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We elucidate that the phase diagram of massless N-flavor QCD under a ZN flavor-twisted boundary
condition (massless ZN-QCD) is constrained by a ’t Hooft anomaly involving two-form gauge fields. As a
consequence, massless ZN-QCD turns out to realize persistent order at any temperature and quark chemical
potential; namely, the symmetric and gapped phase is strictly forbidden. This is the first result on the finite-
ðT; μÞ phase diagram in QCD-type theories based on anomaly matching related to center and discrete axial
symmetries.
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I. INTRODUCTION

Conventional wisdom of classical statistical physics tells
us that different phases of matter are distinguished by
different patterns of spontaneous symmetry breaking
(SSB). This idea develops Ginzburg-Landau effective
theory [1,2] and gives a useful guideline to understand
the nature of types of matters. For quantum field theories
(QFTs), however, the Ginzburg-Landau description is not
always a good starting point, especially when QFTs have a
’t Hooft anomaly [3–5]. This is because the anomaly
matching argument rules out the symmetric and gapped
phase, which we call the trivial phase. The necessity of a
beyond-Ginzburg-Landau description has also been clari-
fied, for instance, by Haldane conjecture [6–10], decon-
fined quantum criticality [11–13], in condensed matter
physics. Recent developments about QFTs suggest that the
absence of a trivial phase is closely related to the existence
of a ’t Hooft anomaly, and many quantum systems have
been reconsidered from this viewpoint [14–36].
In this paper, we claim that quantum chromodynamics

(QCD) should also be added to the list of quantum systems
that require the beyond-Ginzburg-Landau treatment. QCD

is the fundamental law of strong interaction; thus it can
provide the first-principle calculation of finite-density
nuclear matters, which is an important subject when trying
to understand, for instance, the interior of neutron stars
[37–39]. Because of the notorious sign problem, however,
no ab initio lattice QCD simulation is yet available at finite
quark chemical potentials [40–44].
We consider massless N-flavor QCD with color N in

four dimensions, which has the vectorlike continuous
symmetry and discrete axial symmetry, and we show by
an explicit calculation that there is a mixed ’t Hooft
anomaly between those symmetries. Imposing the flavor-
twisted boundary condition in the compactified direction so
that the ZN center symmetry appears (known as ZN-QCD
[33,45–54]), the above mixed anomaly turns out to survive
at any temperature and quark chemical potential. Anomaly
matching precludes the existence of the trivial phase for
masslessZN-QCD.We discuss the consistency of our result
with previous studies and argue its implications for the
phase diagram of massless ZN-QCD.

II. ANOMALYMATCHINGOFMASSLESSZN-QCD

We first compute a ’t Hooft anomaly of massless
N-flavor QCD in four dimensions, and we derive the
anomaly of massless ZN-QCD using the technique given
in [33].

A. Massless N-flavor QCD and ’t Hooft anomaly

We consider four-dimensional SUðNÞYang-Mills theory
with N massless Dirac fermions in the fundamental
representation, i.e., massless QCD with Nc ¼ Nf ¼ N.
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We discriminate between the color and flavor SUðNÞ
groups by denoting them as SUðNÞ c and SUðNÞf , respec-
tively. The SUðNÞ c gauge field is denoted as a, and the
field strength is given by Gc ¼ daþ ia ∧ a. We represent
the Dirac field q ¼ ðqcfÞc;f¼1;…;N as an N × N matrix-
valued Grassmannian variable, on which SUðNÞc ×
SUðNÞf acts as a bifundamental representation: q ↦
UcqU

†
f for ðUc; UfÞ ∈ SUðNÞ c × SUðNÞf. The classical

action of this theory is given by

S ¼ 1

2g2

Z
trcðGc ∧ �GcÞ þ

Z
d4xtrffq̄γμDμðaÞqg; ð1Þ

where trc and trf denote the trace operation in color and
flavor spaces, respectively, and DðaÞ ¼ dþ ia is the
covariant derivative.
We pay attention to the vectorlike symmetry,

