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We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-
point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive
representation for the associated polarization, the analytic continuation of the operator product expansion
from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace
transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities
in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for
QCD at Nc ¼ ∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for
quark-hadron duality violations at large, but finite Nc.
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I. INTRODUCTION

Correlation functions in QCD, at sufficiently large
energy, can be calculated starting from the gluon and
quark degrees of freedom, using perturbation theory,
augmented by the operator product expansion (OPE).
Many of these correlators, such as the Adler function of
the vector current two-point function, can also be
expressed, through dispersion relations, in terms of exper-
imentally accessible spectral functions. These spectral
functions reveal the presence of multiple hadronic reso-
nances, whose spectral contributions are not reproduced
when perturbative and higher-dimension OPE contribu-
tions are evaluated on the Minkowski axis.
In spite of this difference, a complete description in termsof

Lagrangian or physical degrees of freedom should be equiv-
alent, a notion which is referred to as quark-hadron duality. It
is, however, generally accepted that even at large energies,
resonance effects, and hence contributions beyond the OPE,
are present in QCD correlators in the Minkowski region.1

These additional contributions, which by definition violate
quark-hadron duality, are usually referred to as duality
violations (DVs). Their origin, and possible models for their
form, have been the subject ofmany earlier papers [1–14], but
a more formal derivation of their form has not been achieved
thus far. It is clear thatDVs have to exist, as theOPE is, at best,
an asymptotic series. This is intuitively obvious from the fact
that the imaginary part of the OPE for the Adler function does
not look anything like the physical spectral function, except
for asymptotically large energies.
In this paper, we present a more systematic investigation

of the form DVs may take, limiting ourselves to the case of
the Adler function for simplicity. Since DVs are a conse-
quence of the appearance of resonances in the spectrum,
the properties of the resonance spectrum must represent a
starting point for our analysis. Of course, very little is
known analytically about spectral functions beyond pertur-
bation theory. But, if we can show, starting from a general
and physically motivated assumption about the form of the
resonance spectrum, that this assumption is compatible with
the known form of the OPE for large Euclidean momenta,
we expect the form of DVs for Minkowski momenta
implied by this same assumption to also represent a good
approximation to the form of DVs in QCD.2
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1In this paper, we consider the purely perturbative contribution
as the leading term in the OPE.

2We note that the matching of an assumed form of the
resonance spectrum in large Nc to the OPE has been considered
before in Ref. [15].
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We begin by working in the limit Nc → ∞ (where Nc is
the number of colors), where the spectral function is known
to be given by an infinite sum of Dirac δ functions,
consistent with asymptotic freedom [16]. We make
assumptions about the form of the resonance spectrum
in this limit that lead us to the known form of the OPE for
Euclidean momenta, and then use this information to derive
the form of the associated duality-violating contributions to
the Adler function on the Minkowski axis. It turns out that
with some additional assumptions, this analysis can then be
generalized to large, but finite Nc. For simplicity, we work
in the chiral limit, so that the Adler function depends only
on one variable, which can be taken to be the ratio of the
momentum to the QCD scale.
Technically, our task is to analytically continue the Adler

function in the complex q2 (momentum-squared) plane
from the Euclidean to the Minkowski region. Our starting
point is an assumption for the form of the spectral function,
which defines the Adler function through a dispersion
relation. It turns out to be advantageous to reformulate the
problem as one where we write the Adler functionAðq2Þ as
a Borel-Laplace transform involving a new function,
B½ρ�ðσÞ, which is itself the Laplace transform of the spectral
function. In hyperasymptotics [17], the appearance of
duality-violating terms, i.e., terms beyond the OPE, as a
result of analytic continuation in the Borel plane is under-
stood in terms of the concept of a “trans-series,” for which
the OPE represents the first term, with exponential cor-
rections [18,19]. We see how singularities in the Borel
plane lead to various terms in the trans-series, with
singularities at the origin corresponding to the OPE, and
those at nonzero distance from the origin to higher-order
trans-series terms. In fact, the OPE itself can be viewed as a
trans-series which goes beyond perturbation theory, and the
singularities in the Borel plane associated with perturbation
theory are nothing other than the well-known renormalons
[20–31]. Higher-order terms in the OPE appear as the effect
of renormalon singularities in the Borel plane.3 Much less
is known about the nonperturbative singularities, but it is
clear that their physical origin is in the nonperturbative
physics of the spectral function. It follows that we need
physical input, which is provided by means of a rather
general assumption about the form of the resonance
spectrum, in combination with the analytic continuation
in the Borel plane, to arrive at an analytic form for the
duality-violating contributions to the Adler function.
This paper is organized as follows. In the next section,

we give the representation of the Adler function in terms of
a Borel-Laplace transform, and show how this representa-
tion can be used to analytically continue in the complex q2

plane, starting from the Euclidean region Re q2 < 0,
emphasizing the essential role played by the singularities

of the Borel transform in the complex Borel plane. The
subsequent sections investigate the Borel-plane singular-
ities in a sequence of models of gradually increasing
complexity and, at the same time, of increasing resem-
blance to QCD as well.
We begin, in Sec. III, with a simple Regge model for the

spectrum in the large-Nc limit. This allows us to demonstrate
how singularities at the origin in the Borel plane correspond
to theOPE,whileDVs are associatedwith singularities away
from the origin. Then, in Sec. IV, we generalize our ansatz
for the spectrum in the large-Nc limit to amuchmore general
form. In Secs. IVA and IV B we show how we may recover
perturbation theory and the OPE in the “large-β0” approxi-
mation in which all except the first coefficient of the β
function are set equal to 0. In particular, in Sec. IV B we
discuss how the pure perturbative series and the singularities
it generates in the Borel plane, which are relatively well
understood, fit into the general picture. This discussion also
allows us to rederive the well-known Shifman-Vainshtein-
Zakharov (SVZ) sum rules [32]. In Sec. IV C we show how
the appearance of DVs from singularities away from the
origin in the Borel plane generalizes from the simple model
of Sec. III. In particular, we show that the singularities away
from the origin in the Borel plane stay in the same location,
but change from simple poles to branch points.
We then expand the discussion to large, but finite Nc.

The new ingredient is, of course, that now the hadronic
resonances become unstable. As we see, and as has been
observed previously, now the duality-violating corrections
become exponentially suppressed, as observed in nature.
We first show how this works in the simple Regge model in
Sec. V, before treating the more general case in Sec. VI, in
which we arrive at our main result. Section VII contains our
conclusions, while a number of technical details have
been relegated to Appendixes A to C. In Appendix D,
we compare, numerically, results for the values of the DV
parameters obtained from analyses of hadronic τ-decay
data in Ref. [13] with those obtained from the fits to Regge
trajectories of Ref. [33], finding remarkable agreement.

II. BOREL-LAPLACE TRANSFORM

We recall that the Adler function is defined as4

Aðq2Þ ¼ −q2
d
dq2

Πðq2Þ; ð2:1Þ

where Πðq2Þ is the scalar correlator of the vector current
two-point function. From causality and unitarity, we know
that Πðq2Þ is an analytic function of real type; i.e., it
satisfies the Schwarz reflection principle Πððq2Þ�Þ ¼
½Πðq2Þ�� in the complex q2 plane cut along the real axis

3We recover this result in the course of our study of the Adler
function in this paper.

4The Adler function is sometimes denoted by Dðq2Þ. We
choose a normalization such that it is equal to 1 at leading order in
perturbation theory.
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above the lowest hadronic threshold, 4m2
π . The known

asymptotic behavior of Πðq2Þ ensures that it can be
represented by a once-subtracted dispersion relation,

Πðq2Þ ¼ Πð0Þ þ q2
Z

∞

0

ρðtÞ
tðt − q2 − iϵÞ dt; ð2:2Þ

in terms of the spectral function

ρðtÞ ¼ 1

π
ImΠðtþ iϵÞ: ð2:3Þ

The polarization,Πðq2Þ, and theAdler function depend on
the single variable, q2. In practical applications of QCD, this
dependence is encapsulated in two different series expan-
sions. Taking q2 < 0 Euclidean, one series is written in
powers of αsðq2Þ and the other in inverse powers of q2 itself,

Aðq2ÞOPE ¼ 1þ
X
n≥1

cnαns ð−q2Þ þ
X
n≥1

dnðq2Þ
ð−q2Þn ; ð2:4Þ

where the first and second terms correspond to the perturba-
tive series in powers of the running strong coupling αsðq2Þ
and the third term may be associated with the condensate
expansion of the OPE [the coefficients dnðq2Þ depend
logarithmically on q2]. The corresponding expansion of
Πðq2Þ is obtained in a straightforward way using Eq. (2.1).
The interplay between the two series in Eq. (2.4) is at the
origin of the difficulties encountered in QCD phenomenol-
ogy when trying to assess the relative importance of
perturbative vs nonperturbative contributions.
At one loop the dependence of the strong coupling

αsðq2Þ on q2 is given by

αsð−q2Þ ¼
1

β0 logð−q2/Λ2Þ ; ð2:5Þ

where Λ2 is the QCD parameter after the renormalization
scheme is specified, and −β0 < 0 is the first coefficient of
the β function. At higher orders, the coupling exhibits a
more complicated logarithmic dependence on q2 which, in
fact, depends on the precise definition chosen for this
coupling.
Both series in Eq. (2.4) are divergent, and in each case,

one expects corrections to the series exponential in the
inverse of the expansion parameter. Indeed, the power
corrections in Eq. (2.4) can be interpreted in this way as
corrections to the perturbative series, since, with
exp½−1/½β0αsð−q2Þ�� ¼ Λ2/ð−q2Þ, inverse powers of −q2
are exponential in the inverse of the strong coupling.
The objective of this paper is to see if, starting from a

reasonable form for the physical spectral function ρðtÞ, i.e.,
a spectral function that is physically sensible, and from
which one recovers the structure of Eq. (2.4) for Euclidean
q2, one can find the corrections to the OPE for q2 > 0,
i.e., in the Minkowski region. Again, we expect these

corrections to be exponential in the inverse of Λ2/q2,
possibly modified by logarithms. This would allow us to
make contact between the OPE representation for the
spectral function, obtained by analytically continuing the
expansion (2.4) to the Minkowski region, and the addi-
tional contributions from DVs.
Combining Eqs. (2.1) and (2.2), the dispersive repre-

sentation for the Adler function can be written as a Borel-
Laplace transform,

Aðq2Þ ¼ −q2
Z

∞

0

dtρðtÞ
Z

∞

0

dσσe−σðt−q2Þ

¼ −q2
Z

∞

0

dσeσq
2

σB½ρ�ðσÞ; ð2:6Þ

where

B½ρ�ðσÞ ¼
Z

∞

0

dtρðtÞe−σt ð2:7Þ

is the Laplace transform of the spectral function. We note
that B½ρ�ðσÞ is well defined for any σ with Re σ > 0, since
ρðtÞ goes to a constant for t → ∞. Any singularities of
B½ρ�ðσÞ thus have to reside in the half-plane Re σ ≤ 0. This
representation of the Adler function in terms of B½ρ�ðσÞ is
valid for Re q2 < 0. It follows that

Πðq2Þ ¼ Cþ
Z

∞

0

dσeσq
2

B½ρ�ðσÞ; ð2:8Þ

with C being a regularization-dependent constant.
Provided q2 < 0, i.e., in the Euclidean regime, it is clear

that a series expansion in powers of σ of the function
σB½ρ�ðσÞ translates into an asymptotic expansion ofAðq2Þ in
powers of 1/q2 that we may associate with the OPE.5 In
particular, the function σB½ρ�ðσÞ must go to a constant as
σ → 0 for Aðq2Þ to reproduce the parton-model constant
in the limit −q2 → ∞, which is the first term in the 1/q2

expansion. In general, the OPE is expected to be asymptotic.
Because the OPE is not an expansion with a finite radius

of convergence, it cannot directly be used for Re q2 > 0,
and, in particular, not on the Minkowski axis. As we see,
the analytic continuation to the Minkowski axis produces
new contributions, the duality-violating terms. These cor-
rections are defined as the difference between the exact
Adler function and its quark-gluon representation in terms
of the OPE, for large energies. The central question we
attempt to address here is as follows: what is the form of
these corrections to the OPE when we analytically continue
from the Euclidean axis, q2 < 0, to the Minkowski axis,
q2 > 0?

