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We present a detailed study of the subtle interplay transpiring at the level of two integral equations that
are instrumental for the dynamical generation of a gluon mass in pure Yang-Mills theories. The main
novelty is the joint treatment of the Schwinger-Dyson equation governing the infrared behavior of the
gluon propagator and of the integral equation that controls the formation of massless bound-state
excitations, whose inclusion is instrumental for obtaining massive solutions from the former equation.
The self-consistency of the entire approach imposes the requirement of using a single value for the gauge
coupling entering in the two key equations; its fulfilment depends crucially on the details of the three-
gluon vertex, which contributes to both of them, but with different weight. In particular, the characteristic
suppression of this vertex at intermediate and low energies enables the convergence of the iteration
procedure to a single gauge coupling, whose value is reasonably close to that extracted from related
lattice simulations.
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I. INTRODUCTION

The nonperturbative aspects of the gluon propagator,
Δab

μνðqÞ, are considered to be especially relevant for the
qualitative and quantitative understanding of a wide range
of important physical phenomena, such as confinement,
chiral symmetry breaking, and bound-state formation. A
particularly interesting feature, which manifests itself both
in the Landau gauge and away from it, is the saturation of
its scalar form factor, Δðq2Þ, in the deep infrared (IR), i.e.,
Δð0Þ ¼ c0 > 0. This special behavior was firmly estab-
lished in a variety of SU(2) [1–3] and SU(3) [4–8] large-
volume lattice simulations, and has been extensively
studied in the continuum within diverse theoretical frame-
works [9–41]. In fact, if one were to adopt the notions and
terminology put forth in [17,42], the propertyΔð0Þ¼c0>0
is a particular case of a more general phenomenon,
denominated “gapping.” Specifically, the generation of a
fundamental mass gap in the Yang-Mills theory manifests
itself at the level of the gluon propagator by enforcing the
property Δð0Þ < ∞. In particular, the so-called “scaling
solutions,” for which Δð0Þ ¼ 0, form part of this wide class
of “gapped” gluon propagators.

One particular framework that has been developed for
addressing the complicated dynamics associated with the
IR finite gluon propagator arose from the merging of the
pinch-technique (PT) [9,43–47] with the background-field
method (BFM) [48], to be referred to as “PT-BFM scheme”
[15,49,50]. Inherent to this scheme is the distinction
between background (B) and quantum (Q) gluons, and
the proliferation of the possible Green’s functions that one
may form with them. Particularly relevant for what follows
is the distinction between the QQ and QB gluon self-
energies, and the Q3 and BQ2 three-gluon vertices, to be
denoted by Γ and Γ̃, respectively.
We call the reader’s attention on two subtle issues related

with the PT-BFM framework. First, the Schwinger-Dyson
equations (SDEs) that control the evolution of the gluon
propagators of the type QB and BB within this framework
display certain desirable truncation properties, which, by
virtue of a set of exact identities, denominated background-
quantum identities (BQIs) [see Eq. (2.1)], are eventually
transferred to the conventional QQ propagator (the one
simulated on the lattice). Second, the vertices of the type Γ
obey the conventional (nonlinear) Slavnov-Taylor identities
(STIs), whereas those of the type Γ̃ satisfy linear (Abelian)
STIs when contracted with the momentum carried by the B
field (this momentum coincides with the momentum q
entering into the gluon SDE, see below).
Returning to the main problem, as has been shown is a

series of earlier contributions to this subject [51–54], in
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order to obtain an IR finite solution out of the aforemen-
tioned SDEs one must introduce certain crucial assump-
tions. Specifically, an indispensable ingredient is the
presence of massless poles of the type 1=q2 in the vertices
with one B leg, which enter into the QB gluon self-energy.
In fact, this particular non-analytic terms must contribute
nontrivially to the realization of the STIs satisfied by the
corresponding fully-dressed vertices. For instance, in the
case of the three-gluon vertex Γ̃ employed both in [51–54]
and in the present work, a term of the form ðqμ=q2Þ
C̃αβðq; r; pÞ must be included in it, which, after the
contraction by qμ and the resulting cancellation of the
pole, furnishes a piece of the corresponding STI. We will
employ the term “longitudinally coupled” to describe
such poles.
The scenario outlined above constitutes a special

(non-Abelian) version of the well-known Schwinger
mechanism for gauge-boson mass generation [55–60].
The origin of the poles is dynamical, owing to the
formation of colored bound-state excitations, which are
massless due to the strong binding induced by the Yang-
Mills interactions. The integral equations that govern their
formation constitute a system of homogeneous linear
Bethe-Salpeter equations (BSEs), which determines the
derivatives of the corresponding “bound-state wave func-
tions.” In the present work, we will simplify the degree of
complexity by restricting the possibility of pole formation
only in Γ̃, thus reducing the aforementioned system into a
single BSE, which determines the corresponding deriva-
tive, to be denoted by C̃0

1ðk2Þ. Note, in fact, that C̃0
1ðk2Þ and

the C̃αβðq; r; pÞ introduced above are intimately connected:
C̃0
1ðk2Þ is a special partial derivative of the gαβ form factor

of C̃αβ [see Eq. (2.15)].
Evidently, the self-consistent implementation of the

dynamical picture described above hinges on the subtle
interplay between the BSE and SDE, and the compatibility
of the various field-theoretic ingredients that enter in them.
The purpose of the present work is to focus on a particularly
pivotal aspect of this interplay, and elucidate the decisive
impact not only of Γ̃, whose 1=q2 pole enforces the desired
IR finiteness of Δðq2Þ, but especially of Γ, whose IR
structure affects both the kernel of the BSE and a crucial
two-loop component of the SDE.
In order to appreciate how the inclusion of Γ helps in

obtaining a self-consistent picture, let us note that both the
SDE and the BSE depend on the value of the strong
coupling αs ¼ g2=4π. After renormalization has been
implemented, the value of αs, fixed at a given subtraction
point μ, must be common in all parts of the calculations.
In fact, it is a standard text-book statement that the validity
of the STIs requires precisely the imposition of such a
common value for αs. Thus, turning to the case at hand, if
we denote the value of αs used in the SDE by αSDEs , and the
corresponding value of αs by αBSEs , a priori the relation

αSDEs ¼ αBSEs must be fulfilled. However, it turns out that,
when the tree-level expression of Γ is used in the evaluation
of the SDE and the BSE,1 the resulting values for αSDEs and
αBSEs do not coincide. This discrepancy suggests that certain
important pieces in the kernels of the SDE and the BSE
have been left out, in an unbalanced way; as a result, one is
forced to compensate this mismatch by assigning distinct
values to αSDEs and αBSEs .
The main result of the present study is that the non-

perturbative behavior of the Q3 vertex Γ becomes relevant
when trying to restore the crucial equality αSDEs ¼ αBSEs .
Note in particular that (a) Γ enters linearly in the SDE-
derived expression that determines the value of Δ−1ð0Þ and
quadratically in the kernel of the BSE, rendering it
renormalization group invariant (RGI), and (b) below
1 GeV the vertex Γ is suppressed with respect to its
tree-level value, reversing its sign around 100 MeV, and
finally diverging logarithmically at the origin.
If one employs a standard nonperturbative ansatz for Γ,

which encodes the features mentioned in (b), one finds
that, indeed, αSDEs ¼ αBSEs . The common value is given by
αs ¼ 0.45, when the momentum subtraction (MOM)
renormalization is implemented at μ ¼ 4.3 GeV. This
particular value for αs is to be contrasted with the one
obtained (for the same μ) from the lattice simulation of
the three-gluon vertex Γ in [61], namely αs ¼ 0.32.
This discrepancy appears to be more than acceptable given
the approximations implemented when deriving both the
SDE and the BSE, and, in particular, the simplifications
applied in the renormalization of the former, and the
truncations imposed when constructing the kernel of the
latter.