SUðNÞf ×Uð1Þq
ðZNÞc-qðZNÞf-q

; ð2Þ

and the anomaly free subgroup of Uð1Þ axial symmetry,
ðZ2NÞaxial. We shall explain the details of these symmetries.
The quark field q is in the representation of vectorlike

symmetry SUðNÞc × SUðNÞf ×Uð1Þq, q ↦ eiαUcqU
†
f

for ðUc; Uf ; eiαÞ ∈ SUðNÞc × SUðNÞf ×Uð1Þq. However,
there are two ZN subgroups that do not change q. One is
generated by ðω; 1;ω−1Þ ∈ SUðNÞc × SUðNÞf ×Uð1Þq
(ω ¼ e2πi=N), and we denote it as ðZNÞc-q. The other is
generated by ð1;ω;ωÞ ∈ SUðNÞc × SUðNÞf ×Uð1Þq, and
we denote it as ðZNÞf-q. We thus regard (2) as a symmetry
with faithful representations.
For massless quark field q, there is the axial Uð1Þ

symmetry, q ↦ eiαγ5q, for the classical action (1), but the
fermion functional integration measure Dq̄Dq is changed
as Dq̄Dq ↦ Dq̄Dq exp ði2α N

8π2

R
trcðGc ∧ GcÞÞ [55,56].

Only when α is quantized to 2π=ð2NÞ does this trans-
formation become the symmetry of N-flavor massless
QCD. This is the ðZ2NÞaxial symmetry.
In order to detect the mixed ’t Hooft anomaly between

the vectorlike symmetry (2) and ðZ2NÞaxial, we introduce
the background gauge fields for the vectorlike symmetry.
Background gauge fields consist of the following
ingredients:

(i) SUðNÞf one-form gauge field: Af
(ii) Uð1Þq one-form gauge field: Aq
(iii) ðZNÞc-q two-form gauge field: Bc (NBc ¼ dCc)
(iv) ðZNÞf-q two-form gauge field: Bf (NBf ¼ dCf )

The ZN two-form gauge field B may require an explan-
ation: we realize it as a pair ofUð1Þ two-form gauge field B
and Uð1Þ one-form gauge field C with the constraint
NB ¼ dC. It generates a ZN one-form symmetry trans-
formation acting on Wilson line operators [57], which

arises after gauging SUðNÞf × Uð1Þq [24,28,32,33].
Introducing the two-form gauge fields Bc and Bf , the
SUðNÞc;f gauge connections are once promoted to UðNÞ
gauge connections [58],

ã ¼ aþ 1

N
Cc; Ãf ¼ Af þ

1

N
Cf : ð3Þ

The covariant derivative is replaced as

Dðã; eAf ; AqÞq ¼ ðdþ iã − ið eAfÞt þ iAqÞq; ð4Þ

by the minimal coupling procedure. More explicitly,

ðDμqÞcf ¼ ð∂μ þ iðAqÞμÞqcf þ iãμ;cc0qc0f − iqcf0 ð eAfÞμ;f0f:
ð5Þ

(4) must be regarded as a shorthand notation of (5), where
the repeated indices are summed.
With this setup, we consider the partition function

under these background gauge fields, Z½ðAf ; Aq; Bc; BfÞ�.
Applying the ðZ2NÞaxial transformation, we can compute
the change of the partition function,

Z½ðAf ; Aq; Bc; BfÞ� ↦ Z½ðAf ; Aq; Bc; BfÞ� expðiAÞ: ð6Þ

The ’t Hooft anomaly A again comes from the change of
the fermion measure Dq̄Dq, and the Fujikawa method
gives

A ¼ 2
2π

2N
1

8π2

Z
trc;f ½F ∧ F�; ð7Þ

with F ¼ i−1Dðã; Ãf ; AqÞ ∧ Dðã; Ãf ; AqÞ. trc;f denotes the
trace operation over both color and flavor spaces. The
explicit computation shows that

F ¼ ðdãþ iã ∧ ãÞ − ðd eAf þ i eAf ∧ eAfÞt þ dAq: ð8Þ

We obtain from (7) and (8) that (modulo 2π)

A ¼ −
N
2π

Z
Bc ∧ Bf : ð9Þ

Since A is nontrivial, there is a mixed ’t Hooft anomaly
between the vectorlike symmetry (2) and ðZ2NÞaxial for
four-dimensional massless N-flavor QCD.

