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We revisit rare radiative leptonic decaysBs;d → γeþe− andBs;d → γμþμ− in the standardmodel andprovide
the updated estimates for various differential distributions (the branching ratios, the forward-backward
asymmetry, and Rμ=e, the ratio of the differential distribution for muons over electrons in the final state). The
new ingredients of this work compared to the existing theoretical analyses are the following: (i) we calculate all
Bd → γ and Bs → γ form factors induced by the vector, axial-vector, tensor and pseudotensor quark currents
within the relativistic dispersion approach based on the constituent quark picture; (ii) we perform a detailed
analysis of the charm-loop contributions to radiative leptonic decays: we obtain constraints imposed by
electromagnetic gauge invariance and discuss the existing ambiguities in the charmonia contributions.
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I. INTRODUCTION

Rare radiative leptonic Bðs;dÞ → γlþl− decays are one of
the flavor-changing neutral current (FCNC) decays: at the
quark level, they are induced by b → fs; dg quark tran-
sitions, which in the standard model (SM) are forbidden at
tree level. Such transitions occur via penguin and box
diagrams containing loops and thus lead to small branching
ratios, of order 10−8–10−10 [1]. Possible contributions of
new particles to the loops make these decays particularly
sensitive to potential new physics.
Several tensions with the SM at the level of 2-4σ have

been reported, mainly in FCNC B-decays (a comprehensive
discussion can be found in a recent review [2] and [3–5]).1
The ratio

RK≡BðBþ→Kþμþμ−Þ
BðBþ →Kþeþe−Þ ¼ 0.745þ0.090

−0.074ðstatÞ�0.036ðsystÞ

ð1:1Þ

in the range q2 ∈ ½1; 6� GeV2 (q is the momentum of the
lepton pair) is 25% lower than the SM prediction at 2.6σ
[9–12]. A similar deviation has been recently announced by
LHCb in B0 → K�0lþl− decays [13]:

RK�0 ¼ 0.69þ0.110
−0.070ðstatÞ � 0.05ðsystÞ

for 1.1 < q2½GeV2� < 6.0: ð1:2Þ

In an independent measurement, the branching ratio in the
region q2 ∈ ½1; 6� GeV2

BðBþ → Kþμþμ−Þ ¼ ð1.19� 0.03� 0.06Þ × 10−7 ð1:3Þ

is 30% lower than the SM value at 2σ [14–18]; same was
observed for B0

s → ϕμþμ−, in the range q2 ∈ ½1; 6� GeV2

the discrepancy for the branching ratio is more than 3σ [19].
More tensions come from angular analysis of B → K�μμ
performed by LHCb [20] and Belle [21]. Noteworthy, the
value of the branching ratio of Bs → μþμ− [22] is 25%
lower than the SM prediction although only at 1σ.
Obviously, other FCNC B-decay modes are good places

to search for deviations from the SM. The focus of this
paper is on rare radiative leptonic Bd;s-decays.
The Bðs;dÞ → γlþl− decays have been already studied

theoretically in a number of publications [23–30].
Radiative leptonic B-decays have been also extensively
discussed in the context of possible lepton flavor violation
[3–5,31,32].
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1Tensions have been reported also in the ratiosRDð�Þ ¼ BðB →
Dð�ÞτνÞ=BðB → Dð�ÞlνÞ of the tree-level B → DðD�Þ semilep-
tonic decays [6–8].

PHYSICAL REVIEW D 97, 053007 (2018)

2470-0010=2018=97(5)=053007(23) 053007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.053007&domain=pdf&date_stamp=2018-03-26
https://doi.org/10.1103/PhysRevD.97.053007
https://doi.org/10.1103/PhysRevD.97.053007
https://doi.org/10.1103/PhysRevD.97.053007
https://doi.org/10.1103/PhysRevD.97.053007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The previous analyses employed various approximations
for the decay amplitudes which exhibit a rich structure of
nonperturbative QCD effects. This work improves the
existing analysis in several aspects:

(i) We calculate all necessary BðsÞ → γ form factors at
timelike momentum transfers using the dispersion
formulation of the relativistic constituent quark
model [33–35]. This approach proved to be very
successful for the calculation of numerous meson-
to-meson weak transition form factors [36]; in this
work we apply this approach to the calculation of the
B → γ transition form factors, taking into account
rigorous constraints on the transition amplitude
imposed by electromagnetic gauge invariance.

(ii) We derive the general gauge-invariance constraints
on the charm-loop contributions to the B → γlþl−
amplitude. We then perform a numerical analysis of
charm-loop contributions in B → γlþl− decays,
including nonfactorizable corrections, making use
of the existing results for the B → Vlþl− amplitude.

(iii) We present a detailed study of a number of ob-
servables in Bs;d → γlþl− decays (the differential
distributions, the forward-backward asymmetry, and
Rμ=e, the ratio of the differential distributions for
muons over electrons in the final state, which has
been recently emphasized in [30] as an interesting
observable for radiative leptonic decays).

The paper is organized as follows: Sec. II briefly recalls the
effective Hamiltonian for FCNC b → s, d transitions, and
Sec. III describes various contributions to the B → γlþl−
amplitude induced by Heffðb → ðs; dÞlþl−Þ. In Sec. IV, we
discuss constraints on the B → γ transition amplitude
imposed by electromagnetic gauge invariance. In Sec. V,
we study in detail contributions to the amplitude of
radiative leptonic decay B → γlþl− induced by c-quark
loops, including nonfactorizable effects, and derive rigor-
ous constraints on these contributions imposed by electro-
magnetic gauge invariance. Section VI recalls the
differential distributions in radiative leptonic decays.
Section VII presents the analytic results for the transition
form-factors within the dispersion approach based on
constituent quark picture for all necessary B → γ form
factors. Section VIII contains the numerical predictions for
the necessary form factors and the observables. Section IX
summarizes our results.

II. THE b → d;s EFFECTIVE HAMILTONIAN

Astandard theoretical framework for the description of the
FCNC b → q (q ¼ s, d) transitions is provided by the
Wilson OPE: the b → q effective Hamiltonian describing
dynamics at the scale μ, appropriate for B-decays, reads
[37–39] [we use the sign convention for the effective
Hamiltonian and the Wilson coefficients adopted in
[40,41]].

Hb→q
eff ¼ GFffiffiffi

2
p V�

tqVtb

X
i

CiðμÞOb→q
i ðμÞ; ð2:1Þ

GF is the Fermi constant. The basis operators Ob→q
i ðμÞ

contain only light degrees of freedom (u, d, s, c, and
b-quarks, leptons, photons and gluons); the heavy degrees
of freedom of the SM (W, Z, and t-quark) are integrated out
and their contributions are encoded in theWilson coefficients
CiðμÞ. The light degrees of freedom remain dynamical and
the corresponding diagrams containing these particles in the
loops—in our case virtual c and u quarks—should be
calculated and added to the diagrams generated by the
effective Hamiltonian.
Necessary for the B̄s → γlþl− decays of interest are the

following terms in (2.1)2(the B̄d → γlþl− case is obtained
with the obvious replacement s → d) [26]:

Hb→slþl−
eff ¼ GFffiffiffi

2
p αem

2π
VtbV�

ts

×

�
−2imb

C7γðμÞ
q2

· s̄σμνqνð1þ γ5Þb · l̄γμl

þ C9VðμÞ · s̄γμð1 − γ5Þb · l̄γμl

þ C10AðμÞ · s̄γμð1 − γ5Þb · l̄γμγ5l

�
: ð2:2Þ

The C7γ part in Eq. (2.2) emerges from the diagrams in
Fig. 1(a,c) with the virtual photon emitted from the penguin

Hb→sγ
eff ¼ −

GFffiffiffi
2

p VtbV�
tsC7γðμÞ

e
8π2

mb · s̄σμνð1þ γ5Þb · Fμν:

ð2:3Þ

Notice that the sign of the b → dγ effective Hamiltonian
(2.3) correlates with the sign of the electromagnetic vertex.
For a fermion with the electric charge Qqe, we use in the
Feynman diagrams the vertex

iQqeq̄γμqϵμ: ð2:4Þ

As already noticed, the light degrees of freedom remain
dynamical and their contributions should be taken into
account separately. The relevant terms in Hb→s

eff are those
containing four-quark operators:

Hb→sc̄c
eff ¼ −

GFffiffiffi
2

p VcbV�
csfC1ðμÞO1 þ C2ðμÞO2g ð2:5Þ

with

2Our notations and conventions are: γ5 ¼ iγ0γ1γ2γ3, σμν ¼
i
2
½γμ; γν�, ε0123 ¼ −1, ϵabcd ≡ ϵαβμνaαbβcμdν, e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

.
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O1 ¼ s̄jγμð1 − γ5Þcic̄iγμð1 − γ5Þbj;
O2 ¼ s̄iγμð1 − γ5Þcic̄jγμð1 − γ5Þbj; ð2:6Þ

and the similar terms with c → u (i, j here are color
indices). The charm-loop contributions generated by oper-
ators O1;2 are discussed in detail in Sec. V.
The SM Wilson coefficients at the scale μ0 ¼ 5 GeV

have the values [corresponding to C2ðMWÞ ¼ −1]:
C1ðμ0Þ¼0.241, C2ðμ0Þ¼−1.1, C7ðμ0Þ¼0.312, C9Vðμ0Þ ¼
−4.21, C10Aðμ0Þ ¼ 4.41 [38–42].

III. CONTRIBUTIONS INDUCED
BY Hb→sll

eff AND Hb→sγ
eff

In this section, we present the contributions to the
B → γlþl− amplitude induced by operators (2.2) and
(2.3) [26]. The Bs → γ� transition form factors of the
corresponding basis operators are defined as [25]

hγ�ðk; ϵÞjs̄γμγ5bjB̄sðpÞi ¼ ieϵ�αðgμαk0k − k0αkμÞ

×
FAðk02; k2Þ

MBs

;

hγ�ðk; ϵÞjs̄γμbjB̄sðpÞi ¼ eϵ�αϵμαk0k
FVðk02; k2Þ

MBs

;

hγ�ðk; ϵÞjs̄σμνγ5bjB̄sðpÞik0ν ¼ eϵ�αðgμαk0k − k0αkμÞ
× FTAðk02; k2Þ;

hγ�ðk; ϵÞjs̄σμνbjB̄sðpÞik0ν ¼ ieϵ�αϵμαk0kFTVðk02; k2Þ:
ð3:1Þ

We treat the form factors as functions of two variables,
Fiðk02; k2Þ: here k0 is the momentum emitted from the
FCNC b → q vertex, and k is the momentum of the photon
emitted from the valence quark of the B-meson. The
constraints on the form factors imposed by gauge invari-
ance are discussed in Sec. IV.