5These powers are modified by logarithmic terms; for instance,
a log σ term in B½ρ�ðσÞ generates a logð−q2Þ correction. Such
logð−q2Þ corrections are screened by at least one power of αs in
the Adler function.
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The integral (2.6) has the form of a Borel-Laplace
transform and is defined for σ along the positive real axis
and for π

2
< arg q2 < 3π

2
, i.e., for Re q2 < 0.6 However, this

definition can be generalized by considering different rays
(all starting at the origin) in the complex σ plane defined by
varying the angle arg σ, as long as π

2
< arg σ þ argq2 < 3π

2

so that the integral in Eq. (2.6) remains well defined. By
varying arg σ the generalized Borel-Laplace transform thus
defined analytically extends the definition of Aðq2Þ to
larger regions in the q2 complex plane [17].
With arg σ ¼ π

2
− ϵðϵ > 0Þ, for example, the region in q2

covered becomes ϵ < arg q2 < π þ ϵ. Note that this
region partly overlaps with the region we started with,
π
2
< arg q2 < 3π

2
, as an analytic continuation should do. If no

singularities in the σ plane are crossed as arg σ rotates from
0 to π

2
− ϵ, and if the function σB½ρ�ðσÞ does not grow

exponentially on the contour at infinity connecting these
two angles, the result of the two integrals is the same in the
region of overlap. In order for this analytic continuation to
work, we have to assume that eσq

2

σB½ρ�ðσÞ decays to 0 at
the circle at infinity for jq2j arbitrarily large. We believe that
this assumption is satisfied by the representations for
B½ρ�ðσÞ considered in this paper.
To analytically extend the Borel-Laplace integral (2.6) to

the Minkowski axis, it is thus essential to know the location
and nature of the singularities of the function σB½ρ�ðσÞ in the
complex σ plane. As an example, in Fig. 1 we have depicted
the singularities in the σ plane we encounter in the large-Nc
example of Sec. III. As σ is rotated from the positive to the
negative real axis, anticlockwise, for example, the presence
of any such singularity adds a contribution to the analytic
continuation of Aðq2Þ for q2 > 0. Such extra contributions
are the source of the duality-violating contributions toAðq2Þ.
Of course, instead of rotating anticlockwise, we could

also choose to rotate clockwise in the complex σ plane. If
we always choose the anticlockwise rotation, the resulting
Adler function would not satisfy the Schwarz reflection
property, Aððq2Þ�Þ ¼ ½Aðq2Þ��. However, we can enforce
this property by limiting the anticlockwise rotation to q2

with Im q2 ≥ 0, while, instead, rotating clockwise for
values of q2 with Im q2 < 0. Thus, for negative values
of Im q2, the rotation at the heart of our analytic
continuation should be changed into a clockwise rotation
in order to enforce the reflection property. In the rest of this
paper, we always use the anticlockwise rotation, and obtain
the spectral function from the Adler function at q2 þ iϵ
with q2 being real and positive. Generally, Aðq2Þ for Im
q2 < 0 can be obtained from our results through the
Schwarz reflection relation.

It is clear from Eq. (2.7) that the singularity structure of
σB½ρ�ðσÞ is directly determined by the spectrum and that,
with present technology, it is not possible to calculate this
singularity structure from first principles in the case ofQCD.
However, there are important qualitative aspects of the
spectrum generally assumed to be properties of QCD
and, as we see, these are sufficient to infer with some
confidence what type of singularities in σB½ρ�ðσÞ one may
expect. Furthermore, these general observations can be
backed up with explicit calculations in model examples,
as we demonstrate below. In the next section, we consider a
concrete example, in order to illustrate the mechanism
described qualitatively above. This concrete example then
serves as a starting point for a muchmore general discussion
in Sec. IV, in which we make contact between the assumed
form of the resonance spectrum and the OPE, before using
this form to deduce the functional dependence of DVs on q2.

III. EXAMPLE: A SIMPLE REGGE MODEL
FOR Nc =∞

To simplify the discussion, we first consider the large-Nc
limit, leaving the generalization to finite Nc to Secs. V and

FIG. 1. Analytic extension using the generalized Borel-Laplace
transform, B½ρ�ðσÞ, in the large-Nc limit. Crosses denote poles or
branch points in the σ plane and the associated poles in the
spectrum in the q2 plane.

6We define the first Riemann sheet of the q2 complex plane as
q2 ¼ jq2jeiφ; 0 ≤ φ < 2π. For later use, we define the sheet with
−2π ≤ φ < 0 as the zeroth Riemann sheet etc.
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VI. In this limit, we know that the full set of singularities of
Πðq2Þ in the complex q2 plane consists of an infinite
sequence of simple poles located at ever increasing values
of q2 on the positive real q2 axis. The spectral function is
the corresponding sum of Dirac δ function contributions.
As σ is rotated from arg σ ¼ 0 to arg σ ¼ π/2þ ϵ the region
of validity in q2 of the representation (2.6) shifts from
π/2 < arg q2 < 3π/2 to −ϵ < arg q2 < π − ϵ, the latter
encompassing all the poles of the spectrum. It is clear that
these singularities prevent one from performing a naive
analytic continuation in q2 of the Adler function originally
defined for q2 < 0 in Eq. (2.6). Since q2 touches the
positive real axis when σ touches the positive imaginary
axis, some singularities must exist for arg σ ¼ π/2 which
reflect the singularities for arg q2 ¼ 0.
To see in detail what is going on, we now consider the

example of amodel inwhich the spectral function is givenby
an infinite set of delta functions on a linear trajectory, i.e.,

ρðtÞ ¼
X∞
n¼1

FðnÞδðt −M2ðnÞÞ; n ¼ 1; 2; 3;…; ð3:1Þ

with

M2ðnÞ ¼ Λ2n; FðnÞ ¼ F2: ð3:2Þ

We use units such that Λ ¼ 1, and rescale the spectral
function such that F ¼ 1. This spectrum is not arbitrary. It
corresponds to the leading Regge behavior in an expansion
for large n, where n is the resonance excitation number. In
two dimensions, this asymptotic Regge behavior represents
the actual spectrum of QCD in the large-Nc limit [34,35]
and, although to date it has never been proved, asymptotic
Regge behavior is generally believed to be true in large-Nc
QCD also in four dimensions. The string picture [36] and
phenomenology [33] also provide some evidence for this
behavior.
Using this spectrum, the function σB½ρ�ðσÞ is easily

shown to be

σB½ρ�ðσÞ ¼ σ

eσ − 1
¼

X∞
n¼0

BðnÞ
n!

σn; ð3:3Þ

where Bð0Þ ¼ 1; Bð1Þ ¼ −1/2 and Bð2n > 1Þ ¼
ð−1Þnþ12ð2nÞ!

ð2πÞ2n ζð2nÞ are the Bernoulli numbers and ζðsÞ is

the Riemann ζ function. The function in Eq. (3.3) has
simple poles at σ ¼ �2kπiðk ¼ 1; 2; 3;…Þ, with residues
�2kπi (cf., the crosses in the left panels of Fig. 1; the cross
at σ ¼ 0 is removed by the factor σ).
As we try to extend the definition ofAðq2Þ to real q2 > 0

by rotating σ, we of course hit these poles at arg σ ¼ π
2
.

As before, having increased arg σ from 0 to π
2
− ϵ, the region

of validity of Eq. (2.6) has shifted to ϵ < arg q2 < π þ ϵ.

The poles of the spectrum at n ¼ 1; 2; 3;… seen in
Eq. (3.1) (Fig. 1, second to top panel, right) now lie just
outside this new region. Clearly, there is a correspondence
between these singularities and the singularities of the
Borel function σB½ρ�ðσÞ. If the correlator had no singular-
ities on the positive real q2 axis it would be possible to
analytically continue Aðq2Þ to include this axis, i.e., to
move from the region ϵ ≤ arg q2 < π þ ϵ to the region
−ϵ < arg q2 ≤ π − ϵ. However, the correlator does have
poles on the positive real axis, and this is also reflected in
the σ plane: as q2 crosses the positive real axis, σ crosses
the positive imaginary axis on which the poles of σB½ρ�ðσÞ
are located (Fig. 1, third to top panel).
Letting σ cross the imaginary axis, i.e., going from the

second to top to the third to top panels in Fig. 1 and
reaching arg σ ¼ π

2
þ ϵ produces a change in the Borel-

Laplace integral because now closing the contour at infinity
between the two rays encircles the singularities on the
positive imaginary σ axis (Fig. 1, single panel at the
bottom).7 No further singularities are encountered, and
hence no further contributions generated, as arg σ is rotated
from π

2
þ ϵ to π and, with Γ being the contour depicted at

the bottom of Fig. 1, one obtains

dΠ
dq2

ðq2Þ¼
Z
argσ¼π

dσeσq
2

σB½ρ�ðσÞþdΠDV

dq2
ðq2Þ; ðq2 > 0Þ;

ð3:4Þ

where the duality-violating contribution dΠDV
dq2 ðq2Þ has been

defined as

dΠDV

dq2
ðq2Þ ¼

Z
Γ
dσeσq

2

σB½ρ�ðσÞ: ð3:5Þ

A straightforward use of Cauchy’s theorem leads to

dΠDV

dq2
ðq2Þ ¼ 2iπ

d
dq2

X∞
k¼1

ei2kπq
2 ¼ −π

d
dq2

ðcot πq2 þ iÞ:

ð3:6Þ
We remark that this result does not satisfy the Schwarz
reflection property. However, it is straightforward to check
that if we use Eq. (3.6) to define ΠDV for Im q2 ≥ 0, but
instead carry out a clockwise rotation for the analytic
continuation to the half-plane Im q2 < 0, the resulting
definition of ΠDV does satisfy the reflection property.
Integrating Eq. (3.3), one obtains

Z
arg σ¼π

dσeσq
2

σB½ρ�ðσÞ ¼ −
dψ
dq2

ðq2Þ; ð3:7Þ

7The integral over the relevant portion of the circle at infinity
vanishes.
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where ψðq2Þ ¼ d logΓðq2Þ/dq2 is the digamma function.
Integrating Eq. (3.4) with respect to q2 one thus finds

Πðq2Þ¼−ψðq2Þ−πðcotπq2þ iÞþc; ðq2>0Þ; ð3:8Þ
where c is an integration constant which can be fixed by the
condition ImΠð0Þ ¼ 0 to be iπ plus an undetermined real
part.8 We emphasize the emergence of the cotangent
function in the process of analytic continuation; we did
not invoke the symmetry property

ψðzÞ ¼ ψð−zÞ − π cotðπzÞ − 1

z
; ð3:9Þ

as was done in previous discussions of this model [3,5,6].
In other words, the process of analytic continuation allows
us to rederive this global property of the ψ function.
Use of the representation

−π cot πq2 ¼ −
1

q2
− 2q2

X∞
n¼1

1

ðq2 þ nÞðq2 − nÞ ð3:10Þ

immediately leads to

1

π
ImΠðq2 þ iϵÞ ¼

X∞
n¼1

δðq2 − nÞ; ðq2 > 0Þ; ð3:11Þ

which reproduces the initial spectrum, as it should [cf.,
Eq. (3.1)]. We see that the information about the spectrum
is contained in the DV term of Eq. (3.4). We now also show
that the first term in Eq. (3.4) is indeed the analytic
continuation to q2 > 0 of the OPE series obtained from
Eq. (2.6), with q2 < 0.
Denoting by ½q2n�AOPEðq2Þ the ðq2Þ−n term in the 1/q2

expansion of Aðq2Þ and using the representation of
Eq. (2.6), one obtains

½q2n�AOPEðq2 < 0Þ ¼ −q2
BðnÞ
n!