B. Massless ZN-QCD and ’t Hooft anomaly

We perform the circle compactification of size L and put
the boundary condition on the quark field as

qðx; x4 þ LÞ ¼ qðx; x4ÞΩ; ð10Þ
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where (ω ¼ e2πi=N , −π < ϕ ≤ π, and μ ∈ R)

Ω ¼ diag½1;ω;…;ωN−1�eiϕþμL: ð11Þ

Here, μ is the quark chemical potential. This theory is
called ZN-QCD, and we denote its partition function as ZΩ
[45–54]. Although the twisted boundary condition is
imposed, we call T ≡ L−1 a temperature of massless
ZN-QCD. By performing the gauge transformation, we
can express this symmetry-twisted partition function as

ZΩ ¼ trH

�
e−LðĤ−μQ̂Þ exp

�
i
XN
f¼1

2πf
N

Q̂f

��
; ð12Þ

where Ĥ is the QCD Hamiltonian, H is the QCD Hilbert
space, Q̂f ¼ R

d3xq̂†fq̂fðxÞ is the quark number of flavor f,

and Q̂ ¼ P
fQ̂f is the total quark number (for simplicity of

the expression, we set ϕ ¼ π). This twisted boundary
condition plays an essential role in the existence of the
’t Hooft anomaly in the S1-compactified theory [33]. The
same boundary condition is also important for the large-N
volume independence of the CPN−1 model [33,59–63].
We first describe the symmetry of massless ZN-QCD as

three-dimensional QFT. There are three symmetries of
importance, ðZNÞshift;c-q, ðUð1ÞN−1

f ×Uð1ÞqÞ=ððZNÞc-q ×
ðZNÞf-qÞ, and ðZ2NÞaxial. To explain ðZNÞshift;c-q, it is better
to regard Ω as the background holonomy of vectorlike
symmetry along the compactified direction,

Ω ¼
�
P exp

�
i
Z

L

0

Af

��
−1

exp

�
i
Z

L

0

Aq

�
: ð13Þ

We consider the ðZNÞshift transformation defined by

q ¼ ðqc;1;…; qc;NÞ ↦ ðqc;2;…; qc;N; qc;1Þ≕ qS−1: ð14Þ

Under this transformation, the boundary condition (10) is
changed as

Ω ↦ SΩS−1 ¼ ωΩ: ð15Þ

To maintain the boundary condition, we combine the
ðZNÞc-q zero-form and ðZNÞshift transformations, and we
define the ðZNÞshift;c-q symmetry [33,54],

trcðΦÞ ↦ ωtrcðΦÞ; q ↦ qS−1; ð16Þ

where Φ ≔ P exp ði RS1 aÞ is the color Polyakov loop. The
vectorlike symmetry must commute with the matrix Ω
defining the boundary condition, and the symmetry (2)
is explicitly broken to its maximal Abelian sub-
group, ðUð1ÞN−1

f ×Uð1ÞqÞ=ððZNÞc-q × ðZNÞf-qÞ.