A. Direct emission of the real photon from valence
quarks of the B meson

We denote as Að1Þ the contribution to the B̄s → γlþl−

amplitude, induced by Hb→slþl−
eff : the real photon is directly

emitted from the valence b or s quarks, and the lþl− pair is
coupled to the FCNC vertex (see diagrams of Fig. 1). It
corresponds to the momenta k0 ¼ q, k ¼ p − q, k02 ¼ q2

and k2 ¼ 0, and thus involves the form factors Fiðq2; 0Þ:

Að1Þ ¼ hγðk; ϵÞ; lþðp1Þ; l−ðp2ÞjHb→dlþl−
eff jB̄sðpÞi

¼ GFffiffiffi
2

p VtbV�
tq
αem
2π

eϵ�α

× ½ϵμαk0kAð1Þ
V ðq2Þl̄ðp2Þγμlð−p1Þ

− iðgμαk0k − k0αkμÞAð1Þ
A ðq2Þl̄ðp2Þγμlð−p1Þ

þ ϵμαk0kA
ð1Þ
5V ðq2Þl̄ðp2Þγμγ5lð−p1Þ

− iðgμαk0k − k0αkμÞAð1Þ
5A ðq2Þl̄ðp2Þγμγ5lð−p1Þ�;

k0 ¼ q; k ¼ p − q: ð3:2Þ

with

Að1Þ
VðAÞðq2Þ ¼

2C7γðμÞ
q2

mbFTVðTAÞðq2; 0Þ

þ C9VðμÞ
FVðAÞðq2; 0Þ

MB
;

Að1Þ
5Vð5AÞðq2Þ ¼ C10AVðμÞ

FVðAÞðq2; 0Þ
MB

: ð3:3Þ

B. Direct emission of the virtual photon
from valence quarks of the B meson

Another contribution to the amplitude, Að2Þ, describes
the process when the real photon is emitted from the
penguin FCNC vertex, whereas the virtual photon is
emitted from the valence quarks of the B-meson
(Fig. 2). The amplitude Að2Þ has the same Lorentz structure
as the C7γ part of Að1Þ where now k¼ q, k0 ¼ p − q, k02 ¼ 0

and k2 ¼ q2. The amplitude thus involves the form factors
FTA;TVð0; q2Þ, with FTAð0; q2Þ ¼ FTVð0; q2Þ (see details in
Sec. IV):

FIG. 1. Diagrams contributing to B̄s → γlþl− discussed in Sec. III A. Dashed circles denote the b → sγ operator O7γ. Solid circles
denote the b → slþl− operators O9V and O10AV .
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Að2Þ ¼ hγðk0; ϵÞ; lþðp1Þ; l−ðp2ÞjHb→dγ
eff jB̄sðpÞi

¼ GFffiffiffi
2

p VtbV�
tq
αem
2π

eϵ�μl̄ðp2Þγαlð−p1Þ

× ½εμαk0kAð2Þ
V ðq2Þ − iðgμαk0k − k0αkμÞAð2Þ

A ðq2Þ�;
k ¼ q; k0 ¼ p − q; ð3:4Þ

with

Að2Þ
VðAÞðq2Þ ¼

2mbC7γðμÞ
q2

FTVðTAÞð0; q2Þ: ð3:5Þ

C. Bremsstrahlung

Figure 3 gives diagrams for Abrems, the bremsstrahlung
contribution to the B̄s → γlþl− amplitude:

Abrems ¼ −ie
GFffiffiffi
2

p αem
2π

V�
tdVtb

fBs

MBs

2m̂lC10AðμÞl̄ðp2Þ

×

�ðγϵ�ÞðγpÞ
t̂ − m̂2

l

−
ðγpÞðγϵ�Þ
û − m̂2

l

�
γ5lð−p1Þ: ð3:6Þ

Let us emphasize (see [26]) that the contribution of the
operator O9V to the bremsstrahlung amplitude vanishes.

IV. CONSTRAINTS ON THE
TRANSITION FORM FACTORS

We now discuss the requirements imposed by the electro-
magnetic gauge invariance on the hγ�jq̄OibjB̄qðpÞi tran-
sition amplitudes induced by the vector, axial-vector, tensor,
andpseudotensorweak currents. This discussion extends the
discussion of [25] and includes also the case when the real
photon is emitted from the FCNC b → q vertex. The

corresponding form factors are functions of two variables,
k02 and k2, where k0 is the momentum of the weak b → q
current, and k is the momentum of the electromagnetic
current, p ¼ kþ k0. Gauge invariance provides constraints
on some of the form factors describing the transition ofBq to
the real photon emitted directly from the quark line, i.e. for
the form factors at k2 ¼ 0.
These form factors fully determine the amplitudes of the

FCNC B-decays into leptons in the final state. For instance,
the four-lepton decay of the B meson requires the form
factors fiðk02; k02Þ for 0 < k2; k02 < M2

B. For the case of
the B → γlþl− transition one needs the form factors
fiðk02 ¼ q2; k02 ¼ 0Þ and fiðk02 ¼ 0; k02 ¼ q2Þ, where q
is the momentum of the lþl− pair.

A. Form factors of the vector weak current

In case of the vector FCNC current, the gauge-invariant
amplitude contains one form factor gðk02; k2Þ:

Tα;μ ¼ i
Z

dxeikxh0jTfje:m:
α ðxÞ; q̄γμbð0ÞgjB̄qðpÞi

¼ eϵμαk0k2gðk02; k2Þ: ð4:1Þ

The amplitude is automatically transverse and is free of the
kinematic singularities so no constraints on gðk02; k2Þ
emerge.

B. Form factors of the axial-vector weak current

For the axial-vector current, the corresponding amplitude
has three independent gauge-invariant structures and three
form factors, and in addition has the contact term which is
fully determined by the conservation of the electromagnetic
current, ∂μje:m:

μ ¼ 0:

T5
α;μ ¼ i

Z
dxeikxh0jTfje:m:

α ðxÞ; q̄γμγ5bð0ÞgjB̄qðpÞi

¼ ie

�
gμα −

kαkμ
k2

�
fðk02; k2Þ þ ie

�
k0α −

kk0

k2
kα

�

× ½pμa1ðk02; k2Þ þ kμa2ðk02; k2Þ�

þ iQBq
efBq

kαpμ

k2
: ð4:2Þ

HereQB̄q
¼ Qb −Qq is the electric charge of the B̄q meson

and fB̄q
> 0 is defined according to

h0jq̄γμγ5bjB̄qðpÞi ¼ ifB̄q
pμ: ð4:3Þ

The kinematical singularity in the projectors at k2 ¼ 0
should not be the singularity of the amplitude, and therefore
gauge invariance yields the following relation between the
form factors at k2 ¼ 0:

FIG. 2. Diagrams describing the Að2Þ contribution to
B̄s → γlþl−. Dashed circles denote the b → sγ operator O7γ.

FIG. 3. Diagrams describing photon bremsstrahlung. Solid
circles denote the operator O10A.
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½f þ ðk0kÞa2�k2¼0 ¼ 0;

a1ðk02; k2 ¼ 0Þ ¼ QB̄q
fB̄q

: ð4:4Þ

For the neutral B̄d;s mesons, the contact term is absent and
therefore the form factor a1 should vanish at k2 ¼ 0,
a1ðk02; k2 ¼ 0Þ ¼ 0. This relation is fulfilled automatically,
as the two contributions, corresponding to the photon
emission from the valence b-quark and from the valence
s, d-quark cancel each other at k2 ¼ 0.
The amplitude of the transition to the real photon is

described by a single form factor

hγðkÞjq̄γμγ5bjB̄qðpÞi ¼ −ieε�αðkÞðgμαk0k − k0αkμÞ
× a2ðk02; k2 ¼ 0Þ: ð4:5Þ

C. Form factors of the tensor weak current

The transition amplitudes induced by the tensor weak
current can be decomposed in the Lorentz structures
transverse with respect to kα:

Tα;μν ¼ i
Z

dxeikxh0jfTje:m:
α ðxÞ; q̄σμνbð0ÞgjB̄qðpÞi

¼ ie

�
ϵμναp −

kα
k2

ϵμνkp

�
g1ðk02; k2Þ

þ ieϵμναkg2ðk02; k2Þ þ ie

�
pα −

pk
k2

kα

�

× ϵμνk0kg0ðk02; k2Þ; ð4:6Þ

The contact terms are absent in this amplitude as well as in
the amplitude of the pseudotensor current. The kinematic
singularity of the projectors at k2 ¼ 0 should not be the
singularity of the amplitude, therefore

½g1 − ðkpÞg0�k2¼0 ¼ 0: ð4:7Þ

Multiplying (4.6) by k0ν, we obtain the penguin transition
amplitude

i
Z

dxeikxh0jfTje:m:
α ðxÞ; q̄σμνk0νbð0ÞgjB̄qðpÞi

¼ ieϵμαkpðg1 þ g2Þ: ð4:8Þ

Notice that the penguin amplitude contains only one
combination of the form factors. Nevertheless, the require-
ment of the regularity of the amplitude (4.6) yields the
constraint (4.7).

D. Form factors of the pseudotensor weak current

The transition amplitude of the pseudotensorweak current
is given in terms of the same form factors as the amplitude
(4.6), and, similar to (4.6), contains no contact terms:

T5
α;μν ¼ i

Z
dxeikxh0jfTje:m:

α ðxÞ; q̄σμνγ5bð0ÞgjB̄qðpÞi

¼
��

gαν −
kαkν
k2

�
pμ −

�
gαμ −

kαkμ
k2

�
pν

�
eg1

þ ðgανkμ − gαμkνÞeg2 þ
�
pα −

k · p
k2

kα

�

× ðkμpν − pνkμÞeg0: ð4:9Þ

Thekinematical singularity in theprojectors atk2 ¼ 0 should
cancel in the amplitude, again leading to the constraint
Eq. (4.7).
For the penguin pseudotensor amplitude we then obtain

i
Z

dxeikxh0jfTje:m:
α ðxÞ; q̄σμνγ5k0νbð0ÞgjB̄qðpÞi

¼ eðk0αkμ − gαμkk0Þ
�
g1 þ g2 þ

k02

kk0
g1

�

þ e

�
k0α −

kk0

k2
kα

��
kμ −

kk0

k02
k0μ

�
k02

kk0
fkk0g0 − g1g:

ð4:10Þ
Notice that the contribution of the second Lorentz structure
in (4.10) vanishes both for k2 ¼ 0 (because of the constraint
Eq. (4.7): at k02 ¼ 0, kp ¼ kk0) and for k02 ¼ 0. However, it
does not vanish for both k2, k02 ≠ 0; therefore, the second
Lorentz structure contributes to the amplitude of the four-
lepton decays.
We can now build the bridge to the form factors which

describe the real photon emission by the valence quarks
defined in Eq. (3.1): denoting the momentum of the lþl−

pair as q, i.e. setting k2 ¼ 0 and replacing k02 → q2, we
obtain the form factors in Eq. (3.1) through the form factors
g; a2; g2; g1ðk02 ¼ q2; k2 ¼ 0Þ:

FVðq2; 0Þ ¼ 2MBgðq2; 0Þ; FAðq2; 0Þ ¼ −MBa2ðq2; 0Þ;
ð4:11Þ

FTVðq2; 0Þ ¼ −½g2ðq2; 0Þ þ g1ðq2; 0Þ�;

FTAðq2; 0Þ ¼ −
�
g2ðq2; 0Þ þ

M2
B þ q2

M2
B − q2

g1ðq2; 0Þ
�
: ð4:12Þ

The form factors describing the real photon emission from
the penguin, are obtained by setting k02 ¼ 0 and replacing
k2 → q2 in the form factors g1;2ðk02; k2Þ:

FTVð0; q2Þ ¼ FTAð0; q2Þ ¼ −½g2ð0; q2Þ þ g1ð0; q2Þ�:
ð4:13Þ

Let us notice that the form factor g1ðq2; 0Þ should vanish at
q2 ¼ M2

B in order to kill the unphysical pole at q2 ¼ M2
B in

the form factor FTAðq2; 0Þ. We shall therefore perform an
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appropriate subtraction in the spectral representation for
g1ðq2; 0Þ to provide this property.

