials,

ðη2 þ rηþ qÞðη2 − rηþ sÞ ¼ 0; ðA2Þ

where

−r2 þ qþ s ¼ −2a; qs ¼ c; rs − rq ¼ b:
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It follows from these relations that

q ¼ 1

2

�
−2aþ r2 −

b
r

�
; s ¼ 1

2

�
−2aþ r2 þ b

r

�
:

ðA3Þ

Substituting Eq. (A3) into Eq. (A2), one gets that r ¼ ffiffiffiffi
R

p
,

where R is one of the solutions of the following cubic
equation

X3 þ AX ¼ BX2 þ C; ðA4Þ

where we used notations A, B, C that are given by

A ¼ 16ðΔ2ν5
2 þ ν2ν5

2 þ ν2M2 þ p2ðν2 þ ν5
2ÞÞ;

B ¼ 4a; C ¼ b2:

All three solutions of the cubic equation (A4) are

R1;2;3 ¼
1

3

�
4aþ Lffiffiffi

3
p

J
þ

ffiffiffi
3

p
J

�
; ðA5Þ

where

J ¼ 1

2
ðK þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L3 − K2

p
Þ; K ¼ 128a3 − 36aAþ 27b2;

L ¼ −3Aþ 16a2;

and 3
ffiffiffi
J

p
in Eq. (A5) means each of three possible complex

valued roots. There is a determinant D≡ 4L3 − K2 > 0 of
the Eq. (A4) that can tell us the structure of roots R1;2;3.
Namely, if D > 0 then all roots Ri are real and different, if
D ¼ 0 all roots are real and at least two are equal. Finally, if
D < 0 then one root is real and two are complex conjugate.
So, there is always a real solution of Eq. (A4). In numerical
simulations it is more handy to work with real solution and
it is always possible to choose one. There is a procedure
that, depending on values of parameters, chooses a real
solution, but it is quite lengthy so we will not present
it here.
And when one has found r, the roots of Eq. (A1) has the

following form

η1 ¼
1

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
− r

�
; η2 ¼

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
− r

�
;

η3 ¼
1

2

�
r −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p �
; η4 ¼

1

2

�
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p �
:

ðA6Þ

The roots η5;6;7;8 of the equation P− ≡ η4 − 2aη2 − bηþ
c ¼ 0 can be obtained by changing b → −b in Eq. (A1) (or
q ↔ s in Eq. (A6) with r unchanged). So, we have

η5 ¼ −η4; η6 ¼ −η3; η7 ¼ −η2; η8 ¼ −η1:
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