Introducing the three-dimensional background gauge
fields for ðZNÞshift;c-q and ðUð1ÞN−1

f ×Uð1ÞqÞ=ððZNÞc-q ×
ðZNÞf-qÞ, we obtain the following two-form gauge fields by
use of the four-dimensional language [33],

Bc ¼ Bð1Þ
c ∧ L−1dx4 þ Bð2Þ

c ; Bf ¼ Bð2Þ
f : ð17Þ

Here, Bð1Þ
c is a one-form gauge field for ðZNÞshift;c-q zero-

form symmetry in three dimensions, and Bð2Þ
c;f are two-form

gauge fields for ðZNÞc-q;f-q one-form symmetries, respec-
tively, also in three dimensions. Substituting it into the four-
dimensional anomaly (9), we obtain the anomaly for
massless ZN-QCD:

A ¼ −
N
2π

Z
Bð1Þ
c ∧ Bð2Þ

f ∈
2π

N
Z: ð18Þ

This gives the mixed ’t Hooft anomaly of massless ZN-
QCD among ðZNÞshift;c-q, ðUð1ÞN−1

f ×Uð1ÞqÞ=ððZNÞc-q ×
ðZNÞf-qÞ, and ðZ2NÞaxial, for any N ≥ 2. To match the
anomaly, the phase diagram of massless ZN-QCD must
realize the persistent order at any temperature L−1 and
quark chemical potential μ: the trivial phase is strictly
excluded by the anomaly-matching condition.

III. PHASE STRUCTURE OF MASSLESS ZN-QCD

In certain limits of T ¼ L−1 and μ, the phase structure of
massless ZN-QCD is calculable, and thus we can check
how the anomaly matching is satisfied in those limits. We
consider high temperature or large chemical potential as a
limit where the reliable perturbative calculations are avail-
able. We also note that the lattice simulation [50] suggests
that at the large-L and small-μ region, the anomaly (18) is
matched by the SSB of ðZ2NÞaxial → Z2. Since this natu-
rally breaks the continuous chiral symmetry by developing
quark bilinear condensate hq̄qi, this is also consistent with
a ’t Hooft anomaly of continuous chiral symmetry [3] at
L ¼ ∞ and μ ¼ 0.

A. High temperature limit

At small L and μ ¼ 0, we compute the one-loop effective
potential of the color Polyakov loop Φ [64,65]. The gluon
contribution is

VglðΦÞ ¼ −
2

π2L4

X
n≥1

1

n4
ðjtrcðΦnÞj2 − 1Þ: ð19Þ

The quark contribution (at μ ¼ 0) is

VqkðΦÞ ¼ 2N−3

π2L4

X
n≥1

1

n4
ðeinNϕtrcðΦNnÞ þ H:c:Þ: ð20Þ
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The gluon contribution is Vgl ¼ OðN2Þ, while the quark
contribution is Vqk ¼ OðN−2Þ [54]. Therefore, the high-
temperature behavior of ZN-QCD is essentially determined
by the gluonic contribution. ðZNÞshift;c-q is spontaneously
broken, and the vacuum is Φ ∝ 1N . The ’t Hooft anomaly
(18) is matched by the SSB of ðZNÞshift;c-q. Strictly speak-
ing, this perturbative argument is subtle because the three-
dimensional effective theory is a strongly coupled gauge
theory, but the above observation is consistent with lattice
simulation [50].
This argument at high temperatures is valid at any Uð1Þ

phase ϕ in Ω, but we would like to comment that the
ðZNÞshift;c-q symmetry is enhanced to ZN ⋊ Z2 when ϕ is
quantized to π=N, although this does not give new
anomalies. When the flavor-independent boundary
condition is set instead of the flavor-twisted boundary
condition, no center symmetry exists at generic ϕ, but a Z2

subgroup of ZN ⋊ Z2 becomes a symmetry when
ϕ ∈ ðπ=NÞZ, which derives a mixed ’t Hooft anomaly
with other symmetries when local counterterms cannot
cancel it [28]. This gives an underlying reason for the
Roberge-Weiss phase transition [66]. In our case, the SSB
occurs as ZN ⋊ Z2 → Z2, which is consistent with the
absence of new anomalies.