V. CHARM-LOOP CONTRIBUTIONS
TO THE AMPLITUDE

Whereas heavy degrees of freedom (t, W, Z) have been
integrated out when constructing the effective Hamiltonian
for b-decays, light degrees of freedom, in particular c and u
quarks, remain dynamical and their contributions in the
loops should be taken into account separately.
We consider in this section the charm-loop contributions

to the Bs → γlþl− amplitude, which are related to the
following matrix element:

Hμαðk0; kÞ ¼ i
Z

dxeik
0xh0jTfc̄γμcðxÞ; je:m:

α ð0ÞgjB̄sðpÞi;

p ¼ kþ k0: ð5:1Þ

Here the quark fields are the Heisenberg operators in the
SM, i.e. the corresponding S-matrix includes weak inter-
actions of quarks.
The matrix element (5.1) has the form dictated by the

conservation of the vector charm-quark and the electro-
magnetic currents that requires kαHμαðk0; kÞ ¼ 0 and
k0μHμαðk0; kÞ ¼ 0 (notice the absence of any contact terms):

Hμαðk0;kÞ¼−
GFffiffiffi
2

p VcbV�
cse

�
ϵμαk0kHV − iðgαμkk0−k0αkμÞHA

− i

�
k0α−

kk0

k2
kα

��
kμ−

kk0

k02
k0μ

�
H3

�
; ð5:2Þ

with the invariant form factors Hi depending on two
variables, Hiðk02; k2Þ. The singularities in the projectors
at k2 ¼ 0 and k02 ¼ 0 should not be the singularities of the
amplitude Hμαðk0; kÞ, leading to the constraints

H3ðk02 ¼ 0; k2Þ ¼ H3ðk02; k2 ¼ 0Þ ¼ 0: ð5:3Þ

Let us show that H3 does not contribute to the Bs → γlþl−
amplitude: to obtain the latter, Hμα should be multiplied by
either ϵαðkÞl̄γμl or ϵμðk0Þl̄γαl. In each case, those terms in
the H3-part of Hμα containing k0μ or k0α vanish in the
Bs → γlþl− amplitude; the contribution of the “regular”
structure kαkμ also vanishes because the form factor
H3 ¼ 0 if k2 ¼ 0 or k02 ¼ 0. (The situation is different
for the transition into four leptons via two virtual photons,
in which case the H3 structure also contributes to the
B0 → lþl−lþl− transition amplitude).
Now, let us consider the matrix element (5.1) at the

lowest order in the weak interaction. Figure 4 shows the
diagrams representing the charm contribution to the B →
γ�γ� amplitude. The diagram of Fig. 4a is generated by the
s-quark part of the electromagnetic current je:m:

α ð0Þ

[A similar contribution generated by the b-quark part of
je:mα . is not shown; it can be easily obtained from the
s-quark part.] The c-quark part of je:mα . generates the
diagram of Fig. 4b. Integrating out the W-boson leads to
two different topologies: the charming-penguin topology of
Fig. 4(a) and weak-annihilation topology of Fig. 4(b).
In addition, the B → γlþl− amplitude receives contribu-

tions from similar diagrams with the c-quark replaced by
the u-quark. The latter, however, contain the Cabibbo-
Kobayashi-Maskawa (CKM) factor VubV�

us ≪ VcbV�
cs and

are therefore strongly suppressed compared to the charm
contribution.

A. Charming penguins

The analytic expression for the charming-penguin dia-
gram of Fig. 4(a) has the form

Hμαðk0;kÞ¼
GFffiffiffi
2

p VcbV�
csi

Z
dxeik

0xh0jT
�
c̄γμcðxÞ;

i
Z

dy½C1O1ðyÞþC2O2ðyÞ�;Qses̄γαsð0Þ
�

× jB̄sðpÞi: ð5:4Þ

Similar to the diagrams discussed in the previous Section,
the diagram of Fig. 4(a) generates the following two types
of contributions to the Bs → γlþl− amplitude shown in
Fig. 5: the c-quark emits the virtual photon whereas the
s-quark emits the real one (a) and the c-quark emits the real
photon whereas the s-quark emits the virtual one (b).

(b)(a)

FIG. 4. Lowest-order diagrams describing the contribution of
charm to the B → γ�γ� amplitude: the charming penguins (a) and
the weak-annihilation (b). Both diagrams contain CKM factor
VcbV�

cs ¼ −VtbV�
ts. Figures in this section do not display dia-

grams with the photon emitted from the valence quarks of the
B-meson.

(a) (b)

FIG. 5. Two types of the charming-penguin contributions to the

Bs → γlþl− amplitude: (a) Að1Þ
c̄c , (b) A

ð2Þ
c̄c .
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Diagrams of Fig. 5 lead to the following contributions to
the Bs → γlþl− amplitude:

Að1Þ
c̄c ðBs → γllÞ ¼ Hμαðk0; kÞ

l̄γμl

k02
εαðkÞQce2;

k0 ¼ q;

k ¼ p − q;

Að2Þ
c̄c ðBs → γllÞ ¼ Hμαðk0; kÞ

l̄γαl
k2

εμðk0ÞQce2;

k ¼ q;

k0 ¼ p − q: ð5:5Þ

The Lorentz structure of the amplitudes Að1;2Þ
c̄c coincides

with the Lorentz structure of the amplitudes Að1;2Þ, therefore
the full charm contribution can be described as additions to
the invariant amplitudes in Eqs. (3.2) and (3.4):

Að1Þ
i ðq2Þ → 2C7γðμÞ

q2
mbFTiðq2; 0Þ þ C9VðμÞ

Fiðq2; 0Þ
MB

þ 16π2

3

Hiðq2; 0Þ
q2

;

Að2Þ
i ðq2Þ → 2C7γðμÞ

q2
mbFTið0; q2Þ þ

16π2

3

Hið0; q2Þ
q2

;

i ¼ V; A: ð5:6Þ

The challenging task in the analysis of the charm-loop
contributions given byHiðq2; 0Þ is the necessity to describe
a wide range 0 < q2 < M2

B, including the region of
charmonium resonances. Perturbative QCD cannot be
applied here and nonperturbative approaches based on
hadron degrees of freedom are necessary, see discussion
in [42–49]. For Hiðq2; 0Þ one may write dispersion
representation in q2 with two subtractions, similar to the
B → K�lþl− amplitudes H1;2 of [42]:

Hiðq2; 0Þ

¼ ai þ biq2 þ ðq2Þ2
� X

ψ¼J=ψ ;ψ 0

fψAi
Bψγ

m3
ψðm2

ψ − q2 − imψΓψÞ

þ hiðq2Þ
�
; i ¼ V; A; ð5:7Þ

where ai and bi are the (unknown) subtraction constants
and the functions hiðq2Þ describe the hadron continuum
including the broad charmonium states lying above theDD
threshold.
The contribution to Að1Þ

i given by the form factors
Hiðq2; 0Þ may be described as the correction to C9V , i.e.
by the replacement C9V → Ceff

9Vðq2Þ ¼ C9V þ ΔC9Vðq2Þ.
Obviously, this correction will be process- and Lorentz-

structure-dependent: it will in general be different for
B → Plþl− decay and for B → Vlþl− decay and different
in the AV and AA amplitudes. Describing the nonfactoriz-
able effects as a shift inC9V is not particularly convenient in
the region of small q2: whereas the full nonfactorizable
correction amounts to a few percent at small q2 [42], it
explodes if expressed as a correction to the coefficient C9V .
Nevertheless, describing the charm-loop effects as correc-
tions to the Wilson coefficients has one very important
advantage: these corrections are obtained as the ratio of the
functions Hiðq2; 0Þ and the appropriate form factors
(B → K� or B → γ). It is reasonable to expect that the
effects related to the difference between the vector meson
and the photon in the final state cancel to large extent in the
ratios and that the corrections to the Wilson coefficients
are approximately equal to each other for B → γlþl− and
B → Vlþl−. The accuracy of this approximation is
expected to be at the level of 10%–20%, the typical
accuracy of the vector meson dominance.
Similarly, the contributions to Að2Þ

i given by Hið0; q2Þ
may be described as corrections to C7γ:
C7γ → Ceff

7γ ðq2Þ ¼ C7γ þ ΔC7γðq2Þ. In principle, this cor-
rection is also non-universal and q2-dependent. However,
the form factors Hið0; q2Þ and FTið0; q2Þ have similar q2-
dependences, as they contain contributions of the same s̄s
hadron resonances in the q2-channel. One therefore expects
that the correction to the Wilson coefficient Cγ (which is
purely nonfactorizable, see the discussion below) may be
taken q2-independent.
In view of these arguments, we will use the results from

[42] for ΔC9 and ΔC7 obtained at low q2 for our analysis.

1. Factorizable part of the amplitude Hμα

Before discussing the full charm-loop corrections to the
Wilson coefficients, we present the results for factorizable
contributions. Taking into account only factorizable gluon
exchanges leads to

Hfact
μα ðk0; kÞ ¼

GFffiffiffi
2

p VcbV�
cs
3C1 þ C2

3
Πμνðk0Þ

×

�
i
Z

dyeik
0yh0jTfs̄γνð1 − γ5ÞbðyÞ;

Qses̄γαsð0ÞgjB̄sðpÞi
�
; ð5:8Þ

where the expression in brackets is just the amplitude of
(4.2) and

Πcc
μνðk0Þ ¼ i

Z
dxeik

0xh0jTfc̄γμcðxÞ; c̄γνcð0Þgj0i

¼ ð−gμνk02 þ k0μk0νÞΠccðk02Þ: ð5:9Þ
For the invariant function ΠccðsÞ we may write the spectral
representation with one subtraction
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Πccðk02Þ ¼ Πccð0Þ þ
k02

π

Z
ImΠccðsÞ
sðs − k02Þ ds; ð5:10Þ

At k02 ≪ 4m2
c, Πccðk02Þ can be calculated in perturbative

QCD. At leading order in αs, one finds

ImΠccðsÞ ¼
Nc

12π

2m2
c þ s
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
c

s

r
;

Πccð0Þ ¼
9

16π2

�
−
8

9
ln

�
mc

mb

�
−
4

9

�
: ð5:11Þ

The factorizable contributions to the form factors
Hiðk02; k2Þ are related to f; a1; a2 as follows

Hfact
V ðk02; k2Þ ¼ 3C1 þ C2

3
k02Πc̄cðk02Þ2gðk02; k2Þ; ð5:12Þ

Hfact
A ðk02; k2Þ ¼ 3C1 þ C2

3
k02Πc̄cðk02Þ

fðk02; k2Þ
kk0

; ð5:13Þ

Hfact
3 ðk02; k2Þ ¼ 3C1 þ C2

3
k02Πc̄cðk02Þ

�
f
kk0

þ a1 þ a2

�
:

ð5:14Þ
Obviously, Hfact

V;A;3ðk02; k2Þ vanish for k02 ¼ 0.3 Therefore,
the factorizable c̄c contribution to the amplitude Að2Þ and,
respectively, to C7γ , vanish; the c̄c contribution to Að2Þ

comes exclusively from nonfactorizable gluon exchanges.
The factorizable c̄c contribution to Að1Þ can be described

as a universal q2-addition to the coefficient C9V :

C9V → Ceff
9Vðq2Þ ¼ C9V þ 16π2

9
ð3C1 þ C2ÞΠc̄cðq2Þ:

ð5:15Þ
2. Adding nonfactorizable corrections to

the amplitude Hμα

The functions Hiðq2; 0Þ may be obtained at q2 ≪ 4m2
c

using the method of QCD sum rules. The necessary
calculation for the B → γlþl− amplitude are not available
yet; however, in [42] the functions Hiðq2; 0Þ were calcu-
lated for the B → K�lþl− amplitude. As already mentioned
above, if the charm-loop effects are described as corrections
to the Wilson coefficients, the latter are obtained as the ratio
of the functions Hiðq2; 0Þ and the appropriate B → V form
factors (V ¼ K� or V ¼ γ). There are good reasons to
expect that the effects related to the difference in the final
states cancel to large extent in these ratios. Therefore, we
will use the results for ΔC9Vðq2Þ and ΔC7γðq2Þ obtained at
low q2 from [42] for our analysis.