II. SCHWINGER MECHANISM AND VERTICES
WITH MASSLESS POLES

Throughout this work, we consider a SU(3) pure Yang-
Mills theory (no dynamical quarks). In the Landau gauge,
the gluon propagator Δab

μνðqÞ ¼ δabΔμνðqÞ has the form

ΔμνðqÞ ¼ −iΔðq2ÞPμνðqÞ; PμνðqÞ ¼ gμν −
qμqν
q2

;

ð2:1Þ

1We emphasize that the use of a tree-level expression for Γ
does not interfere with one’s ability to obtain an IR finite Δðq2Þ;
indeed, it is the “q-channel” poles, included in Γ̃, that are crucial
for this purpose. Instead, none of the three quantum legs of Γ are
irrigated by q, given that Γ appears “nested” inside the relevant
diagrams (this may be clearly seen in Fig. 2). The poles of Γ are
thus displaced, being of the form 1=l2, where l is one of the
virtual loop momenta that are being integrated over. In any case,
in the Landau gauge, the “longitudinally coupled” poles of Γ are
annihilated (both in the SDE and the BSE), because each leg is
contracted by the corresponding projection tensor.
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where Δðq2Þ is related to the form factor of the gluon
self-energy ΠμνðqÞ ¼ PμνðqÞΠðq2Þ, through Δ−1ðq2Þ ¼
q2 þ iΠðq2Þ. Lattice data for this (quenched) quantity,
renormalized at μ ¼ 4.3 GeV, are shown in Fig. 1 and
will serve as the main input in the ensuing analysis. In
addition, the ghost propagator Dabðq2Þ¼iδabDðq2Þ fur-
nishes the dressing function, Fðq2Þ, defined as Fðq2Þ ¼
q2Dðq2Þ; in the Landau gauge (again at μ ¼ 4.3 GeV),
Fð0Þ ≈ 2.9.
In the PT-BFM framework, the SDE of Δðq2Þ is

expressed in terms of the QB self-energy Π̃μνðqÞ, namely
(see Fig. 2),

Δ−1ðq2ÞPμνðqÞ ¼
q2PμνðqÞ þ iΠ̃μνðqÞ

1þGðq2Þ ; ð2:2Þ

where Gðq2Þ is the gμν component of a special two-point
function [64]. In the Landau gauge only, the important
relation 1þGð0Þ ¼ F−1ð0Þ holds exactly [23,65].
The main advantage of expressing the gluon SDE in

terms of Π̃μνðqÞ rather than ΠμνðqÞ arises from the fact that,
when contracted from the side of the B-gluon, each fully
dressed vertex satisfies a linear (Abelian-like) Slavnov-
Taylor identity (STI). In particular, when contracted by the
momentum carried by the background leg,2 the BQ2 vertex
Γ̃μαβ satisfies (color omitted)

qμΓ̃μαβðq; r; pÞ ¼ iΔ−1
αβ ðrÞ − iΔ−1

αβ ðpÞ: ð2:3Þ

This particular STI furnishes nontrivial constraints on the
structure of Γ̃μαβðq; r; pÞ, but leaves completely undeter-
mined its “transverse” component, Γ̃T

μαβðq; r; pÞ, which is
identically conserved, namely

qμΓ̃T
μαβðq; r; pÞ ¼ rαΓ̃T

μαβðq; r; pÞ ¼ pβΓ̃T
μαβðq; r; pÞ ¼ 0:

ð2:4Þ

We now concentrate on the IR dynamics described by the
gluon SDE of Eq. (2.2), when combined with the STI of
Eq. (2.3), and in conjunction with some crucial assump-
tions regarding the analytic structure of Γ̃μαβðq; r; pÞ.
In particular, we will briefly review the consequences of
the absence/presence of a “longitudinally coupled” pole,
with the characteristics mentioned in the Introduction.
To that end, let us first assume that all form factors

composing Γ̃μαβðq; r; pÞ (i.e., both the “transverse” and the
“STI-saturating” components) are well-behaved analytic
functions in the limit q → 0. Then, employing a tensorial
basis that does not introduce spurious IR divergences, one
may show that the term Γ̃T

μαβðq; r; pÞ, when inserted into the
right-hand side (rhs) of the SDE, gives no contribution to
Δ−1ð0Þ.
The determination of the contribution to Δ−1ð0Þ stem-

ming from the part of Γ̃μαβðq; r; pÞ that can be recon-
structed from Eq. (2.2) is technically more subtle [53],
involving a delicate interplay between the Ward-Takahashi
identity (WTI), satisfied by Γ̃μαβðq; r; pÞ as q → 0, and an
integral relation known as the “seagull identity” [53,66].
To see this, consider the limit of the STI (2.3) as q → 0.

Then, given that (by assumption) we are dealing with well-
behaved functions, the Taylor expansion of both sides may
be carried out. This, in turn, generates the corresponding
WTI,

Γ̃μαβð0; r;−rÞ ¼ −i
∂
∂rμ Δ

−1
αβ ðrÞ; ð2:5Þ

which, when used in the evaluation of the gluon SDE,
yields

Δ−1ð0Þ ¼
Z
k

∂
∂kμ F μðkÞ ¼ 0

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
seagull identity

; F μðkÞ ¼ kμF ðk2Þ

ð2:6Þ

where F ðk2Þ ¼ Δðk2Þ½c1 þ c2Yðk2Þ�, with c1, c2 ≠ 0, and
(see Fig. 2)

FIG. 1. Lattice data for the quenched Landau gauge gluon
propagator obtained from a tree-level Symanzik (tlSym) im-
proved gauge action [61,62] (calibrated following the procedure
described in [63]), compared with the corresponding data
obtained from a Wilson gauge action [5]. The momentum axis
is linear on the left of the vertical dashed line and logarithmic on
the right, an artifice that clearly exposes the existence of a
saturation point at IR momenta.