Z
arg σ¼0

dσeσq
2

σn

¼ BðnÞ
ð−q2Þn

Z
∞

0

dt
n!

e−ttn ¼ BðnÞ
ð−q2Þn ;

ð3:12Þ
where the change of variables t ¼ −q2σ > 0 has been
made. For q2 > 0, instead, the representation to be used is
the one of Eq. (3.7), and one obtains

½q2n�AOPEðq2 > 0Þ ¼ −q2
BðnÞ
n!

Z
arg σ¼π

dσeσq
2

σn;

¼ −q2
BðnÞ
n!

Z
−∞

0

dσeσq
2

σn

¼ BðnÞ
ð−q2Þnn!

Z
∞

0

dte−ttn ¼ BðnÞ
ð−q2Þn :

ð3:13Þ

Clearly the two results are the same. The factorial behavior
of BðnÞ implies that the expansion is asymptotic.
We end this section with two comments. The first is that,

even in the Euclidean regime, Re q2 < 0, the series (3.12) is
asymptotic. This is a consequence of the fact that the Borel
transform, σB½ρ�ðσÞ, has a finite radius of convergence equal
to 2π, the distance of the singularity closest to the origin
in the Borel plane. The OPE is obtained by expanding
σB½ρ�ðσÞ around σ ¼ 0 and inserting this expansion into
Eq. (2.6). Since the series in σ does not converge in the full
integration interval, this yields an asymptotic series for the
OPE as −q2 → ∞. If one cuts off the integral at σ ¼ 2π, it
is straightforward to show that, at any finite order in the
OPE, the remainder is of order expð−2πjq2jÞ [5]. We see
that, in this model, the presence of the singularities at σ ¼
�2πi has two consequences. First, it affects the nature of
the OPE for q2 < 0, where the integral in Eq. (2.6) is well
defined, and, second, it affects the analytic continuation to
the Minkowski regime, leading to the DV contribution to
the Adler function shown in Eq. (3.4).
The second comment is that no logarithmic terms are

present in the asymptotic expansion of the simple model
(3.1). As we see in the following sections, such terms arise
only if large-n subleading corrections are added to the
model. This simple example, however, demonstrates how
the properties of the spectrum are reflected in the singu-
larities of the function σB½ρ�ðσÞ, which, in turn, determine
the form of the DVs. We note that the singularities in
σB½ρ�ðσÞ which correspond to the duality-violating part of
Πðq2Þ lie on the imaginary σ axis. We argue in the next
section that with subasymptotic corrections to Regge
behavior, but still in the large-Nc limit, these singularities
stay on the imaginary axis, though they are no longer
simple poles. It then follows that, if large Nc is a good
approximation, they have to stay close to the imaginary axis
for finite Nc, and thus remain well separated from the cuts
in the σ plane along the negative real axis which correspond
to the perturbative corrections to the OPE.

IV. A GENERALIZED REGGE SPECTRUM
FOR LARGE-Nc QCD

In the previous section we saw the consequences of
assuming a linear trajectory for the spectrum. In this
approximation, σB½ρ�ðσÞ has simple poles on the positive
imaginary axis and the OPE it generates contains no
logarithms, but only powers of 1/q2. How does the picture
change when terms which are subleading at large resonance
excitation number n are also taken into account? As we
now see, subleading terms change the nature of the
singularities from simple poles to branch points, without
modifying their location, and introduce logarithmic cor-
rections into the series in powers of 1/q2.
In general, the function B½ρ�ðσÞ, for Re σ > 0, is given in

large-Nc QCD by a series of the form
8Πð0Þ is a real constant which depends on the renormalization

scheme.
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B½ρ�ðσÞ ¼
X∞
n¼1

FðnÞe−σM2ðnÞ; ð4:1Þ

where the FðnÞ can in general be complex numbers and
fM2ðnÞg is a monotonically increasing sequence of non-
negative real numbers tending to infinity (i.e., there is no
accumulation point). For the particular case of the vector-
current polarization considered here, the quantities FðnÞ
are real and positive. Series like Eq. (4.1) are known as
Dirichlet series [37].
The concepts of a radius, boundary and disk of con-

vergence in a power series are replaced for a Dirichlet series
by the abscissa, line and half-plane of convergence. The
line of convergence is the value σ ¼ σc such that for Re
σ > σc the Dirichlet series converges while for Re σ < σc it
diverges. The region Re σ > σc is called the half-plane of
convergence. In our case the line of convergence is located
at Re σ ¼ 0, i.e., the imaginary axis. To our knowledge, the
first article to point out that Dirichlet series are relevant to
the study of large-Nc QCD was Ref. [38].9

Inspired by two-dimensional QCD, we assume the
spectrum to obey the following expansion at large n [39]:

FðnÞ ¼ 1þ ϵFðnÞ;
M2ðnÞ ¼ nþ b log nþ cþ ϵMðnÞ; ð4:2Þ

where b and c are constants, and

ϵiðnÞ ¼ ϵið0; nÞ þ ϵiðfλg; nÞ; i ¼ F;M;

ϵið0; nÞ ¼
X
νi>0

dðiÞðνiÞ
ðlog nÞνi ;

ϵiðfλg; nÞ ¼
X
λi>0;νi

dðiÞðλi; νiÞ
nλiðlognÞνi : ð4:3Þ

We take the values of λi in these expressions, and those of
the νi in ϵið0; nÞ, to be positive, while the values of νi in
ϵiðfλg; nÞ are allowed to be positive, negative or 0. The
ϵiðnÞ are subleading contributions in the sense that
ϵFðnÞ → 0 and ϵMðnÞ/n → 0 as n → ∞. The correction
ϵið0; nÞ in Eq. (4.3) is, in fact, just a special case of
ϵiðfλg; nÞ with λ ¼ 0. We choose to split it off because it
turns out to generate the logarithms that appear in pertur-
bation theory, whereas the ϵiðfλg; nÞ corrections with
nonzero λ contribute to the power corrections. We do
not know whether subleading terms of a different form may
occur in large-Nc QCD, but the forms assumed in Eq. (4.2)
turn out to be sufficient for our purpose, which is to further
investigate the relation of the detailed structure of the

spectrum to the OPE. The behavior FðnÞ → 1 as n → ∞
(up to an overall multiplicative constant) is a consequence
of the asymptotic Regge spectrum M2ðnÞ ∼ n, as n → ∞,
and a requirement to obtain the leading-order parton-model
result at large −q2.
The rest of this section consists of three parts. First, in

Sec. IVA, we obtain the OPE of the Adler function at large
Euclidean momenta from Eq. (4.2). In Sec. IV B we focus,
in particular, on the first term in the OPE, i.e., perturbation
theory. Then, in Sec. IV C, we generalize the discussion of
Sec. III and consider the form DVs take in the case of the
more general spectrum we assume in this section.

A. Expansion for large Euclidean momentum

Let us begin with a study of the singularity structure of
the Dirichlet series (4.1) for σ → 0þ. The expansion around
σ ¼ 0 is important because it determines, through Eq. (2.6),
the behavior of the OPE for the Adler function as
−q2 → ∞. This includes the perturbative series, as the
leading term in the OPE.
The mathematical form of the Regge expansion (4.3) is

obviously not the most general possible. Therefore, to
ensure that limiting our attention to this form is not overly
restrictive, it is important to show that, at least in principle,
the expansion (4.3) allows us to generate all the inverse
powers and logarithms of q2 present in the OPE.
In order to proceed, it is useful to recall the identity

e−x ¼ 1

2iπ

Z
C
dsx−sΓðsÞ; ð4:4Þ

where C is a vertical line to the right of Re s ¼ 0 in the
complex s plane, i.e., to the right of all singularities of ΓðsÞ.
One immediately obtains

B½ρ�ðσÞ ¼ 1

2iπ

Z
Ĉ
dsσ−sΓðsÞΦðsÞ;

where ΦðsÞ ¼
X∞
n¼1

FðnÞ½M2ðnÞ�−s; ð4:5Þ

where, as a consequence of the asymptotic behavior in
Eq. (4.2), ΦðsÞ has a singularity at s ¼ 1, implying that
now Ĉ is a vertical line to the right of Re s ¼ 1.
As it stands, Eq. (4.5) is exact. A result, known as the

converse mapping theorem [40], relates the behavior of
B½ρ�ðσÞ for σ → 0þ to the singularities of the function
ΓðsÞΦðsÞ. Since the singularities of ΓðsÞ are already known
to be simple poles located at nonpositive integers, our task
is to determine the singularities of ΦðsÞ.
Let us assume that there is an integer n� > 0 large

enough such that the expansion (4.2) applies for n > n�.
We can then split

9This reference speculates about the connection between a
complex pole in the σ plane and the origin of DVs, on the basis of
a purely mathematical model.
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ΦðsÞ ¼ Φ<ðsÞ þΦ>ðsÞ

¼
X
n≤n�

FðnÞ½M2ðnÞ�−s þ
X∞
n>n�

FðnÞ½M2ðnÞ�−s; ð4:6Þ

and use the expansion (4.2) in the second sum, Φ>ðsÞ.
Clearly, the function Φ<ðsÞ cannot give rise to any
singularity in s, hence all singularities are contained in
Φ>ðsÞ. Let us split

B½ρ�ðσÞ ¼ B½ρ�
< ðσÞ þ B½ρ�

> ðσÞ ð4:7Þ

where B½ρ�
< ðσÞ is the inverse Mellin transform of ΓðsÞΦ<ðsÞ

and B½ρ�
> ðσÞ that of ΓðsÞΦ>ðsÞ. According to the converse

mapping theorem, since ΓðsÞ contains simple poles at

nonpositive integers s ¼ −k, k ≥ 0, the function B½ρ�
< ðσÞ is

of the form

B½ρ�
< ðσÞ ¼

X∞
k¼0

ð−1Þk
k!

Φ<ð−kÞσk; ð4:8Þ

i.e., it is a power series in σ. Using Eq. (2.6), one sees that,
at least in principle, one obtains all powers of 1/q2, as in the
OPE. No logarithms appear yet. All logarithms have to

come from B½ρ�
> ðσÞ through the singularities of Φ>ðsÞ, to

which we turn next.
Since Φ>ðsÞ is defined through a sum over n > n�, we

may insert the expansions in Eq. (4.2) into Eq. (4.5),
obtaining

Φ>ðsÞ ¼
X
n>n�

n−s
�
1þ b

log n
n

þ c
n
þ ϵMðnÞ

n

�
−s
ð1þ ϵFðnÞÞ

¼ Φ1ðsÞ þΦ2ðsÞ; ð4:9Þ

where

Φ1ðsÞ¼
X
n>n�

n−sð1þ ϵFð0;nÞÞ¼
X
n>n�

n−s
�
1þ

X
ν>0

dðFÞðνÞ
logνn

�
;

Φ2ðsÞ¼
X
n>n�

n−sðϵFðfλg;nÞ−
s
1!

�
b
logn
n

þ c
n
þ ϵMðnÞ

n

�

þsðsþ1Þ
2!