In [42] nonfactorizable corrections at low k2 have been
calculated using light-cone QCD sum rules. The authors
noticed that in distinction to the positive-definite factorizable
contributions, nonfactorizable corrections are not positive-
definite and therefore different charmonium resonances may
in principle appear with different signs. Recall that the
absolute values of the amplitudes Ai

BψK� [cf. Eq. (5.7)] for
ψ and ψ 0 are known from the experimental data on B →
ðψ ;ψ 0ÞK� decays, but the phases are unknown.
From our point of view, no conclusion about the relative

signs of the resonance contributions may be drawn from the
results for ΔC9Vðq2Þ obtained at q2 ≤ 4m2

c where the
calculation is trustable. Following [42], we describe
hðq2Þ as an effective heavier resonance of zero width,
hðq2Þ ¼ c=ðM2

R − q2Þ. The unknown parameters are now
the subtraction constants a, b, and the parameters of the
effective pole c and M2

R.
Figure 6 presents two different fits to the results

of [42] for ΔC9Vðq2Þ at q2 < 4 GeV2 (for our analysis

ΔCðB→K�;M1;2Þ
9V from [42] are relevant; within errors both are

equal to each other so we take the same ΔC9V in the vector
and the axial-vector amplitudes): one fit assumes the
standard same positive contributions of ψ and ψ 0; another
fit assumes an opposite sign for the ψ 0 contribution.
Obviously, even the knowledge of ΔC9Vðq2Þ at q2 <
4 GeV2 with the accuracy of a few percent would not
allow one to discriminate between the same-phase and the
opposite-phase cases. Taking into account the expected
uncertainty of about 30%–50% of the results from QCD
sum rules (see Fig. 5 of [42]), the question of the relative
phases between ψ and ψ 0 remains fully open.
We would like to recall that the LHCb collaboration

tested the charmonia contributions in the B → Klþl−

2 4 6 8 10 12 14
q2 GeV2

15

10

5

0

5

10

15

20
C9 V

, ' same sign

, ' opposite sign

FIG. 6. Correction to the Wilson coefficient C9V , ΔC9Vðq2Þ at
0 < q2 < 15 GeV2. Red (solid) line correspond to the same-sign
positive phases of ψ and ψ 0; Blue (dashed) line correspond to the
positive phases of ψ and negative phase of ψ 0. In any case the
parameters of subtraction constants a, b and the parameters of the
effective pole are determined by a fit to the results of [42] at
0 < q2 < 4 GeV2. In the range 0 < q2 < 4 GeV2 both prescrip-
tions for the resonance phases reproduce the results from QCD
sum rules with better than 1% accuracy.

3The factorizable part of H3 vanishes also for k2 ¼ 0 because
of the constraints (4.4) on the form factors f; a1; a2.
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decays but did not manage to decide in favor of one or
another phase assignments between ψ and ψ 0. One should
take into account, however, that in principle the pattern
of ψ and ψ 0 signs may be different in B → Klþl− and in
B → ðK�; γÞlþl− decays.
To facilitate calculations at q2 > 4M2

D, we take into the
contributions of the known broad vector ψn (n ¼ 3;…; 6)
resonances (and add a heavier effective pole) to hðq2Þ in
(5.7). This may be done by the following addition to
ΔC9Vðq2Þ:

ð3C1 þ C2Þ
3π

α2e:m:

X6
n¼3

�
q2

M2
V

�
κn

MVΓðψn → lþl−Þ
M2

n − q2 − iMnΓnðq2Þ
:

ð5:16Þ

Here, the factorizable contribution of each ψn is multiplied
by a fudge factor κn (following the old way of taking
into account nonfactorizable corrections [43]) and a

q2-dependent Γnðq2Þ ¼ ð1−q2=4M2
DÞ3=2

ð1−M2
n=4M2

DÞ3=2
Γtot
n is used to enable

using this expression also below theDD threshold. It seems
reasonable to take κn ∼ 1.5–2.0 for all excited vector
charmonia: the experimental data for B → ψK� and
B → ψ 0K� lead to κJ=ψ ¼ 1.6 and κψ 0 ¼ 1.9. The subtraction
constants a, b and the parameters of the effective pole are
again fixed by requiring that ΔC9Vðq2Þ, corresponding to
(5.7)with the addition (5.16), reproduces the sum-rule results
at 0 < q2 < 4 GeV2. And again, the latter may be easily
reproduced with 1% accuracy.
To conclude, the results from QCD sum rules available at

q2 ≤ 4m2
c cannot give a conclusive answer of the relative

signs of ψ and ψ 0 resonances (cf. [42]). We shall discuss
later some observables which are particularly sensitive to
the relative phases of the ψ and ψ 0 and could shed light on
this issue if measured experimentally.

B. Weak annihilation

Figure 7 shows the typical weak-annihilation (WA)
diagrams, which emerge from diagram Fig. 4 after inte-
grating out the W-bosons and taking into account QCD
radiative corrections. Diagrams of Fig. 7(a) and similar
diagrams with gluon exchanges between quark from the
same loop lead to factorizable contributions
∼fBs

Gγγðk02; k2Þ, where the form factor Gγγðk02; k2Þ does
not depend on the Bs-meson structure; the BS-meson
contribution is reduced to a single quantity, fBs

.
Diagrams of the type Fig. 7(b) are not reduced to fBs

but contain more complicated quantities describing the
Bs-meson structure. Diagrams with c-quarks replaced
by u-quarks should be included but they are CKM sup-
pressed compared to the charm-loop contributions.
We denote as AWA the corresponding contribution of

these diagrams to the B → γlþl− amplitude, and we take

into account both c and u quarks in the loop. The vertex
describing the b̄s → ŪU transition (U ¼ u, c) reads

HBs→ŪU
eff ¼ −

GFffiffiffi
2

p a1VUbV�
Uds̄γμð1 − γ5ÞbŪγμð1 − γ5ÞU;

ð5:17Þ
with a1 ¼ C1 þ C2=Nc, Nc number of colors [50]. For
Nc ¼ 3 one finds a1 ¼ −0.13. We now have to take

hγlþl−jHB→ŪU
eff jBi: ð5:18Þ

The ŪU contribution to this amplitude can be written as

AWAðŪUÞ¼GFffiffiffi
2

p VUbV�
Uda12e

3ϵμε�qk

×
GγγðM2

B;k
2¼0;q2jm2

UÞ
q2

l̄þγμl−; ð5:19Þ

where the form factor Gðp2; k2; q2jm2
UÞ is defined as

follows [51]

hγ�ðkÞγ�ðqÞj∂νðŪγνγ5UÞj0i
¼ e2ε�αðkÞε�βðqÞϵαβkqGγγðk2;q2;p2jm2

UÞ: ð5:20Þ

For massless u-quark in the loop, axial anomaly [52,53]

fixes the form factor Gγγðp2; k2; q2j0Þ ¼ − 2NcðQUÞ2
4π2

. For
c-quark there is an additional q2-dependent contribution
given by the amplitude mchγ�ðkÞγ�ðqÞjc̄γ5cÞj0i∼
m2

c=M2
B, which contains ψ and ψ 0 resonances at q2 > 0.

The latter contribution is numerically negligible compared
to contributions discussed in the previous sections for all q2

in the reaction of interest. Therefore, we have

AWA ¼−
GFffiffiffi
2

p αemea1fVubV�
udþVcbV�

cdg
16

3
ϵμε�qk

1

q2
l̄þγμl−:

ð5:21Þ

The WA contribution is enhanced at small q2, but even here
it is suppressed by a power of a heavy quark mass
compared to the contributions discussed in the previous
sections [54].

FIG. 7. Weak annihilation diagram: QCD leading-order con-
tribution (a) and nonfactorizable QCD radiative correction (b).
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VI. THE B → γl + l − DIFFERENTIAL DISTRIBUTION

For convenience, we recall here the results from [26] for the differential distributions. The amplitudes discussed in
Secs. III(A–C)have the same Lorentz structure, whereas the structure of the bremsstrahlung amplitude (Sec. III C) is
different. Therefore, it is convenient to write the cross section as the sum of three contributions: square of the amplitude
A1þ2þWA which we denote Γð1Þ, square of the amplitude Abrems which we denote Γð2Þ, and their mixing, denoted as Γð12Þ (in
this section FV;Aðq2Þ stands for FA;Vðq2; 0Þ)4:

d2Γð1Þ

dŝdt̂
¼ G2

Fα
3
emM5

1

210π4
jVtbV�

tqj2½x2B0ðŝ; t̂Þ þ xξðŝ; t̂ÞB̃1ðŝ; t̂Þ þ ξ2ðŝ; t̂ÞB̃2ðŝ; t̂Þ�; ð6:1Þ

B0ðŝ; t̂Þ ¼ ðŝþ 4m̂2
l ÞðF1ðŝÞ þ F2ðŝÞÞ − 8m̂2

l jC10AðμÞj2ðF2
Vðq2Þ þ F2

Aðq2ÞÞ;
B̃1ðŝ; t̂Þ ¼ 8½ŝFVðq2ÞFAðq2ÞReðCeff�

9V ðμ; q2ÞC10AðμÞÞ
þm̂bFVðq2ÞReðC�

7γðμÞF̄�
TAðq2ÞC10AðμÞÞ þ m̂bFAðq2ÞReðC�

7γðμÞF̄�
TVðq2ÞC10AðμÞÞ�;

B̃2ðŝ; t̂Þ ¼ ŝðF1ðŝÞ þ F2ðŝÞÞ;

F1ðŝÞ ¼ ðjCeff
9Vðμ; q2Þj2 þ jC10AðμÞj2ÞF2

Vðq2Þ þ
�
2m̂b

ŝ

�
2

jC7γðμÞF̄TVðq2Þj2

þ 4m̂b

ŝ
FVðq2ÞReðC7γðμÞF̄TVðq2ÞCeff�

9V ðμ; q2ÞÞ;