2Two additional (nonlinear) STIs are fulfilled when con-
tracting with respect to the two quantum legs (rα and pβ), but
their form is not relevant for the present analysis.
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Yðk2Þ ¼ 1

ðd− 1Þ
kα
k2

Z
l
ΔαρðlÞΔβσðlþ kÞΓσρβð−l− k;l; kÞ:

ð2:7Þ

Note that we have introduced the dimensional regulariza-
tion integral measure

R
k ≡ μϵ

ð2πÞd
R
ddk, with d ¼ 4 − ϵ the

space-time dimension, and μ the ’t Hooft mass scale.
Thus, we conclude that, under the crucial assumptions
regarding the structure of Γ̃ mentioned above, one cannot
obtain an IR finite solution from the gluon SDE of
Eq. (2.2).
In order to circumvent the result of Eq. (2.6), one must

allow Γ̃μαβ to contain some type of nonanalytic contribu-
tions. In what follows, we will focus our interest on a
particular version of this possibility, known in the literature
as the Schwinger mechanism [55,56], widely employed for
the dynamical generation of a gauge boson mass [57–60].
Specifically, we will assume that the underlying dynam-

ics will give rise to a very special nonanalytic term to Γ̃,
which contributes nontrivially to the realization of the STI
given in Eq. (2.3). In other words, this particular term
cannot be written exclusively in terms of the transverse
basis, but has a nonvanishing projection in the part that
saturates the STI.
In particular, we have

Γ̃μαβðq; r; pÞ ¼ Γ̃np
μαβðq; r; pÞ þ Γ̃p

μαβðq; r; pÞ; ð2:8Þ

with

Γ̃p
μαβðq; r; pÞ ¼

qμ
q2

C̃αβðq; r; pÞ; ð2:9Þ

where the superscripts “np” and “p” indicate the
“no-pole” and “pole” parts, respectively, and C̃αβ is the

aforementioned bound-state wave function. Its most gen-
eral Lorentz decomposition is given by3

C̃αβðq; r; pÞ ¼ C̃1gαβ þ C̃2pαpβ þ C̃3rαrβ þ C̃4rαpβ

þ C̃5pαrβ; ð2:10Þ

where C̃i ¼ C̃iðq; r; pÞ. Notice that the Bose-symmetry of
the vertex under the exchange ðα, r) ↔ (β, p) imposes the
relation C̃αβð0; r;−rÞ ¼ 0, which implies in particular that

C̃1ð0; r;−rÞ ¼ 0: ð2:11Þ

As has been explained in detail in [51,54], if we work in the
Landau the only relevant form factor in the above tensorial
decomposition is C̃1.
Next, in order to preserve the BRST symmetry of the

theory, we demand that all STIs maintain their exact form in
the presence of these poles; therefore, Eq. (2.3) will now
read

qμΓ̃np
μαβðq; r; pÞ þ C̃αβðq; r; pÞ ¼ iΔ−1

αβ ðrÞ − iΔ−1
αβ ðpÞ:

ð2:12Þ

Taking the limit of Eq. (2.12) as q → 0 and matching the
lowest order terms in q, the corresponding WTI becomes

FIG. 2. The procedure leading to the dynamical gluon mass generation within the PT-BFM framework. Notice in particular that since
the transition amplitude ĨμðqÞ has one free index and depends on a single momentum, it is automatically longitudinally coupled:
ĨμðqÞ ¼ qμĨðq2Þ [51]. In addition, we set (see also footnote 3) C̃αβ ¼ ĨBαβ.

3In [51,54] the “transition amplitude” Ĩðq2Þ, was explicitly
factored out (see Fig. 2), and the corresponding form factors were
denoted by Biðq; r; pÞ. In particular, the form factors associated
with gαβ in the two bases are related by C̃1 ¼ Ĩðq2ÞB1.
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Γ̃np
μαβð0; r;−rÞ ¼ −i

∂
∂rμ Δ

−1
αβ ðrÞ

−
� ∂
∂qμ C̃αβðq; r;−r − qÞ

�
q¼0

: ð2:13Þ

The presence of the second term on the rhs of Eq. (2.13)
has far-reaching consequences for the IR behavior of Δ.
Specifically, a repetition of the steps leading to Eq. (2.6)
reveals that, whereas the first term on the rhs of Eq. (2.13)
reproduces again Eq. (2.6) (and its contribution thus
vanishes), the second term survives, giving

Δ−1ð0Þ ¼ 3

2
g2CAFð0Þ

Z
k
k2Δ2ðk2Þ

�
1 −

3

2
g2CAYðk2Þ

�

× C̃0
1ðk2Þ;

ð2:14Þ

where

C̃0
1ðk2Þ ¼ lim

q→0

�∂C̃1ðq; k;−k − qÞ
∂ðkþ qÞ2

�
; ð2:15Þ

and CA is the Casimir eigenvalue of the adjoint represen-
tation [N for SUðNÞ]. Note that the one- and two-loop
dressed contributions enter into the mass condition (2.14)
with a different relative sign, a fact that is crucial for the
ensuing analysis.
We conclude this section with some pertinent remarks.
(1) We emphasize that in the above demonstration we

have assumed that the transverse parts of the vertex
do not contain non-bound-state poles, namely poles
that would be there even if the Schwinger mecha-
nism had been switched off. It is important to
maintain a sharp distinction regarding the nature
of the poles, because, depending on the tensorial
basis employed, the C̃αβðq; r; pÞ given in Eq. (2.10)
may contribute (in part) to the corresponding trans-
verse part; for instance, if one re-expresses
C̃αβðq; r; pÞ in the Ball-Chiu (BC) basis [67],4 with
the exception of the first term, all others contribute to
Γ̃T
BC. Evidently, such contributions to Γ̃T would be

proportional to the form factors C̃iðq; r; pÞ, being
the result of simply rewriting C̃αβðq; r; pÞ in another
basis. However, if poles of different origin were
allowed in Γ̃T, accompanied by new form factors,
say Ỹiðq; r; pÞ, they would in general interfere with
the above construction. It is relatively straightfor-
ward to establish, for instance, in the BC basis, that
if the Ỹiðq; r; pÞ are of the form Ỹiðq; r; pÞ ¼
ciðq; r; pÞ=q2, and are substituted into the gluon

SDE, then they too contribute to the final value
of Δ−1ð0Þ.