�
b
logn
n

þ c
n
þ ϵMðnÞ

n

�
2

þ�� �
�
:

ð4:10Þ

The reason for grouping together in Φ1ðsÞ the “1” with the
terms contained in ϵFð0; nÞ is because these terms give
rise to the logarithms of the perturbative series, whereas
the logarithms associated with power corrections are all
contained in Φ2ðsÞ.

Let us first deal with Φ1ðsÞ. One obtains

Φ1ðsÞ ¼ ζ>ðsÞ þ
X
ν>0

dFðνÞ
Z

∞

0

dt
tν−1

ΓðνÞ ζ>ðsþ tÞ

≍ 1

s − 1
þ
X
ν>0

dFðνÞ
Z

∞

0

dt
tν−1

ΓðνÞ
1

sþ t − 1
; ð4:11Þ

where ≍ means “singular part of,” and where ζ>ðsÞ ¼P∞
n>n� n

−s has the same singularity structure as the
Riemann ζ function ζðsÞ, whose singular expansion is
ζðsÞ ≍ 1

s−1. We substitute Eq. (4.11) into Eq. (4.5), to

obtain the σ → 0þ expansion of the Φ1 part of σB½ρ�
> ðσÞ.

Interchanging the s and t integrals yields

σB½ρ�
> ðσÞjΦ1

¼ 1þ
X
ν>0

dFðνÞ
Z

∞

0

dt
tν−1

ΓðνÞΓð1 − tÞσt

þOðσ1−ϵÞ; ð4:12Þ

with ϵ being a parameter that can be chosen arbitrarily close
to 0. These manipulations are formal, as the second t
integral in Eq. (4.11) diverges at t → ∞ and the t integral in
Eq. (4.12) diverges because of the poles in Γð1 − tÞ. In
Appendix A we show that, nonetheless, these manipula-
tions are valid, specializing to the case ν ¼ 1. It is then
straightforward to see that the same argument applies also
for ν > 1, and we show this explicitly in Appendix B.
As we see in Sec. IV B, Eq. (4.12) is nothing but the

Borel transform of the usual perturbative series in powers of
αs, in the approximation in which only the first term in the β
function is kept. In fact, the poles in Γð1 − tÞ are related to
the renormalon singularities associated with the asymptotic
nature of perturbation theory. The presence of the factor
σt ¼ et log σ shows that B½ρ�ðσÞ possesses a cut for Re σ < 0.

Using Eq. (2.6), this expression for B½ρ�
> ðσÞ yields for the

perturbative Adler function

Aðq2ÞPT ≈ 1þ
X
ν>0

dFðνÞ
Z

∞

0

dt
tν−1

ΓðνÞ
πt

sinðπtÞ
1

ð−q2Þt

≈ 1þ
X
ν>0

dFðνÞ
X∞
k¼0

ak
ΓðνÞ

Γðνþ kÞ
ðlogð−q2ÞÞνþk ; ð4:13Þ

where the identity

Γð1 − tÞΓð1þ tÞ ¼ πt
sinðπtÞ ð4:14Þ

has been used, and the coefficients ak are defined by10

10An expression of the coefficients ak in terms of the Bernoulli
numbers may be obtained, but its precise form is not very
important here.
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πt
sinðπtÞ ¼

X∞
k¼0

aktk; t → 0: ð4:15Þ

Let us now turn to Φ2ðsÞ. Its contribution is a linear
combination of terms of the form

ð−1Þν dν

dsν
ζ>ðsþ λÞ ¼

X
n>n�

logνn
nsþλ ; ð4:16Þ

for λ > 0 and we first consider the case ν ≥ 0 (we comment
on the case ν < 0 below). Inserting this expression into
Eq. (4.5) one obtains, after taking λ derivatives with respect
to σ,

dλ

dσλ
B½ρ�
> ðσÞ ≗ ð−1Þλ 1

2iπ

Z
Ĉ
dsσ−s−λΓðsþ λÞð−1Þν

×
dν

dsν
ζ>ðsþ λÞ; ð4:17Þ

where the symbol ≗ indicates that the right-hand side is just

one of the terms in dλ

dσλ
B½ρ�
> ðσÞ. Since

ð−1Þν dν

dsν
ζ>ðsþ λÞ ≍ ð−1Þν Γðνþ 1Þ

ðsþ λ − 1Þνþ1
ð4:18Þ

one obtains, after using the residue theorem and integrating
λ times over σ,

B½ρ�
> ðσÞ ≗ −

ð−1Þλ
νþ 1

σλ−1

ΓðλÞ ð− log σÞνþ1

×

�
1þO

�
1

log σ

��
þ PλðσÞ; ð4:19Þ

where PλðσÞ is a polynomial of degree λ. Substituting this
expression into Eq. (2.6), the contribution to the Adler
function is given by

Aðq2Þ ≗ −
λ

νþ 1

logνþ1ð−q2Þ
ðq2Þλ

�
1þO

�
1

logð−q2Þ
��

þ Pλþ1

�
1

q2

�
: ð4:20Þ

As shown in Appendix B, it turns out that the result for
ν < 0 may be obtained from (4.19) and (4.20) by analytic
continuation in ν, except for the case ν ¼ −1 which, due to
the singularity at that value, is a special case. For ν ¼ −1,
one obtains (see Appendix B)

B½ρ�
> ðσÞ ≗ ð−1Þλ−1

ΓðλÞ σλ−1 logð− log σÞ

×

�
1þO

�
1

logð− log σÞ log σ
��

þ PλðσÞ;

ð4:21Þ
and using Eq. (2.6),

Aðq2Þ≗−
λ

ðq2Þλ loglogð−q
2Þ

×

�
1þO

�
1

logð−q2Þ loglogð−q2Þ
��

þPλþ1

�
1

q2

�
:

ð4:22Þ

This concludes our exploration of the structure of the
OPE generated by the Regge expansion (4.3). Given
the variety of logarithmic corrections obtained, and given
the adjustable parameters b, c, and dðiÞðλi; νiÞ in Eq. (4.3),
we conclude that the expansion (4.3) is indeed potentially
capable of producing all the necessary terms in the OPE,
including logarithmic corrections, again in the approxima-
tion in which we keep only the leading term in the β
function. This is confirmed by the work of Ref. [15], which
considered this matching between the spectrum and the
OPE in more detail using a more direct method, and found
that the terms in both the perturbative and 1/q2 series of the
OPE can be matched using the spectrum of Eq. (4.2). We
consider these results good evidence for the conjecture that,
by adjusting the form of the subleading corrections for
n → ∞ in Eqs. (4.2) and (4.3), the complete structure of the
OPE, as a function of Euclidean q2, can indeed be obtained.

B. The perturbative series

We start with a brief review of the standard Borel
summation of the divergent perturbative series in QCD.
Defining the Borel transform of the perturbative expansion
in αs appearing in Eq. (2.4) by

B½A�
PT ðuÞ ¼

X∞
n¼0

bnun; bn ¼
cnþ1

βnþ1
0 n!

; ð4:23Þ

the perturbative series is formally summed by the Borel-
Laplace integral

APTðq2Þ ¼ 1þ
Z

∞

0

due−u/ðβ0αsð−q2ÞÞB½A�
PT ðuÞ: ð4:24Þ

From renormalon calculus (i.e., the calculation of Feynman
diagrams with bubble insertions) one generically expects
cnþ1 ∼ Γðnþ 1Þ ¼ n! [26]. Therefore, because of the n! in
the denominator of bn, the series (4.23) is expected to be
convergent in a disk juj < u0 with u0 > 0 in the Borel
plane. If the integral in Eq. (4.24) was well defined, the
original perturbative series (2.4) would be Borel summable.
Criteria for Borel summability have been formulated in

terms of constraints on the expanded function APTðq2Þ in
the complex αs plane [41], but these conditions are not
fulfilled in QCD [20]. Borel nonsummability is also

manifest because the Borel transform B½A�
PT ðuÞ has singu-

larities along the positive real axis for u ≥ 2, the infrared
renormalons of Refs. [20,24,31], which make the integral
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(4.24) ambiguous. Other singularities, the ultraviolet renor-
malons, are located on the negative real axis for u ≤ −1,
and restrict the convergence of the series (4.23) to the
disk juj < 1.
It is well known that, in the large-β0 approximation, in

which the coupling is given by Eq. (2.5), there is a simple
relation between the standard perturbative Borel transform

B½A�
PT ðuÞ of the Adler function and the Borel transform of the

associated spectral function. This can be easily derived
starting from the definition (2.3) of ρðtÞ and using the
Schwarz reflection property, which allows us to write

ρðtÞ ¼ 1

2πi
½Πðtþ iϵÞ − Πðt − iϵÞ� ¼ 1

2πi

Z
Ct

dq2Π0ðq2Þ;

ð4:25Þ

where Π0ðq2Þ is the derivative of Π and Ct is an open
contour in the complex plane, with end points t − iϵ and
tþ iϵ, which does not cross the cut of Πðq2Þ. Choosing the
contour as a circle of radius t centered at the origin,
parametrized as q2 ¼ teiϕ for fixed t and 0 ≤ ϕ ≤ 2π, and
using the definition (2.1), we obtain

ρðtÞ ¼ 1

2π

Z
2π

0

dϕAðteiϕÞ: ð4:26Þ

Substituting the Borel-Laplace representation (4.24) with
the one-loop coupling (2.5) into this equation and perform-
ing the integral over ϕ then yields

ρPTðtÞ ¼ 1þ
Z

∞

0

due−u logðt/Λ2ÞB½A�
PT ðuÞ

sin πu
πu

: ð4:27Þ

Writing a Borel-Laplace representation for the perturbative
spectral function itself,

ρPTðtÞ ¼ 1þ
Z

∞

0

due−u/ðβ0αsðtÞÞB½ρ�
PTðuÞ; ð4:28Þ

we recover the relation

B½ρ�
PTðuÞ ¼ B½A�

PT ðuÞ
sin πu
πu

; ð4:29Þ

first derived in Ref. [42].
For the following discussion, it is useful to establish a

relation between the standard Borel transform introduced in

Eq. (4.29) and the new Borel transform B½ρ�
> ðσÞjΦ1

defined
in Eq. (4.12). Indeed, by substituting Eq. (4.28) into
Eq. (2.7) and performing the integral over t one finds

σB½ρ�
PTðσÞ ¼ 1þ

Z
∞

0

duB½ρ�
PTðuÞΓð1 − uÞðσΛ2Þu; ð4:30Þ

where the subscript PT reminds us of the fact that this
relation holds in perturbation theory. As we see, the

expression (4.30) is nothing but σB½ρ�
> ðσÞjΦ1

defined
in Eq. (4.12).
Our discussion in the previous subsection illustrates

clearly how the OPE corresponds to the branch-point
singularity at σ ¼ 0 in the Borel plane. The purpose of
this subsection is to illustrate in more detail how, in terms of
the Borel transform of the perturbative series reviewed
above, the perturbative series appears in our representation
(2.6) if a general Regge expansion of the form (4.2) is
assumed for the spectral function. We again restrict
ourselves to the simplified case in which only the first
coefficient of the β function does not vanish.
Let us recall the expansion for the Borel function

σB½ρ�ðσÞ as σ → 0þ in Eq. (4.12),

σB½ρ�
> ðσÞjΦ1

¼ 1þ
X
ν

dðFÞðνÞ
Z

∞

0

du
uν−1

ΓðνÞΓð1 − uÞσu:

ð4:31Þ

This is the part which contains the perturbative series. To
see this, let us define the combination