F2ðŝÞ ¼ ðjCeff
9Vðq2; μÞj2 þ jC10AðμÞj2ÞF2

Aðq2Þ þ
�
2m̂b

ŝ

�
2

jC7γðμÞF̄TAðq2Þj2

þ 4m̂b

ŝ
FAðq2ÞReðC7γðμÞF̄TAðq2ÞCeff�

9V ðμ; q2ÞÞ:
d2Γð2Þ

dŝdt̂
¼ G2

Fα
3
emM5

1

210π4
jVtbV�

tqj2
�
8fBq

MB

�
2

m̂2
l jC10AðμÞj2

�
ŝþ x2=2

ðû − m̂2
l Þðt̂ − m̂2

l Þ
−
�

xm̂l

ðû − m̂2
l Þðt̂ − m̂2

l Þ
�

2
�

ð6:2Þ

d2Γð12Þ

dŝdt̂
¼ −

G2
Fα

3
emM5

1

210π4
jVtbV�

tqj2
16fBq

MB
m̂2

l
x2

ðû − m̂2
l Þðt̂ − m̂2

l34Þ

×

�
2xm̂b

ŝ
ReðC�

10AðμÞC7γðμÞF̄TVðq2; 0ÞÞ þ xFVðq2ÞReðC�
10AðμÞCeff

9Vðμ; q2ÞÞ þ ξðŝ; t̂ÞFAðq2ÞjC10AðμÞj2
�
: ð6:3Þ

Here

ŝ ¼ ðp − kÞ2
M2

B
; t̂ ¼ ðp − p1Þ2

M2
B

; û ¼ ðp − p2Þ2
M2

B
; ð6:4Þ

with ŝþ t̂þ û ¼ 1þ 2m̂2
l , m̂

2
l ¼ m2

l =M
2
B, m̂b ¼ mb=MB and [25]

x ¼ 1 − ŝ; cos θ ¼ ξðŝ; t̂Þ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

l =ŝ
q ; ξðŝ; t̂Þ ¼ û − t̂: ð6:5Þ

In the above formulas the complex form factors F̄TV;TA and defines as follows

F̄TVðq2Þ ¼ FTVðq2; 0Þ þ FTVð0; q2Þ −
16

3

VubV�
ud þ VcbV�

cd

VtbV�
td

a1
C7γ

fB
mb

;

F̄TAðq2Þ ¼ FTAðq2; 0Þ þ FTAð0; q2Þ: ð6:6Þ

The expressions (6.2) and (6.3) contain the infrared pole which requires a cut in the energy of the emitted photon. Clearly,
the contribution of the pole is proportional to the lepton mass.

4In [26], the bremsstrahlung amplitude Eq. (2.13) and Γð12Þ term Eq. (3.3) had sign errors; these errors are now corrected. We are
grateful to D. Guadagnoli for pointing out these sign errors in [26].
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VII. FORM FACTORS FROM THE DISPERSION
APPROACH BASED OF THE RELATIVISTIC

CONSTITUENT QUARK PICTURE

So far our discussion was fully general. The problem we
face now is to obtain the necessary form factors describing
the B̄ → γ transition. These form factors are very compli-
cated objects which involve the B̄mesons in the initial state
and require a treatment with nonperturbative QCD. In the
previous section we obtained the constraints on the form
factors coming from the electromagnetic gauge invariance
of the amplitude. There is a number of general constraints
on the form factors which emerge within large-energy
effective theory (LEET) [55,56]. In our previous analysis
we have made use of a simple model for the form factors
based on LEET and the location of meson singularities in
the corresponding channels. The SUð3Þ breaking effects in
the form factors have been neglected in that work.
We now improve our predictions calculating the form

factors using the dispersion formulation of the relativistic
quark model. In this paper we present a model calculation
of all necessary form factor within the relativistic
dispersion approach based on the constituent quark picture.
This approach has been formulated in detail in [33,34] and
applied to the weak decays of heavy mesons in [36].
The pseudoscalar meson is described in the dispersion

approach by the vertex q̄1ðk1ÞΓ5qð−k2ÞGðsÞ=
ffiffiffiffiffiffi
Nc

p
, where

Γ5 ¼ iγ5 with GðsÞ ¼ ϕPðsÞðs −M2
PÞ, s ¼ ðk1 þ k2Þ2,

k21 ¼ m2
1 and k22 ¼ m2

2. The pseudoscalar-meson wave
function ϕP is normalized according to

1

8π2

Z
∞

ðm1þm2Þ2
dsϕ2

PðsÞðs− ðm1−m2Þ2Þ
λ1=2ðs;m2

1;m
2
2Þ

s
¼ 1:

ð7:1Þ

The decay constant is represented through ϕPðsÞ by the
spectral integral

fP ¼
ffiffiffiffiffiffi
Nc

p Z
∞

ðm1þm2Þ2
dsϕPðs1Þðm1 þm2Þ

×
λ1=2ðs;m2

1; m
2
2Þ

8π2s
s − ðm1 −m2Þ2

s
: ð7:2Þ

Here λða; b; cÞ ¼ ða − b − cÞ2 − 4bc is the triangle
function.
The vector meson is described in the dispersion

approach by the vertex q̄2ð−k2ÞΓβq1ðk01Þ, with Γβ ¼
ðAγβ þ Bðk01 − k2ÞβÞGvðsÞ=

ffiffiffiffiffiffi
Nc

p
. For the S-wave vector

meson A ¼ −1 and B ¼ 1ffiffi
s

p þm1þm2
. Here s ¼ ðk01 þ k2Þ2,

k021 ¼ m2
1 and k22 ¼ m2

2. The vector-meson wave function
ϕVðsÞ ¼ GvðsÞ=ðs −M2

VÞ is normalized according to

1

8π2

Z
∞

ðm1þm2Þ2
dsϕ2

VðsÞðs− ðm1−m2Þ2Þ
λ1=2ðs;m2

1;m
2
2Þ

s
¼ 1:

ð7:3Þ

The vector-meson decay constant is represented through
ϕVðsÞ by the spectral integral [57]

fV ¼
ffiffiffiffiffiffi
Nc

p Z
∞

ðm1þm2Þ2
dsϕVðsÞ

2
ffiffiffi
s

p þm1 þm2

3

×
λ1=2ðs;m2

1; m
2
2Þ

8π2s
s − ðm1 −m2Þ2

s
: ð7:4Þ

The photon of virtuality k2 is described by setting
A ¼ ffiffiffiffiffiffi

Nc
p

, B ¼ 0, m2 ¼ m1, and replacing ϕvðsÞ →
ϕγðs; k2Þ with

ϕγðs; k2Þ ¼
1

s − k2
: ð7:5Þ

The P → γ form factors fiðk02; k2Þ defined in the previous
section are obtained as double spectral representations in
terms of the relativistic wave function of the B-meson in the
form

fiðk02; k2Þ ¼
Z

ds1ϕPðs1Þds2ϕγðs2; k2Þ

× Δiðs1; s2; k02jm2; m1; m1Þ: ð7:6Þ

The double spectral representation (7.6) corresponds to
considering the double cut of the triangle diagram in
variables p2 and k2, treating the variable k02 as the fixed
external current virtuality. The double spectral densities
Δiðs1; s2; k02jm2; m1; m1Þ in variables p2 and k2 may be
obtained from the known spectral densities of the P → V
transition form factors given by Eqs. (3.41–3.47) from [35]
by setting A ¼ ffiffiffiffiffiffi

Nc
p

and B ¼ 0.
There is, however, also another possibility to obtain the

double spectral representation for fiðk02; k2Þ: one can
consider the double cut of the triangle diagram in p2

and k02, at a fixed value of k2.

fiðk02; k2Þ ¼
Z

ds1ϕPðs1Þds2
1

s2 − k02

× Δ̃iðs1; s2; k2jm1; m1; m2Þ: ð7:7Þ

The double spectral densities Δ̃iðs1; s2; k2jm1; m1; m2Þ
differ from Δiðs1; s2; k02jm2; m1; m1Þ, but the form
factors calculated from (7.6) and (7.7) are of course equal
to each other. The benefit of using the spectral representa-
tions in the form (7.7) shows up when one considers the
transition to the real photon, k2 ¼ 0: in this case,
Δ̃iðs1; s2; k2 → 0jm1; m1; m2Þ → ρ̃iðs1jm1; m2Þδðs1 − s2Þ,
and the double spectral representation (7.7) is reduced to
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the single dispersion representation; whereas (7.6) remains
a double spectral representation also for k2 ¼ 0.
Taking into account this property, we obtain and use the

single spectral representations for the form factors
FA;V;TA;TVðq2; 0Þ, but employ the known double spectral
representations in the form (7.6) for FTA;TVð0; q2Þ. We have
checked that for Fiðq2; 0Þ both representations give the
same results.

A. Form factors Fiðq2;0Þ
We now present single spectral representations for the

form factors Fiðq2; 0Þ [i ¼ V; A; TV; TA], corresponding
to the B̄s in the initial state.

1. Form factor FAðq2;0Þ
The form factor FA describing the B̄ in the initial state

is given by the diagrams of Fig. 8. Figure 8(a) shows FðbÞ
A ,

the contribution to the form factor of the process when the
b quark emits the photon; Fig. 8b describes the contri-
bution of the process when the quark d emits the photon
while b remains a spectator. It is convenient to change the
direction of the quark line in the loop diagram of
Fig. 8(b). This is done by performing the charge con-
jugation of the matrix element and leads to a sign change
for the γνγ5 vertex. Now, both diagrams in Fig. 8(a,b) are
reduced to the same diagram where quark 1 emits the
photon and quark 2 is a spectator: setting m1 ¼ mb, m2 ¼
ms gives F

ðbÞ
A , while setting m1 ¼ ms, m2 ¼ mb gives F

ðsÞ
A

and

FA ¼ QbF
ðbÞ
A −QsF

ðsÞ
A : ð7:8Þ

For the form factor Fð1Þ
A a single dispersion integral was

obtained in [58]:

1

MB
Fð1Þ
A ðq2; m1; m2Þ ¼

ffiffiffiffiffiffi
Nc

p
4π2

Z
∞

ðm1þm2Þ2
dsϕBðsÞ
ðs − q2Þ

�
ρþðs;m1; m2Þ þ 2

m1 −m2

s − q2
ρk2⊥ðs;m1; m2Þ

�
; ð7:9Þ

where

ρþðq2; m1; m2Þ ¼ ðm2 −m1Þ
λ1=2ðq2; m2

1; m
2
2Þ

s
þm1 log

�
q2 þm2

1 −m2
2 þ λ1=2ðq2; m2

1; m
2
2Þ

q2 þm2
1 −m2

2 − λ1=2ðq2; m2
1; m

2
2Þ
�
; ð7:10Þ

ρk2⊥ðq2; m1; m2Þ ¼
q2 þm2

1 −m2
2

2q2
λ1=2ðq2; m2

1; m
2
2Þ −m2

1 log

�
q2 þm2

1 −m2
2 þ λ1=2ðq2; m2

1; m
2
2Þ

q2 þm2
1 −m2

2 − λ1=2ðq2; m2
1; m

2
2Þ
�
: ð7:11Þ

Notice that this expression differs from the analogous
expression from [58]: in the second term we have the
factor 1=ðs − q2Þ instead of the factor 1=ðM2

B − q2Þ in
Eq. (3.7) of [58]. This corresponds to a slightly different
subtraction prescription in the dispersion integral: the
factor 1=ðM2

B − q2Þ would lead to the appearance of the
unphysical pole at q2 ¼ M2

B. For the case of a fixed
q2 ¼ M2

V , considered in [58], both subtraction prescrip-
tions lead to very close numerical results.