(2) Related to the previous point, we are not aware of
any lattice or SDE statements regarding the analytic
structure of the transverse parts of the three-gluon
vertex, and in particular the possibility of them
developing a massless pole. In particular, and mainly
due to kinematic reasons, present lattice simulations
cannot confirm or discard such structures. For
instance, the typical quantity considered in lattice
simulation of the three-gluon vertex (Landau gauge)
is the ratio [69,70]

Rðq; r; pÞ ¼ N ðq; r; pÞ
Dðq; r; pÞ ; ð2:16Þ

where

N ðq; r; pÞ ¼ Γð0Þ
αμνðq; r; pÞPαρðqÞPμσðrÞPντðpÞ

× Γρστðq; r; pÞ;
Dðq; r; pÞ ¼ Γð0Þ

αμνðq; r; pÞPαρðqÞPμσðrÞPντðpÞ
× Γð0Þ

ρστðq; r; pÞ: ð2:17Þ

First of all, due to its special Lorentz structure, the
term Γ̃p

μαβðq; r; pÞ in Eq. (2.9) automatically drops
out from R. Moreover, we have checked using
Γ̃T
BC, that the resulting kinematic prefactors cancel

completely the pole assumed to be contained in
Ỹiðq; r; pÞ, giving, at most, a finite contribution (for
i ¼ 4), which is mixed with those of other (regular)
form factors, and could not be possibly disentangled
from the data.
Similarly, at the level of the SDE that controls the

vertex Γ̃, one may expect that diagrams containing
(IR finite) gluon propagators will furnish results that
are well behaved as q → 0. The type of diagrams
that are known to produce nonanalytic structures are
the “triangle” graphs containing a ghost loop; this is
so because the three ghost propagators entering there
are nonperturbatively massless, namely Dðk2Þ ¼
Fðk2Þ=k2, with Fðk2Þ finite. However, the only type
of divergence stemming from them, which has been
analytically identified [42,71–77], and observed on
the lattice [61,62,69,70,78], is logarithmic (see next
section). Thus, even though no rigorous proof may
be offered at this level, we consider the aforemen-
tioned scenario of the transverse parts containing
primary poles rather remote.

(3) Note that the derivation of Eq. (2.14) involves the
Taylor expansion of C̃1ðq; k;−k − qÞ around q ¼ 0.
Due to the validity of Eq. (2.11), the first term in this
expansion is linear in q, and its co-factor is precisely
the C̃0

1ðk2Þ, defined in Eq. (2.15). It is clear that
4We use the tensorial structures denoted by ti (i ¼ 1, 2, 3, 4) in

Eq. (4.6) of [68].

COUPLED DYNAMICS IN GLUON MASS GENERATION AND … PHYS. REV. D 97, 054029 (2018)

054029-5



C̃0
1ðk2Þ should not vanish identically, because, in

such a case, Δ−1ð0Þ ¼ 0; this is precisely what we
will establish in the next section, by solving the
BSE that controls C̃0

1ðk2Þ. Evidently, the nonvanish-
ing of C̃0

1ðk2Þ means that the pole 1=q2 multiplying
C̃1ðq; k;−k − qÞ does not get washed out. In other
words, C̃1ð0; k;−kÞ vanishes linearly in q, and even
though it makes the total divergence weaker, does
not eliminate it (that would have been the case if
the Taylor expansion of C̃1ðq; k;−k − qÞ would
start with the second instead of the first derivative).
The persistence of the divergence may be clearly
seen in the three-dimensional plot of the quantity
C̃1ðq; r; pÞ=q2, shown in the second panel of Fig. 6.

(4) We emphasize that if one wants to obtain an infrared
finite gluon propagator, which is the purpose of this
exercise, the “divergence” introduced in Γ̃p

μαβðq; r; pÞ
must be precisely that of a pole. This is so because,
with the additional properties of the form factor C̃1

mentioned above, Γ̃p
μαβðq; r; pÞ is the only way to

reproduce, at the level of the gluon SDE, exactly the
required structure ðgμν − qμqν=q2ÞΔ−1ðq2Þ, with the
finite Δ−1ð0Þ, given by Eq. (2.14). If, instead, any
other power of the form q−2ð1þbÞ, with b ≠ 0, were
to be introduced, one would arrive at a structure
ðgμν − qμqν=q2ÞΔ−1

b ðq2Þ, with Δ−1
b ðq2Þ ¼ q−2bΔ−1

ðq2Þ. Then, in the limit q → 0, if b > 0 we obtain
a gluon propagator that vanishes at the origin,
while for b < 0 a divergent one; evidently, both
possibilities contradict the lattice results mentioned
in the Introduction.

(5) The above point is also relevant for the proper
interpretation of the BSE results of the next section.
In particular, the derivation of the BSE for C̃0

1ðk2Þ

relies on the matching of the most divergent
contribution on both sides of this equation. It is
relatively straightforward to establish that one would
arrive at the same equation for C̃0

1ðk2Þ even if the
power of the “divergence” were different than a pole
(but sufficiently strong to suppress other contribu-
tions). Thus, when studied in isolation, the non-
vanishing of the C̃0

1ðk2Þ does not necessarily prove
the formation of a genuine pole. However, the BSE
is not to be understood in isolation, but rather
coupled to the corresponding gluon SDE. Then,
in the light of the previous point, the nonvanishing
C̃0
1ðk2Þ may be indeed interpreted as the BSE

amplitude for the generation of a massless pole.

III. BSE FOR THE MASSLESS BOUND-STATES

The dynamical equation that governs C̃1ðk2Þ may be
derived from the SDE satisfied by Γ̃μαβðq; r; pÞ, as q → 0.
In this limit, the derivative term becomes the leading
contribution, given that C̃αβð0; r;−rÞ ¼ 0, and the resulting
homogeneous equation assumes the form of a BSE (see
Fig. 3), given by [54]

famnlim
q→0

C̃αβðq;r;pÞ¼fabclim
q→0

�Z
k
C̃γδðq;k;−k−qÞΔγρðkÞ

×ΔδσðkþqÞKbmnc
ραβσ ð−k;r;p;kþqÞ

�
:

ð3:1Þ

To proceed further, we will approximate the four-gluon BS
kernel K by the lowest-order set of diagrams appearing in
its skeleton expansion, given by the diagrams (b1), (b2),
and (b3), shown in the second line of Fig. 3. It turns out

FIG. 3. The BSE satisfied by the bound-state wave function C̃αβ (upper line) and the simplified four-gluon kernel used.
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that, if we use the tree-level four-gluon vertex in the
evaluation of (b1), its contribution in the above kinematic
limit vanishes. Diagrams (b2) and (b3), which carry a
statistical factor of 1=2, are considered to contain fully
dressed gluon propagators and three gluon vertices Γ (note
that all gluons are of the Q-type). As a consequence, the
resulting BSE does not depend on the value of the MOM
subtraction point μ, because the two graphs composing its
kernel may be written as the “square” of the formally RGI
combination [by virtue of Eq. (6.2)]

Rμαβðk1; k2; k3Þ ¼ gΔðk1ÞΔ1=2ðk2ÞΓμαβðk1; k2; k3Þ; ð3:2Þ

namely, setting q¼0, ðb2Þ∼Rð−k;k−r;rÞRðk;r−k;−rÞ
and ðb3Þ ∼Rð−k; kþ r;−rÞ Rðk;−r − k; rÞ.
The vertex Γ contains 14 form factors [67], whose

nonperturbative structure, albeit subject of various studies
[42,71–77], is only partially known. Therefore, for the
purposes of the present work, we will consider the simple
ansatz,