B½ρ�
PTðuÞ ¼

X∞
ν¼1

dðFÞðνÞ
ΓðνÞ uν−1; ð4:32Þ

so that

σB½ρ�
> ðσÞjΦ1

¼ 1þ
Z

∞

0

duB½ρ�
PTðuÞΓð1 − uÞσu; ð4:33Þ

where this expression is to be understood as an asymptotic
expansion in 1/ log σ, i.e., as the result of expanding the

product B½ρ�
PTðuÞΓð1 − uÞ in u about u ¼ 0 and integrating

term by term. A comparison of Eq. (4.33) with Eq. (4.30),
taking into account that we have taken the QCD scale
Λ ¼ 1 in (4.33), establishes the equality of the two
expressions, as promised above.
The result (4.24) can be obtained by substituting

Eqs. (4.33) and (4.29) into Eq. (2.6), and, as discussed
in the introduction, is valid for π

2
< arg q2 < 3π

2
, i.e., for Re

q2 < 0, which includes the Euclidean regime. As we rotate
σ anticlockwise and reach arg σ ¼ π − ϵ, the integral
representation (2.6) analytically continues Aðq2Þ to the
region − π

2
þ ϵ < arg q2 < π

2
þ ϵ. Order by order, this con-

tinuesAðq2Þ through the perturbative cut at q2 > 0 into the

zeroth Riemann sheet since the function B½ρ�
> ðσÞ in

Eq. (4.33) is continuous, order by order, under the
corresponding rotation in σ. The cut discontinuity of

B½ρ�
> ðσÞ is located further away, at arg σ ¼ π.
Using the ray σ ¼ jσjeiðπ−ϵÞ, and taking the limit ϵ → 0,

we can thus define the perturbative version of the function
Aðq2Þ also for q2 > 0 as

DIOGO BOITO et al. PHYS. REV. D 97, 054007 (2018)

054007-10



APTðq2Þ ¼ 1þ q2
Z

∞

0

djσje−jσjq2

×
Z

∞

0

duB½ρ�
PTðuÞΓð1 − uÞjσjueiuπ

¼ 1þ
Z

∞

0

duB½ρ�
PTðuÞΓð1þ uÞΓð1 − uÞ eiuπ

ðq2Þu

¼ 1þ
Z

∞

0

duB½A�
PT ðuÞe−uðlog q

2−iπÞ; ð4:34Þ

which is nothing other than the well-known result for the
analytic continuation to q2 > 0 of logð−q2Þ ¼ logq2 − iπ
in the Adler function (4.24). This exercise illustrates that
the rotation in the complex σ plane, supplemented with the
right analyticity properties of the function B½ρ�ðσÞ, produces
the right analytic continuation in perturbation theory of the
Adler function in the q2 complex plane.
We would like to close this section with a comment on

the so-called “practical version” of the SVZ sum rules [32],
obtained by neglecting all logarithmic corrections to the
condensates, in the specific case of the vector-channel
polarization considered here. We saw in Eq. (2.6) that the
function B½ρ�ðσÞ is given by

B½ρ�ðσÞ ¼
Z

∞

0

dtρðtÞe−σt; ð4:35Þ

where ρðtÞ is the full spectral function defined in Eq. (2.3).
There is of course an analogous mathematical relation

between the perturbative counterparts, B½ρ�
PTðσÞ and ρðtÞPT,

order by order in powers of αs.
11 We then see that the

practical version of the SVZ sum rules arises from the

assumption that the difference B½ρ�ðσÞ − B½ρ�
PTðσÞ is an

analytic function of σ around the origin, and so can be

expanded in a power series in σ, B½ρ�ðσÞ − B½ρ�
PTðσÞ ¼P∞

k¼0 ckσ
k, yielding

X∞
k¼0

ckσk ¼
Z

∞

0

dte−σtðρðtÞ − ρðtÞPTÞ: ð4:36Þ

The left-hand side is the Borel-Laplace transform of a series
in powers of 1/ð−q2Þ which is also known as the con-
densate expansion. In this context, it is traditional to rename
the variable σ → 1/M2 and rewrite the above equation
as [32]

1

π

Z
∞

0

dte−t/M
2
ImΠðtÞ ¼ 1

π

Z
∞

0

dte−t/M
2
ImΠðtÞPT

þ
X∞
k¼0

ck
1

M2k ; ð4:37Þ

where ck is related to the condensate of dimension 2kþ 2.
If we assume that the coefficients dn in Eq. (2.4) are
independent of q2, we obtain from Eq. (2.1) the practical
version of the OPE, ΠOPEðq2Þ ¼

P
n≥1dn/ðnð−q2ÞnÞ, from

which the standard SVZ result, ck ¼ dkþ1/ðkþ 1Þ!,
immediately follows.

The assumption of analyticity of B½ρ�ðσÞ − B½ρ�
PTðσÞ at the

origin should, however, be treated with some caution. Even
though this practical version of the SVZ sum rules has
proved very successful phenomenologically, and while the
logarithmic corrections to the condensate expansion are
screened by at least one power of αs, these logarithms do

exist and render the difference B½ρ�ðσÞ − B½ρ�
PTðσÞ not ana-

lytic in a region around σ ¼ 0. The phenomenological
approximation of neglecting such logarithmic corrections
to the condensate expansion is not guaranteed to work in
general, and should be judged on a case-by-case basis.

C. Beyond the OPE

We now turn to the singularities of σB½ρ�ðσÞ away from
the origin. We saw in Sec. III that, when the asymptotic
Regge behavior is exact, i.e., M2ðnÞ ¼ n, FðnÞ ¼ 1, the
singularities are simple poles located at σ ¼ �2πik,
k ¼ 1; 2; 3;…. What is the fate of these singularities once
the corrections to the spectrum are switched on and the
parameters b; c; ϵF;MðnÞ in Eq. (4.2) become nonzero? To
study this question, we focus on the region near the original
pole locations. Substituting σ ¼ σ̂ þ ðσ − σ̂Þ into Eq. (4.1),
implementing the expansions (4.2) and (4.3), and taking
σ̂ ¼ 2πik, with k being a nonzero integer, we find

B½ρ�
> ðσÞ ¼ 1

2iπ

Z
Ĉ
dsðσ − σ̂Þ−sΓðsÞΨ>ðsÞ ð4:38Þ

with

Ψ>ðsÞ ¼ e−σ̂c
X∞
n>n�

n−ðsþσ̂bÞ
�
1 − s

�
b
logn
n

þ c
n

�

þ ϵFðnÞ −
�
s
n
þ σ̂

�
ϵMðnÞ þ � � �

�
; ð4:39Þ

where we have used that e−2πikn ¼ 1. Following steps
exactly analogous to those followed before, we find

Ψ>ðsÞ ≍ e−σ̂c
1

sþ σ̂b − 1
þ � � � ; ð4:40Þ

which translates into

B½ρ�
> ðσÞ ¼ e−σ̂c

Γð1 − σ̂bÞ
ðσ − σ̂Þ1−σ̂b þ � � � : ð4:41Þ

The form of this result can be understood by considering
the polylogarithm representation of the Dirichlet series in
the limit that the ϵF;MðnÞ corrections are neglected. In that
limit, one has

11The perturbative function ΠPTðq2Þ may exhibit also unphys-
ical singularities, poles or cuts [43], in the infrared Landau region
−Λ2

QCD ≤ q2 < 0, which are not relevant here.
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X∞
n¼1

e−σðnþb log nþcÞ ¼ e−σc
X∞
n¼1

e−σn

nσb
¼ e−σcLiσbðe−σÞ:

ð4:42Þ

Since

Liσbðe−σÞ ¼ Γð1 − σbÞ
Xk¼þ∞

k¼−∞

1

ðσ − 2πikÞ1−σb ; ð4:43Þ

we see that Eq. (4.41) corresponds precisely to the kth term
in this sum, reflecting the fact that (4.41) was obtained by

expanding B½ρ�
> ðσÞ in the neighborhood of σ ¼ σ̂ ¼ 2πik.

Equation (4.41) shows that the simple pole at σ̂ ¼ 2πik,
present in the exact Regge limit, with b ¼ 0, as discussed
in Sec. III, has now become a branch point at the same
location.
As we show in Appendix C, the form of the duality-

violating contribution to the vector-channel polarization
now changes from that given in Eq. (3.6) to

ΠDVðq2Þ ¼ 2πi
X∞
k¼1

eiπσ̂bð−q2Þ−σ̂beσ̂ðq2−cÞ þ � � � ; ð4:44Þ

where σ̂ ¼ 2πik and q2 > 0. In Eq. (4.44) only the
singularities on the positive imaginary axis contribute,
because we rotate anticlockwise in the σ plane, so that
the sum is restricted to k > 0. Since

ð−q2Þ−σ̂b ¼ ð−q2Þ−2πikb ¼ e−2πikb logð−q2−iεÞ

¼ e−2kπ
2be−2πikb log jq2j; ð4:45Þ

we find that

ΠDVðq2Þ ¼ 2πi
X∞
k¼1

e−4kπ
2be2πikðq2−b log q2−cÞ

×

�
1þO

�
1

log q2

��
: ð4:46Þ

In Eq. (4.46) we have replaced the dots in Eqs. (4.40) to
(4.44) by an explicit estimate of the subleading behavior for
large q2.We see how the change from simple poles to branch
cuts, originating from the logarithmic correction to the
spectrum in Eq. (4.2), leads to logarithmic corrections to
the exponent appearing in the intermediate step of Eq. (3.6).
The result (4.46) still corresponds to the limit Nc → ∞, but
corrections to a pure Regge spectrum have now been taken
into account. If we ignore the Oð1/ log q2Þ corrections, and
set b ¼ c ¼ 0, we recover the result of Eq. (3.6). We may
again enforce the Schwarz reflection property by defining
ΠDVðq2Þ for Im q2 < 0 by ΠDVððq2Þ�Þ ¼ Π�

DVðq2Þ.
Rather than discuss this particular result in more detail,

we now proceed to a discussion of how this result gets

modified when Nc is taken large, but finite. We emphasize
again the main message, which is that the simple poles on
the imaginary axis in the Borel plane found in Sec. III stay
in the same location, but become branch points instead of
simple poles when the spectrum is generalized to be that
of Eq. (4.2).

V. DVS FOR Nc LARGE BUT FINITE:
A WARM-UP MODEL

In Sec. IV we have seen how the corrections to the
asymptotic Regge spectrum modify the nature, but not the
location, of the singularities of the Borel-Laplace transform
B½ρ�ðσÞ in the Nc → ∞ limit, and how these singularities
determine the form of the DVs. In the following two
sections we discuss how 1/Nc corrections modify these
results when Nc is taken large, but finite.
To this end, it is interesting to first study a physically

motivated model in which all calculations can be carried
out explicitly. The model in question is the one proposed in
Ref. [3], and it is defined by the correlator