2. Form factor FVðq2;0Þ
The consideration of the form factor FV is very similar to

the form factor FA. FV is determined by the two diagrams

shown in Fig. 9: Fig. 9a gives FðbÞ
V , the contribution of the

process when the b quark interacts with the photon; Fig. 9b
describes the contribution of the process when the s quark

interacts. Again, we change the direction of the quark line
in the loop diagram of Fig. 9(b) by performing the charge
conjugation of the matrix element. For the vector current γν
in the vertex the sign does not change (in contrast to the
γνγ5 case considered above). Then the contribution of both
diagrams in Fig. 9(a,b) are given in terms of the form factor

Fð1Þ
V ðq2; m1; m2Þ: Setting m1 ¼ mb, m2 ¼ ms gives FðbÞ

V

while setting m1 ¼ ms, m2 ¼ mb gives FðsÞ
V , such that

(a) (b)

FIG. 8. Diagrams for the form factor FA: (a) F
ðbÞ
A , (b) FðsÞ

A .

(b)(a)

FIG. 9. Diagrams for the form factor FV : (a) F
ðbÞ
V , (b) FðsÞ

V .
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FV ¼ QbF
ðbÞ
V þQsF

ðsÞ
V : ð7:12Þ

The form factor Fð1Þ
V ðq2; m1; m2Þ may be written in the

form of a single spectral integral

1

MB
Fð1Þ
V ðq2; m1; m2Þ

¼ −
ffiffiffiffiffiffi
Nc

p
4π2

Z
∞

ðm1þm2Þ2
dsϕBðsÞ
ðs − q2Þ ρþðs;m1; m2Þ: ð7:13Þ

3. Form factor FTAðq2;0Þ
The form factor FTA contains two contributions corre-

sponding to the cases when the photon is emitted from b
[Fig. 10(a)] and from dðsÞ [Fig. 10(b)] quark of the
B-meson. Changing the direction of the quark line in the
loop diagram of Fig. 10(b) by performing the charge
conjugation of the matrix element, we describe contribu-
tions of both diagrams in Fig. 10 through the same form

factor Fð1Þ
TA: setting m1 ¼ mb, m2 ¼ ms gives FðbÞ

TA, and

setting m1 ¼ ms, m2 ¼ mb gives FðsÞ
TA, such that

FTA ¼ QbF
ðbÞ
TA þQsF

ðsÞ
TA: ð7:14Þ

For the form factor Fð1Þ
TA may be written in the form, see

(4.12),

Fð1Þ
TAðq2; m1; m2Þ ¼ −g2ðq2; m1; m2Þ

−
1

2
ðq2 þM2

BÞg0ðq2; m1; m2Þ: ð7:15Þ

For the form factors g0;2 we obtained the following spectral
representations

g0ðq2; m1; m2Þ ¼ ðM2
B − q2Þ

Z
∞

ðm1þm2Þ2
ds

ϕBðsÞ
ðs − q2Þ2

× ρk2⊥ðs;m1; m2Þ;

g2ðq2; m1; m2Þ ¼
Z

∞

ðm1þm2Þ2
ds

ϕBðsÞ
s − q2

ρg2ðs;m1; m2Þ;

ð7:16Þ

with the spectral density

ρg2ðq2;m1;m2Þ

¼m1ðm2−m1Þ log
�
q2þm2

1−m2
2þ λ1=2ðq2;m1;m2Þ

q2þm2
1−m2

2−λ1=2ðq2;m1;m2Þ
�

þλ1=2ðq2;m1;m2Þ; ð7:17Þ

and ρk2⊥ given by Eq. (7.11). A subtraction has been

performed in g0 to provide its vanishing at q2 ¼ M2
B.

4. Form factor FTVðq2;0Þ
The form factor FTV also contains two contributions

corresponding to the cases when the photon is emitted from
b or s quarks of the B̄s-meson. These contributions are
shown in Fig. 11(a) and Fig. 11(b). Changing the direction
of the quark line in the loop diagram of Fig. 11(b) by
performing the charge conjugation of the matrix element,
we reduce the contribution of each of the diagrams of

Fig. 11(a,b)to the same form factor Fð1Þ
TV where quark 1 with

mass m1 emits the photon and quark 2 with mass m2

remains spectator such that

FTV ¼ QbF
ðbÞ
TV þQsF

ðsÞ
TV: ð7:18Þ

The form factor Fð1Þ
TV may be written in the form, see (4.12),

Fð1Þ
TVðq2;m1;m2Þ

¼−g2ðq2;m1;m2Þ−
1

2
ðM2

B−q2Þg0ðq2;m1;m2Þ; ð7:19Þ

with the form factors g0;2 given by Eq. (7.16).

B. Form factors FTA;TVð0;q2Þ
The form factor FTAð0; q2Þ ¼ FTVð0; q2Þ, which we

denote as FTðq2Þ, also has two contributions related to
the virtual photon emission by the b and the dðsÞ valence
quark. Recall, that the photon emission from the heavy
valence quark is strongly suppressed compared to the
photon emission from the light valence quark by a
parameter md;s=mb, where md;s are the constituent light-
quark masses.

(b)(a)

FIG. 10. Feynman diagrams representing contributions to FTA

form factor: (a) FðbÞ
TA , (b) F

ðsÞ
TA.

(a) (b)

FIG. 11. Feynman diagrams representing contributions to FTV

form factor: (a) FðbÞ
TV , (b) F

ðsÞ
TV .
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The double spectral representations allow us to calculate
the form factors at q2 < 4m2

q, where mq is the mass of the
quark which emits the photon. For the case of the photon
emission by the b-quark, the region q2 < 4m2

b fully covers
the decay region 0 < q2 < M2

B. The form factor FðbÞð0; q2Þ
in this region is the real function and can be reliably
calculated within the dispersion approach.
The situation, however, changes when we consider the

process with the virtual photon emission from the light, d-
or s-quark: e.g., the physical form factor FðdÞð0; q2Þ has
imaginary part at q2 > 4m2

π , and contains contribution of
light neutral vector-meson resonances (ρ0 and ω for B-
decays and ϕ for Bs-decays) in the physical q2-region.
Obviously, our calculation based on the quark degrees of
freedom is trustable (far) from the hadron thresholds and
should not be applied in the region of hadron resonances.
To obtain the form factor FTð0; q2Þ at 0 < q2 < M2

B we
therefore proceed as follows5: we calculate the form factors
Fðd;sÞð0; q2Þ using the gauge-invariant version [59] of the
vector meson dominance [60–62]

FTV;TAð0; q2Þ ¼ FTV;TAð0; 0Þ

−
X
V

2fe:m:
V gB→Vþ ð0Þ q2=MV

q2 −M2
V þ iMVΓV

;

ð7:20Þ

where MV and ΓV are the mass and the width of the vector
meson resonance, gB→Vþ ð0Þ are the B → V transition form
factors, defined according to the relations

hVðq; εÞjd̄σμνbjBðpÞi
¼ iε�αϵμνβγ½gB→Vþ ðk2Þgαβðpþ qÞγ þ gB→V

− ðk2Þgαβkγ
þ gB→V

0 ðk2Þpαpβqγ�:

For the calculation of the B → V transition form factor
gB→Vþ ð0Þ, we make use of the same dispersion approach of
[33,34]. The e.m. leptonic decay constant of a vector meson
is given by

h0jje:mμ jVðε; pÞi ¼ εμMVfe:m:
V : ð7:21Þ

VIII. NUMERICAL RESULTS

A. Calculation of the transition form factors

1. Parameters of the model

The wave function ϕBðsÞ, can be written as

ϕBðsÞ ¼
πffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − ðm2

1 −m2
2Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðm1 −m2Þ2

p wðk2Þ
s3=4

;

k2 ¼ λðs;m2
1; m

2
2Þ=4s; ð8:1Þ

with wðk2Þ normalized as follows
Z

w2ðk2Þk2dk ¼ 1: ð8:2Þ

The meson weak transition form factors from dispersion
approach reproduce correctly the structure of theheavyquark
expansion in QCD for heavy-to-heavy and heavy-to-light
meson transitions, as well as for the meson-photon transi-
tions, if the radial wave functions wðk2Þ are localized in a
regionof the order of the confinement scale, k2 ≤ Λ2 [33,34].
Following [36,63], we make use of a simple Gaussian

parametrization of the radial wave function

wðk2Þ ∝ expð−k2=2β2Þ; ð8:3Þ
which satisfies the localization requirement for β ≃ ΛQCD
and proved to provide a reliable picture of a large family of
the transition form factors [36].
In [36] we fixed the parameters of the quark model—

constituent quark masses and the wave-function parameters
βi of the Gaussian wave functions—by requiring that the
dispersion approach reproduces (i) decay constants of
pseudoscalar mesons and (ii) some of the well-measured
lattice QCD results for the form factors at large q2. The
analysis of [36] demonstrated that a simple Gaussian
Ansatz for the radial wave functions allows one to reach
this goal (to great extent due to the fact that the dispersion
representations satisfy rigorous constrains from nonpertur-
bative QCD in the heavy-quark limit). With these few
model parameters, [36] gave predictions for a great number
of weak-transition form factors in the full kinematical
q2-region of weak decays. However, the analysis of [36]
made use of some approximations which need to be
updated: namely, the wave-function parameters of ρ0 and
ω mesons, βρ and βω, were assumed to be equal to each
other, and βϕ has been set equal to that of η meson.
In this paper, we make use of the same effective

constituent quark masses as obtained in [36]65Another possibility would be to calculate the form factor
FðbÞð0; q2Þ using the dispersion approach and to apply VMD to
Fðd;sÞð0; q2Þ. However, FðbÞð0; q2Þ is a relatively flat function at
0 < q2 < M2

B (it has pole at q2 ¼ M2
ϒ), and provides numerically

small contribution at the level of about 10% compared to
Fðd;sÞð0; q2Þ. We therefore find eligible to apply the VMD
approximation to the full form factor Fðd;sÞð0; q2Þ.

6Wewould like to underline that the effective constituent quark
masses are used only in the context of the form factor calcu-
lations; in the effective b → ðd; sÞ Hamiltonian and for the
description of the charm-quark loops, we use the scale-dependent
quark masses in the M̄S scheme.
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md ¼ mu ¼ 0.23 GeV; ms ¼ 0.35 GeV;

mc ¼ 1.45 GeV; mb ¼ 4.85 GeV; ð8:4Þ

but make the following updates on the determination of the
meson wave-function parameters: First, we make use of the
recent results fB ¼ 189ð4Þ MeV and fBs

¼ 225ð4Þ from
lattice QCD [64] to fix the wave-function parameters of B
and Bs; this new inputs lead to a more reliable calculation of
the form factors Fiðq2; 0Þ which involve only B-meson
wave functions. Second, for the calculation of the form
factors Fið0; q2Þ based of vector-meson dominance, we
need the transition form factor gþð0Þ for the transition of
Bs;d meson to neutral vector mesons ρ0, ω, ϕ. As men-
tioned, in [36] the wave-function parameters of light vector
mesons have been set equal to the wave-function parameters
of the corresponding pseudoscalar mesons. This turns out to
be a rather crude approximation; we now improve the

analysis and fix also the vector-meson wave-function
parameter β from the reproduction of its decay constant.
The new parameters turn out to be in some cases rather
different from those used in [36].