Γμαβðk1; k2; k3Þ ¼ fðk2ÞΓð0Þ
μαβðk1; k2; k3Þ; ð3:3Þ

where Γð0Þ is the standard tree-level expression of the
vertex, and the form factor fðrÞ is considered to be a
function of a single kinematic variable. We emphasize (see
also footnote in page 4) that, unlike Γ̃, the Γμαβðk1; k2; k3Þ
does not contain poles in 1=q2, bur rather in 1=k2i
(i ¼ 1, 2, 3); such poles are integrated over and are not
important for obtaining the desired gluon propagator. In
fact, Γμαβðk1; k2; k3Þ is contracted by three transverse

projection operators,5 which completely annihilate any
such contribution. For that reason, the ansatz proposed
in Eq. (3.3) is compatible with the rest of our construction.
Then, using Eq. (3.3) into Eq. (3.1), we arrive at the final

equation,

C̃0
1ðr2Þ ¼

8π

3
αsCA

Z
k
C̃0
1ðk2Þ

ðr · kÞ½r2k2 − ðr · kÞ2�
r4k2ðkþ rÞ2

× Δ2ðkÞΔðkþ rÞf2ðkþ rÞ
× ½8r2k2 þ 6ðr · kÞðr2 þ k2Þ
þ 3ðr4 þ k4Þ þ ðr · kÞ2�: ð3:4Þ

The functional form we will employ for fðkþ rÞ is
motivated by a considerable number of lattice simulations
and studies in the continuum. In particular, for certain
characteristic kinematic configurations (such as the sym-
metric and the soft gluon limits), the vertex is suppressed

with respect to its tree-level value, reverses its sign for
relatively small momenta (an effect known as “zero cross-
ing”), and finally diverges at the origin [42,71–77]. The
reason for this particular behavior may be traced back to the
delicate balance between contributions originating from
gluon loops, which are “protected” by the corresponding
gluon mass, and the “unprotected” logarithms coming from
the ghost loops that contain massless ghosts. Early lattice
indication for a zero crossing in SU(2) Yang-Mills theories
can be found in [69,70], whereas the effect has been
recently confirmed to be present also in the case of
SU(3) theories [61,62,78]. A compilation of the lattice
data of [61,62], properly normalized by dividing out the
coupling [g ¼ 2 at μ ¼ 4.3 GeV for the set at hand,
corresponding to αs ¼ 0.32], is shown in Fig. 4.
We end this section by briefly discussing the numerical

procedure followed for solving Eq. (3.4). Introducing
spherical coordinates, this equation can be rewritten sche-
matically as

C̃0
1ðxÞ ¼ αs

Z
π

0

dθ
Z

b

0

dyKðx; y; θÞC̃0
1ðyÞ; ð3:5Þ

where one should have b ¼ ∞ but in practice is limited to a
finite b ≫ 1. By expanding the unknown function in terms
of Chebishev polynomials of the first kind,

C̃0
1ðxÞ ¼

c0
2
þ
Xn
k¼1

ckTkðxÞ; ð3:6Þ

we then map the problem into determining the nþ 1
coefficients characterizing this expansion [79,80]. To do
that, we discretize the variable x ∈ ½0; b� as

xj ¼
b
2
cos

�
π

n
ðn − jÞ

�
þ b

2
; j ¼ 0;…; n; ð3:7Þ

FIG. 4. Compilation of SU(3) lattice data (evaluated with
various β, volumes and actions) for the form factor f in the
symmetric configuration [61,62].

5Note that, in addition to the projection operators due to the
internal Landau gauge propagators, the derivation of the BSE
involves a contraction by PαβðrÞ, in order to project out the C̃1

component of C̃αβ.
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that is, the xj correspond to the extrema of the nth
Chebishev polynomial in this interval.
It is then relatively easy to prove that finding solutions to

our original equation is equivalent to identifying the values
of αs for which the matrix A − αsB is singular, where

Aij ¼ δTi

�
2xj − b

b

�
;

Bij ¼ δ

Z
π

0

dθ
Z

b

0

dyKðxj; y; θÞTi

�
2xj − b

b

�
; ð3:8Þ

and δ ¼ 1=2 if i ¼ 0, and δ ¼ 1 otherwise. Provided that
such αs exists, one can then determine all the expansion
coefficients ck by simply setting to c0 ¼ 1 and then solving
the resulting reduced eigenvector equation.

IV. RUNNING GLUON MASS FROM THE BSE

The upshot of the construction presented so far is that the
Schwinger mechanism endows the gluonwith a mass, which
is the physical way of interpreting the saturation of the gluon
propagator at the origin. In this section, we will extend this
notion to the case of the running gluon mass, which dates
back to the pioneeringwork of [9],6 and outline the procedure
that permits its reconstruction from the solution C̃0

1ðr2Þ
obtained from the BSE.
In the absence of poles, the validity of Eq. (2.6) suggests

that Δ−1ðq2Þ ¼ q2Jðq2Þ, where the function Jðq2Þ captures
the perturbative contributions and diverges as ln q2 at the
origin. Instead, the IR saturation of Δ−1ðq2Þ motivates the
physical parametrization,

Δ−1ðq2Þ ¼ q2Jðq2Þ þm2ðq2Þ; ð4:1Þ

with m2ð0Þ ≠ 0. Note that Jðq2Þ is also affected by the
presence of the mass, since the perturbative logarithms of
the form lnq2 that stem from gluon loops are “protected” by
themass, being (qualitatively) replaced by ln ðq2 þm2ðq2ÞÞ.
It is important to emphasize that the decomposition

introduced in Eq. (4.1) is mathematically not unique,
because, in the absence of any additional criterion, parts
of the q2Jðq2Þ term may be reassigned tom2ðq2Þ. This is to
be contrasted with what happens in the corresponding
decomposition of the inverse quark propagator according to
S−1ðpÞ ¼ Aðp2Þp − Bðp2Þ, where the different Dirac
nature of the two terms makes their identification math-
ematically unambiguous.
Notwithstanding this limitation, a meaningful definition

of m2ðq2Þ may be reached through the judicious allotment
of the terms Γ̃np

μαβðq; r; pÞ and Γ̃p
μαβðq; r; pÞ entering in the

STI of Eq. (2.12). Specifically, after introducing Eq. (4.1) in
the rhs of Eq. (2.12), it is natural to associate the J terms
with the qμΓ̃np

μαβ on the lhs and, correspondingly,

C̃αβðq; r; pÞ ¼ m2ðp2ÞPαβðpÞ −m2ðr2ÞPαβðrÞ: ð4:2Þ

Focusing on the gαβ components of Eq. (4.2), we obtain

C̃1ðq; r; pÞ ¼ m2ðp2Þ −m2ðr2Þ; ð4:3Þ

which, in the limit q → 0, leads to the important result [51]

C̃0
1ðr2Þ ¼

dm2ðr2Þ
dr2

: ð4:4Þ

Then, upon integration,

m2ðxÞ ¼ Δ−1ð0Þ þ
Z

x

0

dyC̃0
1ðyÞ; ð4:5Þ

where x ¼ q2 and y ¼ r2. Eq. (4.5) establishes thus a
possible link between the solution of the BSE (3.4) and
what has been identified in the literature with the dynami-
cally generated gluon mass [82]. However, in order for the
quantity m2ðq2Þ to admit a running mass interpretation in
the sense familiar from the quark case, it needs to: (i) be a
monotonically decreasing function of q2; (ii) vanish in the
UV, i.e., satisfy m2ð∞Þ ¼ 0.
To explore the implications of these requirements, let S0

be a general solution of the BSE (3.4) corresponding to
a certain (eigen)value of the strong coupling, αs ¼ αBSEs .
The typical shape of such solutions is shown in Fig. 5.
Then, one has C̃0