Πðq2Þ ¼
X∞
n¼1

1

zþ n
þ constant; ð5:1Þ

where z ¼ ð−q2Þζ, with ζ ¼ 1 −Oð1/NcÞ < 1. This func-
tion has a cut in the complex q2 plane for arg q2 ¼ 0, and
poles on the zeroth Riemann sheet that we may associate
with resonances. Therefore, the model enjoys the analy-
ticity properties expected in QCD.
In terms of the Borel-Laplace transform, we may write,

up to an infinite real constant,

Πðq2Þ ¼
Z

∞

0

dσe−σzðq2ÞB½ρ�ðσÞ; Re z > 0; ð5:2Þ

where B½ρ�ðσÞ is given in Eq. (3.3). Since

z ¼ jzjeiψ ¼ jq2jeiζðφ−πÞ;
ð0 ≤ φ < 2π ⇔ 1st Riemann sheetÞ; ð5:3Þ

one finds that a full rotation by an angle Δφ ¼ 2π in the
complex q2 plane corresponds to a rotation Δψ ¼ ζΔφ ¼
2πζ < 2π in the z plane (recall ζ < 1); i.e., there is a deficit
angle. The poles of the function (5.1) are located at ψ ¼ −π
in the z plane, which corresponds to φ ¼ π − π/ζ < 0 in the
q2 plane, i.e., to poles lying on the zeroth Riemann sheet.
Equation (5.2) is defined for arg σ ¼ 0 and Re z > 0. As

we rotate σ anticlockwise, going from arg σ ¼ 0 to
arg σ ¼ π/2 − πð1 − ζÞ ¼ π/2 −Oð1/NcÞ, we can simulta-
neously rotate z and q2 clockwise, going from ψ ¼ 0 and
φ ¼ π (i.e., Euclidean q2) to ψ ¼ −ζπ and φ ¼ 0 (the
Minkowski regime for q2). At this point, we have not yet
reached the poles of B½ρ�ðσÞ on the imaginary axis in the σ
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plane. Therefore, this corresponds to a smooth transition in
the q2 plane from the first to the zeroth Riemann sheet,
through the cut at φ ¼ 0.
When we keep rotating σ, at arg σ ¼ π/2 we encounter

the poles on the imaginary axis of B½ρ�ðσÞ. This corresponds
to ψ ¼ −π and, through Eq. (5.3), to φ ¼ π − π/ζ < 0, i.e.,
to resonance poles in q2 lying on the zeroth Riemann sheet.
It is this correspondence between the location of the
singularities of B½ρ�ðσÞ in the σ plane and the location of
the singularities of Πðq2Þ in the q2 plane that we wish to
again emphasize here. The location of the resonance poles
which obstruct the analytic continuation in q2 and the
location of the singularities in B½ρ�ðσÞ which obstruct the
analytic continuation in σ are linked through the Borel-
Laplace transform.
If we keep rotating σ anticlockwise, crossing the poles on

the imaginary axis, we again pick up the contribution from
the residues of those poles, through Cauchy’s theorem,
leading to DVs having the form of the cotangent function in
Eq. (3.6), with the variable q2 replaced by z. This is
precisely the correct result for DVs in this model [3].

VI. DVS FOR Nc LARGE BUT FINITE: QCD

Let us now discuss the effect of 1/Nc corrections in the
case of QCD. It is clear that the large-Nc limit must be
taken with care. As we have seen in Eq. (4.46), in the strict
large-Nc limit DVs are not a small correction to the
(analytically continued) OPE. This is not surprising, since
the large-Nc limit of the spectral function is not a good
approximation to the real-world spectral function.
The spectrum of QCD is not known in any detail at large,

but finite, Nc, so we can no longer calculate the function
σB½ρ�ðσÞ from Eq. (2.7) as we did in the previous sections.
Some important qualitative features of the spectral function
are known, however. Moving away from the strict large-Nc
limit toNc large but finite, it is known, for example, that the
poles of Πðq2Þ on the Minkowski axis move a small
distance away into the zeroth Riemann sheet and a cut
in ImΠðq2Þ appears on this axis.
Starting from the initial representation (2.6) with

arg σ ¼ 0, valid for π
2
< arg q2 < 3π

2
, as we rotate towards

arg σ ¼ π
2
þ ϵ and cover the region −ϵ < arg q2 < π − ϵ,

now nothing dramatic occurs. In contrast to the case of the
strict large-Nc limit, where the resonance poles are located
on the Minkowski axis, now that Nc is finite, as we move
from arg q2 ¼ þϵ to arg q2 ¼ −ϵ, crossing the Minkowski
axis, we move into the zeroth Riemann sheet without
encountering any singularity. This is so because Πðq2Þ, as
we saw in the warm-up model in Sec. V, and in the
perturbative series in Sec. IV B, is continuous across the
corresponding cut. It is only as argq2 becomes more
negative, and q2 moves deeper into the zeroth Riemann
sheet, that the poles corresponding to the presence of

resonances are encountered. When Nc is large (but finite) a
resonance pole in the complex plane is located at an angle
φNc

given by

tanφNc
≈ φNc

¼ −
Γ
M

¼ −
a
Nc

�
1þO

�
1

Nc

��
; ð6:1Þ

where a ∼ N0
c > 0 and we have used that Γ ∼ 1/Nc and

M ∼ N0
c. A string-based model suggests that the parameter

a is independent of the resonance excitation number n
[36].12 Thus, as 1/Nc corrections cause the resonance poles
to rotate clockwise by an angle φNc

≈ − a
Nc

in the complex

q2 plane, the singularities of B½ρ�ðσÞ in the complex σ plane,
according to Eq. (2.6), rotate anticlockwise by the same
angle past the positive imaginary axis. These singularities
must therefore be located (approximately) along the ray
arg σ ≃ π

2
þ a

Nc
≡ ϕ0 (see Fig. 2), where we have assumed

here that a does indeed not depend on n. In fact, we are

FIG. 2. Contour used to jump over the cut in the σ plane.
Analytic extension into the zeroth Riemann sheet using the
generalized Borel-Laplace transform.

12This feature is also observed in two-dimensional QCD [3].
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primarily interested in the singularity closest to the origin,
as this is the one that generates the leading contribution to
the DVs. A mild dependence of a on n thus has no impact
on our conclusions.
If the large-Nc limit is a reasonably smooth one, the

distance of this closest singularity to the origin cannot be
too different from that found in the Nc ¼ ∞ limit in
Sec. IV, namely, jσ̂ðk ¼ 1Þj ¼ j2πij ¼ 2π. We thus assume
that the singularity closest to the origin is located at σ̂ ¼
σ0eiϕ0 with ϕ0 ¼ a

Nc
þ π

2
and σ0 ¼ 2π, up to subleading

1/Nc corrections, as depicted in Fig. 2.
In this case, as σ is rotated from arg σ ¼ 0 to arg σ ¼ π,

we cross the branch cut (depicted by a blue line in Fig. 2).
This generates a DV contribution given by the integral over
the contour, Γ, shown in the bottom panel of Fig. 2, akin to
that appearing in Eq. (3.5) of Sec. III, and having the form

dΠDV

dq2
ðq2Þ ¼

Z
Γ
dσeσq

2

σB½ρ�ðσÞ; ð6:2Þ

where we can now take q2 > 0. Equivalently,

ΠDVðq2Þ ¼
Z
Γ
dσeσq

2

B½ρ�ðσÞ; ð6:3Þ

up to a constant of integration which, as in Sec. III, has no
physical effect.
Let us assume that the function B½ρ�ðσÞ is of the general

form

B½ρ�ðσÞ ¼ a0
ðσ − σ̂Þ1þγ

�
1þ a1ðσ − σ̂Þp1 þ alog

logðσ − σ̂Þ þ � � �
�
;

ð6:4Þ

where γ ¼ −σ̂bþOðN−1
c Þ, and a0 ¼ e−σ̂cΓð1þ γÞ×

ð1þOðN−1
c ÞÞ, in accordance with Eq. (4.41) in Sec. IV

C. The generic parameters p1 > 0 and a1, alog encapsulate
the dependence on the corrections to the Regge spectrum
associated with the quantities ϵF;M in Eq. (4.39). One then
obtains for the associated duality-violating contribution

ΠDVðq2Þ ¼
Z

∞eiϕ0

σ0eiϕ0
dσeσq

2

DiscfB½ρ�ðσÞg; ð6:5Þ

which yields (cf., Appendix C)

ΠDVðq2Þ ¼ 2πie−2πiðcþγ/2Þð−q2Þγeq2σ̂

×

�
1þa1

Γð1þ γÞ
Γð1þ γ−p1Þ

eiπp1

ð−q2Þp1
þ alog
logq2

þ� � �
�
:

ð6:6Þ

This result depends solely on the location of the branch
point (σ̂ ¼ σ0eiϕ0) and the nature of the branch cut, γ.

The orientation of the branch cut in the complex plane is
irrelevant, as expected.
ForNc large, recalling that σ̂¼σ0ð−sinð a

Nc
Þþicosð a

Nc
ÞÞ¼

2πði− a
Nc
Þð1þOðN−1

c ÞÞ and γ ¼ −2πibþOðN−1
c Þ, one

obtains

ΠDVðq2Þ ¼ 2πie−2π
2be−2πcið−q2Þ−2πibe2πq2ði− a

Nc
Þ

×

�
1þ a1

Γð1 − 2πibÞ
Γð1 − 2πib − p1Þ

×
eiπp1

ð−q2Þp1
þ alog
log q2

þ � � �
�
þO

�
1

Nc

�
; ð6:7Þ

from which one can extract the leading contribution

ΠDVðq2Þ ≈ 2πie−4π
2be−2πq

2 a
Nc ½cos 2πðq2 − c − b log q2Þ

þ i sin 2πðq2 − c − b log q2Þ�

×

�
1þO

�
1

Nc
;

1

ðq2Þp1
;

1

logq2

��
; ð6:8Þ

where Eq. (4.45) has again been used. Since Eq. (6.8) is
valid for q2 > 0, taking the imaginary part yields the DV
part of the spectral function. As before, Eq. (6.7) also gives
ΠDVðq2Þ in the complex plane, for Re q2 > 0 and Im
q2 > 0. For Im q2 < 0 it is defined using ΠDVððq2Þ�Þ ¼
½ΠDVðq2Þ��, thus enforcing the reflection property. The new
contribution −q2dΠDVðq2Þ/dq2 should be added to
Eq. (2.4) in order to obtain a complete representation of
the Adler function in the Minkowski region, for large q2.
As one can see, the main effect of the subleading terms in

the Regge expansion at large n is the logarithmic correction
to the argument of the cosine and sine functions modulating
the exponential falloff with q2. There are at least two
reasons to expect these corrections to generate only small
modifications to these sinusoidal factors. First, jb log q2j ≪
q2 for any b at large q2. Second, the phenomenological
knowledge which, as we have said, supports a Regge
behavior in QCD, does not yield any evidence for a nonzero
value for the log n term in the mass spectrum. In other
words, phenomenology is consistent with a small b in
QCD. This result provides theoretical support for the
parametrization introduced in [5,6], which was successfully
tested against precise data for the nonstrange vector and
axial-vector spectral functions obtained from hadronic τ
decays by the OPAL [44] and ALEPH [45] experiments, in
a series of analyses of the QCD coupling, αs [11–13]. In
Appendix D we give some numerical evidence for the
agreement between the results obtained from the fits to
Regge trajectories obtained, e.g., in Ref. [33], and those
obtained from fits to the τ data. Further theoretical studies
using the functional analysis methods developed in [46,47]
may also help understanding the origin and nature of DVs
in QCD.
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We end this section with two comments. First, as already
noted at the end of Sec. III, even for Euclidean q2, the OPE
for Πðq2Þ is asymptotic, and, at any finite order the
remainder is of order expð−Rjq2jÞ, where R is the distance
of the nearest nonperturbative singularity in the Borel
plane. Here, up to 1/Nc corrections, R ¼ 2π, and thus
these exponential remainders are much smaller than the
exponential suppression factor expð−2πq2a/NcÞ in
Eq. (6.8) for Nc large enough. This singularity thus plays
two roles: the absolute value of its position in the complex
plane sets the size of the exponential remainder for the OPE
in the Euclidean regime, while both the absolute value and
its phase determine the form of the DV contributions in the
Minkowski regime. This can be explicitly verified in the
simple model of Sec. III, for example. In the more realistic
approach of the subsequent sections, also a logarithmic cut
starting at σ ¼ 0 in the Borel plane appears. However, this
cut plays a different role, leading to the logarithmic
corrections in each term in the OPE, as discussed in
Sec. IVA above. Second, if we take q2 ¼ sþ iΔ in
Eq. (6.7), we find that DVs are exponentially suppressed
with a factor exp½−2πΔ� away from the positive real q2

axis. If we then follow the prescription of Ref. [1] by taking
Δ ∝ s, DVs are exponentially suppressed at large s, even in
the limit Nc → ∞. Our results are thus consistent with the
smearing method proposed in Ref. [1].