B. High density limit

In a large-μ limit, it is widely expected that color
superconductivity appears [37]. In the following discus-
sion, we set N ¼ 3. To discuss color superconductivity, we
first prepare gauge “noninvariant” scalar and pseudoscalar
diquark operators (N ¼ 3),

Δc1f1 ¼ εc1c2c3εf1f2f3ðqtf2c2 iγ0γ2γ5qc3f3Þ;
Δ0

c1f1
¼ εc1c2c3εf1f2f3ðqtf2c2 iγ0γ2qc3f3Þ: ð21Þ

Since these are not gauge invariant, this analysis makes
sense only at weak coupling, but they are useful for Higgs
phenomena. ðZ2NÞaxial rotates Δ and Δ0 by an angle 2π=N,
and thus it is completely broken down to Z2 if Δ or Δ0 gets
an expectation value. Below, we only use the scalar
condensate Δ via an appropriate rotation of ðZ2NÞaxial.
At sufficiently large μ and small temperatures, we expect

to have Δcf ¼ ΔCFLδcf, which is called color-flavor lock-
ing (CFL) [37]. In this phase, the Higgs phenomenon with
fundamental scalars occurs and all gluons become massive,
which is why weak-coupling analysis is applicable. Let us
combine it with the analysis of anomaly matching in order
to speculate physics in the strongly coupled regime. For
that purpose, it is important to identify the pattern of SSB
by gauge-invariant order parameters [54]: Δ†Δ ∼ ðq̄ q̄Þqq
and εc1c2c3Δc1f1Δc2f2Δc3f2 ∼ ðqqÞ3. The latter clearly
breaks Uð1ÞB ≡Uð1Þq=ðZNÞc-q → Z2, which is the super-
fluid phase. As we have already discussed, the diquark
condensate also breaks ðZ2NÞaxial. Indeed, this is required

by anomaly matching because we can obtain the anomaly
(9) without gauging Uð1Þq symmetry by setting Bc ¼ Bf

when N ≥ 3 [33]. In the CFL phase, ðZNÞshift;c-q is
unbroken. We remark that the anomaly is also consistent
with another possibility of a CFL-like phase, where three
diquark condensates have distinct values and ðZNÞshift;c-q is
broken [51].
It is also expected from the analysis of effective

models [51] that the two-flavor pairing phase (2SC) or
the u-flavor pairing phase (uSC) exist at large-μ regions.
These phases are characterized by Δcf ¼ Δ2SCδc;3δf;3 and
byΔcf ¼ ΔuSCðδc;2δf;2 þ δc;3δf;3Þ, respectively. In the uSC
phase, all gluons become massive, while there are SUð2Þ
massless gluons in the 2SC phase and perturbative com-
putations are useless in the 2SC phase. In these phases, the
ðZNÞshift;c-q is spontaneously broken due to the asymmetric
diquark condensates in addition to the breaking of
ðZ2NÞaxial, while Uð1ÞB is unbroken1 due to ðqqÞ3 ¼ 0.
This is again consistent with anomaly matching.

C. Phase structure of massless Z3-QCD

In the known phases discussed above,Uð1ÞN−1
f is always

unbroken. From the viewpoint of anomaly matching, there
is no reason to rule out the SSB of Uð1ÞN−1

f . Assuming that
Uð1ÞN−1

f is unbroken everywhere, we can derive an
inequality between the “deconfinement” temperature
Tdeconf , above which ðZNÞshift;c-q is broken, and the chiral
restoration temperature Tchiral, above which ðZ2NÞaxial is
unbroken [23,26,28]: when N ≥ 3, for any μ,

TchiralðμÞ ≥ TdeconfðμÞ: ð22Þ
Under this assumption, the anomaly matching requires that
the discrete axial symmetry ðZ2NÞaxial must be spontane-
ously broken at low temperatures, which automatically
requires the SSB of continuous axial symmetry since
ðZ2NÞaxial ⊂ SUðNÞleft × SUðNÞright × Uð1Þq.
We schematically show finite-ðT; μÞ phase diagrams of

massless Z3-QCD in Fig. 1. In the strongly coupled region,
not much is known about massless ZN-QCD, and we
present just two possible scenarios that are consistent with
the anomaly. It is an interesting and testable question
whether the inequality (22) at μ ¼ 0 is saturated or not for
lattice QCD simulation. It is notable that the symmetric and
gapped phase cannot appear, although such phases were
observed in the study based on the effective model [51].
The appearance of forbidden phases is generic when a
Ginzburg-Landau-type effective approach is used for QFT
with a ’t Hooft anomaly.