1ðxÞ ¼ cS0ðxÞ, where c is a normalization
constant that needs to be determined. To this end, observe
that, with the kernel used, S0 is positive definite; then, the
requirement of a monotonically decreasing m2ðxÞ forces c
to be negative: c ¼ −jcj. Furthermore, the condition
m2ð∞Þ ¼ 0 fixes its modulus, since Eq. (4.5) implies

Δ−1ð0Þ ¼ jcj
Z

∞

0

dyS0ðyÞ; ð4:6Þ

with jcj ¼ 0.0076 for the solution shown in Fig. 5.
Substitution of Eq. (4.6) into Eq. (4.5) yields

m2ðxÞ ¼ jcj
Z

∞

x
dyS0ðyÞ; ð4:7Þ

which, upon integration, gives rise to the squared running
mass shown in Fig. 5; it may be accurately fitted by

m2ðq2Þ ¼ m2ð0Þ=½1þ ðq2=m2
1Þ1þp�; ð4:8Þ

with m1 ¼ 0.36 GeV and p ¼ 0.1, in excellent agreement
with the behavior found in [83].

6For a detailed treatise of the meaning and origins of this mass,
its role in confinement and screening, its nontrivial interplay with
the gauge-field condensates, and its usefulness in describing
QCD phenomenology, the reader is referred to [81].

DANIELE BINOSI and JOANNIS PAPAVASSILIOU PHYS. REV. D 97, 054029 (2018)

054029-8



We finally note that the special ansatz introduced in
Eq. (4.3) for C̃1ðq; r; pÞ allows its full reconstruction, once
m2ðq2Þ is obtained. In particular, using the functional form
for m2ðq2Þ shown in the second panel of Fig. 5, evaluated
for the arguments r2 and ðqþ rÞ2, we obtain the three-
dimensional curve shown in the left panel of Fig. 6 for the
value θ ¼ 0 being θ the angle between q and r. When
dividing this quantity by x one sees the developing of a

massless pole as x → 0 which is ultimately responsible for
the generation of the gluon mass.

V. BSE-SDE consistency through the inclusion of Γμαβ

Having introduced all necessary ingredients pertinent to
the problem, in this section we present the main novel
results of the present study.

FIG. 5. From the left-top clockwise: A typical solution of the BSE (3.4), the corresponding normalized solution, and the associated
dynamically generated gluon mass.

FIG. 6. The form factor C̃1ðx; y; θÞ (θ being the angle between q and r) reconstructed from the special ansatz Eq. (4.3) using the mass
obtained in Eq. (4.7). Left panel: C̃1 evaluated at θ ¼ 0. Right panel: The same quantity as before but now divided by x, and therefore
showing the presence of a pole in the x → 0 limit. In both case the units for x and y are GeV2.
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Specifically, as mentioned in the Introduction, a self-
consistent treatment of both the SDE and the BSE would
require that the αs entering in thembe the same, given that its
value has been fixed within a given renormalization scheme
(MOM) and at a given scaleμ. If, instead, different values for
αs need be employed in these two integral equations in order
to obtain compatible dynamics, this is an indication that
certain important pieces have been left out, due to the
unavoidable truncations implemented to them. As we will
see in this section, this discrepancy, which is indeed there,
may be eliminated by including appropriate physically
motivated nonperturbative corrections to the vertex Γμαβ,
which enters in the graphs of both the SDE and the BSE.We
remind the reader that Γ plays a completely different role
than Γ̃ in this context: with a tree-level Γ̃we cannot obtain a
IR finite gluon propagator; with a tree-level Γwe simply get
the values of αs off (see also footnote in page 4).
Let us now return to Eq. (2.14), whose derivation was

carried out before renormalization. Its renormalization may
be carried out by introducing the standard renormalization
constants for the propagators, vertices, and the coupling.
Then, using the constraints that the various STIs impose on
these constants, all quantities entering into Eq. (2.14) can
be converted into renormalizaed ones, and the replacement

1 −
3

2
g2CAYðk2Þ → Z3 −

3

2
Z4g2RCAYRðk2Þ ð5:1Þ

must be implemented on its rhs, with Z3 and Z4 the
renormalization constants of the Q3 and Q4 vertices,
respectively.
The presence of Z3 and Z4 converts the computation of

the rhs of Eq. (2.14) into a highly nontrivial exercise, which
requires, among other things, the detailed knowledge of
the structure of the Q3 and Q4 vertices. Therefore, as is
common in this type of analysis, we will simplify the
situation by setting Z3 ¼ Z4 ¼ 1.
At this point we will couple the SDE with the BSE. The

way we do this is by substituting Eq. (4.6) (which is
obtained from the BSE) on the left-hand side of the SDE in
Eq. (2.14). The resulting equality may be written as a
second-order algebraic equation for αs, given by

Aα2s þ Bαs þ C ¼ 0; ð5:2Þ

where, passing to Euclidean space and using spherical
coordinates,

A ¼ 3C2
A

32π3
Fð0Þ

Z
∞

0

dyy2Δ2ðyÞYðyÞS0ðyÞ;

B ¼ −
3CA

8π
Fð0Þ

Z
∞

0

dyy2Δ2ðyÞS0ðyÞ;

C ¼ −
Z

∞

0

dyS0ðyÞ: ð5:3Þ

with A > 0 and B;C < 0. The unique positive solution of
Eq. (5.2) is given by

αSDEs ¼ −Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
; ð5:4Þ

which shows how the existence of a positive coupling relies
on a delicate interplay between the strength of the one- and
two-loop dressed contributions in the gluon SDE.
We will now perform a numerical analysis in order to

establish if the equality αSDEs ¼ αBSEs can be indeed
realized, and, if so, at what value of the strong coupling αs.
In order to fully appreciate the importance of employing

a nontrivial f in this context, let us set f ¼ 1 both in
Eqs. (2.7) and (3.4). Then, a straightforward calculation
yields the rather disparate set of values αSDEs ¼ 0.42 and
αBSEs ¼ 0.27. As we will see, the effect of using a
physically motivated f will be a slight increase in αSDEs

combined with a considerable increase in αBSEs .
Let us choose for f a fit to the data of Fig. 4, given

by [61]

fðq2Þ ¼ λ

�
1þ b ln

q2 þM2

μ2 þM2
þ c ln

q2

μ2

þ e
M2ðq2 − μ2Þ

ðq2 þM2Þðμ2 þM2Þ
�
; ð5:5Þ

with μ ¼ 4.3 GeV the renormalization scale. We set
b ¼ e ¼ −5.30, c ¼ 5.40, M ¼ 0.124 GeV, but leave
the scale factor λ undetermined for the moment.
Next, using the same three-gluon vertex approximation