VII. CONCLUSIONS

In this paper, we analyzed the large q2 behavior of the
Adler function, with the aim of deriving its form on the
Minkowski axis, where neither perturbation theory nor its
supplemented version, represented by the full OPE, pro-
vides a reliable representation. While the OPE is the
dominant contribution at large q2, there are additional
nonperturbative contributions, which are not part of the
OPE. These quark-hadron duality-violating contributions
can be probed starting from fairly general assumptions
about the spectrum using the techniques of complex
analysis. Our main result is the expression for the leading
duality-violating contribution to the vacuum polarization,
given in Eq. (6.8).
For any analysis such as ours, some nonperturbative

input going beyond the OPE is needed. This nonperturba-
tive input should reflect the properties of the spectrum,
which determines the Adler function through the dispersion
relation, Eq. (2.6). This relation also shows that the Adler
function is a function of one variable, q2 (as long as we
work in the chiral limit), expressed in terms of the scale of
QCD. However, in practice, by introducing the perturbative
coupling αsð−q2Þ, it is usually rearranged in terms of a
double expansion in powers of αsð−q2Þ and 1/q2, given a
choice of renormalization scheme.
Our analysis is based on the fact that we can write the

Adler function as the Borel transform, in the plane of the

complex variable σ, of a function σB½ρ�ðσÞ, where B½ρ�ðσÞ is,
itself, the Laplace transform of the spectral function, cf.,
Eqs. (2.6) and (2.7). The Borel-Laplace transform B½ρ�ðσÞ
allows us to effectively continue the asymptotic expansion
of the OPE from the Euclidean to the Minkowski domain.
This is accomplished by taking advantage of the combi-
nation of the exact nature of the dispersion relation (2.6)
and the powerful techniques of analytic continuation. The
Borel-Laplace representation, moreover, allows us to relate
the large Euclidean q2 behavior of the Adler function to the
behavior of B½ρ�ðσÞ near σ ¼ 0. In particular, the logarith-
mic corrections to the OPE are directly related to the cut
along the negative real axis emanating from σ ¼ 0 in the
Borel plane, as shown in Secs. IVA and IV B. In Sec. IV B
we also recovered the standard renormalon picture relating
the OPE to perturbation theory, and rederived the SVZ
sum rules.
There can be no singularities to the right of the imaginary

axis in the σ plane, as follows directly from Eq. (2.6).
However, we find that, beyond the singularity at σ ¼ 0,
there may be further singularities in the half-plane Re
σ ≤ 0, with the location and nature of these singularities
depending on general properties of the spectrum.
Since the full spectrum of QCD13 is not known, even in

the large-Nc and chiral limits, we have had to make
assumptions in order to be able to identify the location
and nature of these singularities. Our main assumption is
that, for asymptotically large energies, the spectrum for
Nc ¼ ∞ lies on a Regge trajectory.14 This assumption is
supported by phenomenology, intuitive arguments based on
string theory and the solution of large-Nc QCD in two
dimensions. At large but finite energies, we parametrize the
spectrum in terms of a rather general form, with many
parameters [b, c and the parameters dðF;MÞðνF;MÞ and
dðF;MÞðλF;M; νF;MÞ of Eqs. (4.2) and (4.3)]. Starting from
the limit Nc → ∞, it turns out to be possible to extend the
analysis to large but finite Nc, with plausible additional
assumptions (see Sec. VI).
While we cannot derive these assumptions from QCD,

we can show that, starting from these assumptions, it is
possible to reconstitute the OPE for large Euclidean q2.
Explicitly, with the general parametrization of the spectrum
given by Eqs. (4.2) and (4.3), there is enough freedom
available to allow a match to the usual form of the OPE,
where inverse logarithms can be reexpressed in terms of
αsð−q2Þ in the large-β0 approximation. This result can be
generalized to include also higher-order terms in the β
function affecting the relation between q2 and αsð−q2Þ. In
fact, our results agree with those of Ref. [15], where also
some contributions beyond the large-β0 approximation

13Here, we are of course concerned with the channel relevant to
the vector current only.

14Technically, a radial trajectory.
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were considered. While we have not traced the contribution
of all such needed additional Regge spectrum corrections to
our final result, Eq. (6.8), we conjecture that such correc-
tions will not alter the shape of the leading expression
for ΠDVðq2Þ.
We find that for Nc → ∞, the singularities of B½ρ�ðσÞ are

located on the imaginary axis, while for finite Nc they
rotate anticlockwise from the imaginary σ axis by an
amount ∼1/Nc, associated with the decay widths of
resonances. The singularity closest to the origin, at a
distance approximately equal to 2π in units of the Regge
slope, yields the leading term in the duality-violating
contribution to the vacuum polarization, Eq. (6.8).
Singularities farther away lead to exponentially subleading
terms. These singularities are unlike the cut starting at
σ ¼ 0 along the negative real axis, which is associated with
the perturbative expansion (and perturbative corrections to
the higher-order terms in the OPE), as discussed in Sec. IV
B. In this sense, the two types of singularities in the Borel
plane, and, therefore, the two expansions, are clearly
separated.
We conjecture that the existence of these singularities in

the Borel plane is more general than just a consequence of
the Regge behavior, with corrections of the form assumed
in this paper. These singularities in the σ plane are a direct
consequence of the fact that the spectral function extends
all the way to infinity: if the spectral function were to vanish
beyond a finite value, tmax, of t, there would be no
singularities in σ, and the OPE would be a convergent
power series in 1/q2 (for q2 > tmax) without any corrections
logarithmic in q2. Thus, the fact that the OPE is divergent
suggests that there are contributions which are exponen-
tially suppressed in the inverse of the expansion variable,
1/q2, in accordance with the notion of a trans-series, and
this is precisely what we find to be the case.
There are several questions we have not answered. One

obvious question is whether our analysis can be extended
systematically beyond the class of corrections to a Regge
spectrum given by Eqs. (4.2) and (4.3), and, connected to
that, beyond the large-β0 approximation. Another physi-
cally interesting question is how our results would change
when a nonvanishing quark mass is taken into account.
These questions are beyond the scope of the current paper.
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APPENDIX A: PROOF OF EQ. (4.12)

Let us take the following Dirichlet series, corresponding
to the choice ν ¼ 1 in Φ1ðsÞ in Eq. (4.10):

χðσÞ ¼ σ
X∞
n>n�

e−σn

log n
; ðA1Þ

with n� ≫ 1. The generalization to powers ν > 1 of the
logarithm is straightforward (see also Appendix B below).
The function χðσÞ is singular at σ ¼ 0 and we wish to find
out what leading the behavior of this function is as σ → 0þ.
We rewrite

χðσÞ ¼ σ

Z
∞

0

dt
X∞
n>n�

e−σne−t log n ¼ σ

Z
∞

0

dt
X∞
n>n�

e−σnn−t

¼ σ

Z
∞

0

dt
1

2iπ

Z
C
dsσ−sΓðsÞ

X∞
n>n�

n−s−t

¼ σ

Z
∞

0

dt
1

2iπ

Z
C
dsσ−sΓðsÞζ>ðsþ tÞ; ðA2Þ

where we have defined ζ>ðsþ tÞ ¼ P
n>n�n

−s−t. The
singular expansion of this function is the same as that of
ζðsþ tÞ, namely ζ>ðsþ tÞ ≍ 1/ðsþ t − 1Þ, and this
requires C in Eq. (A2) to be a vertical straight line with
Re s > 1. Clearly ζ>ðzÞ ¼ ζðzÞ − ζ<ðzÞ, where ζ<ðzÞ ¼P

n≤n�n
−z is a regular function of z containing no singu-

larities. One can then split

χðσÞ ¼ χðζ; t<; σÞ − χðζ<; t<; σÞ þ χðζ>; t>; σÞ; ðA3Þ
where

χðζ; t<; σÞ ¼
1

2iπ

Z
C
dsσ1−sΓðsÞ

Z
1−δ

0

dtζðsþ tÞ;

χðζ<; t<; σÞ ¼
1

2iπ

Z
C
dsσ1−sΓðsÞ

Z
1−δ

0

dtζ<ðsþ tÞ;

χðζ>; t>; σÞ ¼
1

2iπ

Z
C
dsσ1−sΓðsÞ

Z
∞

1−δ
dtζ>ðsþ tÞ; ðA4Þ

for a certain parameter δ, with 0 < δ ≪ 1. We can now
evaluate or bound each of these integrals in turn.
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Since the function ΓðsÞ has poles at nonpositive integers
and is regular for s ¼ 1 − t in the interval 0 ≤ t ≤ 1 − δ,
one may use ζðsþ tÞ ≍ 1/ðsþ t − 1Þ and the converse
mapping theorem [40] to write

χðζ; t<; σÞ ¼
Z

1−δ

0

dtσtΓð1 − tÞ þ
X∞
k¼0

ð−1Þk
k!

σ1þk

×
Z

1−δ

0

dtζðt − kÞ

¼
Z

1−δ

0

dtet log σΓð1 − tÞ þOðσÞ

¼
X∞
k¼0

ck

Z
1−δ

0

dttket log σ þOðσÞ; ðA5Þ

where the Γð1 − tÞ has been expanded in powers of t, with
ck → 1 as k → ∞. Next, we split each term in the sum over
k into the difference of an integral between 0 and∞, and an
integral between 1 − δ and ∞, with each of these integrals
being convergent (recall that we take σ → 0þ). This yields
an asymptotic expansion for χðζ; t<; σÞ in powers of
1/ log σ. Using the saddle point method, one finds that

Z
∞

1−δ
dttket log σ ∼O

�
σ1−δ

log σ
ð1 − δÞk

�
; ðA6Þ

and we thus arrive at

χðζ; t<; σÞ ¼ c0
Γð1Þ

ð− log σÞ þ c1
Γð2Þ

ð− log σÞ2

þ c2
Γð3Þ

ð− log σÞ3 þ � � � þO
�
σ;

σ1−δ

log σ

�
: ðA7Þ

Notice that ð− log σÞ > 0 when σ → 0þ, so the series (A7)
is not alternating, and thus this expansion is not Borel
summable.
Let us now turn to the function χðζ<; t<; σÞ in Eq. (A4).

The only singularities in the integrand in s are those of
ΓðsÞ. This leads to a result of OðσÞ, which is already
included in (A7).
Finally we have to evaluate χðζ>; t>; σÞ in Eq. (A4).

Although originally the contour C in this integral has Re
s > 1, since the rightmost singularity of ζ>ðsþ tÞ is at s ¼
δ in the interval 1 − δ ≤ t < ∞, one is allowed to shift this
contour to the left to Re s ¼ δ0 > δ without changing the
result. Then, defining s ¼ δ0 þ iu one finds

χðζ>; t>; σÞ ¼
σ1−δ

0

2π

Z
∞

−∞
duσ−iuΓðδ0 þ iuÞ

×
Z

∞

1−δ
dtζ>ðδ0 þ iuþ tÞ: ðA8Þ

This function is bounded, i.e.,

jχðζ>; t>;σÞj≤
σ1−δ

0

2π
Mðδ0;δÞ

Mðδ;δ0Þ ¼
Z

∞

−∞
dujΓðδ0 þ iuÞj

Z
∞

1−δ
dtjζ>ðδ0 þ iuþ tÞj:

ðA9Þ

The integral for Mðδ; δ0Þ is finite for the allowed region of
the parameters δ and δ0. Since we may choose δ, and thus
δ0 > δ arbitrarily small, we see that χðζ>; t>; σÞ is expo-
nentially suppressed in comparison with the terms in the
series (A7) for σ → 0þ.
Putting together all the above results we conclude that

χðσÞ ¼ cð0Þ
Γð1Þ

ð− log σÞ þ cð1Þ
Γð2Þ

ð− log σÞ2 þ cð2Þ
Γð3Þ

ð− log σÞ3

þ � � � þO
�
σ; σ1−δ

0
;
σ1−δ

log σ

�
; ðA10Þ

where δ > 0 and δ0 > δ can be chosen to be arbitrar-
ily small.
In Fig. 3 we show a comparison of the original Dirichlet

series (A1) evaluated numerically and the result (A10),
after multiplying by ð− log σÞ. The difference between
the blue and the black curves is the starting value of n
in the sum (A1). The agreement as σ → 0þ shows that the
dependence on σ as σ → 0þ depends solely on the
asymptotic behavior for large n in this sum and not on
the first terms for low n. As one can see, the result (A10)
reproduces rather well the behavior of χðσÞ as σ → 0þ, but
the corrections of OðΓðkÞ/ð− log σÞkÞ are significant.