2. Form factors Fiðq2;0Þ
For the calculation of the form factors Fiðq2; 0Þ, we need

the BðsÞ wave-function parameters, which we fix by the
requirement to reproduce the latest results for the leptonic
decay constants fB and fBs

[64]. The obtained wave-
function parameters and the corresponding decay constants
of beauty mesons are quoted in Table I.
With the wave function of BðBsÞ meson fixed, we

calculate the form factors Fðb;dÞ
i ðq2; 0Þ (Fðb;sÞ

i ðq2; 0Þ) via
the spectral representations given in the previous section.
Figure 12 shows the results of our calculation.
Formally, the spectral representations allow one to calcu-

late the form factors in the region q2 < ðmb þmqÞ2.
However, the results from an approach based on quark
degrees of freedomshould not be trusted in the region close to
hadron thresholds. Therefore, one cannot guarantee our
calculations to be reliable at q2 ≥ 20 GeV2. On the other
hand, we know that the form factors have poles at q2 ¼ M2

R,
where MR is the meson with the appropriate quantum
numbers: 1− for FV and FTV ; 1þ for FA and FTA.
Therefore, following [36] we parametrize our results by
the “modified” pole function

TABLE I. Wave function parameters of B [MB ¼ 5.279 GeV]
and Bs [MBs

¼ 5.370 GeV] mesons and the corresponding decay
constants calculated with Eq. (7.2). For the adopted ranges of β,
the corresponding value of the decay constants are shown.

B Bs

βP, GeV 0.545–0.565 0.61–0.63
fP, MeV 184–192 221–229

5 10 15 20 25
q2 GeV2

0.05

0.1

0.15

0.2

0.25

FA q2

Bs

QM Single pole Modified pole

5 10 15 20 25
q2 GeV2

0.1

0.2

0.3

0.4

0.5

FV q2

Bs

QM Single pole Modified pole

5 10 15 20 25
q2 GeV2

0.1

0.2

0.3

0.4

0.5
FTA q2

Bs

QM Single pole Modified pole

5 10 15 20 25
q2 GeV2

0.2

0.4

0.6

0.8

1
FTV q2

Bs

QM Single pole Modified pole

FIG. 12. The form factors Fiðq2; 0Þ for Bs → γ transitions: solid black line—the result of the calculation via the dispersion
representation; blue line—fit to the calculation results with a modified pole formula Eq. (8.5); red—a single-pole parametrization.
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Fiðq2Þ ¼
Fið0Þ

ð1 − q2=M2
Ri
Þð1 − σ1ðq2=M2

Ri
Þ þ σ2ðq2=M2

Ri
Þ2Þ ;

ð8:5Þ

which explicitly takes into account the presence of the pole in
the right location. Equation (8.5) approximates the calcu-
lation results with better than 3% accuracy in a broad range
0 < q2 < 25 GeV2. Table II gives the corresponding param-
eters for theBd;s → γ form factors.We also consider a single-
pole parametrization of the form factors

Fiðq2Þ ¼
Fið0Þ

1 − q2=M2
Ri

; ð8:6Þ

suggested by large-energy effective theory and used in [25].
At q2 ≤ 15 GeV2 both parametrizations agree with better
than 10% accuracy, which is expected to be the typical
systematic uncertainty of the form factors from the disper-
sion approach. At larger q2, the deviation between
the two parametrizations increases, reaching ∼20% at
q2 ∼ 25 GeV2. We take this difference as a magnitude of
the systematic uncertainty of our predictions at large q2.
We would like to comment on the systematic uncertainty

of our predictions: the constituent quark picture for the
form factors is an approximation to a very complicated
picture in QCD. It is therefore not possible to provide any
rigorous estimate of the systematic uncertainties of the
obtained form factors. Based on the comparison of the
results from our dispersion approach to the results from
QCD sum rules and lattice QCD where such results are
available, we expect the systematic uncertainty of our form
factors at the level of 10% in the region 0 < q2 < 15 GeV2

and about 20% at 15 < q2 GeV2.

3. Form factors FTA;TVð0;q2Þ
For the form factor FTAð0; q2Þ ¼ FTVð0; q2Þ, we make

use of the vector meson dominance (VMD) formula (7.20)
which involves the B → V transition form factor and the
decay constants fV . According to adopted procedure, we
fix the wave-function parameter β for neutral vector mesons
based on their leptonic decay constants, and then, having at
hand the wave functions of the Bs;d mesons, calculate the
B → V transition form factors of interest.
As inputs for the decay constants of the vector mesons,

we make use of two sets of values: one set of fV is obtained
directly from the experimental data [65] neglecting the
mixing effects; the second set makes use of the values
obtained in [66] from the experimantal data including also
mixing effects. Table III gives the wave function parameters
of neutral vector mesons corresponding to these two sets of
the decay constants.
For the parameters βV we make use of the range, the

boundary values of which yield the decay constants with/
without mixing effects. The electromagnetic decay constants
which enter the VMD formula (7.20) are related to fV as
follows: fe:m:

ρ0
¼ 1ffiffi

2
p fρ0 , f

e:m:
ω ¼ 1

3
ffiffi
2

p fω, fe:m:
ϕ ¼ − 1

3
fϕ.

Having fixed the wave-function parameters, we calculate
the transition form factor gþ using the double spectral
representation for the P → V form factors given in [35].
The obtained results are summarized in Table IV and
compared with the determinations from other approaches.
We point out a sizeable reduction of the Bs → ϕ form factor
compared to the result of [36]. This change just reflects the
natural sensitivity of the form factor to the shape of the
wave functions of the participating mesons. As already
pointed out, in [36] βϕ was assumed equal to βη, which
turns out a rather crude approximation. Fixing βϕ from the

TABLE II. Parameters of the interpolating formula (8.5) for the form factors.

Bd → γ Bs → γ

Fð0Þ σ1 σ2 MR[GeV] Fð0Þ σ1 σ2 MR[GeV]

FA 0.072 0.002 0.400 5.726 0.069 −0.031 0.384 5.829
FV 0.110 0.058 0.489 5.325 0.111 0.144 0.722 5.415
FTA 0.117 −0.091 0.180 5.726 0.119 −0.063 0.321 5.829
FTV 0.117 0.058 0.458 5.325 0.119 0.163 0.751 5.415

TABLE III. Values of the mass and the width of neutral vector
mesons [65], decay constant fV (with isotopic factors omitted)
extracted from the leptonic width neglecting the meson-mixing
effects and the results of [66] which take mixing into account, and
the corresponding wave function parameters βV .

V MV , MeV ΓV , MeV fV , MeV βV , GeV

ρ0 775 149 220 [65], 222 [66] 0.328–0.330
ω 783 8.49 195 [65], 187 [66] 0.28–0.29
ϕ 1019 4.27 226 [65] 215 [66] 0.32–0.34

TABLE IV. The form factor T1ð0Þ ¼ −gþð0Þ from different
approaches. The results without the isotopic factors are presented.
To obtain the form factor forB → ρ0 one should multiply the entry
in the Table by −1=

ffiffiffi
2

p
; for B → ω one should multiply by 1=

ffiffiffi
2

p
.

T1ð0Þ This work [36] [67] [68] [66]

Bþ → ρþ 0.29� 0.01 0.27 0.29 0.267� 0.021 0.27(4)
B → ω 0.24� 0.01 � � � � � � 0.242� 0.022 0.25(4)
Bs → ϕ 0.27� 0.01 0.38 0.35 0.349� 0.033 0.31(4)
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known value of fϕ, as done in this work, is obviously
much more reliable. As seen from Table IV, our present
form-factor results, corresponding to the wave-function
parameters fixed by using the decay constants as inputs,
demonstrate the agreement with the latest results from light-
cone sum rules, within the expected 10%–15% uncertainty.
We take into account the contributions to the form factor

FTA;TVð0; q2Þ from the light ground-state vector mesons,
neglecting those from the excited mesons. The latter are
difficult to estimate directly, but the experience from the
pion elastic and weak transition form factors in the timelike
region suggests that the magnitude of the contributions of
the excited states is numerically much smaller compared to
the ground-state contributions [59]. Then, the contributions
of the excited vector mesons to FTA;TVð0; q2Þ may be
neglected compared with other contributions to the B →
γlþl− amplitude.

B. The differential distributions

With all form factors known, we are in a position to
calculate numerous differential distributions in B → γlþl−
decays. The necessary inputs such as the VCKM and the
quark masses are taken from [65]; the values of the Wilson
coefficient are summarized at the end of Sec. II. The only
theoretical ingredient which still contains ambiguities is the
contribution of charm-loops in the charmonia resonance
region. As discussed above in Sec. V, one can obtain an
excellent description of the QCD sum rule results [42]
available at low q2 with different assignments of the
resonance phases. The phase ambiguity cannot be resolved

on the basis of the theoretical arguments only, but needs
further inputs from the experimental measurements which
will become available in the future. Most of the differential
distributions presented below are obtained for the standard
assignment of positive contributions of all charmonia, that
follows the patters of the factorizable contributions. The
only exception is the forward-backward asymmetry, AFB, in
which case we discuss two different assignments and
demonstrate a strong sensitivity of AFB in the q2-region
between ψ and ψ 0 to the specific choice of the resonance
relative signs.

1. The differential branching ratios

The differential branching ratios are shown in Fig. 13.
The results in Fig. 13 correspond to the description of the
charm-loop effects according to Eq. (5.7) and adding the
contributions of the broad charmonia according to
Eq. (5.16), and further assuming that all charmonia
contribute with the same positive sign (coinciding with
the sign of the factorizable contribution). The subtraction
constants a and b in Eq. (5.7) are determined by the
requirement to reproduce the known results at q2 ≤ 4m2

c,
including nonfactorizable corrections calculated in [42]. As
discussed in Sec. V, this reproduction may be reached with
an excellent few percent accuracy for the different assign-
ments of the resonance phases thus leaving the question of
the relative resonance phases open.
In the region q2 ≤ 6 GeV2, the charming loops provide a

mild contribution at the level of a few percent, and therefore
the branching fractions in this region may be predicted with

0.1 1 100.5 5 150.1
q2 GeV2

1

10

102

103

104

109dBr dq2

Bs e e

Bs

'
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104

1010dBr dq2

Bd

Bd e e

'

FIG. 13. Differential branching fractions for Bs → γlþl− (left) and Bd → γlþl− (right) decays. Blue lines—μþμ− final state, red lines
—eþe− final state.

TABLE V. The contributions to the branching ratio of B̄s → γlþl− decays integrated over the specific q2-ranges in
the region below charmonia resonances for the central values of all parameters and the form factors given by
Eq. (8.5).

109ΔBðBs → γlþl−Þ
½4m2

e; 4m2
μ� ½4m2

μ; 1 GeV2� ½1 GeV2; 6 GeV2� ½6 GeV2; 0.33M2
Bs
�

eþe− 4.672 1.796 6.003 0.136
μþμ− � � � 1.790 6.004 0.149
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a controlled accuracy, mainly limited by the form-factor
uncertainty. Our estimates read

BðB̄s → γlþl−Þjq2∈½1;6� GeV2 ¼ ð6.01� 0.08� 0.70Þ10−9
BðB̄d → γlþl−Þjq2∈½1;6� GeV2 ¼ ð1.02� 0.15� 0.05Þ10−11:

ð8:7Þ

The first uncertainty in these estimates reflects merely the
10% uncertainty in the B → γ transition form factors. The
second uncertainty reflects the uncertainty in the contribu-
tions of the light vector mesons ρ, ω, and ϕ. We would like
to emphasize that in the case of the Bs → γlþl− transition,
the dominant contribution is given by the narrow ϕ-meson
pole. In the case of the Bd → γlþl− transition, the known
contribution of the vector resonances is less important, and
as the result, the branching ratio uncertainty reflects to a
large extent the form factor uncertainty of 10%.
Table V gives the branching ratios integrated over several

bins below the charmonia region (the charmonia region
0.33 ≤ q2=M2

Bs
≤ 0.55 is normally excluded from the data

analysis). Table VI shows the results of the integration

above the charmonia region, from q2 ¼ 0.55M2
Bs

to q2 ¼
M2

B − 2MBEγ for different values of Eγ , the photon energy
in the B-meson rest frame: since the bremsstrahlung
contribution leads to a divergence of the branching ratio
at large q2, a certain cut on the photon energy is required.
The values in the range 0.1 GeV < Eγ

min < 0.5 GeV cor-
respond to the photon selection criteria at the Belle II
detector [69], while the interval 0.5 GeV < Eγ

min < 1 GeV
is relevant for those at the LHCb detector [70,71].
In the actual data analysis, the photon-energy cut is

applied in the laboratory frame, not in the B-rest frame.
However, as can be seen from Tables Vand VI, the specific
value of the energy have a marginal impact on the total
branching ratio, since the contribution of the region above
charmonia resonances, after applying the cuts, contributes
to the branching ratio at the level below 10%.