(3.3), Eq. (2.7) yields (in spherical coordinates7 and d ¼ 4)

iYðyÞ ¼ 1

24π3

Z
∞

0

dtt
Z

π

0

dω sin4ω½5þ ðyþ ffiffiffiffi
yt

p
cosωÞ=u�

× fðuÞΔðtÞΔðuÞ: ð5:6Þ

We emphasize that Y is computed for the first time using
full gluon propagators and a nonperturbative ansatz for the
three-gluon vertex; this is a major improvement, given that
all previous treatments of this quantity were purely per-
turbative (one loop) [82].
We then proceed as follows. To begin with, both in the

evaluation of (3.4) and Eq. (5.4) we use as input for Δðk2Þ
and Fð0Þ the lattice data of [5]. Then, we set in Eq. (5.5)
the convenient starting value λ0 ¼ 1, and determine the
value of the coupling αBSEs ¼ α0 for which the BSE (3.4)
yields the nontrivial solution S0; specifically, we find
that α0 ¼ 0.61. Next, we substitute S0 into Eq. (5.3) and
compute the coefficients A0, B0 and C0 of Eq. (5.3), whose
values are (all in GeV2) A0 ¼ 156.2, B0 ¼ −40.7 and
C0 ¼ −18.5. Substituting them into Eq. (5.4), one obtains

7Here we set t ¼ l2 and u ¼ ðkþ lÞ2 and k · l ¼ ffiffiffiffi
yt

p
cosω.
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αSDEs ¼ 0.5; evidently, αSDEs ≠ α0. In order to achieve the
desired equality αSDEs ¼ αBSEs , note that, if λ is moved from
λ0 ¼ 1, the BSE will yield precisely the same solution as
before provided that its coupling is rescaled to αBSEs ¼
α0=λ2 (recall that the BSE is quadratic in f). In addition,
since Y is linear in f, we will simply have that A → λA0,
while B and C remain at their initial values. Therefore,
imposing the condition αSDEs ¼ αBSEs implies that the scale
factor λ has to be such that

−B0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0 − 4λA0C0

p
2λA0

¼ α0
λ2

; ð5:7Þ

or, equivalently,

C0λ
3 þ α0B0λþ α20A0 ¼ 0; ð5:8Þ

whose only real solution is λ ≈ 1.16. A shown in Fig. 7, the
f obtained from Eq. (5.5) using this special value for λ fits
particularly well the lattice data. Thus, the two couplings
converge to the single value αBSEs ¼ αSDEs ¼ 0.45, corre-
sponding to g ¼ 2.4 at μ2 ¼ 4.3 GeV, which is 20% off the
value used for g in the lattice simulations mentioned above.
As a final possibility, let us assign to the SDE and the

BSE different forms of f, by setting λBSE ≠ λSDE. This
difference may be considered as a simple way of account-
ing for the fact that, while in the SDE all arguments of
fðx; y; zÞ are integrated over (being virtual), in the BSE the
third argument is associated with the external momentum
p; this, in turn, may modify slightly the corresponding
integrated strengths. Then, a straightforward repetition of
the iteration procedure described above reveals that one
may obtain αBSEs ¼ αSDEs ¼ 0.32 by choosing λBSE ¼ 1.37
and λSDE ¼ 1.96; the corresponding f are shown in Fig. 7.

VI. STABILITY UNDER RENORMALIZATION
SCALE VARIATIONS

The analysis presented in the previous section has been
carried out at a particular value of the renormalization
point, namely μ ¼ 4.3 GeV. Given the importance of the
consistency condition between the DSE and BSE cou-
plings, it necessary to discuss its stability under changes
of the renormalization point μ.
The Green’s functions that affect the consistency con-

dition, namely the gluon propagator, the ghost dressing
functions, and the three-gluon vertex, are renormalized
as [84]

Δðq2Þ ¼ Z−1
A Δ0ðq2Þ; Fðq2Þ ¼ Z−1

c F0ðq2Þ;
Γμαβ ¼ Z3Γ

μαβ
0 ; ð6:1Þ

where the suffix “0” denotes the bare (cutoff-dependent but
μ-independent) quantities. In addition, the coupling con-
stant g renormalizes according to

g ¼ Z−1
g g0; Zg ¼ Z3Z

−3=2
A : ð6:2Þ

At the formal level, changes in the renormalization scale
μ amount to finite renormalizations, implemented by means
of the quantities zAðμ2; μ̄2Þ, zcðμ2; μ̄2Þ, and z3ðμ2; μ̄2Þ,
which take the corresponding function from a reference
value μ to a new value μ̄, according to

Δðq2; μ̄2Þ ¼ zAðμ̄2; μ2ÞΔðq2; μ2Þ;
Fðq2; μ̄2Þ ¼ zcðμ̄2; μ22ÞFðq2; μ2Þ;
fðq2; μ̄2Þ ¼ z3ðμ̄2; μ2Þfðq2; μ2Þ: ð6:3Þ

In addition, at the reference value of μ ¼ 4.3 GeV, we have
that

αBSEs ðμ2Þ ¼ αSDEs ðμ2Þ ≔ αs ¼ 0.45; ð6:4Þ

and (all in GeV2 units)

A ¼ λA0 ¼ 181.2; B ¼ B0 ¼ −40.7;

C ¼ C0 ¼ −18.5: ð6:5Þ

In what follows, we will express the condition for the
equality of αBSEs ðμ̄2Þ ¼ αSDEs ðμ̄2Þ in terms of these A, B, C,
αs, i.e., the values at the reference scale μ), and the
corresponding zA, zc, and z3.
We start with the BSE. As discussed in Sec. III, the BSE

is formally RGI, which means that any changes on the
renormalization scale implemented on its ingredients Δ
and f must be exactly compensated by a corresponding
rescaling in the value of αBSEs . Specifically, with the
rescalings described in Eq. (6.3), and using Eq. (6.4), we
find

FIG. 7. The three-gluon vertex form factor fðq2Þ at λ ¼ 1.16
which leads to the equality αSDEs ¼ αBSEs ¼ 0.45 (red continuous
curve). The dashed (light blue) lines show the different form
factors needed in the BSE (dashed) and SDE (dot-dashed) to
force the equality at αSDEs ¼ αBSEs ¼ 0.32.
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αBSEs ðμ̄2Þ ¼ z−3A z−23 αs: ð6:6Þ

Turning to the SDE, notice that, when the ingredients
entering into A and B are rescaled according to Eq. (6.3),
i.e., renormalized at μ̄, the new quantities, denoted by Ā and
B̄, are given by [see Eq. (5.3)]

Ā ¼ z4Azcz3A; B̄ ¼ z2AzcB; ð6:7Þ

while the coefficient C remains unchanged, since it is given
by the integral of the solution of the BSE S0ðyÞ, which is μ
independent. Thus, the equivalent of Eq. (5.4) becomes

αSDEs ðμ̄2Þ ¼ −B̄þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̄2 − 4ĀC

p

2Ā
; ð6:8Þ

and the requirement of equality between couplings, after
use of Eq. (6.6), yields