0.00002 0.00004 0.00006 0.00008 0.00010
1.06

1.07

1.08

1.09

1.10

1.11

1.12

FIG. 3. Comparison of the Dirichlet series (A1) and the result
(A10). Blue curve: the Dirichlet series (A1) with the sum running
over n, with 2 ≤ n < ∞. Black curve: the same Dirichlet series,
but now for 20 ≤ n < ∞. Red curve: the result of the asymptotic
expansion (A10) keeping five terms in the series. The three
functions have been multiplied by ð− log σÞ.
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APPENDIX B: CONTRIBUTIONS FROM
TERMS OF THE FORM 1

nλlogνn

In this appendix we consider terms of the form n−s 1
nλ logν n

with λ being a positive integer and ν a non-negative integer,
as they appear in Φ2ðsÞ, cf., Eq. (4.10). We find it
convenient to first take λ derivatives of the Mellin transform

dλ

dσλ
B½ρ�
> ðσÞ≗ ð−1Þλ

Z
Ĉ

ds
2iπ

σ−s−λΓðsþλÞ
X
n>n�

n−s
�

1

nλlogνn

�

¼ð−1Þλ
Z
Ĉ

ds
2iπ

σ−s−λΓðsþλÞ

×
Z

∞

0

dt
tν−1

ΓðνÞζ>ðsþλþ tÞ

≍ ð−1Þλ
Z
Ĉ

ds
2iπ

σ−s−λΓðsþλÞ

×
Z

∞

0

dt
tν−1

ΓðνÞ
1

sþλþ t−1

¼ð−1Þλ
Z

∞

0

dt
tν−1

ΓðνÞΓð1− tÞσt−1þOðσ0Þ:

ðB1Þ
Again, our manipulations are formal, but the same justi-
fication that applied in the case of Φ1ðsÞ applies also here
(see Appendix A). In particular, the factor Γð1 − tÞ inside
the last integral should be understood as a power series in t.
We now distinguish three cases depending on the value of
ν: ν ¼ 0, ν ¼ 1, or ν > 1.

(i) ν ¼ 0
Using that

lim
ν→0

Z
∞

0

dt
tνþk−1

ΓðνÞ et log σ ¼ δk;0; ðB2Þ

one finds that

dλ

dσλ
B½ρ�
> ðσÞ ≗ ð−1Þλ

σ
þOðσ0Þ ðB3Þ

which leads to

B½ρ�
> ðσÞ ≗ ð−1Þλ σ

λ−1

ΓðλÞ log σ þ PλðσÞ; σ → 0þ;

ðB4Þ

where PλðσÞ is a polynomial in σ of degree λ. Upon
integration this yields, for large jq2j with Re q2 < 0,

Aðq2Þ ≗ −
λ

ðq2Þλ logð−q
2Þ
�
1þO

�
1

logð−q2Þ
��

þ Pλþ1

�
1

q2

�
: ðB5Þ

The polynomial in 1/q2 just modifies the series in
powers of 1/q2 we already found after Eq. (4.8).

(ii) ν ¼ 1
Rewriting Eq. (B1) as

dλ

dσλ
B½ρ�
> ðσÞ≗ ð−1Þλ

σ

Z
∞

0

dtΓð1− tÞe−t log1/σþOðσ0Þ;

ðB6Þ

one obtains the asymptotic expansion (as σ → 0þ)

dλ

dσλ
B½ρ�
> ðσÞ ≗ ð−1Þλ

σ

�
c0Γð1Þ
− log σ

þ c1Γð2Þ
ð− log σÞ2

þ c2Γð3Þ
ð− log σÞ3 þ � � �

�
þOðσ0Þ; ðB7Þ

where the coefficients ck are defined in Appendix A.
Integrating this λ times with respect to σ yields

B½ρ�
> ðσÞ≗ ð−1Þλ−1

ΓðλÞ σλ−1 logð− logσÞ

×

�
1þO

�
1

logð− logσÞ logσ
��

þPλðσÞ:

ðB8Þ

Using Eq. (2.6) one then gets

Aðq2Þ ≗ −
λ

ðq2Þλ log logð−q
2Þ

×

�
1þO

�
1

logð−q2Þ log logð−q2Þ
��

þ Pλþ1

�
1

q2

�
: ðB9Þ

(iii) ν > 1
In this case one may integrate Eq. (B1) directly,

B½ρ�
> ðσÞ ≗ ð−1Þλσλ−1

Z
∞

0

dt
tν−1

ΓðνÞ
Γð1 − tÞΓðtÞ
Γðtþ λÞ σt

þ PλðσÞ: ðB10Þ

Writing σt ¼ et log σ and expanding the rest of the
integrand in powers of t, one finds

B½ρ�
> ðσÞ ≗ ð−1Þλ

ðν − 1ÞΓðλÞ
σλ−1

ð− log σÞν−1

×

�
1þO

�
1

log σ

��
þ PλðσÞ; ðB11Þ
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which yields, for the Adler function,

Aðq2Þ≗ λ

ν−1
1

ðq2Þλlogν−1ð−q2Þ
�
1þO

�
1

logð−q2Þ
��

þPλþ1

�
1

q2

�
: ðB12Þ

Note that the results in Eqs. (B4) and (B5) are nothing but
the corresponding expressions, Eqs. (B11) and (B12), with
ν set equal to 0. Furthermore, the results in Eqs. (B11) and
(B12) can be obtained from the expressions originally
found in Eqs. (4.19) and (4.20) by the replacement ν → −ν.
In other words, all these results are connected by analytic
continuation in ν. The only exception is the case ν ¼ 1,
where the singularity in Eqs. (B11) and (B12) prevents the
continuation to ν ¼ 1. The bottom line is that these
logarithmic corrections show a clear hierarchy in λ and
ν: the more suppressed (relative to the asymptotic Regge
behavior) the correction 1

nλ logν n as n → ∞, the more

suppressed the corresponding contribution to the Adler
function as −q2 → ∞.

APPENDIX C: ΠDVðq2Þ FROM A BRANCH
POINT IN THE σ PLANE

Let us parametrize a branch-point singularity of the
function B½ρ�ðσÞ as

B½ρ�ðσÞ ¼ a0
ðσ− σ̂Þ1þγ

�
1þ alog

logðσ− σ̂Þþa1ðσ− σ̂Þp1 þ� � �
�
;

ðC1Þ

where p1 > 0 and the singularity is located at
σ ¼ σ̂ ¼ σ0eiϕ0 , where σ0 ¼ jσ̂j is the distance of the
branch point to the origin, and ϕ0 ¼ arg σ̂ is the angle
with the positive real axis. Parametrizing the cut as
σ ¼ σ̂ þ xeiϕ, where 0 ≤ x < ∞ and 0 ≤ ϕ < 2π, with
ϕ ¼ ϕ0 þ ϵ to the left of the cut and ϕ ¼ ϕ0 þ 2π − ϵ to
the right of the cut in the bottom panel of Fig. 2 (ϵ → 0þ),
one finds for the discontinuity across the cut

DiscfB½ρ�ðσÞg¼2isinðπγÞe−ið1þγÞðϕ0þπÞ a0
x1þγ

×

�
1þa1xp1eip1ϕ0 þ alog

2isinðπγÞe
iγπ

×
Z

∞

0

dtðeitϕ0 −e−i2πð1þγÞeitðϕ0þ2πÞÞxtþ���
�
;

ðC2Þ

with this expression being valid for x < 1. A similar
expression can be derived for x > 1, but the contribution
from the discontinuity to Eq. (C4) turns out to be
exponentially suppressed in q2 relative to the result shown

in that equation, as can be shown using arguments similar
to those used in Appendix A.
Then, using that

Z
∞

0

dxe−xaxb ¼ Γð1þ bÞ
a1þb ; ðC3Þ

one obtains

Γð1þ γÞ
Z
Γ
dσeσq

2

Disc

�
1

ðσ− σ̂Þ1þγ

�
¼ 2πie−iγπð−q2Þγeq2σ̂;

ðC4Þ

where the identity (4.14) has been used to bring the result
into a form where it is evident that the usual residue
theorem result is obtained in the limit γ → 0. An analogous
calculation yields, for q2 > 0,

Z
Γ
dσeσq

2

Disc

�
1

ðσ − σ̂Þ1þγ logðσ − σ̂Þ
�

¼ 2πie−iγπð−q2Þγeq2σ̂
Γð1þ γÞ log q2

�
1þO

�
1

log q2

��
: ðC5Þ

Gathering all the terms, one finally obtains for Eq. (6.5) the
expression

ΠDVðq2Þ ¼ 2πi
e−iπγ

Γð1þ γÞ ð−q
2Þγeq2σ̂a0

×

�
1þ a1

Γð1þ γÞ
Γð1þ γ − p1Þ

eiπp1

ð−q2Þp1

þ alog
log q2

�
1þO

�
1

log q2

��
þ � � �

�
: ðC6Þ

APPENDIX D: SOME NUMERICAL RESULTS

Here we compare the results obtained from fits to
hadronic τ-decay data in Ref. [13] to those obtained from
fits to Regge trajectories in Ref. [33].
For the latter, Ref. [33] finds, from fits of the meson

spectrum to radial trajectories, the value

Λ2 ≃ 1.35ð4Þ GeV2 ðD1Þ

for the slope of these trajectories, and, from an average over
light-quark meson states, the value

Γ
M

≃ 0.12ð8Þ ≃ a
Nc

ðD2Þ

for the angle, φNc
. For comparison, for the ρ, this ratio is

equal to approximately 0.19.
These results are to be compared to those obtained in

Ref. [13] from finite-energy sum-rule fits to variously
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weighted integrals of hadronic τ-decay data, in which para-
metrizations of the form ρDVðtÞ ∝ e−γt sinðαþ βtÞ were
employed for the duality-violating parts of the vector and
axial vector current spectral function at large t (t > smin).
The results of the fits to the nonstrange, vector channel data
for the parameters βV and γV are

βV ¼ 4.2ð5Þ GeV−2; γV ¼ 0.7ð3Þ GeV−2; ðD3Þ

where the errors include variations of the results over the
different fit types (one- or three-weight fits) and smin ranges
explored in Ref. [13]. These two numbers are seen to agree

well with the result in Eq. (6.8), which, after reintroducing
physical units and together with Eqs. (D1) and (D2), yields

βV ¼ 2π

Λ2
≃ 4.7ð2Þ GeV−2; γV ¼ 2π

Λ2

a
Nc

≃ 0.6ð4Þ GeV−2:

ðD4Þ

The factors of 2π in Eq. (D4) are crucial for the agreement
with Eq. (D3). The agreement thus goes well beyond that of
a simple estimate based solely on naive dimensional
analysis.
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