2. Ratio Rμ=e of the muon/electron distributions
in B → γl + l − decays

Figure 14 shows the ratio Rμ=e of the differential
distributions B̄ → γμþμ− to B̄ → γeþe−. Such a ratio is
a standard observable for probing violations of the lepton
universality in rare FCNC semileptonic decays
B → ðP;VÞlþl−; recently, this ratio was proposed as a
useful variable also in radiative leptonic decays [30]. The
ratio is found to be close to unity in the region
q2 ≤ 5 GeV2. Notice however, that in B → γlþl− decays,
unlike the B → ðP;VÞlþl− processes, the lepton-mass
effects, mainly the bremsstrahlung contribution to the
amplitude, come into the game.

TABLE VI. The contributions to the branching ratio of Bs →
γlþl− decays from the q2-region ½0.55M2

Bs
;M2

Bs
− 2MBs

Eγ �.

109ΔBðBs → γlþl−Þ
Eγ[GeV] 0.08 0.1 0.5 1.0

eþe− 0.20 0.20 0.16 0.06
μþμ− 0.43 0.41 0.23 0.07
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FIG. 14. The ratio Rμ=e in B̄s → γlþl− (a) and B̄s → γlþl− decays (b). The sensitivity of Rμ=eðB̄sÞ at large q2 to the q2-dependence of
the Bs → γ transition form factors (c,d).
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At large q2, the terms proportional to C7γ can be neglected compared to those containing C9V and C10A and one obtains
the following expressions for different contribution to the decay rate:

Γ1 ¼
α3e:m:G2

FjVtbVtqj2
768π4

ðCeff
9V

2 þ C2
10AÞðF2

A þ F2
VÞð1 − q2=M2

BÞ3M5
B;

Γ2 ¼
α3e:m:G2

FjVtbVtqj2
8π4

f2 logðMB=mlÞ − 1gC2
10Af

2
Bm

2
l MB

1 − q2=M2
B

;

Γ12 ¼ −
α3e:m:G2

FjVtbVtqj2
16π4

logðMB=mlÞCeff
9VC10AfBm2

l M
2
BFVð1 − q2=M2

BÞ2: ð8:8Þ

For the electrons in the final state, all terms containing ml may be neglected; for the muons Γ12 gives a negligible
contribution compared to Γ1 and Γ2. Finally, for q2 above the narrow charmonia region, one finds an approximate relation

Rμ=e ¼ 1þ 96f2 logðMB=mμÞ − 1gC2
10A

Ceff
9V

2 þ C2
10A

1

ðF2
A þ F2

VÞð1 − q2=M2
BÞ4

m2
μf2B
M4

B
: ð8:9Þ

Obviously, the bremsstrahlung contribution drives the ratio Rμ=e far above unity at q2 → M2
B. In practice, at q

2 ≥ 15 GeV2

the ratio Rμ=e is sensitive to the details of the q2-behaviour of the transition form factors FA;V . So, if the lepton universality
has been verified at small q2, measuring Rμ=e at large q2 provides a direct access to the q2-dependence of the B → γ
transition form factors.

3. Forward-backward asymmetry

The differential forward-backward asymmetry is given by the relation

AFBðŝÞ ¼
R
1
0 d cos θ

d2ΓðBðsÞ→lþl−γÞ
dŝd cos θ −

R
0
−1 d cos θ

d2ΓðBðsÞ→lþl−γÞ
dŝd cos θ

dΓðBðsÞ→lþl−γÞ
dŝ

; ð8:10Þ

where ŝ ¼ q2=M2
B, θ is the angle between p⃗ and p⃗2, the momentum of the negative-charge lepton.

The results for AFB in the B̄s → γμμ and in the B̄d → γμμ
are shown in Fig. 15(a) and 15(b), respectively. The
asymmetries are practically insensitive to the uncertainties
in the B → γ transition form factors, as these uncertainties
to large extent cancel each other in the asymmetries.
As discussed above, the relative phases of the charmo-

nium resonances cannot be unambiguously determined on
the basis of the QCD sum-rule calculation of the non-
factorizable corrections at q2 ≤ 4m2

c. The results shown in
Fig. 15(a) and 15(b), are obtained making use of the QCD
sum-rule results for nonfactorizable contributions at small
q2 and employing the conventional assignment of the signs
of all charmonia contributions to be positive, following the
patter of the factorizable contributions.
It should be emphasized, that AFB in the region

between ψ and ψ 0 provides an unambiguous test of the
relative signs of ψ and ψ 0 contributions: as displayed in
Fig. 15(c) and 15(d), AFB being insensitive to the patter of
charmonium resonances in C9V in the region of small q2,
demonstrates qualitative differences depending on the
relative signs between ψ and ψ 0 in the region between
the resonances. Therefore, experimental study of the
asymmetry in this region will allow one to check the

relative signs of the ψ and ψ 0. We point out that this
observation applies not only to B → γlþl− decays, but
also to B → Vlþl− decays [49], where such measurement
seems much more feasible.
One should take into account, however, that the meas-

urement of the forward-backward asymmetry in the B →
γlþl− decay seems to be a hard task, because the final state
γlþl− does not carry any information about the flavor of the
decaying B-meson. In addition, the signs of the asymme-
tries corresponding to B and B̄ mesons are opposite. In the
absence of flavor tagging, the total asymmetry equals zero
aside from CP-violating effects. It appears that flavor
tagging is impossible at LHCb; however, at Belle II one
can use the fact that neutral B-mesons are produced in an
entangled state. Thus, if one of the B-mesons decays to a
state with a certain flavor, the other B-meson decaying to
γlþl− has the opposite flavor. Now, if the interval between
the decays is less than half of the oscillation period, one can
claim that the flavor of the second B-meson is known with
sufficient probability. For each selection procedure one can
also account for the oscillations contribution and therefore
improve the prediction accuracy. A method for such
calculations was developed in [27].
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IX. CONCLUSIONS

The paper presents a detailed analysis of nonperturbative
QCD effects in rare FCNC decays Bðs;dÞ → γlþl− decays in
the standard model. It should be emphasized that FCNC
radiative leptonic decays exhibit a much more diverse
structure of such effects compared to FCNC semileptonic
decays.
Our main results may be summarized as follows:
(1) We analyzed the B → γ� transition amplitudes in-

duced by the vector, axial-vector, tensor, and pseu-
dotensor b → ðs; dÞ quark currents. The invariant
form factors, which parameterize the corresponding
amplitudes, depend on two variable k02 and k2,
where k0 is the momentum emitted from the FCNC
b → ðs; dÞ vertex, and k is the momentum of the
virtual photon. We worked out the constraints on
these form factors imposed by electromagnetic
gauge invariance. We then calculated all the form
factors of interest making use of the relativistic
dispersion approach based on the constituent quark
picture. The appropriate subtractions in the spectral
representations for the form factors have been
determined from the constraints imposed by gauge
invariance.
For those form factors, describing the processes

with lþl− pair emitted from the FCNC vertex, the
numerical results in the full q2-range of the B → γ

decay have been obtained entirely within the
dispersion approach. The resulting q2-dependences
of the form factors exhibit the expected properties, in
particular, suggest the pole beyond the physical
decay region at the right location required by the
quantum numbers of the appropriate meson reso-
nances.
For those form factors, describing the lþl− pair

emission from the light valence quark of the B-
meson, one encounters the light vector-meson res-
onances in the physical decay region. To obtain the
predictions for the form factors in this case, we
combined the results from the direct calculation
within our dispersion approach with the gauge-
invariant version of the vector-meson dominance
model. The numerical predictions for the form
factors involving vector mesons have been updated
by using the new procedure of fixing the wave-
function parameters of vector mesons: namely, the
wave-function parameters of the vector mesons
involved have been fixed by requiring that the decay
constants reproduce the latest results for fV known
from other theoretical approaches.
The weak form factors of heavy mesons obtained

in the dispersion approach satisfy rigorious contra-
ints known from QCD in the heavy-quark limit. Still,
the dispersion approach is a phenomenological
approach representing a specific formulation of
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FIG. 15. Forward-backward asymmetry for B̄s → γμþμ− (left column) and B̄d → γμþμ− (right column) decays. The lower plots show
the asymmetries at q2 < M2

ψ 0 for two different relatives signs of ψ and ψ 0 contributions.
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the relativistic quark model. Therefore, essentially
the only way to probe its accuracy is a comparison of
its predictions with the predictions from direct QCD
related approaches. A comparison with the known
results from lattice QCD and QCD sum rules, where
such results are available, suggest that the uncer-
tainty of the form factors from the dispersion
approach does not exceed the level of about 10%.
We therefore assign this accuracy to our predictions
for the B → γ transition form factors.

(2) We performed a detailed study of the charm-quark
contributions and worked out the general constraints
on these contributions imposed by electromagnetic
gauge invariance. Assuming the similarity of the
charm-loop contributions to B → γlþl− and to B →
Vlþl− amplitudes, V the vector meson, we obtained
numerical predictions for the charm contributions to
the B → γlþl− amplitude making use of the existing
estimates of the nonfactorizable effects in the B →
Vlþl− decays. We demonstrated that the results for
the nonfactorizable corrections available at q2 below
the charm threshold do not allow one to resolve the
possible ambiguity in the relative charmonium
resonance phases. Additional inputs are necessary
to determine the phases unambiguously. We have
shown that the forward-backward asymmetry in the
q2-range between ψ and ψ 0 provides an efficient
probe of the relative charmonium contributions.

(3) We obtained numerical predictions for a number of
the differential distributions in B → γlþl− decays. In
particular, we demonstrate that Rμ=eðq2Þ, the ratio of

the B → γμþμ− over B → γeþe− differential distri-
butions, at large q2 provides direct access to meas-
uring the q2-dependences of the B → γ transition
form factors, once the lepton universality is estab-
lished from the data at low q2.

We also calculated the branching ratios integrated over
the low-energy range q2 ¼ ½1; 6� GeV2 where (i) the form
factors are known reliably and (ii) the c̄c contributions
remain at the level of a few percent:

BðB̄s → γlþl−Þjq2∈½1;6� GeV2 ¼ ð6.01� 0.08� 0.70Þ10−9;
BðB̄d → γlþl−Þjq2∈½1;6� GeV2 ¼ ð1.02� 0.15� 0.05Þ10−11:

The first error in these predictions reflects the uncertainty of
the B → γ transition form factors; the second error reflects
the uncertainty in the contributions of the light vector
resonances (ρ;ω;ϕ).
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