−B̄þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̄2 − 4ĀC

p

2Ā
¼ z−3A z−23 αs: ð6:9Þ

Using then Eq. (6.7), and after elementary algebraic
manipulations, we arrive at the following condition

Cz33 þ z3ðz−1A zcÞαsBþ ðz−2A zcÞα2sA ¼ 0: ð6:10Þ

Note that in the limiting case where zA ¼ zc ¼ 1 (that is,
we are renormalizing at μ ¼ 4.3 GeV), the above equation
reduces to that of Eq. (5.8), with the obvious identification
z3 ¼ λ. Then, if A → A0, one finds z3 ¼ λ ¼ 1.16;
whereas, with A ¼ λA0 the equation is trivially satisfied
for z3 ¼ 1.
The way to proceed is then the following. Wewill sample

the interval μ̄ ∈ ½2.4; 4.3� GeV with a 0.1 GeV step, and

treat zA and zc as known quantities, which can be obtained
from the fits of the corresponding lattice data and within the
momentum subtraction scheme (MOM) we employ,
through the expressions

zAðμ̄2; μ2Þ ¼
1

μ̄2Δðμ̄2; μ2Þ ; zcðμ̄2; μ2Þ ¼
1

Fðμ̄2; μ2Þ :

ð6:11Þ

The values of zAðμ̄2; μ2Þ and zcðμ̄2; μ2Þ obtained will be
then substituted into Eq. (6.10), which will solved treating
z3 as an unknown quantity; the values found for z3 will then
enforce the equality αBSEs ðμ̄2Þ ¼ αSDEs ðμ̄2Þ, for the various
renormalization scales μ̄. On the left panel of Fig. 8 we
show the values of zA and zc, given by Eq. (6.11), that we
use as input, together with the z3 obtained by solving
Eq. (6.10).
However, strictly speaking, z3 is not an independent

quantity; its value can be determined, at least in principle,
in the same way as zAðμ̄2; μ2Þ and zcðμ̄2; μ2Þ, namely from
the behavior of the curve fðq2; μ2Þ, shown in Fig. 7.
Specifically, denoting the corresponding factor by zf3, we
have,

zf3ðμ̄2; μ2Þ ¼
1

fðμ̄2; μ2Þ : ð6:12Þ

The corresponding set of values is shown by the dashed-
dotted line on the left panel of Fig. 8; even though, ideally,
one must have zf3 ¼ z3, the coincidence between the two
curves is rather satisfactory, showing a maximum deviation
of only 6%. Given the vast difference between the two
procedures used for obtaining z3, this near coincidence
suggests that the BSE-SDE consistency condition obtained

FIG. 8. (Left panel) The renormalization factors zA, zc and z3 for various values of the renormalization scale μ̄. (Right panel) The
varying of the coupling αs with μ̄ obtained by imposing the consistency condition αSDEs ≡ αBSEs (triangles). The curve obtained is then
compared with the one predicted by the perturbative running coupling in the MOM scheme, αMOMðq2Þ, up to four loops for different
values of ΛQCD (see text).
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in the previous section is particularly robust under varia-
tions of the renormalization scale.
There is an additional self-consistency check that one

may implement, this time at the level of the αsðμ̄2Þ. In
particular, after obtaining the appropriate set of z3, one may
use directly Eq. (6.6) to form the ratio αsðμ̄2Þ=αsðμ2Þ; the
scale-dependence of this ratio is shown on the right panel of
Fig. 8 (triangles). This result may in turn be compared with
the corresponding ratio αMOMðμ̄2Þ=αMOMðμ2Þ, which may
be reconstructed from the analysis of [85]. The latter ratio is
shown by the red curve (obtained when using ΛQCD ¼
0.41 GeV in the expression derived in [85]), with the band
obtained when varying the same parameter within 0.35 and
0.45 GeV (corresponding, respectively, to the lower and
upper part of the band). Evidently, even though the starting
values of αsðμ2Þ and αMOMðμ2Þ are different, the good
coincidence between the two ratios indicates that the scale-
dependence of the two couplings is quite similar.

VII. CONCLUSIONS

We have carried out an extensive analysis of the
interlocked dynamics between the SDE of the gluon
propagator Δðq2Þ and a BSE that generates massless bound
state poles. These poles constitute an indispensable ingre-
dient of the particular realization of the Schwinger mecha-
nism employed in a series of works in order to obtain IR
finite (massive) solutions for Δðq2Þ. The notion of coupling
the two equations is novel, and its possible ramifications for
the overall self-consistency of the entire formalism have not
been explored before in the relevant literature.
Our three main results may be summarized as follows.

First, we have obtained a running gluon mass, displaying
all expected physical features, directly from the solution of
the BSE. This possibility was envisaged in earlier works
[52], but the two conditions discussed after Eq. (4.5), which
are crucial for obtaining a positive-definite and monoton-
ically decreasing gluon mass, were not fully appreciated.
Second, we have carried out a nonperturbative computation
of the quantity Y, whose role is crucial for obtaining from
the SDE a positive-definite gluon mass. Third, we have
demonstrated that the inclusion of the three-gluon vertex is
of paramount importance for the fulfilment of a basic self-
consistency requirement. In particular, the nontrivial IR
dynamics of this vertex compensate the original discrepancy

in the value of αs used in the SDE and the BSE sectors,
allowing finally for a single common value, αs ¼ 0.45.
The deviation from the αs ¼ 0.32 estimated from the

lattice simulations of [61,62] may be attributed to a variety
of reasons.
To begin with, the skeleton expansion of the BSE kernel

has been truncated at the lowest order, shown in Fig. 3.
It would be very important to verify the impact of the
next- order corrections (“one-loop” fully dressed). In fact,
even the impact of graph (b1), whose vanishing seems to be
an accident of setting the four-gluon vertex at tree level,
ought to be reconsidered, using a more complete structure
for this vertex [86,87].
In addition, the transition from Eqs. (5.1) to (5.2) was

implemented by setting into the former Z3 ¼ Z4 ¼ 1.
A more complete treatment of this issue has been given
in [83]; the resulting kernel, however, is substantially more
difficult to calculate, and only Ansätze have been studied
thus far. Unfortunately, the complicated nature of this
problem makes progress in this direction rather slow.
Turning to f, it is clear that the form of Eq. (3.3) is rather

restrictive, given that the full tensorial basis for expanding
Γ consists of 14 elements. In addition, f has been
considered to be a function of a single variable (symmetric
configuration: q2 ¼ r2 ¼ p2). Clearly, a more complete
integration over all available momenta and angles could
shift the coincidence value of αs closer to αs ¼ 0.32, as
exemplified in the last part of Sec. V by employing
λBSE ≠ λDSE.
Last but not least, the assumption that only the vertex Γ̃

develops a massless pole may have to be revisited, allowing
the remaining vertices, and especially the ghost-gluon
vertex, to form part of a more complex BSE system.
We hope to return to some of the issues mentioned above

in the near future.
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