1In the gauge-noninvariant argument, it corresponds to the
simultaneous baryon and color rotation Uð1ÞBþc in the 2SC
phase, but such a description is ill defined beyond weak-coupling
regimes.
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IV. CONCLUSION AND DISCUSSION

In this paper, we for the first time put the anomaly-
matching constraint related to center and ðZ2NÞaxial sym-
metries on the finite-ðT; μÞ phase diagram of the N-flavor
SUðNÞ gauge theory under the ZN flavor-twisted boundary
condition. We first derived the mixed ’t Hooft anomaly (9)
of massless N-flavor QCD between vectorlike continuous
symmetry and ðZ2NÞaxial. Using this anomaly, we showed
that massless ZN-QCD also has the ’t Hooft anomaly (18)
among ðZNÞshift;c-q, the maximal Abelian subgroup of
vectorlike symmetry, and ðZ2NÞaxial. The anomaly-match-
ing argument shows that the phase diagram of masslessZN-
QCD realizes a persistent order; i.e., the trivial phase cannot
appear at any temperature T and any quark chemical
potential μ. This is the rigorous result in N-flavor massless
QCD, and it can be found by considering the thermal
expectation value of the operator given in (12).
As a consistency check, we compare this result with the

known results about ZN-QCD. At low temperatures and
low densities, the lattice simulation shows that discrete
axial symmetry is spontaneously broken by the quark
bilinear condensate. At sufficiently high temperatures
and low densities, the one-loop effective potential of the
Polyakov loop breaks the intertwined center symmetry
ðZNÞshift;c-q, which is also confirmed by the lattice simu-
lation. At low temperatures and sufficiently high densities,
it is widely believed that the CFL phase appears, which
breaks Uð1ÞB and ðZ2NÞaxial. The 2SC or uSC phases are
also observed in the effective model analysis, which breaks
ðZNÞshift;c-q, as well as ðZ2NÞaxial. In all these cases, SSB
occurs so that the ’t Hooft anomaly matching is satisfied.
We further predict that ZN-QCD must have a nontrivial
phase, such as SSB, conformal behavior, or topological
order, even in the region where the system is strongly
coupled and lattice simulation suffers from the sign
problem. We present two examples of phase diagrams
consistent with anomaly matching.

We would also like to make some speculative remarks on
the N-flavor QCD phase diagram with the thermal boun-
dary condition in the zero-temperature limit. Since our
derivation of the anomaly has a four-dimensional origin,
the anomaly-matching argument is valid however large the
size L of compactification is. By taking the zero-temper-
ature limit, we expect that the effect of the boundary
condition would disappear. If the vectorlike flavor sym-
metry is unbroken, it is indeed reasonable to argue that the
effect of flavor dependence in the boundary condition
disappears. Under this assumption, the anomaly-matching
argument claims that finite-density massless N-flavor QCD
shows a nontrivial phase at any quark chemical potential in
the zero-temperature limit. This result also implies SSB of
continuous axial symmetry since ðZ2NÞaxial ⊂ SUðNÞleft ×
SUðNÞright × Uð1Þq. This gives the phenomenological
impact on cold dense three-flavor massless QCD, because
the possible chiral symmetry breaking is restricted even at
finite densities [67,68]. We can check that this is indeed the
case at least for small μ and also for sufficiently large μ in the
zero-temperature limits, where the anomaly is satisfied by
the SSB of discrete axial symmetry. At the zero temperature,
anomaly matching for continuous chiral symmetry is also
available [69,70], and we can obtain further constraints on
possible dynamics in cold dense QCD.
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